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1. The kinematic UFM model
Kinematic DFN model divided in three main stages in a

time-wise approach [1,2]

• Nucleation: randomly positioned

• Propagation: subcritical, following Charles’ law:

𝑣 𝑙 = 𝐶𝑙𝑎 with 𝑙 the fracture diameter

• Arrest : fractures cannot cross larger ones

Inputs:

ሶ𝑛: nucleation rate

𝑎: growth speed exponent

𝑡𝑒𝑛𝑑: ending time of simulation

Outputs:

Two power-law scaling of the fracture length distribution

 “dilute” regime: 𝑛𝑑𝑖𝑙𝑢𝑡𝑒 𝑙 ~𝑙−𝑎

 “dense” regime: 𝑛𝑑𝑒𝑛𝑠𝑒 𝑙 ~𝑙−𝐷+1

Figure 1: Size distribution evolution of a kinematic UFM 

model with normalized simulation time (modified from [2])
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We perform 50 realizations using the same parameters for:

• Poisson’s (stochastic) model

• Kinematic UFM model (UFM m=0)

• Stress-driven UFM model (UFM m=4)

Figure 3: 2D trace maps comparison of a natural pattern with Poisson’s, 

Kinematic UFM and Stress-driven UFM models

 Using 3D tensorial analytical solutions

of uniformly loaded penny-shaped

cracks [3]

 Monte Carlo sampling at each

timestep over a range of potential

nuclei candidates whose probability is

given by the Von Mises stress at their

location, power 𝑚 (selectivity

parameter)
Figure 2: Normalised Von Mises stress in a 

growing network
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2. Stress driven nucleation
Nucleation: function of the stress redistribution of growing fractures,

 Stress field ന𝝈 at a position ҧ𝑥: superposition of the remote stress field 𝝈∞ and

the contribution of every fracture 𝝈𝒇 ignoring interactions

ന𝝈 ҧ𝑥 = 𝝈∞ + σ𝑓𝝈𝑓

Conclusion
We introduce a stress-driven nucleation step in the timewise process of the kinematic UFM model of [2]. This nucleation step is

function of the local stress field. Networks so generated have fractal correlations, with a correlation dimension that varies with

the function that relates the nucleation probability to stress. Moreover, this fractal center positioning process, coupled with the

UFM rule, emphasize the correlation between size and position of fractures, leading to high textural heterogeneity.

Further work is on going to constrain also the orientation and growth velocity of fractures by the remote stress. A comparative

analysis of the density lacunarity of our models with real data is also envisioned.

Introduction
The realism of Discrete Fracture Network (DFN) models, beyond the bulk statistical properties, relies on the spatial organization of fractures, which is not

issued by stochastic Poisson’s (spatially random) DFN models. This can be improved by injecting prior information in DFN from a better knowledge of the

geological fracturing processes. We first develop a model using simple kinematic rules for mimicking the growth of fractures from “nucleation” to “arrest”,

The model generates fracture networks with power-law scaling distributions and a percentage of T-intersections that are consistent with field observations.

Nevertheless, a larger complexity relying on the spatial variability of natural fractures positions cannot be explained by the random nucleation process. We

propose to introduce a stress-driven nucleation in the timewise process of this kinematic model to study the correlations between nucleation, growth and

existing fracture patterns.

3.2. Lacunarity
 Fracture densities lacunarity [4]: measure of the textural heterogeneity of

fracture patterns and its evolution with scale

 The lacunarity of a measure 𝑀 of an object 𝑂 following a probability distribution

𝑄 at scale 𝑠 is given by:

Figure 4: Correlation dimension analysis of the stress-

driven UFM model (50 realizations))

Figure 5: Lacunarity density analysis (𝑝30, 𝑝32, 𝑝) for the Poisson, UFM, and stress-driven UFM models (50 realizations)

3.1 Fractal analysis
 Fractal dimension of a fracture network: measure of the spatial organization

of fractures

 Correlation dimension of fracture centers defined as:

𝐷 = lim
𝑟→0

log 𝐶2(𝑟)

log 𝑟

𝐶2 𝑟 : pair correlation function [5]

 Stress-driven UFM model: 𝐷 < 3

3. Spatial analysis

 Classical 3D fracture densities are:

- The fracture center density 𝑝30 : number of fracture centers per unit volume of rock mass

- The fracture intensity 𝑝32 : area of fractures per unit volume of rock mass

- The percolation parameter 𝑝: total excluded volume per unit volume of rock mass

𝜆 𝑀,𝑄, 𝑠 =
𝑍𝑄

2
𝑠

𝑍𝑄
1

𝑠
2 with 𝑍𝑄

𝑛
the 𝑛𝑡ℎ moment of the distribution

 The percolation parameter is not affected by the nucleation process (concerning textural heterogeneity)

 𝑝30 and 𝑝32 variability evolves differently with scale and is higher for stress-driven than for random nucleation


