

A Discrete Fracture Network Model with Stress-Driven Nucleation and Growth

Etienne Lavoine, Philippe Davy, Caroline Darcel, Raymond Munier

► To cite this version:

Etienne Lavoine, Philippe Davy, Caroline Darcel, Raymond Munier. A Discrete Fracture Network Model with Stress-Driven Nucleation and Growth. American Geophysical Union Fall Meeting 2017, Dec 2017, La Nouvelle Orléans, LA, United States. , pp.H21C-1462, 2017. insu-01731621

HAL Id: insu-01731621 https://insu.hal.science/insu-01731621v1

Submitted on 14 Mar 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A Discrete Fracture Network Model with Stress-Driven Nucleation and Growth

Etienne Lavoine ^{1,2}, Philippe Davy ¹, Caroline Darcel ², Raymond Munier ³

Introduction

The realism of Discrete Fracture Network (DFN) models, beyond the bulk statistical properties, relies on the spatial organization of fractures, which is not issued by stochastic Poisson's (spatially random) DFN models. This can be improved by injecting prior information in DFN from a better knowledge of the geological fracturing processes. We first develop a model using simple kinematic rules for mimicking the growth of fractures from "nucleation" to "arrest", The model generates fracture networks with power-law scaling distributions and a percentage of T-intersections that are consistent with field observations. Nevertheless, a larger complexity relying on the spatial variability of natural fractures positions cannot be explained by the random nucleation process. We propose to introduce a stress-driven nucleation in the timewise process of this kinematic model to study the correlations between nucleation, growth and existing fracture patterns.

[1] Davy, P., R. Le Goc, C. Darcel, O. Bour, J. R. de Dreuzy and R. Munier (2010). "A likely universal model of fracture scaling and its consequence for crustal hydromechanics." Journal of Geophysical Research 115(B10). [2] Davy, P., R. Le Goc and C. Darcel (2013). "A model of fracture nucleation, growth and arrest, and consequences for fracture density and scaling." Journal of Geophysical Research: Solid Earth 118(4): 1393-1407. [3] Fabrikant, V. I. (1989). "Complete Solutions to Some Mixed Boundary Value Problems in Elasticity." 27: 153-223. [4] Mandelbrot, B. B. and R. Pignoni (1983). <u>The fractal geometry of nature</u>, WH freeman New York. [5] Vicseck, T., Fractal growth phenomena, 488 pc., World Scientific, London, 1992.

$$\overline{\overline{\sigma}}(\overline{x}) = \overline{\overline{\sigma^{\infty}}} + \sum_{f} \overline{\overline{\sigma_{f}}}$$

Figure 2: Normalised Von Mises stress in a

Kinematic UFM and Stress-driven UFM models

² Itasca Consultants SAS, Écully, France ³ SKB, Stockholm, Sweden

3. Spatial analysis

3.1 Fractal analysis

- \Rightarrow Fractal dimension of a fracture network: measure of the spatial organization of fractures
- \Rightarrow Correlation dimension of fracture centers defined as:

$$D = \lim_{r \to 0} \frac{\log C_2(r)}{\log r}$$

 $C_2(r)$: pair correlation function [5]

 \Rightarrow Stress-driven UFM model: D < 3

Figure 4: Correlation dimension analysis of the stressdriven UFM model (50 realizations))

3.2. Lacunarity

- \Rightarrow Fracture densities lacunarity [4]: measure of the textural heterogeneity of fracture patterns and its evolution with scale
- \Rightarrow The lacunarity of a measure *M* of an object *O* following a probability distribution *Q* at scale *s* is given by:

$$L(M,Q,s) = \frac{Z_Q^{(2)}(s)}{[Z_Q^{(1)}(s)]^2}$$
 with $Z_Q^{(n)}$ the n^t

- \Rightarrow Classical 3D fracture densities are:
 - The fracture center density p_{30} : number of fracture centers per unit volume of rock mass
 - The fracture intensity p_{32} : area of fractures per unit volume of rock mass
 - The percolation parameter *p*: total excluded volume per unit volume of rock mass

- \Rightarrow The percolation parameter is not affected by the nucleation process (concerning textural heterogeneity)
- $\Rightarrow p_{30}$ and p_{32} variability evolves differently with scale and is higher for stress-driven than for random nucleation

Conclusion

We introduce a stress-driven nucleation step in the timewise process of the kinematic UFM model of [2]. This nucleation step is function of the local stress field. Networks so generated have fractal correlations, with a correlation dimension that varies with the function that relates the nucleation probability to stress. Moreover, this fractal center positioning process, coupled with the UFM rule, emphasize the correlation between size and position of fractures, leading to high textural heterogeneity. Further work is on going to constrain also the orientation and growth velocity of fractures by the remote stress. A comparative analysis of the density lacunarity of our models with real data is also envisioned.

H21C-1462

th moment of the distribution