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Abstract We simulate the hydrogen density near the exobase of Mars, using the 3-D Martian Global
Circulation Model of Laboratoire de Météorologie Dynamique, coupled to an exospheric ballistic model to
compute the downward ballistic flux. The simulated hydrogen distribution near the exobase obtained at two
different seasons—Ls = 180° and Ls = 270°—is close to Zero Net Ballistic Flux equilibrium. In other words, the
hydrogen density near the exobase adjusts to have a balance between the local upward ballistic and the
downward ballistic flux due to a short lateral migration time in the exosphere compared to the vertical
diffusion time. This equilibrium leads to a hydrogen density n near the exobase directly controlled by the
exospheric temperature T by the relation nT5/2 = constant. This relation could be used to extend 1-D
hydrogen exospheric model of Mars used to derive the hydrogen density and escape flux at Mars from
Lyman-α observations to 3-D model based on observed or modeled exospheric temperature near the
exobase, without increasing the number of free parameters.

1. Introduction

Light species such as H and He are found with enhanced densities, sometimes called bulges in the cold
regions of terrestrial planet thermospheres. Examples include the terrestrial He bulge near the winter pole
(Johnson & Gottlieb, 1969; Reber & Hays, 1973), the nighttime and winter pole H enhancement on Earth
(Brinton et al., 1975), the nighttime He and H bulges on Venus (Brinton et al., 1980; Niemann et al., 1980;
Kumar et al., 1978; Grebowsky et al., 1996; Chaufray et al., 2015), and enhancement in the He distribution
in the winter hemisphere on Mars (Elrod et al., 2017). The H distribution on Mars is of particular interest
because it has recently been discovered to be highly variable (Chaffin et al., 2014; Clarke et al., 2017), but
the spatial and temporal components of the variability are not yet well understood. The escape of H from
Mars is believed to be primarily thermal, that is, Jeans escape, and therefore depends exponentially on tem-
perature, which varies strongly over the exobase. The relative variations of density and temperature are critical
to understanding the hydrogen escape variability and the spatial asymmetries of the exosphere and its pos-
sible effect on the induced magnetosphere (Holmstrom, 2006) and Lyman-α emissions (Chaffin et al., 2015).

The size and location of these exospheric light species density enhancements are controlled by a combina-
tion of processes. They occur in low-pressure regions where there is a convergence of horizontal flow. In the
diffusively separated thermosphere, the horizontal flow toward the convergence carries an enhanced abun-
dance of lighter species because of their large-scale heights. Following subsidence in the region of the
convergence, the horizontal branch of the return flow occurs at deeper pressures, in the well-mixed region
of the atmosphere. The result is a buildup of light species in region of subsidence (e.g., Bougher et al.,
1999, 2015; Gonzalez-Galindo et al., 2009). This cycle is modified by several other processes. There are vertical
fluxes due to molecular diffusion and advection. Horizontal diffusion also occurs but is unlikely to be impor-
tant for the scales of interest. The escape fluxes of H and He may be significant and may moderate the
density enhancements.

The interplay of these processes on Mars has been studied by Chaufray et al. (2015, 2017), who extended the
Laboratoire Météorologie Dynamique General Circulation Model (LMD-GCM; Forget et al., 1999; Gonzalez-
Galindo et al., 2009) to include atomic and molecular hydrogen, the associated chemistry, vertical diffusion,
and Jeans escape. The simulations encompassed the entire atmosphere, from the surface to the exobase, and
were extended into the exosphere using Liouville’s equation. Chaufray et al. (2015) found that the H density
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near the exobase varied by a factor of several hundred with a density maximum near midnight during
solstices and near dawn during equinox, due to circulation patterns in the thermosphere. The H escape rate
in these simulations varied by a factor of ~8 due to seasonal effects with a maximum near northern winter
solstice and a factor of ~5 due to solar cycle effects. The dependence of the H escape rate on solar EUV
irradiance shows that the escape rate is not diffusion limited but rather controlled by the distribution of
exospheric temperature.

The H escape flux calculated by Chaufray et al. (2015) varies by roughly a factor of 1,000 over the exobase.
There is a maximum in the early morning and near the polar regions where temperatures are rising but
the H bulge has not yet dissipated. In fact, the region of high H escape rates occupies an area of tens of
degrees near the poles and tens of degrees near dawn. The fact that these regions of large H escape flux
are so sharp emphasizes the need to understand the horizontal shape of the H bulge. This subject is consid-
ered in this paper.

The flow of light species (H and H2) through the exosphere may be strong, and some authors have consid-
ered this to be the dominant process controlling the distribution of H at the exobase (Donahue & McAfee,
1964). The Zero Net Ballistic Flux (ZNBF) condition assumes that the time constant for ballistic transport is
much shorter than the time constant for advection or diffusion in the thermosphere with the result that
the exobase temperature completely defines the H density. Analytic approximations based on this assump-
tion lead to the well-known nT5/2 = constant relationship between H density and temperature at the exobase
(Hodges & Johnson, 1968).The justification for the ZNBF condition is rather weak, however, as molecular
diffusion times should asymptotically approach exospheric transport times near the exobase. Moreover,
the net flux in the region of the density enhancements cannot be zero; instead, the combination of advective
and diffusive fluxes in the thermosphere must match the imbalance of ballistic fluxes at the exobase. A
rigorous description of light species in a planetary thermosphere must balance all these fluxes. Therefore,
we have developed a model that fully couples the circulation of the atmosphere with ballistic flow in
the exosphere.

2. Modeling of the Lateral Transport
2.1. Description of the Ballistic Code

In this study, we consider hydrogen atoms to have ballistic trajectories above the upper level of the
LMD-GCM. The upper level of the LMD-GCM is the isobar surface P = 10�8 Pa.

This level does not correspond exactly to the exobase (where the Knudsen number is equal to 1), but we still
use “exobase” to name this upper level. The pressure at the exobase can be estimated from the equality
between the scale height and the mean free path leading to Pexo = mg/σ where m is the mean molecular
mass, g the gravitational acceleration, and σ the collisional cross section. For typical value of collisional cross
section between H and O σ = 3 × 10�15 cm2 (Lewkow & Kharchenko, 2014) and a mean molecular mass
m = 2.66 × 10�26 kg, we found Pexo ~ 3 × 10�7 Pa, below the upper level of the GCM-LMD. Because the main
parameters (temperature and hydrogen density) used in this study vary slowly vertically at these altitudes,
using another pressure for the upper level should not change our conclusions.

The ballistic code used in these simulations is a kinetic model, computing the downward ballistic flux at any
location at the upper level from

Φdw θ;φ; tð Þ ¼ ∫
V¼Vesc

V¼0
∫

θw¼0

θv¼�π=2
∫

φv¼2π

φv¼0
V3f V; θv ;φv ; θ;φ; tð Þ cosθv sinθvdVdθvdφv (1)

where V, θv, and φv are the magnitude of the velocity, the angle between the velocity vector and the local
horizontal plane, and the azimutal angle of the velocity vector of the ballistic particles moving downward,
respectively, and θ and φ are the latitude and longitude of the position at the exobase.

In this model, we neglect all collisions above the upper level and therefore use the Liouville’s theorem.

Consequently, the value of the velocity distribution function (VDF) remains constant along a dynamical
trajectory and, for downward directed atoms, is related to the value of the VDF at ejection positions f(V0,
θv, 0, φv,0, θ0, φ0, t0) connected by the orbit (e.g., Vidal-Madjar & Bertaux, 1972):
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f V ; θv ;φv ; θ; φ; tð Þ ¼ f V0; θv;0;φv;0; θ0; φ0; t0
� �

(2)

We assume the upper level to be spherical, which is not correct because the upper level in the GCM is defined
as an isobar surface, which is not spherical due to nonuniform temperatures at the exobase and composition
in the thermosphere and atmosphere below. However, because the scale height of atomic hydrogen
(~500 km) is much larger than the altitude variations of the top of the GCM (few tens of kilometers at most
between dayside and nightside), this approximation should be quite accurate. The neutral winds near the
exobase are also neglected. Horizontal winds can reach a few hundreds of m/s and large-scale vertical winds
only a few m/s (e.g., Gonzalez-Galindo et al., 2009), while the thermal velocity of atomic hydrogen is typically
~1.8 km/s at 200 K. Therefore, the effect of the thermospheric winds should be small for atomic hydrogen.

The photoionization lifetime can be estimated from the photoionization frequency from Huebner et al.
(1992). For current solar conditions, this frequency, rescaled to the Sun-Mars distance, is between 0.3 and
0.8 × 10�7 s�1 and therefore the typical lifetime of an exospheric hydrogen atom is >115 days. The charge
exchange ionization frequency estimated by Chen and Cloutier (2003) is at most 1 order of magnitude larger
(~5 × 10�7 s�1), consistent with the escape rate ratio of H+ produced by charge exchange and photoioniza-
tion computed by Modolo et al. (2005). This ionization frequency leads to a lifetime of ~20 days. This time is
still much larger than the ballistic time of most of the atoms (few hours), and therefore, only a negligible frac-
tion of hydrogen atoms should be lost by ionization. The ionization by photoelectron impact should be small
compared to photoionization and charge exchange (Modolo et al., 2005). The effect of radiation pressure
should be also important only for the ballistic particles with a long traveltime representing only a small frac-
tion of the ballistic hydrogen atoms. Because all collisions are neglected, we do not consider the collisions
between hydrogen atoms and the hot oxygen population formed by O2

+ dissociative recombination (e.g.,
Leblanc et al., 2017). These few collisions could increase the escape rate and therefore reduce the ballistic
downward flux. But the escape rate was shown to be small compared to thermal escape by Krasnopolsky
(2010), and therefore, these collisions are neglected in this study.

Assuming a Maxwellian-Boltzmann distribution for the particles leaving the upper level, the right term of
equation (2) can be computed using the density n(θ0, φ0) and the temperature T(θ0, φ0). The integral is com-
puted using a Gaussian-Legendre method. The comparison of our model with the theory of Hodges and
Johnson (1968) is presented in the appendix. The real distribution at the exobase should differ from a
Maxwellian distribution. Due to the escaping particles, the Maxwellian distribution should be truncated at
velocity larger than the escape velocity (Terada et al., 2016). However, this truncation should not affect the
ballistic distribution with a velocity lower than the escaping velocity but only reduce the escape rate
(Brinkmann, 1970). The Direct Simulation Monte Carlo method used by Terada et al. (2016) shows that the
ballistic hydrogen population is very close to the Maxwellian distribution at the local temperature (see their
Figure 8b).

2.2. Temporal Discretization

Conditions near the exobase vary with time, and it takes some time for ballistic atoms to travel from one point
on the exobase to another. To take into account this noninstantaneous travel, we discretize the downward
flux in time Ft(i), corresponding to atoms leaving the exobase at t and coming back to the exobase between
t + (i � 1)dt and t + idt by

Ft ið Þ ¼ ∫
V¼Vesc

V¼0
∫

θv¼0

θv¼�π=2
∫

φv¼2π

φv¼0
V3f V; θv ;φv ; θ;φ; tð Þ cosθv sinθvΠ i � 1ð Þdt; idtð ÞdVdθvdφv (3)

where П((i � 1)dt, idt) is the box function equal to 1 if the flight time of the ballistic particles τ(V0, θv,0) is
between (i � 1)dt and idt and zero elsewhere. For example, Ft(1) correspond to particles with an exospheric
traveltime τ < dt, that is, particles leaving and coming back to the exobase instantaneously in the simulation.

The exospheric traveltime τ is the time of the motion above the upper level. The trajectory of any ballistic
particle above the exobase is a portion of ellipse (Figure 1) with Martian center as one focal point. The apoc-
enter is in the exosphere and the pericenter below the exobase. The exospheric traveltime can be estimated
from the fictive motion along the full ellipse and is given by τ = P � 2|t � tp|, where P is the period along the
ellipse and |t� tp| is the time between the periapsis and the exobase (Figure 1) given by |t� tp| = |E� esinE|/n
with n = 2π/P (e.g., Capderou, 2005). Therefore, the exospheric traveltime is given by
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τ ¼ P 1� 1
π
E � e sinEj j

� �
(4)

where e is the eccentricity of the orbit of the particle, E the eccentric anom-
aly at the exobase, and P the period of the orbit. E, e, and P depend on V0
and θv,0 only.

The downward flux at a given position and a given time t is therefore the
combination of the flux of particles leaving the exobase at time lower than
t: {Ft�(i � 1)dt}i = 1, … I

Φdw θ;φ; tð Þ ¼
Xi¼I

i¼1

Ft� i�1ð Þdt ið Þ (5)

Here we limit the sum at i = I = 1,000, so i Є [1, …, I]. We assume that all
particles with a traveltime larger than Idt (6.25 hr) reach the exobase at
Idt. We choose Idt large enough in order to have a small contribution of
the last term of the sum Ft�(I � 1)dt(I) to the downward flux. As discussed
above, loss by ionization (photoionization, solar wind electron impact, or
proton charge exchange) is negligible for current solar conditions but
could be possibly taken into account (for example, to study periods of
stronger EUV solar flux) by deriving I from the ionization lifetime and with-
out considering atoms with a traveltime larger than Idt. The effect of radia-
tion pressure (e.g., Beth et al., 2016) is also neglected in this study.

3. Coupling With the GCM
3.1. Short Description of the GCM-LMD

The Global Circulation Model of the Laboratoire de Météorologie Dynamique (GCM-LMD) is a 3-D model of
the Martian atmosphere from the surface to the exobase. It is composed of a 3-D dynamics core solving
the fluid equations over a sphere and a physical core describing all the physical processes computed for each
column. In all the simulations presented below, the horizontal resolution is 5.625° in longitude and 3.75° in
latitude. The dynamical time step δt is 1 sol/960. ~1.5 min, and the physics time step is Δt = 5δt ~7.5 min.
More details on the GCM-LMD can be found in Forget et al. (1999) and Gonzalez-Galindo et al. (2009, 2015).

3.2. Coupling the Ballistic Model to the GCM

In the GCM, when solving the molecular diffusion of each species, an upper boundary is needed for the
vertical velocity. In Chaufray et al. (2015), we used a zero vertical velocity at the model top for most of the
species except H and H2 for which we used the local Jeans velocity or effusion velocity. This assumption is
correct only if the ZNBF condition is fulfilled, which was not the case in Chaufray et al. (2015).

In the simulations presented here, the H vertical velocity at the top is now computed by

wtop ¼ Φup � Φdw

n
(6)

The local upward flux is the sum of the local escape fluxΦup,esc = nweff and upward ballistic fluxΦup,bal and is
given by

Φ
up

¼ Φup;esc þ Φup;bal ¼ nV
4

¼ nU
2

ffiffiffi
π

p (7)

where<V> = (8kTπ/m)1/2 and U = (2kT/m)1/2 depends on the local temperature T. n is the local density, and k
is the Boltzmann’s constant. The downward flux Φdw is computed using the ballistic model presented in
section 2.

Since we assume no loss other than Jeans escape, the hydrogen atoms leaving the exobase with a velocity
lower than the escape velocity should come back to the exobase. To numerically conserve these hydrogen
atoms, the net velocity is rescaled to have an integrated (over the exobase surface) downward flux equal

Figure 1. Geometry of one ballistic trajectory in the exosphere (solid line of
the ellipse); the exobase is represented by the circle, and the dotted line
represents the extrapolation of the elliptic trajectory below the exobase.
Because of collisions below the exobase, this dotted line is not the real tra-
jectory of the atom.
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to the integrated (over the exobase surface) ballistic upward flux, and
therefore, equation (6) is replaced by equation (8).

wtop ¼ KΦup � Φdw

n
þ 1� Kð Þweff (8)

with

K ¼
∫

exobase
Φdwds

∫
exobase

Φup;balds
(9)

where the integration is over the exobase surface.

Using these two equations, it is straightforward to show that numerically,
we have

∫
exobase

nwtopdS ¼ ∫
exobase

nweffdS (10)

And therefore the numerical net loss of hydrogen atoms over the full exo-
base surface (left term of equation (10) is equal to the global Jeans escape
flux (right term of equation (10).

Most of the time (except at the first time steps), K is close to 1, and equa-
tion (8) is close to equation (6).

We have found that a small time step is required to couple molecular diffusion to ballistic flow. Indeed, if the
time step is too large, a numerical instability can be produced: For example, if the derived vertical velocity at a
given position is negative, the hydrogen density at the top will increase, and the upward flux at the next time
step will increase (equation (4). This upward flux can become larger than the downward flux and, in that case,
the vertical velocity at the upper boundary will be positive (equation (3)). A positive vertical velocity will lead
to a decrease of the hydrogen density at the top and the upward flux at the next time step will decrease, lead-
ing possibly to a negative velocity again. If the time step is too large, this oscillation can be unstable. The
temporal scheme of the numerical coupling is displayed in Figure 2.

In these simulations the physical time step of the GCM is Δt = 7.5 min. The time step used to compute the
downward flux is dt = Δt/20. The largest time flight considered for the temporal discretization (Idt) of the
downward flux is 1,000dt = 50Δt (~6.25 hr). The boundary condition used to solve the molecular diffusion

is then derived, and the molecular diffusion is solved using another time
step dt0 depending on the local conditions, lower than dt, and the final
hydrogen density is used to compute the downward flux at the next time
step; the loop is done for the 20 sub-time steps. We simulate five Martian
days for all cases presented in the next section. The results are presented
for one given time step (noon is at longitude 0°) of the last simulated
Martian rotation. Using other Martian days or other universal time will
not change the conclusion of the paper. We simulate the hydrogen density
at the exobase for two seasons: equinox (Ls = 180°) and northern winter
solstice (Ls = 270°), assuming a mean solar activity scenario similar to
Chaufray et al. (2015).

4. Results at Equinox Ls = 180°

The temperature distribution at the exobase obtained for the simulations
at Ls = 180° is displayed in Figure 3. This map is not very different between
the simulations with and without the ballistic transport of hydrogen atoms
in the exosphere as expected.

At this season, the exospheric temperature simulated with the GCM-LMD
presents a dawn/dusk asymmetry with a minimal temperature at the night
morning side (Chaufray et al., 2015). The atomic hydrogen density

Figure 2. Schematic view of the temporal coupling between the molecular
diffusion and the exospheric ballistic transport in the LMD-GCM.

Figure 3. Temperature near the exobase at Ls = 180°. In this figure, noon is at
longitude 0° and midnight at longitude = 180°.
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obtained for the simulations without and with ballistic transport of hydrogen atoms in the exosphere is
displayed in Figure 4. At Ls = 180°, the hydrogen density at the exobase without ballistic transport
presents two large spots at latitudes about ±70° (Figure 4a) as already shown in Chaufray et al. (2015).
These two maxima merge when the ballistic transport is included (Figure 4b). In this last case, the dawn
“bulge” is extended at all latitudes. As shown in Figure 4b, the main effect of the ballistic transport in the
exosphere is to reduce the horizontal density gradient, increasing the density at the dayside and
decreasing the density at the nightside.

When the exospheric ballistic transport is taken into account (Figure 4b), we can see a strong anticorrelation
with the temperature at the exobase (Figure 3). The hydrogen density is maximum in the region of the lowest
temperature as expected from the Hodges and Johnson (1968) theory. This anticorrelation will be further
discussed in section 6.

The Jeans escape flux for these simulations is displayed in Figure 5. When the ballistic transport is not
included, the maps are similar to those published by Chaufray et al. (2015), with some differences due to
the monthly average presented in Chaufray et al. (2015) compared to the instantaneous map shown in this

Figure 4. Atomic hydrogen density at the Martian exobase simulated by the LMD-GCM at Ls = 180° (a) without coupling with the exospheric ballistic transport and
(b) coupled with the exospheric ballistic transport.

Figure 5. Atomic hydrogen Jeans escape flux at the Martian exobase simulated by the LMD-GCM at Ls = 180° (a) without coupling with the exospheric ballistic trans-
port and (b) coupled with the exospheric ballistic transport.
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paper. The escape fluxes in these two simulations are similar and correlated with the temperature. The global
escape rate is ~5 × 1025 s�1, similar to Chaufray et al. (2017) at this season.

The upward and downward fluxes at the exobase, computed from the hydrogen density and temperature
distributions obtained when coupling the LMD-GCM to the ballistic transport model, are displayed in
Figure 6. The global distribution at the exobase of the downward and upward fluxes is similar to the hydro-
gen density. The variation of the upward flux is nT1/2 (equation (7)). The temperature varies by a factor ~3
(Figure 3) and the density at the exobase by a factor ~10 (Figure 4). Therefore, the strong correlation
between the upward flux and the hydrogen density is expected. The similar distribution of the upward flux
and the downward flux indicates that the hydrogen density at the exobase should be close to the
ZNBF equilibrium.

The map of the net flux (Figure 7) is different and closer to the temperature map and the Jeans escape map
(Figure 5) as expected from the ZNBF equilibrium. Indeed, the Jeans escape flux depends exponentially on

the temperature and linearly on the hydrogen density.

Unfortunately, the net flux corresponds to the difference of two large
numbers (equation (6)), and the net flux is about at least 1 order of
magnitude lower than the upward and downward fluxes; therefore,
it is difficult to know if the disagreement between the net flux and
the theoretical Jeans escape flux is physical or a numerical result
strongly model dependent. The fact that the net flux distribution is
close to the Jeans escape flux in our simulation seems to indicate that
the ZNBF is probably a good assumption onMars at first order at equi-
nox. This point will be discussed in more details in section 6. The main
region where the net flux differs from the Jeans flux is at the morning
terminator where the temperature gradients are strongest. The day-
side morning net flux is upward and the dayside net flux, while the
net flux is generally weakly downward at the nightside, with minima
correlated to the temperature minima.

The local time variations of the hydrogen density at different alti-
tudes at the equator are given in Figure 8 for the two simulations.
Noon is at longitude 0° as in the maps presented above. Using
another universal time will not change the conclusion since all the
structures presented here are associated to local time and not at a
specific longitude.

Figure 6. Atomic hydrogen (a) upward flux and (b) downward flux at the Martian exobase simulated by the LMD-GCM, coupled to the ballistic transport model at
Ls = 180°. The color scale is a log10 scale of the flux in atom per cm2/s.

Figure 7. Atomic hydrogen net flux at the Martian exobase simulated by the LMD-
GCM, coupled to the ballistic transport model at Ls = 180°, derived from the
difference between Figures 6a and 6b. The color scale is a log10 scale of the flux in
atom per cm2/s.
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To extend the hydrogen density at higher altitudes above the GCM
upper level, we use another exospheric model, also based on the
Liouville equation in a one way coupling approach. The temperature
and hydrogen density computed with the GCM, for the last simulated
rotation and with noon at longitude = 180° presented before, is inter-
polated to the sphere at 200 km altitude (below the GCM upper level).
Then, we calculate the variation of density above 200 km, using the
algorithm of Vidal-Madjar and Bertaux (1972) as done by Chaufray
et al. (2015). The algorithm of Vidal-Madjar and Bertaux is based on
the same assumptions and the same formalism as the ballistic code,
and therefore, the one-way coupling approach for this extension
should be self-consistent. At altitudes above 200 km and below the
GCM upper level, the hydrogen density computed with this exo-
spheric model does not differ from the GCM-computed densities.

In the upper mesosphere (~80 km), the hydrogen density is not mod-
ified after five simulated days, due to the slow diffusion time in these
regions where molecular diffusion is not important. At 120 km, the
hydrogen density near terminators at local time (LT) = 5 hr and local
time = 19 hr, corresponding to the hydrogen bulge regions, differs
substantially in the two simulations. The perturbation produced by
the ballistic transport can propagate down to lower altitudes near

the homopause. A detailed study of this dynamical effect is deferred for a future study, using the helium spe-
cies, recently included in the LMD-GCM. Near the exobase (260 km), the profiles are consistent with a hydro-
gen bulge extended toward lower latitudes when the ballistic transport is included and with smoother
variations with local time. At high altitudes (10,000 km), the profiles are similar to those published by
Chaufray et al. (2015), where the hydrogen density is larger on the dayside, with small variations with local
time. Both simulations lead to similar variations, because at high altitude, the hydrogen density is less sensi-
tive to local conditions and is determined primarily by the global mean conditions at the exobase.

5. Results at Solstice Ls = 270°

The temperature distribution at the exobase obtained for the simulations at Ls = 270° is displayed in Figure 9.
This map is not very different between the simulations with and without the ballistic transport of hydrogen
atoms in the exosphere.

At this season, the dawn/dusk asymmetry is reduced compared to
equinox, and the maximum temperature is at the afternoon as
observed by MAVEN/NGIMS (Stone et al., 2016). The important
north/south asymmetry is due to the Martian inclination. As for
section 4, this map is a snapshot at one given time and therefore
should differ from average maps presented by Gonzalez-Galindo
et al. (2015) or Chaufray et al. (2015).

The hydrogen density near the exobase obtained for simulations with
and without ballistic coupling is displayed in Figure 10.

The day/night asymmetry, noticed by Chaufray et al. (2015), is
obtained for both simulations, anticorrelated to the temperature
(Figure 9), with a hydrogen bulge at the nightside. A small
dawn/dusk asymmetry is still present but much reduced compared
to equinox. A dusk/dawn asymmetry of the hydrogen corona has
been observed by MAVEN/IUVS at this season (Chaffin et al., 2015).
Since the hydrogen density at the exobase is strongly controlled by
the temperature at the exobase, a larger dawn/dusk hydrogen asym-
metry could result from a larger dawn/dusk asymmetry of the tem-
perature than simulated with the LMD-GCM. But the comparison

Figure 8. Local time variations of the hydrogen density at different altitudes and
for latitude = 0° for the simulation with ballistic coupling (solid lines) and without
ballistic coupling (dashed lines) at Ls = 180°. From top to bottom, the altitudes of
the profiles are at 80 km (black), 120 km (blue), 260 km (red), 1,800 km (orange),
and 10,000 km (green). Each local time is associated to a different longitude (as in
the maps presented below); noon (LT = 12 hr) is at longitude 0°.

Figure 9. Temperature near the exobase at Ls = 270°. In this figure, noon is at
longitude 0° and midnight at longitude = 180°.
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between these maps and the H coronal observations should consider the density at higher altitudes too. A
systematic comparison of our simulations and H coronal observations will be presented in the future. The
horizontal distribution of the hydrogen density at the exobase is similar for both simulations. The main
difference between the simulation with the ballistic transport and the simulation without ballistic transport
is the decrease of the bulge hydrogen density at the nightside and the increase of the hydrogen density at
the dayside when the ballistic transport is included.

The Jeans escape flux for these simulations is displayed in Figure 11.

When the ballistic transport is not included, the maps are similar to those published by Chaufray et al. (2015),
with some differences due to the monthly average presented in Chaufray et al. (2015) compared to the
instantaneous map shown in this paper. Some bulges on the Jeans escape flux associated to hydrogen
density bulges in the nightside for the simulation without ballistic transport are strongly reduced when
the ballistic transport is included. In this last case, similarly to the results obtained at Ls = 180°, the escape
fluxes are similar to the map of the temperature at the exobase (Figure 9). The global escape rate is
~2 × 1026 s�1 similar to Chaufray et al., 2017 at this season. As for Ls = 180°, the maps of the ballistic down-
ward and upward flux are similar and follow the hydrogen density maps (Figure 12).

Figure 10. Atomic hydrogen density at the Martian exobase simulated by the LMD-GCM at Ls = 270° (a) without coupling with the exospheric ballistic transport and
(b) coupled with the exospheric ballistic transport.

Figure 11. Atomic hydrogen Jeans escape flux at the Martian exobase simulated by the LMD-GCM at Ls = 270° (a) without coupling with the exospheric ballistic
transport and (b) coupled with the exospheric ballistic transport.
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The map of the net flux is displayed in Figure 13. The flux is more than 1 order of magnitude lower than the
ballistic fluxes. This horizontal distribution is also different from both upward and downward ballistic fluxes.
The flux is generally larger at the dayside, but with some structures near midnight similar to the structures of
the Jeans flux when the ballistic flux is not included (Figure 11a) or to weak features in the temperature map
(Figure 9), this distribution seems not to be exactly at ZNBF. The region of negative net flux (net downward
flux) is reduced to a small region near dusk and in the polar winter region (north), while the stronger upward
flux is near midnight and at the dayside.

The local time variations of the hydrogen density at different altitudes at the equator are given in Figure 14
for the two simulations.

The simulations lead to the same density below 120 km at Ls = 270°. This is different from Ls = 180° due to an
increase of the altitude of the homopause at this season in the LMD-GCM, resulting from the expansion of the
dusty southern summer hemisphere (Gonzalez-Galindo et al., 2009). The larger amount of hydrogen in the
mesosphere at Ls = 270° compared to Ls = 180° is probably due to a larger source of atomic hydrogen by

water photodissociation below due to an increase of the hygropause
altitude at Ls = 270°. A detailed study about the link between the
atomic hydrogen and water vapor is deferred to a future work. Near
120 km, a small difference between the two simulations can be
observed at the nightside in the region of the bulge. At the exobase,
the hydrogen density is larger at the dayside but lower at the night-
side when the ballistic transport is included. At very high altitudes
(10,000 km), the profiles are similar to those published by Chaufray
et al. (2015), where the hydrogen density is larger on the dayside, with
very small variations with local time.

6. Discussion

For a hydrogen distribution at ZNBF equilibrium, the local density
should be related to the temperature at the local exobase by
K0 = nT5/2 = constant (Hodges & Johnson, 1968). K0 varies by almost
2 orders of magnitude (from 0.27 × 1010 cm�3/K2.5 to
16.9 × 1010 cm�3/K2.5), with an average value and a standard devia-
tion of 3.3 × 1010 cm�3/K2.5 and 1.8 × 1010 cm�3/K2.5 for the simula-
tion at Ls = 180° without ballistic transport. These values confirm
that the density horizontal distribution is far from the ZNBF

Figure 12. Atomic hydrogen (a) upward flux and (b) downward flux at the Martian exobase simulated by the LMD-GCM, coupled to the ballistic transport model at
Ls = 270°. The color scale is a log10 scale of the flux in atom per cm2/s.

Figure 13. Atomic hydrogen net flux at the Martian exobase simulated by the
LMD-GCM, coupled to the ballistic transport model at Ls = 270°, derived from
the difference between Figures 12a and 12b. The color scale is a log10 scale of the
flux in atom per cm2/s.
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equilibrium in this case without ballistic transport. When the ballistic
transport is included, the variability of K0 is strongly reduced; this
product varies by less than 1 order of magnitude (from
1.5 × 1010 cm�3/K2.5 to 5.8 × 1010 cm�3/K2.5), with an average value
and a standard deviation of 3.3 × 1010 cm�3/K2.5 and
1.0 × 1010 cm�3/K2.5. The map of this value is displayed in Figure 15.
The value is maximal near dawn, where the net flux is maximal, and
follows the same variations as the net flux.

At Ls = 270°, the variability of K0 (not shown) is also strongly reduced
when the ballistic transport is included. This product varies from
4.1 × 1010 cm�3/K2.5 to 10.6 × 1010 cm�3/K2.5, with an average value
and a standard deviation of 6.8 × 1010 cm�3/K2.5 and
1.5 × 1010 cm�3/K 2.5. The distribution follows globally the
temperature distribution.

It is difficult to know if the variability is due to numerical uncertainties,
but at first order the ZNBF seems to be a reasonable assumption. This
is important, because such an assumption could be useful to process
and interpret Lyman-α observations of Mars. Numerous derivations of
the hydrogen density and escape from the Lyman-α optically thick
emission are based on forward comparison between spherically sym-

metric models of hydrogen density and observations (e.g., Anderson & Hord, 1971; Bhattacharyya et al., 2015;
Chaffin et al., 2014; Chaufray et al., 2008). Three-dimensional models based on a simple sinusoidal parametri-
zation of the temperature and hydrogen density at the exobase have been used for Venus (e.g., Chaufray
et al., 2012). The use of the ZNBF relation would reduce the number of free parameters, because in this case,
the temperature at the exobase and a constant value for nT2.5 are sufficient to provide the complete distribu-
tion of the hydrogen density at the exobase. Numerical simulations from GCMs (Bougher et al., 2015;
Gonzalez-Galindo et al., 2015) or empirical exospheric temperature maps from MAVEN observations could
be considered in the future, and the problem of Lyman-α inversion will be reduced to one free parameter:
K0 (assumptions on the temperature vertical profile is still needed). This new parametrization would be useful
to better quantify the latitudinal and local time variability of the Martian hydrogen corona observed by Mars
Express (Chaffin et al., 2014; Chaufray et al., 2008), MAVEN (Chaffin et al., 2015), and HST (Bhattacharyya et al.,
2015, 2017). The atmospheric sources of hydrogen are not known with accuracy. In particular, a significant
amount can be produced by water vapor photodissociation at altitudes well above the hygropause, increasing

the hydrogen escape (Chaffin et al., 2017). However, the water vapor
mixing ratio there depends on the supersaturation of the upper atmo-
sphere, which is not well known. It has been observed in only a few
locations by Spectroscopy for the Investigation of the Characteristics
of the Atmosphere of Mars (SPICAM) (Maltagliati et al., 2013). The
microphysical processes controlling this supersaturation are now
included in the LMDGCM (Navarro et al., 2014), but the results depend
on model parameters not well constrained by the observations.
Supersaturated water would increase the global amount of hydrogen
at the exobase (and therefore K0) but not necessarily the horizontal
distribution of the hydrogen density at the exobase, and therefore,
the parametrization presented in this section could be still valid.

The simulations presented in this paper have been done for an arbi-
trary solar activity and are not appropriate for comparisons with UV
observations from Mars Express, MAVEN, or HST. Moreover, the link
between these UV emissions and the hydrogen density is not straight-
forward due to the optical thickness of the Lyman-α emission line
(e.g., Chaufray et al., 2008) and requires a 3-D radiative transfer model
for resonance line. The exospheric ballistic motion of hydrogen atoms

Figure 14. Local time variations of the hydrogen density at different altitudes for
the simulation with ballistic coupling (solid lines) and without ballistic coupling
(dashed lines) at Ls = 270°. From top to bottom, the altitudes of the profiles are at
80 km (black), 120 km (blue), 260 km (red), 1,800 km (orange), and 10,000 km
(green).

Figure 15. Map of nT5/2 near the exobase, for the simulation with the ballistic
transport at Ls = 180° (in 1010 · cm�3 · K2.5).
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should exist anyway, and therefore, the possible disagreement between our simulations and observations
should not question the process described in this paper but other processes in the GCM, which would lead
to discussions beyond the scope of this study.

7. Summary/Conclusion

We couple a ballistic transport model of atomic hydrogen in the exosphere to the Global Circulation Model of
the Laboratoire de Météorologie Dynamique (GCM-LMD) to simulate self-consistently the hydrogen density
at the exobase of Mars. The ballistic transport model is used to compute the downward flux at the exobase
needed to derive the upper boundary condition on the vertical velocity of the molecular diffusion in the
GCM-LMD. The flight time in the exosphere is taken into account in this approach. These simulations are done
at equinox and northern winter. The hydrogen density is much smoother when this ballistic transport is
included compared to our previous simulations without ballistic transport. The hydrogen density is anticor-
related with the temperature at the exobase and can form hydrogen bulge in the regions of low temperature
(at nightside dawn at Ls = 180° and nightside at Ls = 270°). The results show that the hydrogen density is not
too far from the Zero Net Ballistic Flux condition given by the relation nT5/2 = constant. This ZNBF relation
could be useful to build realistic empirical model of planetary hydrogen corona with few free parameters
to interpret numerous observations from Mars Express, HST, and MAVEN. The recent extension of the
Venusian GCM of LMD (Gilli et al., 2017) could be also coupled to a ballistic model in the future to investigate
the hydrogen bulge on Venus observed by Pioneer Venus Orbiter and more recently by SPICAV/Venus
Express. This coupling will be more difficult for Venus, because escape parameter is larger on Venus and
therefore the numerical computation of the downward and upward fluxes will need to be more accurate
to derive the net flux. Because the escape parameter is larger, we should expect the horizontal redistribution
of the hydrogen atoms at the exobase to be less efficient on Venus and therefore the hydrogen bulge stron-
ger on Venus than Mars. Variations of the hydrogen density with local time at the exobase by more than 1
order of magnitude have been deduced on Venus from several observations presented in section 1. On
Mars, such variations have not been quantified yet but the first study of latitudinal variations performed from
HST (Bhattacharyya et al., 2017) seems to indicate low variations at Ls = 330° above 2.5 Martian radius but
larger variations closer to the exobase.

Appendix A: Validation of the Ballistic Code
To validate the code, we compared the net flux obtained for a given distribution of the density and tempera-
ture at the exobase with the solution of the horizontal diffusion equation given in Hodges and Johnson
(1968), without rotation, assuming a global average escape parameter λ = GMm/kT0R = 28.6. Using the
notation of Hodges and Johnson (1968), the steady state net flux is given by

Φ ¼ Φ2 ¼ 1þ 8:4
λ

� �
∇2
s nV thH

2
� �

which can be rewritten

Φ ¼ �n < V > H2 1þ 8:4
λ

� �
1

nT5=2
∇2
s nT5=2
	 


This validation has been done by choosing a simple horizontal distribution similar to Hodges and Johnson
(1968) given by

n ¼ n0 exp C cosθð Þ
T ¼ T0 exp D sinθ cos φ� φ0ð Þ½ �

where θ is the colatitude and φ the longitude, C = 0.01, D = 0.01, n0 = 105 cm�3, and T0 = 200 K; and φ0 = π.

With these distributions at the exobase, and because C ≪ 1 and D ≪ 1, neglecting the second order terms in C
and D, after few calculations, the net flux is given by

Φ ¼ K C cosθ þ 5
2
D sinθ cos φ� φ0ð Þ

� �

with
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K ¼ 2n0T
5=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8k
πm

k 2R2

m2 GMð Þ2
s

1þ 8:4
λ

� �

where k is the Boltzmann constant,m the mass of the species, and R the radius of the exobase (assumed to be
a sphere), with the numerical values used in this test, K = 3.2 × 107 cm�2/s.

The net fluxes given by this relation along the meridian (φ = φ0 = π) and along the equator (θ = π/2) are
compared to the net fluxes from our ballistic code in Figure A1. The integral given by equation (1) has been
computed using the Gauss-Legendre quadrature with 32, 64, and 16 points for the three integrals over, V, θv,
and φv, respectively.

The two equatorial profiles are similar, with differences ~25%. These differences are in the range of the
differences between the model of McAfee (1967) and the different approximations in Hodges and Johnson
(1968) (Figure 4 of Hodges & Johnson, 1968).
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