https://insu.hal.science/insu-01729261Bernabé, Y.Y.BernabéEAPS - Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] - MIT - Massachusetts Institute of TechnologyLi, M.M.LiSouthwest Petroleum UniversityMaineult, A.A.MaineultIPGP - Institut de Physique du Globe de Paris - INSU - CNRS - Institut national des sciences de l'Univers - UPD7 - Université Paris Diderot - Paris 7 - UR - Université de La Réunion - IPG Paris - Institut de Physique du Globe de Paris - CNRS - Centre National de la Recherche ScientifiqueMETIS - Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols - UPMC - Université Pierre et Marie Curie - Paris 6 - EPHE - École Pratique des Hautes Études - PSL - Université Paris sciences et lettres - CNRS - Centre National de la Recherche ScientifiquePermeability and pore connectivity: A new model based on network simulationsHAL CCSD2010[SDU.STU.HY] Sciences of the Universe [physics]/Earth Sciences/HydrologyFareau, Eva2018-03-12 14:51:462023-05-26 11:18:092018-03-12 15:11:54enJournal articleshttps://insu.hal.science/insu-01729261/document10.1029/2010JB007444application/pdf1 The purpose of this paper is to model the effect of pore size heterogeneity and pore connectivity on permeability. Our approach is that of conceptual modeling based on network simulations. We simulated fluid flow through pipe networks with different coordination numbers and different pipe radius distributions. Following a method widely used in percolation theory, we sought “universal” relationships (i.e., independent of lattice type) between macroscopic properties such as permeability k and porosity ϕ, and, pore geometry attributes such as hydraulic radius rH, coordination number z, and so forth. Our main result was that in three-dimensional simple cubic, FCC, and BCC networks, permeability obeyed “universal” power laws, k ∝ (z − zc)β, where the exponent β is a function of the standard deviation of the pore radius distribution and zc = 1.5 is the percolation threshold expressed in terms of the coordination number. Most importantly, these power law relationships hold in a wide domain, from z close to zc to the maximum possible values of z. A permeability model was inferred on the basis of the power laws mentioned above. It was satisfactorily tested by comparison with published, experimental, and microstructural data on Fontainebleau sandstone.