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The Li isotope composition of marine biogenic carbonates: Patterns and Mechanisms

mollusks by physiological processes corresponding to the regulation of the amount of Mg in the calcifying medium. We calculate that up to 80% of the initial Li within the calcification site is removed by this process, leading to high δ 7 Li and low Li/Ca in some calcite mollusks specimens. Collectively, these results suggest that Mg (and thus [Li]) are strongly biologically controlled within the calcifying medium of calcite mollusks. More generally, the results of this study show that brachiopods are suitable targets for future work on the determination of paleo-seawater Li isotope composition-an emerging proxy for past weathering and hydrothermal processes.

ABSTRACT

Little is known about the fractionation of Li isotopes during formation of biogenic carbonates, which form the most promising geological archives of past seawater composition.

Here we investigated the Li isotope composition (δ 7 Li) and Li/Ca ratios of organisms that are abundant in the Phanerozoic record, mollusks (mostly bivalves), echinoderms, and brachiopods. The measured samples include (i) modern calcite and aragonite shells from variable species and natural environments (13 mollusk samples, 5 brachiopods and 3 echinoderms), and (ii) shells from organisms grown under controlled conditions at various temperatures. When possible, the mollusk shell ultrastructure was micro-sampled in order to assess intra-shell heterogeneity. In this paper, we systematically characterize the respective influence of mineralogy, temperature, and biological processes on the δ 7 Li and Li/Ca of these shells and compare with published data for other taxa (foraminifera and corals).

Aragonitic mollusks have the lowest δ 7 Li, ranging from +16 to +22‰, echinoderms have constant δ 7 Li of about +24‰, brachiopods have δ 7 Li of +25 to +28‰, and finally calcitic mollusks have the largest range and highest δ 7 Li values, ranging from +25‰ to +40‰. Measured brachiopods have similar δ 7 Li compared to inorganic calcite precipitated from seawater (δ 7 Li of +27 to +29‰), indicating minimum influence of vital effects, as also observed for other isotope systems and making them a potentially viable proxy of past seawater composition. Calcitic mollusks, on the contrary, are not a good archive for seawater paleo-δ 7 Li because many samples have significantly higher δ 7 Li values than inorganic calcite and display large inter-species variability, which suggest large vital effects. In addition, we observe very large intra-shell variability, in particular for mixed calcitearagonite shells (over 20‰ variability), but also in mono-mineralic shells (up to 12‰ variability). Aragonitic bivalves have less variable δ 7 Li (7‰ variability) compared to calcitic mollusks, but with significantly lower δ 7 Li compared to inorganic aragonite, indicating the existence of vital effects. Bivalves grown at various temperatures show that temperature has only a minor influence on fractionation of Li isotopes during shell precipitation. Interestingly, we observe a strong correlation (R 2 =0.83) between the Li/Mg ratio in bivalve Mytilus edulis and temperature with potential implications for paleo-temperature reconstructions.

Finally, we observe a negative correlation between the δ 7 Li and both the Li/Ca and Mg/Ca ratio of calcite mollusks, which we relate to biomineralization processes. To explain this correlation, we propose preferential removal of 6 Li from the calcification site of calcite

INTRODUCTION

A growing body of evidence suggests that the Li isotope composition of seawater may be a promising proxy for tracing past weathering and hydrothermal conditions at the Earth's surface, because the primary inputs of Li to the oceans are from rivers and the hightemperature hydrothermal flux from ocean ridges [START_REF] Chan | Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans[END_REF][START_REF] Hathorne | Temporal record of lithium in seawater: A tracer for silicate weathering? Earth Planet[END_REF][START_REF] Huh | Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget[END_REF][START_REF] Misra | Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering[END_REF]. Furthermore, the residence time of Li in the ocean is about 1-3 Ma, and the marine Li isotopic composition (δ 7 Li = [( 7 Li/ 6 Li)/( 7 Li/ 6 Li) L-SVEC -1] ×1000; expressed in ‰) and concentration are spatially uniform [START_REF] Angino | Lithium content of sea water by atomic absorption spectrometry[END_REF]. Published Li isotope records in foraminifera [START_REF] Hathorne | Temporal record of lithium in seawater: A tracer for silicate weathering? Earth Planet[END_REF][START_REF] Misra | Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering[END_REF] and bulk carbonates [START_REF] Lechler | Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event)[END_REF][START_REF] Pogge Von Strandmann | Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2[END_REF][START_REF] Pogge Von Strandmann | Global climate stabilisation by chemical weathering during the Hirnantian glaciation[END_REF] are characterized by large (several per mil) δ 7 Li variations. These changes have been attributed to past changes in weathering congruency, intensity, or rates [START_REF] Bouchez | Modeling novel stable isotope ratios in the weathering zone[END_REF][START_REF] Froelich | Was the Late Paleocene-Early Eocene Hot Because Earth Was Flat? An Ocean Lithium Isotope View of Mountain Building, Continental Weathering, Carbon Dioxide, and Earth's Cenozoic Clima[END_REF][START_REF] Li | Evolution of Cenozoic seawater lithium isotopes: Coupling of global denudation regime and shifting seawater sinks[END_REF][START_REF] Wanner | Seawater δ7Li: A direct proxy for global CO2 consumption by continental silicate weathering?[END_REF].

The relationship between Li isotope fractionation and chemical weathering on continents has been well-studied, and although details are still debated, general trends are understood [START_REF] Bagard | Lithium isotope fractionation in the Ganges-Brahmaputra floodplain and implications for groundwater impact on seawater isotopic composition[END_REF][START_REF] Dellinger | Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering regimes[END_REF][START_REF] Dellinger | Tracing weathering regimes using the lithium isotope composition of detrital sediments[END_REF][START_REF] Huh | Lithium isotopes as a probe of weathering processes: Orinoco River[END_REF][START_REF] Pogge Von Strandmann | The Li isotope response to mountain uplift[END_REF][START_REF] Wanner | Seawater δ7Li: A direct proxy for global CO2 consumption by continental silicate weathering?[END_REF]. Dissolved Li transported to the oceans is primarily derived from the weathering of silicate rocks [START_REF] Huh | Lithium isotopes as a probe of weathering processes: Orinoco River[END_REF][START_REF] Kısakűrek | Li and δ7Li in Himalayan rivers: Proxies for silicate weathering? Earth Planet[END_REF], which generates alkalinity and, unlike carbonate weathering, sequesters CO 2 in carbonate rocks over geologic timescales (>10-100 kyrs). Li isotopes are strongly fractionated during water-rock interaction, with 6 Li being preferentially incorporated into clay minerals while 7 Li is concentrated in the dissolved phase [START_REF] Huh | Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget[END_REF][START_REF] Pistiner | Lithium-isotope fractionation during continental weathering processes[END_REF][START_REF] Chan | Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans[END_REF]. As a result, dissolved riverine δ 7 Li varies as a function of the ratio of primary mineral dissolution to secondary mineral formation (e.g. [START_REF] Pogge Von Strandmann | The Li isotope response to mountain uplift[END_REF], and the evolution of δ 7 Li and Li/Ca ratios of the ocean may provide information about paleo-weathering regimes.

Reconstructing Li isotopic composition of seawater requires a sedimentary archive and carbonates have been a preferred target so far (e.g. [START_REF] Misra | Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering[END_REF][START_REF] Pogge Von Strandmann | Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2[END_REF][START_REF] Vigier | In situ measurements of Li isotopes in foraminifera[END_REF]. However, the fractionation of Li isotopes during biogenic carbonate precipitation has been explored mainly in foraminifera and corals but is less understood in other organisms. Laboratory experiments inform general understanding of Li incorporation into inorganic carbonates. In aragonite, Li + is thought to substitute for Ca 2+ in the mineral lattice, whereas in calcite, Li + occupies an interstitial location [START_REF] Okumura | Coprecipitation of alkali metal ions with calcium carbonate[END_REF]. The Li/Ca ratio of inorganic carbonates is influenced by the Li/Ca ratio and/or the Li concentration of the fluid from which it precipitates [START_REF] Gabitov | In situ δ7Li, Li/Ca, and Mg/Ca analyses of synthetic aragonites[END_REF]Marriott et al., 2004bMarriott et al., , 2004a)). The Li/Ca ratio of inorganic calcite decreases with increasing temperature (Marriott et al., 2004a,b). An increase in Li/Ca with salinity was also observed for calcite but not for aragonite (Marriott et al., 2004b) but the Li/Ca ratio of inorganic aragonite increases with precipitation rate [START_REF] Gabitov | In situ δ7Li, Li/Ca, and Mg/Ca analyses of synthetic aragonites[END_REF]. In addition, the isotopic fractionation factor between inorganic calcium carbonate and solution is strongly dependent upon the carbonate mineralogy, with the fractionation factor between inorganic aragonite and seawater, α aragonite- seawater = 0.988 to 0.993 (corresponding to a Δ aragonite-seawater of -7 to -12‰) and the fractionation factor between inorganic calcite and seawater α calcite-seawater = 0.998 to 0.995 (Δ calcite-seawater of -2 to -5‰; Marriott et al., 2004a,b;[START_REF] Gabitov | In situ δ7Li, Li/Ca, and Mg/Ca analyses of synthetic aragonites[END_REF].

A number of studies have investigated the Li/Ca ratio of biogenic carbonates, showing that the incorporation of lithium depends upon various parameters that include temperature, salinity, growth rate, carbonate ion concentration, dissolved Li concentration, and biology (also called "vital effects"). Temperature appears to be a major control on the Li/Ca ratio of brachiopods, which show increasing Li/Ca with decreasing temperature [START_REF] Delaney | Lithium-to-calcium ratios in Modern, Cenozoic, and Paleozoic articulate brachiopod shells[END_REF], similar to that observed for inorganic calcite. However, no systematic trend between Li/Ca and temperature has been observed for other biogenic carbonates. Instead, culture experiments and core top studies have shown that the Li/Ca ratio of foraminifera is influenced by the solution Li/Ca ratio, DIC concentration, and possibly the growth rate [START_REF] Delaney | Mg, and Na in foraminiferal calcite shells from laboratory culture, sediment traps, and sediment cores[END_REF][START_REF] Hall | Li/Ca in multiple species of benthic and planktonic foraminifera: thermocline, latitudinal, and glacial-interglacial variation[END_REF][START_REF] Hathorne | Temporal record of lithium in seawater: A tracer for silicate weathering? Earth Planet[END_REF][START_REF] Lear | Benthic foraminiferal Li/Ca: Insights into Cenozoic seawater carbonate saturation state[END_REF][START_REF] Vigier | Lithium isotopes in foraminifera shells as a novel proxy for the ocean dissolved inorganic carbon (DIC)[END_REF]. In contrast, the Li/Mg ratio of corals and foraminifera is more strongly related to temperature than Li/Ca and has been recently proposed as being a reliable proxy for ocean temperature [START_REF] Bryan | Mg/Ca-temperature proxy in benthic foraminifera: New calibrations from the Florida Straits and a hypothesis regarding Mg/Li[END_REF][START_REF] Case | Environmental and biological controls on Mg and Li in deep-sea scleractinian corals[END_REF][START_REF] Montagna | Li/Mg systematics in scleractinian corals: Calibration of the thermometer[END_REF][START_REF] Rollion-Bard | Possible controls on Li, Na, and Mg incorporation into aragonite coral skeletons[END_REF][START_REF] Fowell | Intrareef variations in Li/Mg and Sr/Ca sea surface temperature proxies in the Caribbean reef-building coral Siderastrea siderea[END_REF]. The Li/Ca ratio of mollusks might be controlled by a combination of vital effects, growth rate, changes in ocean productivity, and/or dissolution of riverine fine sediments within the ocean [START_REF] Füllenbach | Strontium/lithium ratio in aragonitic shells of Cerastoderma edule (Bivalvia) -A new potential temperature proxy for brackish environments[END_REF][START_REF] Thébault | Investigation of Li/Ca variations in aragonitic shells of the ocean quahog Arctica islandica, northeast Iceland[END_REF][START_REF] Thébault | Li/Ca enrichments in great scallop shells (Pecten maximus) and their relationship with phytoplankton blooms. Palaeogeogr. Palaeoclimatol. Palaeoecol., Unraveling environmental histories from skeletal diaries -advances in sclerochronology[END_REF].

In contrast to Li elemental ratios, Li isotope ratios have been investigated only in modern foraminifera and corals. Modern corals have Li isotopic composition ranging from +17 to +25‰ (Marriott et al., 2004a,b;[START_REF] Rollion-Bard | Effect of environmental conditions and skeletal ultrastructure on the Li isotopic composition of scleractinian corals[END_REF], significantly fractionated relative to seawater but with an average δ 7 Li similar to inorganic aragonite (around +19‰).

The intra-specimen variability for corals is relatively low, less than ±2‰, but small systematic differences exists between species (Rollion- [START_REF] Rollion-Bard | Effect of environmental conditions and skeletal ultrastructure on the Li isotopic composition of scleractinian corals[END_REF]. Present-day planktic foraminifera δ 7 Li range between +27 and +31‰ [START_REF] Hall | Determination of the lithium isotopic composition of planktic foraminifera and its application as a paleo-seawater proxy[END_REF][START_REF] Hathorne | Temporal record of lithium in seawater: A tracer for silicate weathering? Earth Planet[END_REF][START_REF] Misra | Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering[END_REF] with a median value of 30‰, very close to modern seawater (31‰), making them targets for past work reconstructing the Li isotope composition of the Cenozoic ocean [START_REF] Hathorne | Temporal record of lithium in seawater: A tracer for silicate weathering? Earth Planet[END_REF][START_REF] Misra | Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering[END_REF]. However, Li isotopic fractionation in foraminifera may depend upon seawater dissolved inorganic carbon (DIC) concentration of seawater [START_REF] Vigier | Lithium isotopes in foraminifera shells as a novel proxy for the ocean dissolved inorganic carbon (DIC)[END_REF]. In addition, well-preserved planktic foraminifera are not very abundant in the geological record prior to the Cenozoic [START_REF] Wilkinson | Biomineralization, paleoceanography, and the evolution of calcareous marine organisms[END_REF]. Finally, Ullmann et al. (2013b) for belemnite and [START_REF] Pogge Von Strandmann | Global climate stabilisation by chemical weathering during the Hirnantian glaciation[END_REF] for brachiopods have shown that the shell of these organisms may preserve Li isotope composition of the ocean over geological timescales.

In this study, we focus mainly on characterizing the δ 7 Li and Li/Ca of these organisms (particularly bivalves and brachiopods), since these may be some of the most important Phanerozoic paleoenvironmental bioarchives, and, also present a few measurements of echinoderm. Bivalves, brachiopods, and echinoderms are present in widely distributed habitats in the modern-day ocean, are often well-preserved during diagenesis, and are abundant in the Phanerozoic record [START_REF] Immenhauser | Mollusc and brachiopod skeletal hard parts: Intricate archives of their marine environment[END_REF][START_REF] Veizer | 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[END_REF][START_REF] Wilkinson | Biomineralization, paleoceanography, and the evolution of calcareous marine organisms[END_REF]. Prior studies have reported Li isotope data on Ordovician brachiopods [START_REF] Pogge Von Strandmann | Global climate stabilisation by chemical weathering during the Hirnantian glaciation[END_REF], Li/Ca values of modern bivalves and brachiopods [START_REF] Delaney | Lithium-to-calcium ratios in Modern, Cenozoic, and Paleozoic articulate brachiopod shells[END_REF][START_REF] Füllenbach | Strontium/lithium ratio in aragonitic shells of Cerastoderma edule (Bivalvia) -A new potential temperature proxy for brackish environments[END_REF][START_REF] Thébault | Investigation of Li/Ca variations in aragonitic shells of the ocean quahog Arctica islandica, northeast Iceland[END_REF][START_REF] Thébault | Li/Ca enrichments in great scallop shells (Pecten maximus) and their relationship with phytoplankton blooms. Palaeogeogr. Palaeoclimatol. Palaeoecol., Unraveling environmental histories from skeletal diaries -advances in sclerochronology[END_REF], but no Li isotope data on modern bivalves and brachiopods. Here we test the influence of temperature, mineralogy and biology on Li isotopic composition and Li/Ca ratio on a set of mollusk, brachiopod and echinoderm samples from various environments, in order to evaluate the suitability of these taxa to reconstructing past δ 7 Li seawater .

ORIGIN OF THE SAMPLES AND SAMPLING STRATEGY

Two types of samples have been investigated: (i) shells from modern marine organisms corresponding to a wide range of mineralogy, species, and locations; and (ii) shells grown from controlled culture experiments at various temperatures.

Field-collected modern shells

Modern shell samples were retrieved from the LA County Natural History Museum collections, supplemented with miscellaneous other specimens. All mollusk samples from this study, except the gastropod Turritella, are bivalves (n=17 specimens). They come from 13 species comprising oysters, clams, mussels, and scallops. We also analyzed 5 brachiopod and 3 echinoderm specimens, each from different species. These shells come from a wide range of marine environments from cold to warm sea surface temperature (-1 to 30°C). The location and characteristics of the specimens are summarized in Table [START_REF] Lechler | Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event)[END_REF] and Fig [START_REF] Lechler | Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event)[END_REF]. We extracted the main seawater parameters (sea surface temperature -SST, salinity, alkalinity), including both annual averages and, when possible, specifically for the growth interval of the shells (average of the 3 months having the highest SST). We used the World Ocean Atlas 2013 for SST and salinity (Locarnini et al., 2013) and GLODAPv2 database for the alkalinity [START_REF] Olsen | The Global Ocean Data Analysis Project version 2 (GLODAPv2)an internally consistent data product for the world ocean[END_REF], or specified references when more accurate data were available. Because of uncertainty regarding the sampling location, we attribute a relatively large uncertainty to these ocean parameters.

Field-collected shells were cleaned in an ultrasonic bath with distilled water, cut, and drilled. The sampling strategy was intended to simultaneously sample a large (20-30 mg), representative "bulk" sample in the middle of the shell while also targeting some micro-scale samples, using a micro-mill, in order to investigate possible intra-shell variability (Fig. 2).

We studied four different specimens of oysters (Crassostrea gigas) from four different localities spanning a wide range of ocean temperature (12 to 27°C). The shell of Crassostrea gigas is predominantly composed of calcite with two types of mineralogical structure, the "chalky structure" and "foliate layers" [START_REF] Carriker | Interaction of mineral elements in sea water and shell of oysters (Crassostrea virginica (Gmelin)) cultured in controlled and natural systems[END_REF][START_REF] Carriker | A new mineralized layer in the hinge of the oyster[END_REF][START_REF] Ullmann | Oxygen isotope fluctuations in a modern North Sea oyster (Crassostrea gigas) compared with annual variations in seawater temperature: Implications for palaeoclimate studies[END_REF]Ullmann et al., , 2013a)). The chalky structure is composed of a 3D network while foliate layers are elongated calcite crystals. "Bulk" samples of about 20 mg of mixed calcite were sampled in the middle and outer layer of specimens collected in Washington and California (USA) and Ecuador. The fourth specimen was collected in the North Sea in the List basin and has been previously investigated at small scale for other chemical proxies (Ullmann et al., 2013a[START_REF] Ullmann | Oxygen isotope fluctuations in a modern North Sea oyster (Crassostrea gigas) compared with annual variations in seawater temperature: Implications for palaeoclimate studies[END_REF]. Specific foliate layers and chalky structure were micro-sampled (see [START_REF] Ullmann | Oxygen isotope fluctuations in a modern North Sea oyster (Crassostrea gigas) compared with annual variations in seawater temperature: Implications for palaeoclimate studies[END_REF] for details about the sampling protocol). We also determined the growth temperature for the North Sea oyster sample using calcite δ 18 O, following Ullmann et al.

(2010; 2013a) using an average δ 18 O value for the List basin seawater of -1.3‰ (V-SMOW).

Scallop samples are from two distinct genera (Chlamys and Adamussium). Three different Chlamys species were investigated: Chlamys cheritata (Alaska), Chlamys hastata (California), and Laevichlamys squamosa (Philippines). For Adamussium, we studied one specimen of Adamussium colbecki from Antarctica (partly described in [START_REF] Eagle | The influence of temperature and seawater carbonate saturation state on 13C-18O bond ordering in bivalve mollusks[END_REF].

One sample of 20 mg for each of these species was collected by milling the middle of the shell, and these samples thus correspond to a mix of the prismatic and nacreous layers.

Two Mytilus californianus mussel specimens but from different locations, the USA (Washington State) and Mexico, were also studied. The shell of Mytilus californianus is composed of a calcite prismatic outer layer and an aragonite nacreous inner layer. Because of this mineralogical heterogeneity, both specimens were micro-drilled at various locations of the shell in order to sample the inner or outer layer separately.

Clam specimens studied here comprise three genera (Chione, Tridacna and Laternula).

Chione specimens (mostly composed of aragonite) are from three different species: Chione californiensis (California), Chione subimbricata (Costa Rica), and Chione subrugosa (Peru).

The two Tridacna species studied were Tridacna gigas (Costa Rica) and Tridacna maxima (Mariana island), both with a shell of pure aragonite. One shell sample of 20 mg for each of these species was collected by milling the middle of the shell, and specific inner and outer layers were also sampled to test for intra-shell variability.

Five specimens each from different species of calcitic brachiopods were investigated in this study. These samples include the species Campages mariae (Aliguay Island, Philippines), Laqueus rubellus (Sagami Bay, Japan), Terebratalia transversa (Friday Harbor, Washington State, USA), Notosaria nigricans (South Island, New Zealand), and Frenulina sanguinolenta (Mactan Island, Philippines). These Brachiopods have primary and secondary shell layers (both calcite, with different ultrastructure). Unlike the primary layer and the outer part of the secondary layer, the innermost part of the secondary layer is characterized by negligible vital effects for C and O isotopes [START_REF] Cusack | Brachiopods recording seawater temperature-A matter of class or maturation?[END_REF][START_REF] Penman | Boron, carbon, and oxygen isotopic composition of brachiopod shells: Intra-shell variability, controls, and potential as a paleo-pH recorder[END_REF][START_REF] Ullmann | Element/Ca, C and O isotope ratios in modern brachiopods: Species-specific signals of biomineralization[END_REF][START_REF] Auclair | Deciphering kinetic, metabolic and environmental controls on stable isotope fractionations between seawater and the shell of Terebratalia transversa (Brachiopoda)[END_REF]Parkinson et al., 2005). We primarily sampled bulk mixed layer samples (corresponding mostly to the secondary layer) in this study. Approximately 20 mg of bulk powder was collected from each species except for Terebratulina retusa, which was sampled from various portions of the shell to test for intra-shell variability of Li isotope composition.

Three species of sea urchins (High-Mg calcite) were collected from California waters, Strongylocentrotus fransiscanus, Strongylocentrotus purpuratus and Dendraster sp. and a large 30 mg bulk powder was collected for each of the samples.

Cultured shells

Two calcite bivalve species, Mytilus edulis and Pecten maximus [START_REF] Freitas | Inter-and intra-specimen variability masks reliable temperature control on shell Mg/Ca ratios in laboratory-and field-cultured Mytilus edulis and Pecten maximus (bivalvia)[END_REF] and one aragonite bivalve (Mercenaria mercenaria) were experimentally grown at various temperatures. Details about the culture experiments for Mytilus edulis and Pecten maximus are available in [START_REF] Freitas | The potential of combined Mg/Ca and δ18O measurements within the shell of the bivalve Pecten maximus to estimate seawater δ18O composition[END_REF][START_REF] Freitas | Inter-and intra-specimen variability masks reliable temperature control on shell Mg/Ca ratios in laboratory-and field-cultured Mytilus edulis and Pecten maximus (bivalvia)[END_REF][START_REF] Freitas | Environmental and biological controls on elemental (Mg/Ca, Sr/Ca and Mn/Ca) ratios in shells of the king scallop Pecten maximus[END_REF]. Mercenaria mercenaria was grown at temperature between 15 and 30°C, Mytilus edulis between 10.7 and 20.2°C and Pecten maximus between 10.8 and 20.2°C. Only the outer layer of the shells was sampled. The thin inner layer of Mytilus edulis was milled out when present (from the pallial line towards the umbo) before sampling from the outer surface. For Pecten maximus, the shell was sampled from the outer cross-lamellar layer, close to the margin and away from the inner layer and myostracum. Surface features like growth disturbances and the striae that tend to show a disturbed arrangement of crystals and high Mg/Ca, Sr/Ca and Mn/Ca ratios [START_REF] Freitas | Environmental and biological controls on elemental (Mg/Ca, Sr/Ca and Mn/Ca) ratios in shells of the king scallop Pecten maximus[END_REF] were included in the sampling.

ANALYTICAL METHODS

Mineralogy

The proportion of aragonite versus calcite for the vast majority of the powdered samples was measured at the Natural History Museum of Los Angeles County with a R-AXIS RAPID II X-ray diffraction system. Whole-pattern-fitting, implemented in JADE 2010 (Materials Data, Inc.), was used to analyze the X-ray powder diffraction patterns. The precision for this method is about ±5%.

Leaching and dissolution of the samples

Since lithium concentrations in carbonates are generally very low (lower than 1 ppm), carbonate samples are sensitive to contamination by other phases during dissolution, particularly silicate minerals [START_REF] Vigier | In situ measurements of Li isotopes in foraminifera[END_REF]. All samples were therefore subjected to a pre-leach following a method modified from [START_REF] Saenger | Magnesium isotope fractionation in biogenic and abiogenic carbonates: implications for paleoenvironmental proxies[END_REF], to remove exchangeable ions using 1N ammonium acetate followed by 3 rinses with milliQ (millipore) water. The samples were then digested in dilute hydrochloric acid (HCl 0.05N) for 1 hour.

The volume of acid used for digestion was calculated to dissolve about 95% of the sample in order to minimize the leaching of non-carbonate phases. After 1 hour, the supernatant was collected while the sample residue was weighed in order to determine the yield of the digestion. For the great majority of samples, the yield for the digestion was between 90 and 100%. As discussed below, Al/Ca ratios were measured in order to confirm the absence of aluminosilicate-derived solutes in the leachate.

Trace element measurements

Ratios of trace elements Li, Mg, Sr, Al, Mn, Fe relative to Ca were measured using a Thermo Scientic Element 2 inductively coupled plasma mass spectrometer (ICP-MS) at the University of Southern California (USC) following a method adapted from [START_REF] Misra | Determination of B/Ca of natural carbonates by HR-ICP-MS[END_REF]. All samples and standards were measured at a Ca concentration of 50 ppm. Li, Mg, Sr, Al concentrations were measured at low mass resolution whereas Fe and Mn were measured at medium mass resolution. The instrument was first conditioned for 1 hour with a solution of 50 ppm Ca. A set of 10 multi-elemental calibration standards was measured at the beginning of the run, and a bracketing standard solution was measured every 5 to 10 samples to correct for the drift of the signal. Accuracy and precision of analyses were checked using the aragonite reference material FEBS-1 (NRC) and in-house prepared standard solutions matching typical calcium carbonate chemical composition. Analytical precision was between 5 and 15%, depending on the element and the concentration (see details in supplementary materials).

Lithium isotopes

Lithium was separated from the matrix by ion-exchange chromatography using a method modified from [START_REF] James | The lithium isotope composition of international rock standards[END_REF]. The dissolved calcium carbonate fraction was passed through a column containing 4mL of Biorad AG50W X-12 (200-400 mesh) resin.

The Li fraction was eluted with 0.5N HCl (elution volume of about 13.5 mL) and evaporated to dryness at a temperature of 90-100°C. Purified samples were kept until measurement as solid salts in Teflon beakers and subsequently dissolved in 5% HNO 3 for mass spectrometry analysis. Lithium isotope ratios were measured on a Thermo Neptune MC ICP-MS at Caltech, using a Cetac Aridus desolvator as an introduction system. Samples were measured following a standard-sample bracketing method with the commonly used L-SVEC standard [START_REF] Flesch | A secondary isotopic standard for 6Li/7Li determinations[END_REF]. The method comprised 50 cycles of 4 seconds for both standards and samples. Typical sensitivity was ~30 pA (about 3V) for 10 ng/g Li solution. Most of the samples were measured at concentrations ranging from 5 to 10 ng/g, the smallest samples measured at 1 or 2 ng/g. A clean acid measurement was measured before and after each sample and standard and subtracted to correct for the background contribution. Each sample was typically measured twice in a row. Accuracy and reproducibility of the isotopic measurements were checked through repeated analyses of seawater, with long-term average δ 7 Li = +30.9 ± 0.8‰ (2s, n=63 separations and measurements) and L-SVEC solutions passed through columns giving δ 7 Li = -0.1 ± 0.8‰ (2s, n=25 separations and measurements). We therefore consider that the external measurement precision is ±1‰. More informations about the analytical method are available in the supplementary materials.

The samples of the oyster Crassostrea gigas from the List Basin were purified using a similar technique [START_REF] Pogge Von Strandmann | Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2[END_REF][START_REF] Pogge Von Strandmann | The Li isotope response to mountain uplift[END_REF], where the dissolved calcium carbonate fraction was passed through a 2stage cation exchange procedure with columns containing Biorad AG50W X-12 (200-400 mesh) resin. The first column contained 2.4ml resin, and the second column 0.5ml. In both cases the Li fraction was eluted using 0.2M HCl. Analyses were performed on a Nu Instruments HR MC-ICP-MS at Oxford, with a 7 Li sensitivity of ~18 pA for a 20 ng/ml solution at an uptake rate of 75 l/min. Analyses consisted of three separate repeats of 10 ratios (10 s total integration time), for a total duration of 300 s/sample during each analytical session. Precision and accuracy were assessed by multiple analyses of N. Atlantic seawater, with a long-term value and reproducibility of +31.2 ± 0.6‰ (2 s.d. n=61). Other carbonate (JLs-1 and in-house marl standard) and rock (BCR-2 and SGR-1) standards are reported in [START_REF] Pogge Von Strandmann | Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2[END_REF], 2017). The total procedural blank for Li isotopes is effectively undetectable (<0.005 ng Li).

RESULTS

Sample mineralogy

The sample set from this study included shells composed of pure calcite, aragonite, high-Mg calcite and mixtures of these minerals. Mineralogy was measured when possible on the same powder used for Li isotope analysis (see table 1). Pure calcite specimens (over 95% calcite) included oysters (C. gigas), scallops (P. maximus, C. cheritata and C. hastata), and brachiopod samples. Pure aragonitic skeletal material from this study included clams (T. gigas and T. maxima) and gastropods (Turritella). All other measured specimens had a mixed mineralogy, and, for this reason, were micro-sampled at specific locations on the shells to obtain mineralogically pure phases. The drilled C. squamosa sample contained about 30% aragonite. Chione samples were primarly composed of aragonite, with a lesser proportion of calcite (1 to 46%). The mineralogy of Mytilus californianus shell samples ranged from pure calcite to pure aragonite. The mineralogy of experiment culture samples was not measured but inferred from previous studies (e.g., [START_REF] Ries | Skeletal mineralogy in a high-CO2 world[END_REF][START_REF] Freitas | Environmental and biological controls on elemental (Mg/Ca, Sr/Ca and Mn/Ca) ratios in shells of the king scallop Pecten maximus[END_REF][START_REF] Freitas | Inter-and intra-specimen variability masks reliable temperature control on shell Mg/Ca ratios in laboratory-and field-cultured Mytilus edulis and Pecten maximus (bivalvia)[END_REF] to be either pure calcite (Mytilus edulis, Pecten maximus) or pure aragonite (Mercenaria mercenaria).

The mineralogy for specific layers of the oyster sample was not measured either but is assumed to be pure calcite [START_REF] Ullmann | Oxygen isotope fluctuations in a modern North Sea oyster (Crassostrea gigas) compared with annual variations in seawater temperature: Implications for palaeoclimate studies[END_REF]. In the following, we refer to "calcite" or "aragonite" for samples having more than 95% calcite and aragonite, respectively, with other samples being classified as "mixed".

Major and trace element ratios

We use minor and major element ratios, along with mineralogical data, to characterize the samples from this study. In general, aragonite has higher Sr and lower Mg concentrations than calcite [START_REF] Dodd | Magnesium and Strontium in Calcareous Skeletons: A Review[END_REF][START_REF] Milliman | Recent Sedimentary Carbonates: Part 1 Marine Carbonates[END_REF]. Our dataset is consistent with these observations. The Mg/Ca ratios of the current dataset span over two orders of magnitude, ranging from 0.3 to 109 mmol.mol -1 (Fig 3). Aragonite and mixed shell samples have lower Mg/Ca values (0.3 to 8.0 mmol.mol -1 ) compared to low-magnesium calcite (LMC; with Mg/Ca of 1.0 to 20.0 mmol.mol -1 ). The sea urchin samples (HMC) have the highest Mg/Ca ratios within this dataset, ranging from 80 to 109 mmol.mol -1 . The Mg/Ca values of the shells of Pecten maximus and Mytilus edulis agree well with previously published values from the literature [START_REF] Freitas | Ion microprobe assessment of the heterogeneity of Mg/Ca, Sr/Ca and Mn/Ca ratios in Pecten maximus and Mytilus edulis (bivalvia) shell calcite precipitated at constant temperature[END_REF][START_REF] Freitas | Inter-and intra-specimen variability masks reliable temperature control on shell Mg/Ca ratios in laboratory-and field-cultured Mytilus edulis and Pecten maximus (bivalvia)[END_REF][START_REF] Freitas | Environmental and biological controls on elemental (Mg/Ca, Sr/Ca and Mn/Ca) ratios in shells of the king scallop Pecten maximus[END_REF]. The Sr/Ca values range from 0.5 to 2.5 mmol.mol -1 , with aragonite and high-magnesium calcite (HMC) samples from this study having higher Sr/Ca compared to LMC. The Mg/Ca and Sr/Ca values of our samples are in the range of previously published values for modern mollusks (Steuber, 1999), brachiopods [START_REF] Brand | Geochemistry of modern brachiopods: applications and implications for oceanography and paleoceanography[END_REF][START_REF] Delaney | Lithium-to-calcium ratios in Modern, Cenozoic, and Paleozoic articulate brachiopod shells[END_REF][START_REF] Ullmann | Element/Ca, C and O isotope ratios in modern brachiopods: Species-specific signals of biomineralization[END_REF] and sea urchins [START_REF] Carpenter | ratios of modern marine calcite: Empirical indicators of ocean chemistry and precipitation rate[END_REF][START_REF] Lavigne | The elemental composition of purple sea urchin (Strongylocentrotus purpuratus) calcite and potential effects of pCO2 during early life stages[END_REF].

The Li/Ca ratios of bivalve mollusk from this study range between 3.7 to 52.0 μmol.mol -1 , while the only gastropod, Turritella, has the lowest Li/Ca value (1.7 μmol.mol -1 ) of all the samples. Brachiopods have Li/Ca ratios ranging from 20 to 43 μmol.mol -1 , while the high-Mg calcite echinoderm specimens have the highest Li/Ca of this dataset, ranging from 60 to 81 μmol.mol -1 . The Li/Ca of our samples are within the range of previously published Li/Ca from the literature (see Fig. 4). If we consider all reported measurements (including measurements made at various parts on a single shell), the range of Li/Ca ratio of biogenic calcite is very high with values up to 250 μmol.mol -1 measured on some part of the Bivalve Pecten maximus [START_REF] Thébault | Li/Ca enrichments in great scallop shells (Pecten maximus) and their relationship with phytoplankton blooms. Palaeogeogr. Palaeoclimatol. Palaeoecol., Unraveling environmental histories from skeletal diaries -advances in sclerochronology[END_REF]. However, if we consider only the average value for each specimen, Li/Ca ratio ranges from 10 to 50 μmol.mol -1 for LMC organisms, between 1 and 30 μmol.mol -1 .for aragonitic speciments, and between 60 and 90 μmol.mol -1 for High-Mg calcite biogenic carbonates, showing that there is a mineralogical control on the Li/Ca of biogenic carbonate (Fig. 4b). Furthermore, there is an overall correlation between Li/Ca and Mg/Ca (Fig. 3) for all biogenic carbonates, suggesting that these two elements are impacted by one or more common processes during biomineralization.

The elemental compositions of cultured experiment samples (for which the mineralogy was not measured) are in agreement with other samples and plot inside the field defined by each polymorph mineral (Fig. 4). For the oyster sample from List Tidal Basin (assumed to be pure calcite), we observe that 3 samples have much higher Sr/Ca ratio and lower Li/Ca than surrounding samples and plot well outside the trend defined by the mixture between aragonite and calcite. Whether these samples contain some aragonite or high-Mg calcite, or perhaps have been altered, has not be determined. In the absence of additional information, these samples will not be further considered in our interpretation.

Lithium isotopes

For the entire dataset (Table 1), the Li isotope composition ranges between +14.9 and +40.7‰, indicating that these biogenic carbonates have both lower and higher δ 7 Li compared to modern seawater (+31‰). For the modern biogenic carbonates, the pure aragonitic mollusks have the lowest δ 7 Li values, ranging from +14.9 to +21.7‰, whereas the pure calcitic mollusks have higher δ 7 Li, ranging from +20.5 to +40.7‰ (Fig. 4). Mixed aragonitecalcite samples have intermediate values. For the extensively micro-sampled North Sea oyster sample, the δ 7 Li ranges from 20.5 to 37.8‰ with no significant systematic differences between the chalky and foliate layers. The 8 brachiopod and 3 echinoderm samples have relatively uniform δ 7 Li, ranging respectively from +24.7 to +27.8‰ and from +24.1 to +24.4‰ (Fig. 4). The field collected specimens from this study come from various locations that span a wide range of ocean temperatures (-1 to 30°C). As discussed before, because the location of most of the samples is not known precisely, and because natural temperatures may vary seasonally, we assign a 2°C uncertainty to estimated growth temperatures and only look to identify any large first order relationships. We find no effect of temperature on the measured δ 7 Li using this approach (Fig. 5B). This lack of correlation is particularly clear for the four specimens of Crassostrea gigas, with temperatures ranging from +10 to +22°C (points labelled C.G.1 to C.G.4 in Fig. 5B). In addition, we can also consider the influence of short timescale (weekly to monthly) temperature variation on the Li isotope composition of Crassostrea gigas specimen from the North Sea. For this specimen, we establish time series along foliate structure and chalky using growth strata, and calcification temperatures were calculated using the δ 18 O of each sample (Ullmann et al., 2013a[START_REF] Ullmann | Oxygen isotope fluctuations in a modern North Sea oyster (Crassostrea gigas) compared with annual variations in seawater temperature: Implications for palaeoclimate studies[END_REF]. No correlation was observed between the calcification temperature and δ 7 Li for either the chalky substance or foliate layers, despite the large range of δ 7 Li values.

For the samples from growth experiments at various temperatures, the δ 7 Li ranges from +32.1 to +35.2‰ from Pecten maximus samples, from +33.3 to +39.7‰ for Mytilus edulis, and from +17.2 to +19.2‰ for Mercenaria mercenaria. Experimental temperatures ranged from 10 to 22°C for the calcitic bivalve mollusks and from 15 to 30°C for the aragonitic bivalves. For the two calcitic calcifiers (Mytilus edulis and Pecten maximus), we observe a weak positive correlation between measured δ 7 Li and temperature for the studied range (r 2 =0.3; Fig. 5a). The Li isotope composition is slightly higher at high temperature than at lower temperature with a δ 7 Li-temperature relationship of about +0.2‰/°C. For the aragonitic bivalve (Mercenaria mercenaria), the opposite relation is observed, with slightly higher δ 7 Li at low temperature than at to high temperature (δ 7 Li-temperature relationship of -0.1‰/°C).

DISCUSSION

The δ 7 Li range for biogenic carbonates from this study (+14.9 to +40.7‰) is much larger that the range of previously-reported Li isotope compositions for both inorganic carbonates and modern seawater (Marriott et al., 2004a(Marriott et al., , 2004b;;[START_REF] Misra | Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering[END_REF].

This suggests an environmental and/or biological control on the Li isotope composition of these biogenic carbonates. In this discussion, we explore the influence of mineralogy, temperature, and biology (taxonomic differences, inter-species, and intra-specimen variability) on the Li isotope fractionation of mollusks, brachiopods and sea urchins. We show that biological processes significantly influence the Li isotope composition and Li/Ca ratio of mollusk shells, but not the compositions of the secondary layer (the only one measured in this study) of brachiopods.

Influence of mineralogy

Experimental inorganic calcium carbonate precipitates have lower δ 7 Li values compared to the solution from which they precipitate (Marriott et al., 2004a,b;[START_REF] Gabitov | In situ δ7Li, Li/Ca, and Mg/Ca analyses of synthetic aragonites[END_REF], with aragonite more fractionated (Δ 7 Li aragonite-solution = -7 to -12‰) than calcite (Δ 7 Li calcite-solution = -2 to -5‰). Biogenic carbonates also are fractionated differently according to their mineralogy with δ 7 Li of calcite shells (excluding samples "ofl04, 05 and 06") from +25 to +40‰ whereas aragonitic shells have δ 7 Li from +15 to +24‰ (Fig. 4a), with bi-mineralic shells exhibiting intermediate δ 7 Li. These observations are consistent with other types of biogenic carbonates. as the δ 7 Li of modern calcitic planktic foraminifera is systematically higher than 26‰ [START_REF] Hathorne | Temporal record of lithium in seawater: A tracer for silicate weathering? Earth Planet[END_REF][START_REF] Misra | Measurement of lithium isotope ratios by quadrupole-ICP-MS: application to seawater and natural carbonates[END_REF] whereas corals (aragonite) have δ 7 Li consistently lower than +25‰ (Rollion- [START_REF] Rollion-Bard | Effect of environmental conditions and skeletal ultrastructure on the Li isotopic composition of scleractinian corals[END_REF]. Interestingly, the three high-Mg calcite samples (echinoderms) of this study have an intermediate δ 7 Li of +24‰. We also note systematic differences in Li/Ca ratio amongst aragonite, calcite and high-Mg calcite samples. The inorganic partition coefficient for Li (relative to Ca) between inorganic carbonates and solution (referred here as Kd Li ), determined in abiogenic experiments, is slightly higher for aragonite compared to calcite (Marriott et al., 2004a,b). However, the Li/Ca ratio of aragonitic skeletons is generally lower than biogenic calcite (see the compilation by [START_REF] Hathorne | Lithium in the aragonite skeletons of massive Porites corals: A new tool to reconstruct tropical sea surface temperatures[END_REF] and this difference is confirmed by this study (Fig. 4b).

The reasons for the differential incorporation of Li and its isotopes between the various inorganic carbonate minerals are not clear. Previous studies have proposed that Li + substitutes for the Ca 2+ site in aragonite, whereas in calcite, Li is incorporated interstitially (Marriott et al., 2004a,b). The larger isotope fractionation observed in inorganic aragonite compared to calcite could be due to the fact that there is less fractionation of Li isotopes during incorporation in the interstitial position in calcite compared to substitution Li + for Ca 2+ in aragonite [START_REF] Okumura | Coprecipitation of alkali metal ions with calcium carbonate[END_REF][START_REF] Tomascak | Advances in lithium isotope geochemistry[END_REF]. Additionally, because of their similar ionic radii, Li often substitutes for Mg in silicate minerals [START_REF] Tomascak | Advances in lithium isotope geochemistry[END_REF]. Hence, differences in Mg binding environment between calcite and aragonite could also potentially explain the different Li isotope composition between these minerals.

Influence of temperature

The three bivalve species (Pecten maximus, Mytilus edulis and Mercenaria mercenaria) grown at different temperatures, keeping other parameters constant, show only weak correlation (r 2 = 0.3 to 0.5) with temperature (Fig. 5a). The δ 7 Li of field-collected specimens from various locations show no relationship with temperature. Collectively, these data indicate that temperature has minor influences on δ 7 Li within mollusk species but is not the first order control on δ 7 Li variability across the mollusk species investigated in this study.

This conclusion is consistent with results from inorganic carbonate precipitation experiments (see Fig. 5a) that show no temperature-dependence of carbonate δ 7 Li (Marriott et al., 2004a).

The same observation was made for experimentally-grown foraminifera Amphistegina lessonnii [START_REF] Vigier | Lithium isotopes in foraminifera shells as a novel proxy for the ocean dissolved inorganic carbon (DIC)[END_REF]. We note that the field-collected coral samples also showed no correlation between temperature and δ 7 Li (Marriott et al., 2004a;[START_REF] Rollion-Bard | Effect of environmental conditions and skeletal ultrastructure on the Li isotopic composition of scleractinian corals[END_REF].

In contrast to δ 7 Li values, relationships between carbonate Li/Mg, and to a lesser extent Li/Ca, and temperature have been reported in other studies (Marriott et al., 2004a;[START_REF] Montagna | Li/Mg systematics in scleractinian corals: Calibration of the thermometer[END_REF][START_REF] Case | Environmental and biological controls on Mg and Li in deep-sea scleractinian corals[END_REF][START_REF] Bryan | Mg/Ca-temperature proxy in benthic foraminifera: New calibrations from the Florida Straits and a hypothesis regarding Mg/Li[END_REF][START_REF] Fowell | Intrareef variations in Li/Mg and Sr/Ca sea surface temperature proxies in the Caribbean reef-building coral Siderastrea siderea[END_REF][START_REF] Hathorne | Lithium in the aragonite skeletons of massive Porites corals: A new tool to reconstruct tropical sea surface temperatures[END_REF]. For inorganic calcite (Marriott et al., 2004a) and brachiopods [START_REF] Delaney | Lithium-to-calcium ratios in Modern, Cenozoic, and Paleozoic articulate brachiopod shells[END_REF], Li/Ca ratios exhibit a negative relationship with temperature. For corals and foraminifera, very good correlations have been observed between temperature and Li/Mg ratio, suggesting that the latter might be a promising proxy for reconstructing past ocean temperature. We observe that although some samples from this study plot close to the inorganic trend, most samples have higher Li/Ca than inorganic carbonate for a given temperature (not shown).

Similar to the case for Li isotopes, temperature does not seem to be the first-order control on Li/Ca of mollusks across species, although it does influence Li/Ca within mollusk species.

On the other hand, the brachiopods from this study plot on the same Li/Ca vs. temperature regression as the brachiopods from [START_REF] Delaney | Lithium-to-calcium ratios in Modern, Cenozoic, and Paleozoic articulate brachiopod shells[END_REF] confirming the temperature control of Li/Ca for brachiopods (Fig. 5c).

Considering the relationship between the Li/Mg ratio in mollusks and water temperature, several observations can be made. First, for the growth experiments, for which the temperature has been monitored, we observe a strong correlation between Li/Mg and T for the species Mytilus edulis (r 2 = 0.83; Fig 5D) but no correlation for Pecten maximus and Mercenaria mercenaria. This is the first time that a correlation between the Li/Mg in a marine bivalve and temperature is reported. This suggests that the Li/Mg ratio in Mytilus edulis has great potential for paleo-temperature reconstruction in the ocean. However, more data testing the influence of other parameters are necessary to definitely validate such a calibration. Secondly, the relationship between Li/Mg and T for Mytilus edulis is different from the relationships defined by other organisms (e.g. [START_REF] Montagna | Li/Mg systematics in scleractinian corals: Calibration of the thermometer[END_REF][START_REF] Case | Environmental and biological controls on Mg and Li in deep-sea scleractinian corals[END_REF][START_REF] Bryan | Mg/Ca-temperature proxy in benthic foraminifera: New calibrations from the Florida Straits and a hypothesis regarding Mg/Li[END_REF][START_REF] Fowell | Intrareef variations in Li/Mg and Sr/Ca sea surface temperature proxies in the Caribbean reef-building coral Siderastrea siderea[END_REF], indicating that the relationship between Li/Mg and temperature is taxon-dependent. Finally, if we report also field-collected organisms on the Li/Mg temperature plot (see figure in supplementary materials), we observe that although there is a global trend of decreasing Li/Mg with temperature, the correlation between these two parameters is highly scattered. Thus, contrary to corals, the relationship between Li/Mg and temperature is overall quite weak and therefore it appears difficult to use mollusk Li/Mg to estimate water temperature unless targeting specific species (like Mytilus edulis).

Intra-shell variability

A large intra-shell Li isotope variability (up to 25‰) is observed for bi-mineralic mollusk shells. This is best exemplified by Mytilus californianus, for which the inner aragonitic nacreous layer has a δ 7 Li as low as 15‰, while the δ 7 Li of the outer calcite prismatic layer is about 40‰. All Mytilus californianus samples plot on the same negative regression between δ 7 Li and the proportion of aragonite measured by XRD (Fig. 6).

Interestingly, no variation is observed across the horizontal length of the outer layer (rectangles in Fig. 6). This result indicates that the Li isotope composition of the calcite part of the shell of Mytilus californianus is relatively homogenous and independent of shell growth rate or age. In contrast, for the Chione shells, dominantly composed of aragonite with a small proportion of calcite (in general < 20%, one sample at 55%), the observed intra-shell variability is much lower (less than 3‰), although the samples with the highest proportion of calcite have systematically highest δ 7 Li for each species.

Intra-shell variability was also investigated on a calcitic oyster (Crassostrea gigas) and aragonitic clam (Tridacna maxima). The observed intra-shell variability of the aragonitic clam is small, less than 2‰ between the outer and inner layer. In contrast, relatively large δ 7 Li variability (about 12‰; excluding the anomalous Mg/Ca and Sr/Ca samples) was observed for Crassostrea gigas in at least 3 specimens. However, no significant differences were noticed between the chalky and foliate layers, indicating that Li isotope variability in this oyster is not controlled by the chalky vs. foliate nature of the calcite shell. Finally, intrashell variability was also tested for a brachiopod shell (Terebratulina transversa), for which we observe a limited variability of 2.5‰ between anterior and posterior valves. However, we did not attempt to determine whether the secondary and primary layers of brachiopod shells have similar δ 7 Li, as has been done for others isotope proxies [START_REF] Auclair | Deciphering kinetic, metabolic and environmental controls on stable isotope fractionations between seawater and the shell of Terebratalia transversa (Brachiopoda)[END_REF][START_REF] Cusack | Brachiopods recording seawater temperature-A matter of class or maturation?[END_REF]Parkinson et al., 2005;[START_REF] Penman | Boron, carbon, and oxygen isotopic composition of brachiopod shells: Intra-shell variability, controls, and potential as a paleo-pH recorder[END_REF][START_REF] Ullmann | Element/Ca, C and O isotope ratios in modern brachiopods: Species-specific signals of biomineralization[END_REF], and this question remains to be investigated.

In summary, there is significant but not systematic intra-shell variability for some skeletons. The largest intra-shell δ 7 Li variability (> 25‰) is controlled by mineralogical mixing between calcite and aragonite, but up to 12‰ variability is also observed in some mineralogically pure species (e.g., the oyster C. gigas) while intra-shell variability of less than 2.5‰ is observed in other taxa (Chione, Tridacna, Terebratulina).

Influence of biological processes

Evidence for vital effects

Here, we compare our biogenic samples to inorganic carbonates. Precipitation experiments have shown that the carbonate phase is enriched in 6 Li compared to the fluid from which it precipitates (Marriott et al., 2004a,b). Following [START_REF] Planchon | Mg-isotopic fractionation in the manila clam (Ruditapes philippinarum): New insights into Mg incorporation pathway and calcification process of bivalves[END_REF], we can define the deviation from inorganic values as Δ 7 Li physiol = δ 7 Li carbonate biogenic -δ 7 Li carbonate inorganic with "δ 7 Li carbonate inorganic " being the δ 7 Li value of the corresponding inorganic carbonate precipitated from modern seawater (δ 7 Li seawater = 31‰), as derived from the experiments by Marriott et al. (2004a,b). We use a Δ 7 Li calcite-solution value of -3‰ for the δ 7 Li of inorganic calcite and a Δ 7 Li aragonite-solution value of -12‰ for inorganic aragonite (Marriott et al., 2004b(Marriott et al., , 2004a)). The Δ 7 Li physiol values of mollusk shells range from -4 to +14‰ (Fig. 7). This suggests a strong vital effect on the incorporation of Li isotopes in mollusk shells. The Δ 7 Li physiol of brachiopods ranges between 0 and -3‰ (average of -1.4‰, n = 8 measurements), suggesting a limited influence of vital effects for this group of organisms.

Interestingly, the Δ 7 Li physiol values are larger and more positive for calcitic mollusk shells (i.e. they preferentially incorporate the heavy isotope 7 Li) compared to aragonitic shells. This result indicates that physiological processes favor the utilization of the light isotope for aragonitic mollusks and the heavy isotope for calcitic mollusks. The influence of vital effects on Li isotope composition have also been identified for benthic foraminifera by [START_REF] Vigier | Lithium isotopes in foraminifera shells as a novel proxy for the ocean dissolved inorganic carbon (DIC)[END_REF] who showed that the δ 7 Li of cultured Amphistegina benthic foraminifera can be as low as 21‰ and as high as 38‰, depending upon the DIC concentration of seawater.

Regarding the Li/Ca values, as observed by [START_REF] Hathorne | Lithium in the aragonite skeletons of massive Porites corals: A new tool to reconstruct tropical sea surface temperatures[END_REF] and described in section 5.2., biogenic calcite has higher average Li/Ca than biogenic aragonite, the opposite of what is observed for inorganic carbonates (Marriott et al., 2004a,b). This apparent conundrum may be explained by the influence of physiological processes that either favor Li incorporation for calcite relative to aragonite through the involvement of specific cellular processes or if there is a strong influence of the pH and/or calcification rate (as suggested by the study of [START_REF] Gabitov | In situ δ7Li, Li/Ca, and Mg/Ca analyses of synthetic aragonites[END_REF] on the inorganic equilibrium partition coefficients. This stresses the need for more experiments looking at the controls on the inorganic partition coefficients and specifically the role of pH and calcification rates.

In order to remove variability arising from differences between partition coefficient of inorganic calcite and aragonite, we normalize the observed partition coefficient of Li between biogenic carbonate and seawater [D Li = (Li/Ca) biogenic carb. / (Li/Ca) seawater ] to the partition coefficient between inorganic carbonates and seawater [Kd Li = (Li/Ca) inorganic carb. / (Li/Ca) seawater ]. We define this parameter as β Li = D Li /Kd Li to express the enrichment or depletion in Li (relative to Ca) in the biogenic carbonate relative to inorganic carbonate, i.e., the enrichment or depletion in Li in shells due to physiological processes only. As discussed previously, inorganic experiments have shown that Kd Li (defined as "D Li " in Marriott et al., 2004 but referred to here as "Kd Li ") for calcite is a function of temperature. Hence for each sample, the β Li value should be calculated with the Kd Li corresponding to the growing temperature of the shell. However, as discussed before, there is a large uncertainty on the growth temperature of field-collected shells from this study. In addition, the relationship between Kd Li and temperature for aragonite has yet to be experimentally investigated.

Therefore, we consider both (i) β Li values normalized to the Kd Li determined at 25°C, which we will refer to as "β Li 25°C " and (ii) β Li T calculated with the Kd Li value corresponding to the associated growth temperature and applied to aragonite using the same relationship to temperature as determined for calcite. Considering the data from both this study and from the literature (on other biogenic carbonates), the calculated β Li values are between 0.2 and 3 for aragonite skeletons and between 2 and more than 10 for calcite skeletons (Fig. 7). Hence, calcite organisms are systematically enriched in Li relative to inorganic calcite, lilely as a result of Biologically-controlled processes.

Taxonomic differences in δ 7 Li and Li/Ca

Comparison of our results with published data reveals important differences in the δ 7 Li and Li/Ca ratios between various species, genera and phyla. At the phylum level, the largest differences in Li isotope composition are observed within the group of calcite organisms for which each phylum has a specific pair of Δ 7 Li physiol and β Li values (Fig. 7). The range of Δ 7 Li physiol of modern field-collected calcitic mollusks (-2 to +13‰) is significantly larger compared to modern planktic foraminifera (-2 to +4‰), brachiopods (-3 to 0‰), and benthic foraminifera (-7 to -1‰). Aragonitic calcifiers, including corals (Δ 7 Li physio = 0 to +4‰), and aragonitic bivalves (-4 to +1‰), have a smaller range of Δ 7 Li physiol . We also observe that for a given Δ 7 Li physiol value, sea urchins, brachiopods, and mollusks have the highest β Li , followed by planktic and benthic foraminifera, followed by aragonite calcifiers. This shows that physiological processes significantly influence the proportion of Li incorporated into the shell of various types of calcifiers.

In addition, we also investigated the importance of inter-genera and inter-species variability by comparing the δ 7 Li of shells from various species grown in similar thermal environments. Our dataset reveals large inter-species differences in Li isotope composition of mollusk shells (for a given mineralogy), in contrast to foraminifera and brachiopods. Shells of mollusk species Mytilus edulis and Pecten maximus, grown at various temperature, all other parameters constant, exhibit systematic Li isotope differences of 4 to 5‰ for seawater temperatures ranging from 10 to 20°C (Fig. 5B). Furthermore, we observe that the two species of Chlamys have higher δ 7 Li compared to species of other mollusk genera grown at similar temperature. Up to 7‰ variability between species of equivalent mineralogy is observed at a given temperature (Fig. 5B).

Origin of the vital effect for calcite mollusks

When Δ 7 Li physiol values are compared to β Li 25°C for mollusks (Fig. 7), we observe a negative correlation between Δ 7 Li physiol and β Li 25°C for Mytilus edulis specimens grown at various temperature (r 2 =0.85). Interestingly, this relationship is also observed for all calcitic mollusks (r 2 =0.63) from this study. For the temperature-normalized inorganic Li/Ca ratios (β Li T ), the correlation is less good but still holds for calcite mollusks (r 2 =0.45) but not for Mytilus edulis specimens (r 2 =0.21). For aragonite mollusks, we also observe a negative correlation between Δ 7 Li physiol and β Li 25°C (r 2 =0.47) but no correlation is observed with β Li T . In this section, we discuss several hypotheses for explaining this correlation and relate these observations to potential mechanisms of Li isotope fractionation during biomineralization.

Most skeletal organisms calcify in a reservoir isolated from external seawater. They favor calcification by either (i) increasing saturation state (by increasing their internal pH, DIC and/or internal Ca concentration), (ii) reducing their internal fluid Mg/Ca ratio (in particular for modern calcite organisms), or (iii) using a complex organic template to control orientation and distribution of crystals during nucleation [START_REF] Immenhauser | Mollusc and brachiopod skeletal hard parts: Intricate archives of their marine environment[END_REF][START_REF] Ries | Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification[END_REF]. These pathways are not mutually exclusive. Mollusks have an extracellular-type process of biomineralization [START_REF] Immenhauser | Mollusc and brachiopod skeletal hard parts: Intricate archives of their marine environment[END_REF][START_REF] Weiner | Crystallization Pathways in Biomineralization[END_REF][START_REF] Weiner | An overview of biomineralization processes and the problem of the vital effect[END_REF]. Precipitation of the inner layer is inferred to take place somewhere in the extrapallial space (which contains extrapallial fluid or EPF), located between the inner shell surface and the outer mantle epithelium. For the outer layer, the EPF is located between the prismatic layer and the mantle epithelium. The EPF contains inorganic ions and various organic molecules that interact to form the biominerals. Precipitation is controlled by specialized cells of the outer mantle epithelium that release complex organic macromolecules that are used as organic templates for controlling the morphology of precipitated crystals.

Usually, a precursor amorphous carbonate phase (ACC) is first precipitated and then transformed to calcite or aragonite (Baronnet et al., 2008, Weiner and[START_REF] Weiner | Crystallization Pathways in Biomineralization[END_REF]. It has been suggested that precursor amorphous phases are also used by echinoderms [START_REF] Beniash | Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth[END_REF].

The negative relationship between Δ 7 Li physiol and β Li for calcite mollusks cannot be produced by carbonate precipitation alone (e.g., by varying proportions of Li incorporated into carbonates) because (i) the partitioning of Li between the carbonates and the fluid strongly favors the fluid (Kd Li <<1), hence very small amount of Li is incorporated into carbonate minerals and therefore carbonate precipitation does not change the δ 7 Li of the fluid and (ii) carbonates would have δ 7 Li lower than seawater, not higher as observed for most of the mollusk samples, because 6 Li is preferentially incorporated into inorganic carbonates.

Furthermore, it has been argued that in bivalves, passive ion transport through ion channels to the calcification site results in similar composition in the extrapallial space as in the seawater [START_REF] Immenhauser | Mollusc and brachiopod skeletal hard parts: Intricate archives of their marine environment[END_REF]. Hence, the most likely explanation for the observed trends is that the δ 7 Li and Li concentration of the calcification fluid is modified prior to carbonate precipitation by physiological processes leading to addition or removal of Li in the internal calcification medium and that this process also fractionates Li isotopes.

This type of mechanism was recently proposed by [START_REF] Vigier | Lithium isotopes in foraminifera shells as a novel proxy for the ocean dissolved inorganic carbon (DIC)[END_REF] for explaining the range of Li/Ca and δ 7 Li of cultured foraminifera of the genus Amphistegina at low and high DIC concentrations. In this conceptual model, elevation of pH within the seawater vacuoles is achieved by a Na/proton exchanger that removes protons from the vacuoles and transports Na (and Li) inside the vacuoles [START_REF] Bentov | The role of seawater endocytosis in the biomineralization process in calcareous foraminifera[END_REF][START_REF] Erez | The Source of Ions for Biomineralization in Foraminifera and Their Implications for Paleoceanographic Proxies[END_REF]. These vacuoles are then transported into the calcification site of foraminifera where the organic matrix is present [START_REF] Bentov | The role of seawater endocytosis in the biomineralization process in calcareous foraminifera[END_REF][START_REF] Erez | The Source of Ions for Biomineralization in Foraminifera and Their Implications for Paleoceanographic Proxies[END_REF]. At low DIC concentration, the activity of the Na/proton exchanger would be more intense and more Li would be transported into the calcification site [START_REF] Vigier | Lithium isotopes in foraminifera shells as a novel proxy for the ocean dissolved inorganic carbon (DIC)[END_REF]. Assuming this process fractionates Li isotopes (for example by kinetic or enzymatic isotope fractionation), the result would be an increase in the Li/Ca ratio and a decrease in the δ 7 Li of the calcification reservoir relative to seawater (i.e. negative Δ 7 Li physiol values). This is what we observe for aragonite mollusks as most of the samples have negative Δ 7 Li physiol values. Moreover, benthic foraminifera and some calcite mollusks and brachiopods also have slightly negative Δ 7 Li physiol values (Fig. 7). Hence, this process could potentially explain their variability in Li isotope and Li/Ca ratios. However, the great majority of calcitic mollusks and foraminifera have positive Δ 7 Li physiol values, which implies the need for a different explanation.

Another possibility, is that Li is actively removed from the calcification site, with an isotope fractionation leading to preferential removal of 6 Li [START_REF] Vigier | Lithium isotopes in foraminifera shells as a novel proxy for the ocean dissolved inorganic carbon (DIC)[END_REF]. This process would lead to high δ 7 Li (high Δ 7 Li physiol ) and low Li/Ca (low β Li ) of carbonates. Removal of Mg from the calcification reservoir through Mg specific channels has previously been suggested for foraminifera [START_REF] Bentov | Impact of biomineralization processes on the Mg content of foraminiferal shells: A biological perspective[END_REF][START_REF] Zeebe | Comparison of two potential strategies of planktonic foraminifera for house building: Mg2+ or H+ removal?[END_REF] to explain their low Mg/Ca value relative to seawater, even if the relevance of this process is debated [START_REF] Pogge Von Strandmann | Modern and Cenozoic records of seawater magnesium from foraminiferal Mg isotopes[END_REF][START_REF] Wombacher | Magnesium stable isotope fractionation in marine biogenic calcite and aragonite[END_REF]. Indeed, high Mg content in fluids inhibits calcite precipitation (e.g. [START_REF] Berner | The role of magnesium in the crystal growth of calcite and aragonite from sea water[END_REF], so removal of Mg is one possible strategy to favor calcite precipitation [START_REF] Ries | Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification[END_REF][START_REF] Wang | Revisiting geochemical controls on patterns of carbonate deposition through the lens of multiple pathways to mineralization[END_REF][START_REF] Bentov | Impact of biomineralization processes on the Mg content of foraminiferal shells: A biological perspective[END_REF][START_REF] Zeebe | Comparison of two potential strategies of planktonic foraminifera for house building: Mg2+ or H+ removal?[END_REF]. As Li is often associated with Mg, we suggest that similarly to Mg, Li could be transported out of the calcification site by specific channels and/or pumps [START_REF] Bentov | Impact of biomineralization processes on the Mg content of foraminiferal shells: A biological perspective[END_REF]. This hypothesis is supported by the negative correlation between δ 7 Li and Mg/Ca for calcitic mollusks (Fig. 8B), indicating that, indeed, mollusks having the highest δ 7 Li also have the lowest Mg/Ca ratio.

The process of Li removal from the calcification site can be modeled in a simple way as either (i) an open system at steady-state (input fluxes are balanced by output fluxes) or (ii) a closed or semi-enclosed system, corresponding to non-steady-state conditions with output fluxes being higher than input fluxes (requiring periodic 'batch' replenishment of the calcifying medium). For the latter, the Li/Ca and Li isotope composition of the fluid inside the calcification reservoir evolves following a Rayleigh distillation as a function of the proportion of Ca and Li removed.

The corresponding equation for the open system at steady-state is:

and for the closed system:

(2) with Δ 7 Li pump-fluid being the fractionation factor (Δ 7 Li pump-fluid = 1000 ln(α pump-fluid )) between the Li removed and the Li within the calcification site, and being the proportion of Li remaining in the fluid in the calcification reservoir after Li extrusion, calculated as the ratio between the concentration of Li remaining in the reservoir after extrusion divided by the initial concentration of Li before extrusion. Assuming that there is no Ca removal by this process, then we can express as:

(3) With the subscript "fluid" corresponding to the fluid in the calcification reservoir, "0" to initial fluid in the calcification reservoir before Li removal, "carb" to carbonate and "carb-0" to the composition of the carbonate formed in the absence of Li extrusion (i.e. when (Li/Ca) res = (Li/Ca) 0 ). Hence, equations 1 and 2 can be combined to give:

(4)

(5)

The Δ 7 Li physiol and β Li 25°C data for calcite mollusks can be fitted by equations ( 4) and

(5) assuming that (i) all the mollusks have a relatively similar initial at the calcification site and (ii) there is unique associated isotope fractionation factor (Δ 7 Li pump-fluid ) for all mollusks. The best fits (both giving r 2 = 0.64) corresponding to both the closed and open system isotope fractionation for calcite mollusks are represented on Fig. ( 8). The trends intercept the grey line corresponding to the absence of vital effects (Δ 7 Li physiol = 0) at a value of 7±1 for the open system and at 7.5±1.0 for the closed system (Fig. 8A). Hence, the initial Li/Ca ratio of the mollusks, in the absence of Li extrusion, is about 7 times higher than the Li/Ca ratio of inorganic calcite. Investigation of the reasons for such high values for mollusks is beyond the scope of this study but preferential incorporation of Ca in carbonates (e.g., [START_REF] Elderfield | A biomineralization model for the incorporation of trace elements into foraminiferal calcium carbonate[END_REF] and/or specific Ca input or removal from the calcification site through channel pump or exchange enzyme transporter [START_REF] Carré | Calcification rate influence on trace element concentrations in aragonitic bivalve shells: Evidences and mechanisms[END_REF] could potentially explain higher than 1. Regarding the fractionation factor, we obtain a Δ 7 Li pump-fluid value of -15‰ (α pump-fluid = 0.985) for the open system and -9‰ (α pump-fluid = 0.991) for the closed system model. We hypothesize that this fractionation corresponds to a kinetic isotope fractionation where the 6 Li is preferentially extruded from the calcification site by diffusion or active transport through membranes. For diffusion in water at low temperature, the Li isotope fractionation is relatively small (about 0.997; [START_REF] Richter | Kinetic isotopic fractionation during diffusion of ionic species in water[END_REF] whereas the fractionation factor through a membrane at 22°C was determined to be 0.989 by [START_REF] Fritz | Measuring the ratio of aqueous diffusion coefficients between 6Li+ Cl-and 7Li+ Cr-by osmometry[END_REF].

The latter value is close to the fractionation factor corresponding to closed system (Rayleigh)

fractionation inferred in our model. As represented in Fig. ( 8), we calculate that up to 80% of the Li initially present at the calcification site is removed before precipitation of calcite for mollusks. We note that this mechanism could also explain the high Δ 7 Li physiol and low β Li 25°C values of Amphistegina benthic foraminifera growth at high DIC concentration from [START_REF] Vigier | Lithium isotopes in foraminifera shells as a novel proxy for the ocean dissolved inorganic carbon (DIC)[END_REF]. Indeed, we can speculate that in foraminifera both addition of Li (through the Na + /H + transporter) and removal of Li (coincident with Mg removal) exist. At high DIC concentration, the activity of the Na + /H + transporter (leading to low Δ 7 Li physiol ) is lowered, so removal of Li becomes dominant with resulting Δ 7 Li physiol value being higher. Ultimately, the Li isotope composition of biogenic carbonates is probably controlled by the balance between processes removing and adding dissolved Li to the calcification medium.

Implications for reconstructing past seawater composition

One goal of this study is to test whether and how different biocalcifying organisms may be used to reconstruct the past δ 7 Li of seawater. The secondary layers of brachiopods analyzed here have homogeneous δ 7 Li, with little apparent influence from vital effects, temperature, and inter-species differences. In addition, as previously observed by [START_REF] Delaney | Lithium-to-calcium ratios in Modern, Cenozoic, and Paleozoic articulate brachiopod shells[END_REF], the Li/Ca of brachiopods may be a reliable proxy for tracing past ocean temperature if Li/Ca of the ocean is known or, conversely, determining past Li/Ca of the ocean if the calcification temperature is known through other proxies. Collectively, these observations suggest that brachiopods are promising candidates as archives of past Li isotope composition of seawater. However, as we only analyzed 5 different specimens from 5 different species, we suggest caution in interpreting these results and urge more analyses of present-day brachiopods (including considering intra-shell variability) to confirm these conclusions.

Unlike brachiopods, the range of δ 7 Li and Li/Ca values of modern calcitic mollusks is large and significantly influenced by physiological processes, inter-species and interspecimen differences. Therefore, fossil shells of calcitic mollusks are probably not good targets for inferring the past Li isotope composition or temperature of the oceans, unless the reconstructions are limited to single species. As mollusks can constitute a significant component of bulk carbonates [START_REF] Wilkinson | Biomineralization, paleoceanography, and the evolution of calcareous marine organisms[END_REF], it is important to take them into account to understand the Li isotope composition of bulk carbonates [START_REF] Lechler | Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event)[END_REF][START_REF] Pogge Von Strandmann | Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2[END_REF], at least when these are fossiliferous. The δ 7 Li and Li/Ca values of aragonitic mollusks are similar to inorganic aragonite composition. Therefore, they are likely to be better archives for marine δ 7 Li that calcitic mollusks. However, aragonite mollusks are also more prone to diagenetic transformation and, at this stage, it is not known how diagenesis affects primary δ 7 Li signatures. The small subset of echinoderm skeletons analyzed here point to a relatively narrow range of values, but more work would need to be done to establish whether these observations are systematic and the extent to which the signal in high-Mg calcite is preserved during diagenesis.

The results of this study have important implications for the interpretation of Li isotope and Li/Ca data from bulk Phanerozoic carbonates. Over time, the δ 7 Li of bulk carbonates is potentially influenced by several parameters including seawater Li isotope composition, mineralogy, diagenesis, the proportion of skeletal to non-skeletal carbonates, taxonomy, temperature of the skeletal carbonates. We have found that different genera have distinct δ 7 Li (ranging by several tens of per mil) and distinct Li/Ca ratio, and therefore it is likely that the Li/Ca and Li isotope variability of bulk carbonates can be controlled to some extent by the relative contributions of different taxonomic groups (Fig. 7c). This effect may be most pronounced at times of major change in ecosystem structure, for example, during extinction events. There is also evidence that the overall pattern of biomineralization has significantly changed during Phanerozoic time with an increase in the proportion of skeletal to nonskeletal carbonates over time, together with large changes in the type of skeletal carbonates [START_REF] Kiessling | Patterns of Phanerozoic carbonate platform sedimentation[END_REF][START_REF] Milliman | Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state[END_REF][START_REF] Wilkinson | Biomineralization, paleoceanography, and the evolution of calcareous marine organisms[END_REF]. Additionally, any global change of the main carbonate mineralogy over time (e.g. calcite and aragonite seas during the Phanerozoic, [START_REF] Stanley | Hypercalcification: Paleontology links plate tectonics and geochemistry to sedimentology[END_REF] would likely have influenced bulk carbonate δ 7 Li because calcite has higher δ 7 Li than aragonite for both inorganic and biogenic carbonates.

Hence, any long-term reconstruction of past δ 7 Li of seawater using bulk carbonates must take into account the influence of secular changes in mineralogy and taxonomic origin of the carbonate that is preserved.

Conclusions

In this study, we measured for the first time the Li isotope composition of modern mollusks, brachiopods, and echinoderms in order to test whether these samples are viable targets for determining the past δ 7 Li of the ocean and to provide further insight into the geochemistry of biomineralization. We investigated both modern field-collected shells from various environments and shells experimentally grown at various temperatures. We considered the influence of mineralogy, temperature, taxonomy, and vital effects on the Li isotope and Li/Ca composition of biogenic carbonates. The major conclusions are: Each large data marker corresponds to the average value for one specimen. Data from corals (Marriott et al., 2004a;[START_REF] Rollion-Bard | Effect of environmental conditions and skeletal ultrastructure on the Li isotopic composition of scleractinian corals[END_REF], planktic foraminifera [START_REF] Hathorne | Temporal record of lithium in seawater: A tracer for silicate weathering? Earth Planet[END_REF]Marriott et al., 2004a;[START_REF] Misra | Measurement of lithium isotope ratios by quadrupole-ICP-MS: application to seawater and natural carbonates[END_REF][START_REF] Rollion-Bard | Effect of environmental conditions and skeletal ultrastructure on the Li isotopic composition of scleractinian corals[END_REF], and benthic foraminifera (Marriott et al., 2004b) are from previously published literature. (B) Li/Ca ratio of modern carbonates, organized by phylum and mineralogy. Each large data marker corresponds to the average value for one specimen. Each small data marker corresponds to an individual measurement. Horizontal bars correspond to the maximum and minimum value for all data for each phylum. Data for corals [START_REF] Hathorne | Lithium in the aragonite skeletons of massive Porites corals: A new tool to reconstruct tropical sea surface temperatures[END_REF]Marriott et al., 2004b;[START_REF] Montagna | Li/Mg systematics in scleractinian corals: Calibration of the thermometer[END_REF][START_REF] Rollion-Bard | Effect of environmental conditions and skeletal ultrastructure on the Li isotopic composition of scleractinian corals[END_REF][START_REF] Rollion-Bard | Possible controls on Li, Na, and Mg incorporation into aragonite coral skeletons[END_REF], planktic and benthic foraminifera [START_REF] Hall | Determination of the lithium isotopic composition of planktic foraminifera and its application as a paleo-seawater proxy[END_REF][START_REF] Hall | Li/Ca in multiple species of benthic and planktonic foraminifera: thermocline, latitudinal, and glacial-interglacial variation[END_REF][START_REF] Hathorne | Temporal record of lithium in seawater: A tracer for silicate weathering? Earth Planet[END_REF][START_REF] Misra | Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering[END_REF], and red algae [START_REF] Darrenougue | Sea-surface temperature reconstruction from trace elements variations of tropical coralline red algae[END_REF] are from previous studies. Data from mollusks and brachiopods also include previously published data in addition to results from this study [START_REF] Delaney | Lithium-to-calcium ratios in Modern, Cenozoic, and Paleozoic articulate brachiopod shells[END_REF][START_REF] Füllenbach | Strontium/lithium ratio in aragonitic shells of Cerastoderma edule (Bivalvia) -A new potential temperature proxy for brackish environments[END_REF][START_REF] Thébault | Investigation of Li/Ca variations in aragonitic shells of the ocean quahog Arctica islandica, northeast Iceland[END_REF][START_REF] Thébault | Li/Ca enrichments in great scallop shells (Pecten maximus) and their relationship with phytoplankton blooms. Palaeogeogr. Palaeoclimatol. Palaeoecol., Unraveling environmental histories from skeletal diaries -advances in sclerochronology[END_REF]. Skeletal organisms with the highest Li/Ca ratio are high-Mg calcite like red algae (60 to 110 μmol.mol -1 ; [START_REF] Darrenougue | Sea-surface temperature reconstruction from trace elements variations of tropical coralline red algae[END_REF], low-Mg calcitic mollusks (20 to 250 μmol.mol -1 ; Füllenbach et al., 2015; Thébault and Chauvaud, 2013), and brachiopods (20 to 50 μmol.mol -1 ; Delaney et al., 1989).

Aragonitic mollusks and benthic foraminifera have the lowest reported Li/Ca ratios among skeletal organisms, between 2 and 11 μmol.mol -1 [START_REF] Hall | Li/Ca in multiple species of benthic and planktonic foraminifera: thermocline, latitudinal, and glacial-interglacial variation[END_REF][START_REF] Thébault | Investigation of Li/Ca variations in aragonitic shells of the ocean quahog Arctica islandica, northeast Iceland[END_REF]. T values (Li/Ca ratio normalized to Li/Ca of inorganic carbonate at the corresponding growth temperature). The hand-drawn dotted circles correspond to each taxonomic group. C) Also shown for comparison the δ 7 Li as a function of the Li/Ca (in μmol.mol -1 ) for biogenic, inorganic and cultured experiment carbonates. 
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Figure 1 :

 1 Figure 1: Map representing the location and name of all the field-collected samples from this study. A. America, B. East Asia, Oceania and Antarctica, and C. Europe

Figure 2 :

 2 Figure 2: Schematic showing the various types of sampling used in this study (bulk and specific layers) for mussels, clams, oysters, and brachiopods.

Figure 3 :

 3 Figure 3: A) Sr/Ca of the biogenic carbonates from this study as a function of Mg/Ca. Corals (Sr/Ca > 8) are not plotted on this figure. Data collected in this study are consistent with expectations based on mineralogy (higher Sr/Ca and lower Mg/Ca for aragonite compared to calcite). The three points surrounded by a circle have very high Sr/Ca compared to other samples and are excluded from further discussion because the exact mineralogical composition of these samples is not known. B) Li/Ca of the biogenic carbonates as a function of Mg/Ca.

Figure 4 :

 4 Figure 4: (A) Li isotope composition of modern carbonates, organized by phylum and mineralogy. Small transparent points (for mollusks and corals) correspond to all data for each phylum. Each large data marker corresponds to the average value for one specimen. Data

Figure 5 :

 5 Figure5: A) Li isotope composition as a function of the temperature for mollusks grown at various temperatures. The small black markers correspond to the inorganic calcite precipitation experiments at various temperature while the small red ones represent abiogenic precipitation experiments at varying salinity(Marriott et al., 2004a). B) Li isotope composition as a function of the growth temperature for modern field-collected biogenic mollusks, brachiopods, and echinoderms from this study. All data correspond to the mean of all the measurements of a single specimen. The initials correspond to the genera and species name. C) Li/Ca ratio of brachiopods as a function of the annual temperature. Data from[START_REF] Delaney | Lithium-to-calcium ratios in Modern, Cenozoic, and Paleozoic articulate brachiopod shells[END_REF] for brachiopods and inorganic experimental data fromMarriott et al. (2004) are also represented.

Figure 6 :Figure 7 :

 67 Figure 6: Example of intra-shell Li isotope variability for the species Mytilus californianus. (A) Sampling locations shown by the red dots on left figure. (B) δ 7 Li varies as a function of aragonite percentage in the shell

Table 1 :

 1 very high for bi-mineralic mollusk shells. Hence, systematically measuring the mineralogy of samples from mineralogical from multi-mineralic shells, is an important pre-requisite for inferring a representative δ 7 Li.6. Interestingly, the Li isotope composition of calcite mollusks is negatively correlated with shell Li/Ca ratio. This is best explained by a simple fractionation model driven by Li removal from the calcification site and an associated single isotope fractionation. We propose that this process is related to combined Mg and Li removal from the calcification site of calcite mollusk in order to lower Mg/Ca of the calcifying medium in support of calcite precipitation. Data for modern field-collected and growth experiment biogenic carbonates from this study. For field collected specimens, growth temperatures (in °C) correspond to average temperatures for the three warmest months.3 Average annual temperature (in °C) * Temperature calculated using Oxygen isotope data and the relationship between d18O and temperature from[START_REF] Ullmann | Oxygen isotope fluctuations in a modern North Sea oyster (Crassostrea gigas) compared with annual variations in seawater temperature: Implications for palaeoclimate studies[END_REF] 

	2. There is a strong mineralogical control on the δ 7 Li of biogenic carbonates. Calcite shells
	have δ 7 Li between +25 to +40‰ while aragonitic organisms have δ 7 Li systematically
	lower than 25‰. High-Mg calcite echinoderm shells have intermediate δ 7 Li of +24‰.
	3. Only a small influence of temperature is observed in mollusks from growth experiments,
	and no relation between temperature and δ 7 Li is observed for modern field-collected
	mollusks.
	4. There is strong physiological control on the δ 7 Li of mollusks. When normalized to
	inorganic fractionation (Δ 7 Li physiol = δ 7 Li carbonate biogenic -δ 7 Li carbonate inorganic ), calcite
	mollusks display positive and widely ranging Δ 7 Li physiol values , between -1 and +14‰,
	which indicates influence of physiological effects. Aragonite mollusks exhibit less
	variability than calcite mollusks, with Δ 7 Li physiol ranging from +1 to -4‰, with most of
	the values being negative.

1. Brachiopods are promising targets for tracing past Li isotope composition of the ocean because they have similar δ

7 

Li compared to inorganic calcite precipitated from seawater, (i.e. not significantly affected by vital effects) and exist since the Cambrian, (i.e. available for study in deep time).

5. Different species collected from thermally equivalent vary by up to 7‰ indicating substantial inter-species and inter-genera variability. In addition, intra-shell variability can be 2

Dominant mineralogy: A refers to 100% aragonite, A >> C to more than 90% aragonite, A > C between 90 and 50% aragonite, A=C equivalent proportion of aragonite and calcite, C > A between 50 and 10% aragonite, C >> A less than 10% aragonite and C to 100% calcite.
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25°C values (Li/Ca ratio normalized to Li/Ca of inorganic carbonate at 25°C) for mollusks. Calcite mollusks define a negative trend in this space and this trend can be fitted with either a steady-state open system fractionation (black line) or a Rayleigh fractionation model (grey line), both with an r 2 = 0.64 (excluding the sample having the highest β Li 25°C value). The numbers along the model curves correspond to the proportion of Li remaining in the calcification reservoir before precipitation of the shell.

(B) Negative relationship between Δ 7 Li physio and Mg/Ca in calcitic mollusks. Shells having the highest Δ 7 Li physio values also have the lowest Mg/Ca ratio.