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Abstract

One of the important open questions in solar irradiance studies is whether long-term variability (i.e., on timescales
of years and beyond) can be reconstructed by means of models that describe short-term variability (i.e., days) using
solar proxies as inputs. Preminger & Walton showed that the relationship between spectral solar irradiance and
proxies of magnetic-flux emergence, such as the daily sunspot area, can be described in the framework of linear
system theory by means of the impulse response. We significantly refine that empirical model by removing
spurious solar-rotational effects and by including an additional term that captures long-term variations. Our results
show that long-term variability cannot be reconstructed from the short-term response of the spectral irradiance,
which questions the extension of solar proxy models to these timescales. In addition, we find that the solar response
is nonlinear in a way that cannot be corrected simply by applying a rescaling to a sunspot area.
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1. Introduction

The variability of solar irradiance was unambiguously
proven almost four decades ago, after the launch of the
NIMBUS7 mission (Hickey et al. 1980). Even prior to this, it
was suspected that a major contributor to climate change could
be caused by a variable Sun (Eddy 1976), after which studies of
solar irradiance variability attracted considerable attention.
Over the last few years significant progress has been achieved
in understanding the physical causes of solar variability and the
mechanisms by which it can influence Earth’s climate. The
mechanisms causing such irradiance variations have largely
been identified (Domingo et al. 2009; Solanki et al. 2013; Yeo
et al. 2017), with magnetic-field evolution and solar rotation
causing variations on timescales larger than a day, while
granulation and oscillations are responsible for variations on
shorter timescales.

An uninterrupted series of space-based missions, beginning
with NIMBUS7, have monitored the variability of the total
solar irradiance (TSI), which is the spectrally integrated solar-
radiative flux normalized to 1 au from the Sun, with high
precision and accuracy (Kopp 2016; Dudok de Wit et al. 2017).
Current TSI models can reproduce these measurements on
timescales from minutes to decades (Seleznyov et al. 2011;
Yeo et al. 2014; Coddington et al. 2016; Shapiro et al. 2017).
Daily measurements of the spectral solar irradiance (SSI) in the
ultraviolet began at about the same time and have since been
extended to span the visible and near-infrared up to 2.4 μm.

However, a number of important open questions remain. In
particular, while models and observations of the variability of
the SSI agree reasonably well in the short term (i.e., on
timescales from a few days to solar-rotational periods; Ermolli
et al. 2013; Solanki et al. 2013), the amplitude and even the
phase of the variations on timescales of the 11-year solar-
activity cycle and longer are still unclear (Harder et al. 2009;
Wehrli et al. 2013). Knowledge of such long-term SSI
variations is crucial for assessing the impact of solar variability
on the Earth’s climate. The lack of observational constraints on
their magnitude has unfortunately hampered Sun-climate
studies (e.g., Oberländer et al. 2012; Ball et al. 2016).

In order to solve this problem, numerous attempts have been
made to extrapolate SSI variations to multi-decadal timescales
by means of empirical models that reproduce the dynamics at
shorter timescales (Lean 2000; Preminger & Walton 2006b;
Coddington et al. 2016). Different physical mechanisms may
affect the SSI variability on different timescales, however
(Shapiro et al. 2015), making such extrapolations non-trivial.
Nevertheless, such irradiance models appear to reproduce the
observations reasonably well in the short term, at least over the
four decades for which direct observations are available. Their
ability to properly reproduce longer-term variations is an open
and hotly debated question that remains unanswered partly
because of a lack of stable, long-term SSI measurements,
particularly in the visible and near-infrared spectral bands
where relative solar-variability is small.
Irradiance-reconstruction models rely on several assump-

tions. First, they assume that the SSI can be reconstructed from
a linear or weakly nonlinear combination of one or more solar
proxies such as sunspot number or sunspot area. A second
assumption is that the relation between the SSI and proxies is
time-invariant, which is needed in order to reconstruct the SSI
backward in time before the observations began. However, the
models are determined using data from only the relatively short
overlap period (typically one to four decades) during which
both the SSI observations and proxies are available, and thus
rely on time-invariance for extrapolations over their multi-
century pre-observation time ranges. A third assumption, which
is an important focus of this article, is the instantaneity of the
response of the SSI to solar proxies, particularly to flux
emergence as indicated by changes in the sunspot area.
Preminger & Walton (2005, 2006a) were among the first to
consider the convolutive nature of this particular response and
the possibility of a time delay relative to changes in the proxies
to which they are causally related. Incorporating such a delay
improves the impulse-response models’ reconstruction capacity
and also gives deeper insight into their physical interpretation.
The usual framework for describing such a non-instanta-

neous response between an input (a solar proxy) and an output
(the SSI) is that of linear systems with transfer functions that
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are classically represented by their impulse response (Antsaklis
& Michel 2005). The impulse response relating the SSI to a
solar proxy such as the sunspot area indicates by how much an
increase in sunspot area leads to an excess or deficit of spectral
irradiance. Such relations may help determine whether solar
brightness variations are spot- or faculae-dominated, which in
turn helps explain solar variability on longer timescales.
Several recent studies have been devoted to this question
(Preminger et al. 2011; Woods et al. 2015; Shapiro et al. 2016).

Motivated by this important question, here we evaluate the
impulse response of the SSI to the sunspot area along the line
initiated by Preminger & Walton (2005, 2006a). However, we
carry the study further by (1) eliminating solar-rotational
effects that hamper the proper estimation of the impulse
response and its connection to the energy budget, and (2)
introducing a more general transfer function model that allows
the separation of causally related effects from other contribu-
tions. Our results reveal the nonlinearity of the impulse
response during the phase when there is flux emergence (i.e.,
before the sunspot decays) and reveal that it not possible to
reconstruct long-term variability from a linear impulse-
response model based on short-term measurements. We stress
that our objective is to infer physical information from the
impulse response and not to find the best model for
reconstructing the SSI from sunspots, which is a different
problem.

The paper is organized as follows. The methodology is
described in Section 2, followed by a description of the data
sets in Section 3. We discuss the results in Section 4, and
summarize our conclusions in Section 5.

2. Methodology

2.1. Impulse Response with No Residual

Our approach is conceptually similar to that introduced by
Preminger & Walton (2005, 2006a, 2006b, 2007; henceforth
denoted as PW), with two major differences that are described
in Sections 2.2 and 2.3. The studies by PW suggested the
possibility of describing the relationship between variations in
the sunspot area and in the SSI by means of a linear time-
invariant system. An essential feature of such time-invariant
systems is that they are entirely characterized by their impulse
response h(t), which relates their response y(t) to a given
stimulus or input u(t) by

ò t t t= * = -
-¥

¥
( ) ( ) ( ) ( ) ( ) ( )y t h t u t h t u d . 1

The Fourier transform turns this convolution into a product:

w w w=( ) ( ) ( ) ( )Y H U , 2

where w( )Y stands for the Fourier transform of y(t), etc. Once
we have estimated the impulse response h(t) or the transfer
function w( )H , we can model the response to any type of
temporal evolution of the input. The impulse response may be
estimated by working in Fourier space: for each frequency ω

we then perform a linear regression of w( )Y versus w( )U .
To illustrate this concept let us imagine a simple dynamical

system that is described by the linear differential equation

t
= -( ) ( ) ( ) ( )d

dt
y t u t

y t
. 3

For a discrete time series this first-order differential equation
can be reproduced by a simple first-order autoregressive model
with exogenous inputs (Ljung 1997). As an example, Figure 1
shows an input u(t) that consists of a series of discrete random
pulses; these could be, for instance, a time series of the sunspot
number near solar minimum. The shown modeled output y(t)
computed from Equation (3) tracks the input with a relaxation
decay time τ. This output is qualitatively similar to what we
shall observe later for that of the UV irradiance to changes in
sunspot area.
Taking the Fourier transforms of the input and output from

the example in Figure 1, we estimate the impulse response h(t),
which is illustrated in Figure 2 together with its theoretical
model based on Equation (3).
We simulated the dynamical system in this example using

conditions that are similar to the ones encountered with real
solar data, such as the length of the data sequences and the
inclusion of ∼20% additive white noise in the input and output.
As shown in Figure 2, the reconstructed impulse response
agrees remarkably well with the theoretical one, in spite of the
contamination of the data by noise. The estimation of such

Figure 1. Example showing an input u(t) that consists of random pulses, and
the associated response y(t) for the model described by Equation (3) with a
relaxation time t = 4.

Figure 2. Illustration of the excellent agreement between the theoretical
impulse response h(t) for the model described by Equation (3) (blue line)
and that obtained by computing the inverse Fourier transform of w =( )H
w w( ) ( )Y U (red plus signs) using the data from the example shown in Figure 1

after adding noise to them.
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impulse responses from finite and noisy records is a central task
in the field of system identification (Ljung 1997) and a
considerable amount of research has been devoted to the design
of robust estimators, with many applications in automatic
control, signal processing, telecommunications, etc. Here, our
main objective is to estimate the impulse response from the
response of the SSI to changes in sunspot area in order to better
understand the nature of SSI variations.

2.2. Impulse Response with Residual

The impulse response model we have described is one that is
commonly utilized in linear system theory (Antsaklis &
Michel 2005). However, the variability of solar irradiance
may have different drivers, including some that are not directly
caused by a single selected input u(t). In other words, some part
of the SSI variations may arise from processes independent of
sunspots and products of their decay. To account for this, we
extend the definition of the dynamical response by allowing
two contributions: (1) the classical impulse response that relates
output to input; and (2) an additional (but not necessarily small)
residual contribution r(t) that captures whatever is not
described by the classical linear impulse response. Note that
we do not impose any model for this residual, which merely
describes what remains after modeling the convolution of a
stimulus with the impulse response. Instead of Equation (1), we
now have

= * +( ) ( ) ( ) ( ) ( )y t h t u t r t , 4

whose Fourier transform gives

w w w w= +( ) ( ) ( ) ( ) ( )Y H U R . 5

This system is fully characterized by h(t) and r(t). Here again, it
is more convenient to work in Fourier space. In practice, for
each frequency ω, we have an ensemble of M estimates of

w{ ( )}Uk and w{ ( )}Yk , with = ¼k M1, 2, , . The problem then
amounts to finding for each frequency the two coefficients

w w{ ( ) ( )}H R, that solve the overdetermined set of equations
w w w w= +( ) ( ) ( ) ( )Y H U Rk k . This is typically done by total

least squares, as classical least squares are not suitable because
both Y and U have errors. The impulse response h(t) and the
residual r(t) are then obtained by the inverse Fourier transform
of the slope and the intercept of these lines, respectively.

To illustrate the importance of the residual term in
Equation (4), we added an artificial trend to the output shown
in Figure 1 and estimated the resulting impulse response h(t)
together with the residual r(t), again after adding noise to the
input and output. Figure 3 compares the scatterplot of the
output w∣ ( )∣Y versus the input w∣ ( )∣U at a given frequency with
and without the added trend. When there is no trend in the data,
the linear transformation intercepts the origin, as expected.
However, this intercept is nonzero when the output has an
additional trend. We thus have a simple criterion for both
testing the presence of a residual and estimating it.

Figure 3 also compares the reconstructed determination of
the artificial trend to what was actually applied, and confirms
the ability of our methodology to properly extract both h(t) and
r(t) from the observations, even when the latter are corrupted
by noise. If no residual is allowed for in the model when there
is one in the observations, then the impulse response will be
biased and incorrect. In previous studies of the transfer function
applied to solar irradiances, no such residual term was

included, potentially biasing the determination of the impulse
response by background residuals. We find that the inclusion of
this residual term affects the resulting solar-response determi-
nations, therefore we systematically include it in our model.
System identification often relies on parametric approaches to

estimate impulse responses because of their better noise
immunity (Ljung 1997). However, such approaches require the
explicit design of a model of the response. While the impulse
response can generally be described by a simple parametric
model (e.g., an exponential in the example above), this is not true
of the residual, whose variation in time can be arbitrarily
complex. For that reason, parametric models are not appropriate
for determinations of solar irradiance responses to various
sources, as the measurements of each can include background
effects that may be due to non-solar (i.e., instrumental) causes.
We thus utilize a more general non-parametric (Fourier) approach
(e.g., Schoukens et al. 2009).

2.3. “Snapshots” Remove Solar-rotational Variability

Aside from the inclusion of the residual term in Equation (4),
there is a second important difference between our approach
and that of PW. In the latter, all inputs and outputs used daily
cadence time-series data directly, thus incorporating both the
desired solar-dynamical effects as well as unrelated solar-
rotational effects (such as center-to-limb variations of contrasts
of solar active regions as well as foreshortening). These solar-
rotational effects alter the true impulse-response function by
modulating it with a 27-day oscillation, which, in addition, is
wavelength-dependent. Although we could in principle decon-
volve the two effects, it is considerably easier to reorganize the
data in a way that eliminates the rotational modulation. To do
so, we consider a stroboscopic approach, taking a “snapshot” of

Figure 3. Upper plot: representation of w∣ ( )∣Y vs. w∣ ( )∣U at a particular
frequency for the example shown in Figure 1 with and without an added
artificial trend to the input time series. The regression is done in complex space;
here, we display the modulus for visualization purposes only. Also shown is the
linear fit for each case, from which the impulse function and the residual can be
estimated. Lower plot: the reconstructed residual (red crosses) closely matches
the original trend (blue line) that was artificially added to the output.
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the Sun once every solar rotation. Observing the Sun at this
cadence allows us to concentrate on the dynamical evolution of
active regions while strongly reducing the solar-rotational
influences on their visibility; we thus separate most of the solar-
dynamical response from the rotationally induced variability.
The tradeoff with this approach is coarser time resolution, since
we cannot resolve timescales shorter than one solar rotation.

To illustrate this stroboscopic approach, consider a sequence of
daily values + + ¼{ ( ) ( ) ( ) }y t y t y t, 1 , 2 ,0 0 0 . We extract from
this a new record + + ¼{ ( ) ( ) ( ) }y t y t y t, 27 , 54 ,0 0 0 that is now
sampled every 27 days. One may also consider the sequence that is
observed one day later: + + + ¼{ ( ) ( ) ( ) }y t y t y t1 , 28 , 55 ,0 0 0 ,
and likewise build additional records. In total, 27 different records
can thus be generated.

In this paper we analyze solar irradiance and solar proxy data
from ∼12 years of observations (4401 daily values), giving 27
records of 163 time steps for each, with each time step
corresponding to a different solar rotation. These realizations
are not fully independent; however, they contain exactly the
same amount of information as the original time-series records.
Let us therefore stress that we exploit the full data set, with no
addition nor loss of information.

Fortunately, because our 12 years of data correspond to
nearly one solar cycle, each stroboscopic record is close to
periodic. This avoids the need to apply cumbersome window-
ing procedures that might otherwise be required before
applying Fourier transforms.

The strength of the impulse-response approach we utilize lies
in its ability to isolate and quantify the response of the Sun to
changes in net disk-integrated sunspot area by observing the
cumulative effect of an arbitrarily large number of spots for a
sufficiently long time. Let us stress that we relate variations in
the irradiance to variations in the sunspot area without
distinguishing between short-lived and long-lived spots. In
particular, a newly emerging sunspot whose area exactly
compensates a decaying sunspot will cause no variation in the
irradiance. This is not exactly true, as the contribution to the
SSI of features such as faculae is position-dependent. By using
disk-integrated proxies we force the impulse response to
describe an average response of the Sun. An important
condition for this is the linearity of the solar response, which
will be addressed in Section 4.5. The main consequence of the
location-dependent effects of the sunspots, combined with their
varying locations of emergence on the solar disk, will be a
larger uncertainty in the values of the impulse response.

3. Data

3.1. The Solar Indices Used

For solar irradiances, we utilize daily observations made by
the Solar Radiation and Climate Experiment (SORCE) mission
(Rottman 2005) from 115.5 to 2000 nm, and observations by
the Thermosphere Ionosphere Mesosphere Energetics and
Dynamics (TIMED) mission (Woods et al. 2005) from 29.5 to
115.5 nm. These two missions provide the longest time-interval
for which the SSI was continuously monitored from the UV to
the near-infrared, namely from 2003 May 15 to 2015 June 14.
The spectral resolution is 1 nm from 29.5 to 310 nm and then
progressively increases to 15.7 nm at longer wavelengths. For
convenience, we concentrate on the irradiance integrated in six
spectral bands: the extreme-ultraviolet (EUV) from 30 to 121
nm; the far-UV (FUV) from 122 to 200 nm; the middle-UV

(MUV) from 200 to 300 nm; the near-UV (NUV) from 300 to
400 nm; the visible (VIS) from 400 to 600 nm; and the near-
infrared (NIR) from 600 to 2000 nm. The SSI data contain a
small fraction of observational gaps or outliers that are filled in
by expectation-maximization (Dudok de Wit 2011). This filling
considerably facilitates the Fourier analysis and has no
significant impact on the results.
The input to our solar irradiance impulse-response model

should be a time series related to the flux emergence of active
regions on the visible side of the solar disk, as these regions
are known to be causally related to the irradiance. In addition to
the irradiances above, we consider five observables that provide
inputs from which the irradiance is modeled: the daily sunspot
area (DSA) on the solar disk provided by the Royal Greenwich
Observatory; the solar radio flux at 10.7 cm (F10.7) from the
Penticton Observatory; the solar radio flux at 30 cm (F30) from
the Nobeyama Observatory; the core-to-wing ratio (Mg II) of the
Mg II line from the University of Bremen; and the TSI from
SORCE/TIM. The latter, being from a dedicated TSI instrument,
is independent of the SSI provided by other instruments on the
SORCE mission. Because the solar irradiance and these five ob-
servables are all disk-integrated measurements, the impulse
function determined from each observable is the average response
of the solar-radiative output without regard to the location(s) of
the responsible active area(s) on the solar disk.
PW showed that an ideal candidate for the input time series

is the DSA, which is given as a percentage of the solar
hemisphere. For convenience, we divide the official DSA by
100, so that its units are 10−4 of the fractional surface of the
solar hemisphere (i.e., 100 μhem). In these units, a new sunspot
typically corresponds to an increase in u(t) of the order of one
unit; high levels of solar activity typically correspond to values
of 10 and above.
For proper determination of the impulse response, it is

important to consider the response of the Sun to a varying input
and thus ignore any constant background or baseline. A natural
choice for the latter is the level of activity corresponding to
a quiet Sun. For the SSI we define the response as =( )y t

l l-( ) ( )SSI , t SSIQS , where l( )SSIQS is the quiet Sun level
that is estimated from periods having at least 30 consecutive
days with no sunspots during the prolonged solar minimum of
2008–2009. For the DSA, the zero level is the natural baseline.

3.2. The Need for Accommodating Residual Contributions

As shown in Figure 3, the scatterplot of w( )Y versus w( )U
can clearly indicate whether a purely linear impulse-response
model is applicable and the need for the inclusion of a residual
trend. Figure 4 similarly illustrates this using the DSA as input
and the Mg II index as output. The nearly linear relationship
between the two quantities supports the validity of our linear
and time-invariant impulse-response model. More importantly,
it reveals the presence of a large offset w( )R that cannot be
neglected, which confirms the importance of including a
residual term in our model. While Figure 4 illustrates the linear
relationship for the lowest frequency only, qualitatively similar
results are obtained at all other frequencies. Except for the
lowermost frequencies, however, the residual trend contains
little power and the noise level is relatively high, which makes
the linear relationship, and in particular the offset, less
apparent.
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4. Results and Discussion

4.1. Impulse Responses of Solar Indices to Sunspots

The central results of our study are the impulse responses
h(t) of the Sun to temporal changes in net sunspot area, which
are representative of varying solar-surface magnetic activity.

These impulse-response results are plotted in Figure 5 for the
SSI over different spectral bands and in Figure 6 for the other
solar observables. Each quantity’s impulse response can be
interpreted as the average variation in that quantity when the
DSA increases by one unit (i.e., 100 μhem) for one solar
rotation and then returns to its previous level for subsequent
rotations. Although h(t) is estimated for the full time span
(i.e., 163 solar rotations), we display it only for the first 20 solar
rotations, of which only the first few are significantly nonzero.

Figure 5 illustrates that an increase in sunspot area on
average initially generates an excess of emission in the shorter-
wavelength UV bands and a deficit in the NUV and longer-
wavelength bands, as indicated by the respectively positive
(excess) and negative (deficit) values of h(t) at t=0 in the
impulse responses; Figure 6 shows a similar initial deficit for
the TSI. The deficits are due to sunspot-darkening initially
exceeding the contributions from bright structures such as
faculae and plages at these wavelengths, despite those bright
structures generally appearing along with newly emerging or
increasing-size sunspots. We find these negative values occur
only at t=0, meaning facular brightening overwhelms
sunspot-darkening within one solar-rotation period.

Although this sunspot-darkening is a known result (e.g.,
Spruit 2000; Fröhlich & Lean 2004; Foukal 2013), our
approach shows it in a more compact and quantitative way:
h(t) quantitatively describes the average change in measured
SSI for a unit increase in sunspot area, and the method of using
27-day “snapshots” avoids the need for separately deconvol-
ving solar-rotational effects.

The impulse response for subsequent solar rotations ( >t 0)
describes the decay of the solar response to flux emergence
after the sunspot area has returned to its pre-emergent value.
We find that all spectral bands in Figure 5 exhibit an excess of
radiation after the initial t=0 response. This excess decays
with an average time of 3.0±0.7 solar rotations and is
associated with the gradual conversion of remnants of the
active region into enhanced magnetic network.

The decay can be tracked at best for 3–4 rotations before the
remnants of the active region are buried in the noise floor,
which is represented in Figure 5 by a shaded band. This noise
floor is obtained from surrogate data (Schreiber & Schmitz
2000): we generate a large ensemble of synthetic records that
have the same spectral properties and probability density as the
original input and output but have randomized phases in
Fourier space and thus are not causally related. From the
standard deviation of samples of 600 impulse responses we
obtain an indication of the level below which h(t) cannot
be meaningfully interpreted. With longer records and better

Figure 4. Scatterplot of the lowest nonzero frequency (4401−1 day−1) of the
Fourier component of the Mg II index ( w∣ ( )∣Y ) vs. that of the DSA ( w∣ ( )∣U ).
Here, we display the modulus solely for visualization purposes; the true
regression is done in complex space. Also shown is the linear fit, from which
the impulse function and the residual are estimated. The dashed lines
correspond to±one standard deviation of that fit.

Figure 5. The impulse response of the spectral solar irradiance due to the
emergence of sunspots is plotted for six spectral bands. h(t) is expressed in
Wm−2 per unit increase in the DSA, which is in 100 μhem. The shaded bands
denote amplitudes for which the impulse response cannot be meaningfully
distinguished from a randomly varying input. The width of this band, as well as
the error bars plotted, correspond to±one standard deviation.
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statistics, this noise level shrinks and the decay can be tracked
for longer periods; with the F10.7 index (for which observa-
tions started in 1947), for example, up to seven rotations can be
observed before reaching the noise floor.

The number of nonzero terms in the impulse response is
indicative of the number of solar rotations required for the
signature in the SSI due to a changing sunspot area to vanish.
Since only the 4–6 first terms of the impulse response are
significantly nonzero, we conclude that the SSI has little or no
memory of DSA variations by that same number of solar
rotations. That is, the SSI cannot be delayed with respect to the
DSA by more than a few months. We find no evidence for lags
of several years or completely out-of-phase responses of the
SSI, as suggested for example by Woods et al. (2015).

The shape of the impulse response in Figure 6 helps clarify
the behavior of solar proxies. The 30cm radio flux (or F30
index), for example, has recently been advocated as a better
proxy than the F10.7 for the UV (Dudok de Wit et al. 2014)
because it contains a stronger contribution from Bremsstrah-
lung, which is associated with UV-emitting bright loops above
active regions. Figure 6 shows that both F10.7 and F30 have a
bright peak at t=0 (which mainly comes from gyro-emissions
that are associated with the active regions) followed by a decay
that is considerably brighter in F30 than in F10.7. A
comparison of the impulse responses shows that the variability
of the F30 index is indeed considerably closer to that of the
Mg II index than to that of the F10.7 index.

4.2. The Residual Contribution

The residual contribution r(t) (see Equation (2)) describes
variations that cannot be reproduced by the time-invariant
impulse response. Most of the spectral power of r(t) is
concentrated in low frequencies, primarily capturing slow
variations on timescales of several months and longer. Note that
the slow variation of the residual contribution is an observational
result and is not imposed by our transfer function model. Figure 3
demonstrates that r(t) can describe sharp discontinuities as well.
Figure 7 illustrates the residual contribution r(t) for two

typical cases: in the FUV, where it captures approximately half
of the long-term variability, and in the visible, where it
accounts for almost all of the long-term variability. The
relatively large amplitude of r(t) is an important finding, since it
means that a significant portion of the variability in the
irradiance measurements cannot be reconstructed from changes

Figure 6. The impulse responses due to sunspot emergence are plotted for
various solar quantities: the radio flux at 10.7cm (F10.7) and at 30cm (F30);
the Mg II core-to-wing index; and the total solar irradiance (TSI). The shaded
band and the errors again indicate±one standard deviation.

Figure 7. The input DSA (upper plot) is modeled to three outputs, with the
observations (blue) and their residual contributions r(t) (red) shown: the solar
irradiance in the FUV (second plot); the solar irradiance in the visible (third
plot); and the TSI (fourth plot). The quiet Sun level has been subtracted from
each quantity. The 1σ uncertainty on r(t) is approximately one-eighth of its
amplitude.
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in the sunspot area alone (at least, not with a linear model).
This questions the validity of models that reconstruct the SSI
from one single solar proxy, such as the net sunspot area or the
even more-limited sunspot number; or it questions the long-
term stability of the measurements themselves.

A nonzero residual contribution would be needed in the
visible and near-infrared to explain any (controversial) out-of-
phase variability in these bands with respect to solar proxies
such as the DSA (Harder et al. 2009) because our model
relating the SSI to sunspot-area change does not produce lags
in the SSI of more than a few months (as mentioned in
Section 4.1). Thus, such out-of-phase variability would instead
be incorporated into the residual contribution and not the
impulse response itself.

Let us stress again that in a non-parametric model, the
residual contribution cannot be neglected, as it was in previous
studies, since this affects the determination of the impulse
response itself, as shown in Section 3.2. The example shown in
Figure 4 clearly indicates the need for using Equation (4). If,
however, we ignore the residual contribution then reasonably
good reconstructions can still be achieved by forcing
Equation (1) to the data, as in Preminger & Walton (2007).
However, the quality of the reconstructed output in this case
does not necessarily reflect the quality of the model parameters,
with the appearance of long and unphysical tails in h(t).

With a nonzero residual contribution such as what we find,
the SSI cannot be described solely by the sunspot areas because
we have no model for describing how the residual contribution
itself varies. Since numerous attempts have been made to infer
past values of the TSI or SSI from sunspot data on a daily to
monthly basis (e.g., Solanki & Fligge 1999; de Toma
et al. 2001; Pap et al. 2002; Balmaceda et al. 2007; Preminger
& Walton 2007), it is insightful to determine what spectral
bands require a significant residual contribution. To quantify
this, we compute the ratio between the amplitudes of r(t) and of
y(t) after decimating the latter to the 27-day sampling rate of
r(t). The results are summarized in Figure 8, which shows that
the residual contribution represents at least 50% of the long-
term variation in the UV bands and approximately 100% of the
long-term variation in the visible and NIR.

The surprisingly large magnitude of the residual contribution
may have several causes. As mentioned previously, this
contribution is required to describe physical out-of-phase
variations of the SSI on long timescales, namely those of
several months and longer.

Out-of-phase variations on shorter timescales have been well
documented (e.g., Vigouroux et al. 1997; Preminger &
Walton 2005) and are captured by the impulse response itself.
Longer-term variations may be caused by ephemeral regions,

whose contributions vary cyclically with the solar cycle but
start before and end after the corresponding cycle (Harvey
1992). Geometrical effects may also contribute: since the
average latitudinal position of sunspots decreases during each
solar cycle, the response of the SSI to sunspot variations
slightly differs between the rising and decaying phase of the
solar cycle. This essentially means that the impulse response is
not completely time-invariant.
A different cause may be the presence of uncorrected

instrumental drifts in the SSI, which the model cannot fit
and thus defers to the residual contribution. Such drifts are
more likely to occur in the visible and near-infrared bands,
where the relative solar-cycle variability is lower than that in
the more energetic shorter wavelengths. However, since we
find the residual is comparable in the visible band and the TSI,
which share similar properties but have different long-term
uncertainties (with the TSI measurements being considerably
more accurate and stable on solar-cycle timescales), we
conclude that instrumental effects are likely not a major
contributor to the residuals shown.
Finally, since the residual contribution captures what the

linear impulse response model cannot fit, what we observe may
be the consequence of the limitations of this linear model with
respect to a Sun that is not fully linear, time-invariant, and
causal. These possible effects are discussed in more detail in
Section 4.5.
We conclude here that the residual contribution, which

represents an important part of the variability, probably
captures both instrumental effects and physical processes that
cannot be described by the impulse response. Therefore it is
risky (if not impossible) to draw conclusions about long-term
(i.e., solar cycle) variability of the SSI and TSI simply by
considering the linear and time-invariant short-term response to
changes in sunspot area, because a significant portion of the
solar variability, particularly in some wavelength ranges, is
only partly related to these changes.

4.3. Energy Balance Due to Sunspot-area Variations

In principle, the temporal integration of the impulse response
in Figure 5 could enable energy-budget estimates and
determine whether the average net contributions from facular
brightenings exceed those from sunspot dimmings over the
duration of the response. This is clearly the case for the shorter
(EUV, FUV, and MUV) wavelength bands in Figure 5 and for
the solar indices other than the TSI in Figure 6, as these
impulse responses are always positive. At longer wavelengths
and for the TSI, the net contribution to brightness can be
negative when integrated over the few solar rotations where the
magnitude of h(t) exceeds the noise limit, suggestive of a net
energy loss due to the emergence of new sunspot-area flux.
Temporal integrations of the responses for positive and
negative values of h(t) are shown as a function of wavelength
in Figure 9 along with the sum of the two.
As the noise limit prohibits lengthier integrations, drawing

conclusions on the net radiative energy balance due to increases
in sunspot area remains uncertain. Additionally, extending these
short-term energy-balance results to solar-cycle timescales, as
suggested by Woods et al. (2015), is even less certain since many
solar-cycle effects are absorbed into the relatively large residual
component r(t) rather than the impulse response itself. We thus
conclude that it is particularly difficult to draw solar-cycle
energy-balance conclusions via this linear impulse-response

Figure 8. Ratio between the amplitudes of r(t) and y(t) after decimating the
latter to 27 days. Values larger than one are possible because we use the
standard deviation as a coarse measure of amplitude.
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approach. While the approach can determine short-term (few
solar rotations) net energy responses to flux emergence for
different wavelength bands, we find that the method is unable to
determine in-phase or out-of-phase responses for the SSI on
solar-cycle timescales.

4.4. Significance of Precursors

Our transfer function is causal in the sense that it assumes the
SSI cannot start to vary before a sunspot appears. However,
small precursors may exist, for example, with ephemeral
regions that occur before the sunspot emerges (Martin &
Harvey 1979). The impulse response obtained by Preminger &
Walton (2005) actually shows variations in h(t) for negative
times. However, since their impulse response includes solar-
rotational variations as well as contamination from (unfitted)
residuals, an ambiguity in start time may explain this effect: in
their model, t=0 corresponds to the occurrence of the
maximum increase in sunspot area, which is influenced by
sunspot position relative to the center of the disk (when its area
is largest). Thus, increases in the SSI may be observed at least a
few days earlier (i.e., for <t 0) when the sunspot becomes
visible on the east limb. Such ambiguities are greatly reduced
in our approach of using 27-day snapshots to avoid such
potential solar-rotational effects.

To check for the presence of precursors we estimated the
impulse response after artificially delaying the solar response
by an integer number of solar rotations, typically one to six.
Although the impulse response fluctuates before the actual
emergence of the sunspot, we never found these variations to
be significant at the 0.05 level. We thus conclude that there is
no evidence for precursors in the records we utilize here.

4.5. Limitations—Nonlinearity in the Impulse Response

A major assumption behind our analysis is the linearity of
the solar response to sunspot-area variations. While several
studies suggest that this response should be mostly linear
(Foukal & Lean 1990; Lean et al. 1995; Preminger &
Walton 2005), nonlinear effects are expected to become
significant for high levels of solar activity (Brown &
Evans 1980; Foukal 1998; Solanki & Fligge 1999).
From physical considerations, the linear proportionality

between DSA and SSI is expected to level off at high solar
activity because the emergence of new sunspots is increasingly
hindered by the presence of nearby ones. To check for such a
nonlinear signature in the impulse response, we estimated the
latter separately for three regimes of the solar cycle: weak
activity (81-day average of the DSA<250 μhem), medium
activity (250<DSA<750 μhem), and high activity
(DSA>750 μhem). The uncertainties on the results are larger
than before because the sample sizes are smaller and the
samples are not continuous in time.
Figure 10 summarizes the impact of the average level of

solar activity by showing the impulse response at two solar-
rotation times, namely at =( )h t 0 and at =( )h t 27 days . For
both of these times, we plot the impulse response for the FUV,
the visible, and the TSI for each of the three different net
sunspot-area values, which are indicative of different levels of
solar activity through the solar cycle. This plot reveals a
nonlinear response for different phases of the solar cycle.
For the UV bands, we find that the initial t=0 value of the

impulse response, which is positive due to net solar brightening
at these wavelengths, decreases by up to 40% for the larger net
sunspot areas typical of solar maximum. In the visible bands
and for the TSI, where this initial response is negative due to

Figure 9. Amount of spectral solar irradiance change per unit increase in the DSA. The blue (resp. red) curves indicate the amount of irradiance change that is caused
by an excess (resp. deficit) of irradiance. The black curve is the sum of the two and expresses the total irradiance budget as a function of wavelength. The upper plot is
in absolute units (W nm−1 m−2 per 100 μhem), while in the bottom plot all quantities have been normalized with respect to the solar-cycle variability of the SSI.
Uncertainties of±one standard deviation are represented by shaded areas. For greater clarity, uncertainties are not indicated for the net irradiance budget (black);
however, they are of the same order of magnitude as the ones given for the excess and deficit. Some of the discontinuities, such as the dip near 930 nm, are
instrumental, for instance coinciding with transitions between different detectors.
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overall solar darkening, the impulse response becomes stronger
(that is, more negative) toward solar maximum. This means
that an equal increase in sunspot area produces a stronger
darkening at solar maximum than at solar minimum. Such a
behavior of the impulse response function obtained for
different activity levels indicates that the ratio of facular area
to sunspot area is lower during periods of higher solar-activity
levels. This is in line with previous observations; see, for
example, Figure 2 in (Foukal 1993) and Figure 1 in
(Foukal 1998).

Interestingly, after one or more solar rotations the impulse
response is independent of the level of activity. This is because
while the initial response is caused by an increase in sunspot
area and any associated faculae, the later response is mostly
caused by the decay products of the emerged sunspots, and
those products do not depend on the level of solar activity.

Figure 10 shows that the nonlinear response at t=0 is not
just a matter of applying a static nonlinear correction to the
input (e.g., using the square root of the DSA as input). If this
had been the case, then the magnitude only and not the shape of
the impulse response h(t) would have depended on the level of
solar activity.

Figure 10 indicates that the dynamics itself (i.e., the
characteristic response time) is solar-cycle dependent. The proper-
ties of such nonlinear systems cannot be properly inferred from the
usual scatterplots between the driver and the solar response; they
require a system identification approach with nonlinear models

(e.g., Nelles 2001). Unfortunately, such techniques are much more
demanding in terms of data quality and volume; whether they can
be meaningfully applied to the 12 years of data used here remains
to be investigated.
Nonlinear effects may also manifest themselves in other

aspects, such as a solar-cycle dependence of the characteristic
response time, i.e.,an absence of time-invariance. Currently,
with the relatively limited amount of available observations and
the omnipresence of noise, it is unlikely that such second-order
effects can be properly quantified. In this paper, while we
acknowledge the possibility of these nonlinear effects, we thus
consider only the average linear impulse response and its
deviations.

5. Conclusions

The primary motivation of this study was to use the powerful
framework of linear system theory to better understand the
response of the SSI to sunspot-area variations.
We have discovered and presented several significant

methodological improvements to the linear impulse-response
model applied to sunspot-area changes (flux emergence) and
the corresponding effects on the SSI. We have obtained a
compact representation of the impulse response of the SSI to
sunspot area that is independent of artifacts due to solar rotation
via analyzing solar-rotational “snapshots.” We have shown that
a non-parametric model of the response of SSI cannot be
entirely described by h(t), but that a residual term is required.
This important term, absent in prior such works, describes a
major fraction of long-term variability. The existence of this
residual term implies that one cannot describe the full
variability of the SSI by solely using the sunspot area as input.
This has implications on the use of empirical models that rely
purely on the sunspot number: while such models perform well
for short-term variability (days to months), they may fail to
properly describe long-term (solar-cycle) variability.
Additionally, we have identified several physical results

regarding the solar response to sunspot-area increases. The
impulse response presented quantifies the global brightening
observed in the UV. In the visible and near-infrared bands, an
initial deficit of radiation is followed by a brightening, which
can be observed for three to five solar rotations. Uncertainties
associated with the relatively short (12 year) SSI data set time
span prevent observation of potentially lengthier decay
responses.
Nevertheless, we estimate a net energy budget for short-term

variability as a function of wavelength, showing in which
spectral bands sunspot-darkening outweighs facular bright-
ening. This energy budget includes uncorrected instrumental
effects inherent in the data, which may limit its interpretation.
We find that the response of the SSI is nonlinear with the

level of solar activity. This effect is mostly observed during the
initial occurrence of the spot; the facular brightening that
follows at solar-rotation times >t 0 is independent of the level
of activity. This indicates that the dynamical response of the
Sun is nonlinear and cannot be corrected simply by applying a
rescaling to the sunspot area.
There are two fundamental limitations to the conclusions

presented here. Data-length limitations prevent us from
drawing conclusions regarding solar-cycle variability since
we have only relatively short durations of measurements of SSI
variations. Methodological limitations of our linear model,
which captures most of the short-timescale dynamics of the

Figure 10. Magnitude of the impulse response h(t) at t=0 and one solar
rotation later for the FUV band (upper plot), the visible band (middle plot), and
the TSI (lower plot). Three values are shown, corresponding to three levels of
solar activity. The error bars represent±1σ.
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Sun, prevent it from reproducing variations equally well during
solar maximum and solar minimum. A nonlinear impulse-
response model is required since the response of the SSI to
sunspot area is not instantaneous, and therefore requires a
convolutive model. This will be the subject of future endeavors
based on the results presented here.
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