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ARTICLE

Nitrogen-rich organic soils under warm well-
drained conditions are global nitrous oxide
emission hotspots
Jaan Pärn 1,2,3, Jos T.A. Verhoeven4, Klaus Butterbach-Bahl5, Nancy B. Dise6, Sami Ullah3, Anto Aasa1,

Sergey Egorov1, Mikk Espenberg1, Järvi Järveoja1,7, Jyrki Jauhiainen8, Kuno Kasak1, Leif Klemedtsson9, Ain Kull1,

Fatima Laggoun-Défarge10, Elena D. Lapshina11, Annalea Lohila12, Krista Lõhmus13, Martin Maddison1,

William J. Mitsch14, Christoph Müller15,16, Ülo Niinemets17, Bruce Osborne16, Taavi Pae1, Jüri-Ott Salm18,

Fotis Sgouridis 19, Kristina Sohar1, Kaido Soosaar1, Kathryn Storey20, Alar Teemusk1, Moses M. Tenywa21,

Julien Tournebize22, Jaak Truu1, Gert Veber1, Jorge A. Villa 23, Seint Sann Zaw24 & Ülo Mander1

Nitrous oxide (N2O) is a powerful greenhouse gas and the main driver of stratospheric ozone

depletion. Since soils are the largest source of N2O, predicting soil response to changes in

climate or land use is central to understanding and managing N2O. Here we find that N2O flux

can be predicted by models incorporating soil nitrate concentration (NO3
−), water content and

temperature using a global field survey of N2O emissions and potential driving factors across a

wide range of organic soils. N2O emissions increase with NO3
− and follow a bell-shaped dis-

tribution with water content. Combining the two functions explains 72% of N2O emission from

all organic soils. Above 5mg NO3
−-N kg−1, either draining wet soils or irrigating well-drained

soils increases N2O emission by orders of magnitude. As soil temperature together with NO3
−

explains 69% of N2O emission, tropical wetlands should be a priority for N2O management.
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Organic soils make up more than one-tenth of the world’s
soil nitrogen (N) pool1 and are a significant global source
of the greenhouse gas nitrous oxide (N2O). We do not

fully understand the underlying microbial production and con-
sumption processes and how these interact with environmental
drivers such as the microclimate, physics, and chemistry of the
soil2. N2O can be emitted as a by-produce of both incomplete
nitrification and incomplete denitrification. Under anaerobic
conditions, N is primarily conserved in organic compounds, and
nitrification (the conversion of ammonium (NH4

+) to NO3
−) is

limited to the rooting zone or is absent. The normally low
availability of NO3

− also restricts rates of denitrification (the
conversion of NO3

− to N2) in anaerobic soil; if sufficient NO3
− is

present but oxygen remains restricted, denitrification may go
to completion, producing atmospheric N2

3–6. Reduction of
soil moisture promotes mineralisation of organic N to NH4

+,
which can be nitrified to NO3

−7,8, and produces the partially-
oxidised conditions that are conducive to incomplete deni-
trification, a major source of N2O9. N2O emission has been both
positively and negatively correlated with soil moisture, as water-
filled pore space (WFPS) or volumetric water content (VWC)10–
26 depending upon water status: intermediate levels of around
50–80% WFPS or VWC appear to be optimal for N2O produc-
tion26–36.

Increases in soil temperature normally enhance N2O produc-
tion37 up to about 24 °C, where bacterial denitrification reaches an
optimum38,39, above which N2O efflux drops. However, denitrifier
communities may adapt to higher temperatures, leading to further
increases in N2O emissions40. A review of laboratory and field

studies shows inconsistent relationships between temperature and
N2O emissions13,21,41 from strongly positive to negative, illustrat-
ing that temperature alone cannot explain N2O fluxes but must be
considered in the context of other drivers, especially soil moisture.
At near-zero soil temperatures, the freeze-thaw effect may produce
significant amounts of N2O42–45.

As growing population pressure has increased the extent of
fertilised and drained organic soil, nitrogen-rich organic soils will
become increasingly important global N2O sources2,46. Currently
N2O contributes 12% of CO2-equivalent GHG emissions from
land use in tropics47. Quantifying the influence of both increasing
rates of land drainage and climate change on organic soil N2O
fluxes is thus critically important2. However, emission factors
used to assess N2O fluxes from different land uses and ecosystems
are usually simple proportions of the application rate of fertiliser
(or atmospheric reactive N deposition for non-cultivated soils)
and broad land-use categories; these models also do not take into
account climate-related changes48. Thus we lack an inclusive
model to quantify the potential of organic soils to be a globally
important source of N2O2,49. To address this challenge we
undertook a standardised global survey of in situ N2O fluxes
from organic soils, together with ancillary measurements of key
drivers, to derive a model of N2O emissions that would be
applicable to a wide range of biomes and environmental condi-
tions. We find that N2O emission from organic soils increases
with rising soil NO3

−, follows a bell-shaped distribution with
soil moisture, and increases with rising soil temperature. This
emphasises the importance of warm drained fertile soils to cli-
mate change.
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Results
Principal component analysis. Site-mean N2O fluxes by study
region superimposed on a global organic-soil map are shown in
Fig. 1. The principal component analysis (PCA) differentiated
tropical sites from temperate and boreal ones, and low
agricultural-intensity sites (index 0 and 1) from arable sites
(index 3) (p < 0.05; Fig. 2a, b). Soil NO3

− was positively related to
N2O emission; VWC and water table were strongly negatively
correlated with N2O emissions, and C/N, C, and organic matter
were less strongly negatively correlated with N2O emissions, and
soil temperature was positively related to N2O emissions (Fig. 2c).
Soil-available P was orthogonal to the N2O-flux vectors, indi-
cating no correlation. The difference between N2O emissions
from drained and natural sites was clear in all three major climate
types (Supplementary Table 1).

Global models. Of the 18 parameters assessed (Supplementary
Data 1), soil NO3

− was the strongest predictor of site-mean N2O,
explaining 60% of the variation in log N2O flux (Fig. 3a). The
generalised additive model (GAM) trend was similar to concave
log-log quadratic. Inclusion of site-mean VWC (Fig. 3b) raised
the explanatory power of the multiple-regression GAM to 72% (n
= 58; R2= 0.72; p < 0.001; Eq. (1); Fig. 4a). The regression surface
was similar to a convex paraboloid with an apex at approximately
50% VWC:

Log N2O�Nþ 1ð Þ ¼ 0:035þ 0:39 logNO3�N

þ0:025 logNO3�N
� �2

þ4:8VWC� 5:2VWC2

ð1Þ

In an independent comparison of the model with published
data, relative N2O emissions were represented well. The
relationship between the mean N2O fluxes (relative to the
maximum value in the respective external data set) and VWC
was best described by a bell-shaped GAM regression curve (R2

= 0.78; p < 0.001; Fig. 5) similar to the VWC component of our
global model (Fig. 3b). Both curves peaked at around 50% soil
moisture.

Both our model and the literature support the idea that
fluctuation around the intermediate VWC (~0.5 m3 m−3)
creates variability in the oxygen content within the soil profile.
That, in turn, stimulates mineralisation and nitrification which
contribute to higher NO3

− content895051. Intermediate VWC
also promotes incomplete denitrification, in agreement with
early conceptualisations25,40, previous regional-scale stu-
dies28,33–35 and experiments9,51,52. The maximum N2O emis-
sion at the intermediate VWC means that both wetting from
lower moisture values and drying from higher moisture will
increase N2O emissions. At a VWC of ~0.8 m3 m−3, oxygen
concentration in the pore water is 5–9% of saturation, which is
low enough to trigger N2O production but insufficient for
complete denitrification9,51,52.

There was no significant relationship between N2O flux and
NH4-N among our observations (p= 0.79), suggesting that
denitrification was probably the main source of N2O emissions
rather than nitrification. Only one site (Tasmania drained fen 2)
directly received mineral fertiliser, whereas the nitrate in the other
57 sites originated from livestock and natural sources such as
nitrification, atmospheric deposition, runoff and groundwater.
Thus our global model describes N2O emission due to grazing
and naturally transported nitrate.

We found only a weak relationship between N2O fluxes and
soil temperature (40cm-depth temperature log GAM R2= 0.21,
p < 0.001; Fig. 3c). The soil temperatures normalised to local
annual air-temperature maxima gave even lower correlation
values (e.g. with temperature at 40 cm-depth log GAM R2=
0.09, p= 0.018). This may have been partially due to the short
time span of our measurements per site. However, that is
consistent with the meta-analysis of published data in eleven
papers showing no correlation between long-term N2O fluxes
and soil temperature17,24,31,32,34,53–58. The test for an upper
boundary59 in our temperature data was negative (p > 0.05).
Therefore we accepted the H0 hypothesis that our data are from
a bivariate normal process and so the envelope of the data
points does not represent a boundary. This also suggests that
the high N2O fluxes were measured in soils where temperature
was not the limiting factor. A multiple-regression GAM model
containing soil temperature at 40 cm depth and log NO3
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explained 69% of log N2O fluxes (n= 58; R2= 0.69; p < 0.001;
Eq. (2); Fig. 4b):

Log N2O�Nþ 1ð Þ ¼ �0:15� 0:50 logNO3�N

þ0:10 logNO3�N
� �2

þ0:036 �Cþ 1:9 ´ 10�5�C2

ð2Þ

Within our drained sites (Supplementary Data 1; n= 27) the
temperature relationship was somewhat stronger (R2= 0.27; p <

0.0078; Fig. 3c). This shows that organic soils exposed to warmer
conditions, such as in the tropics, can act as N2O-emission
hotspots where soil moisture is optimal (Fig. 3b) and NO3

− is
above a threshold of 5 mg N kg−1 (Fig. 3a).

Because we sampled each site for only a few days and that we
visited temperate and boreal sites during the growing seasons this
study was not designed to detect the effect of seasonal or
synoptic-scale variation of temperature, soil nitrate, and other
factors within each site. Thus our global models are only
applicable to estimate daily N2O emissions based on instanta-
neous environmental conditions at organic-soil sites. Annual-
average N2O emissions at sites under a seasonal climate may be
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more difficult to draw from our model. Yet the model could be
useful to estimate N2O emissions at sites under a lack of seasonal
variation in environmental conditions such as the humid tropical
climate. Upscaling our three tropical sites with intensive land use
(the Malaysian oil palm plantation, and the Myanmar and
Uganda arable sites; Supplementary Data 1) to a year’s duration
and comparing them with the special default emission values
(EF2) in IPCC Guidelines 2006 for tropical organic soils60 (16 kg
N2O-N ha−1 y−1, range 5–48 kg ha−1 y−1) gave us the following
results. For the Malaysian site, soil temperature was 27–30 °C, the
mean emission rate was 294.3 μg N2O-N m−2 h−1= 25.8 kg
N2O-N ha−1 y−1. For Myanmar, 14–19 °C (upland), the figures
were 125.5 μg N2O-N m−2 h−1= 11.0 kg N2O-N ha−1 y−1. For
Uganda, 17–20 °C (upland), the figures were 507.3 μg N2O-N
m−2 h−1= 44.5 kg ha−1 y−1. Thus the annual fluxes obtained by
this simple upscaling all fell within the IPCC tropical default
range.

Other potential drivers. The logarithm of C:N ratio, a common
scalar explanatory variable used to predict N2O emissions61,
was correlated with N2O emissions (R2= 0.16; p= 0.001;
Supplementary Fig. 1) but was not significant in a model that
contained NO3

−. Agricultural intensity explained 25% of the
variability in N2O fluxes (log GAM R2= 0.25; p < 0.001), but
again was not significant in a model containing NO3

− and
VWC as proximal controllers of N2O emission. The effect of
agriculture on N2O emissions was mainly related to cultivation
(Fig. 2b). We could detect no significant difference between
N2O emissions from agriculturally unused sites and pastures or
hay fields. Thus non-agricultural sources of elevated N (e.g.
from chronically elevated atmospheric N deposition), and lower
soil water content (e.g. reductions in precipitation) would likely
have a similar impact on N2O emissions as agricultural ferti-
lisation and drainage.

Discussion
This is the first time that simple, robust global models of N2O
emissions driven by nitrate, moisture and temperature of organic
soils have been identified. It is notable that the models encompass
temperate, continental, and tropical biomes. Our findings provide
more accurate models of the drivers of N2O emissions from
organic soils across a wide range of biomes and management

regimes than heretofore developed. This highlights the impor-
tance of soil nitrate, moisture, and temperature in organic soils as
significant global contributors to climate change and strato-
spheric ozone depletion. Our global-scale models show that
constantly high soil moisture results in low N2O emissions,
whereas drainage creates fluctuation around the intermediate soil
moisture and thus increases N2O emissions from organic soils.
The temperature effect on N2O emissions emphasises the
importance of considering the warm fertile soils in the global N2O
budget. The implication of this work is that wetland conservation
should be a priority for climate change mitigation, particularly
given the evidence for future increases in the magnitude and
frequency of summer droughts60. The anticipated large N2O
emissions from N-rich drained organic soils can be mitigated
through wetland conservation and restoration, and through
appropriate soil management, such as reduced tillage, nutrient
management and improved crop rotations46. These have been
implemented to some extent in developed countries but need to
be further expanded and extended, as a matter of urgency, to
tropical and sub-tropical regions.

Methods
Study sites. Our global soil- and gas-sampling campaign was conducted during
the vegetation periods between August 2011 and March 2017, following a standard
protocol. We sampled 58 organic-soil sites using criteria for organic soils (>12%
soil carbon content in the upper 0.1 m) adapted from the FAO World Reference
Base for Soils62 in 23 regions throughout the A (rainy tropical), C (temperate), and
D (boreal) climates of the Köppen classification (Fig. 1; Supplementary Data 1).
Both natural and artificially drained sites were identified, based on the proximity of
drainage ditches, water table height, and characteristic vegetation. The hydrology
and trophic status of the natural sites ranged from groundwater-fed swamps and
fens to ombrotrophic peat bogs. We measured the most important environmental
drivers that were possible.

Field and laboratory measurements. Within each region, we established sites to
capture the full range of environmental conditions as described above. The
depth of the topsoil organic horizon ranged from 0.1 to 6 m across the sites.
Land use ranged from natural mire and swamp forest to managed grassland
and arable land. A four-grade agricultural-intensity index was used to quantify
the effect of land conversion: 0—no agricultural land use (natural mire, swamp,
or bog forest), 1—moderate grazing or mowing (once a year or less), 2—
intensive grazing or mowing (more than once a year), and 3—arable land
(directly fertilised or unfertilised). The agricultural intensity index was esti-
mated based on observation and contacts with site managers and local
researchers.

At each site, 1 to 4 stations were established 15–500 m apart to maximise the
environmental variance. Each station was instrumented with 3–5 white opaque
PVC 65 L truncated conical chambers 1.5–5 m apart and a 1-m-deep observation
well (a 50-mm-diametre perforated PP-HT pipe wrapped in geotextile). The total
number of chambers was 444. N2O fluxes were measured using the static chamber
method63 using PVC collars of 0.5 m diameter and 0.1 m depth installed in the soil.
A stabilisation period of 3–12 h was allowed before gas sampling to reduce the
disturbance effect on fluxes from inserting the collars. The chambers were placed
into water-filled rings on top of the collars. Gas was sampled from the chamber
headspace into a 50 mL glass vial every 20 min during a 1-h session. The vials had
been evacuated in the laboratory 2–6 days before the sampling. At least three
sampling sessions per location were conducted over 3 days. The gas samples were
brought to the University of Tartu and analysed for N2O concentration within
2 weeks using two Shimadzu GC-2014 gas chromatographs equipped with ECD,
TCD, and Loftfield-type autosamplers63. N2O fluxes were determined on the basis
of linear regressions obtained from consecutive N2O concentrations in three to five
samples taken when the chamber was closed, resulting in 61 negative and 502
positive N2O fluxes (p < 0.05 for the goodness of fit to linear regression). There
were 982 additional insignificant fluxes (p > 0.05) below the gas-chromatography
measuring accuracy (regression change of N2O concentration, δv, <10 ppb)
reported as zero in the database and included in the analyses.

Water-table height was recorded daily from the observation wells during the gas
sampling at least 8 h after placement. Soil temperature was measured at 10, 20, 30,
and 40 cm depth. Soil samples of 150–200 g were collected from the chambers at
0–10 cm depth after the final gas sampling. Humification was rated on the von Post
scale, 1 to 10 grades from completely undecomposed to completely decomposed
peat64. The soil samples were brought to Estonian University of Life Sciences for
chemical and physical analyses. During transport, the samples were kept below the
ambient soil temperature at which they were collected.
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Fig. 5 Relative N2O fluxes versus volumetric water content (VWC) in 11
published annual time series. The N2O fluxes are scaled to the maximum
value measured at each respective site. The dots and whiskers are average
± s.e.m. within the respective soil-moisture class. The curve is the GAM
regression (k= 3) between average relative N2O fluxes and VWC. The light
blue area marks the 95% confidence limits of the regression line
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In the laboratory, plant-available phosphorus (P) was determined on a
FiaStar5000 flow-injection analyser (KCl extractable). Plant-available potassium
(K) was determined from the same solution by the flame-photometric method, and
plant-available magnesium (Mg) was determined from a 100-mL NH4-acetate
solution with a titanium-yellow reagent on the flow-injection analyser. Available
calcium (Ca) was analysed using the same solution by the flame-photometrical
method. Soil pH was determined on a 1 N KCl solution65. Soil NH4-N and NO3-N
were determined on a 2M KCl extract of soil by flow-injection analysis65. Total
nitrogen and carbon contents of oven-dry samples were determined using a dry-
combustion method on a varioMAX CNS elemental analyser. The organic-matter
content of oven-dry soil (SOM) was determined by loss on ignition at 360 °C. We
determined gravimetric water content (GWC) as the difference between the fresh
and oven-dry weight divided by the oven-dry weight66. Bulk density was
determined as follows67:

BD ¼ Dbm � Dboð Þ= SOM � Dbm þ 1� SOMð Þ � Dboð Þ; ð3Þ

where:
BD is bulk density, g cm−3,
Dbm is the empirically determined bulk density of the mineral fraction

(2.65 g cm−3)66,
Dbo is the empirically determined bulk density of the organic fraction

(0.035–0.23 g cm−3 according to the von Post humification scale68), and
SOM is the organic content of the oven-dry soil, g g−1.
We determined VWC as66:

VWC ¼ GWC � BD; ð4Þ

where:
VWC is volumetric water content, m3 m−3,
GWC is gravimetric water content, Mg Mg−1, and
BD is bulk density, Mg m−3.
For normalising the soil temperature to possible local optima we divided our

soil-temperature measurements with the mean air temperature at the nearest
weather station in the warmest month of the year69 (KNMI Climate Explorer
http://climexp.knmi.nl; Supplementary Data 1).

Statistical analysis. Principal component analysis (PCA), Spearman’s rank cor-
relation and stepwise multiple regression of site-mean efflux vs. the environmental
parameters were used. The tests were run using both untransformed and log-
transformed N2O fluxes. Before the log-transformation, a constant value was added
to all fluxes to account for negative values. Normality of the variables and the
residuals was checked by the Shapiro–Wilk test. Neither the N2O fluxes nor their
logarithms were normally distributed (p < 0.05); this is a commonly reported issue
with N2O. Therefore only a nonparametric test such as Spearman’s rank correla-
tion and generalised additive models (GAM) could be applied. We used the mgcv
package of the R Project to calculate the GAM regressions using minimal
smoothness (k= 3). We reported p-values (significance level p < 0.05) from the
summaries of the GAM regressions produced by the summary.gam package of the
R Project. We only reported GAM regressions when the residuals were normally
distributed. As a presumption for the stepwise multiple regression, the independent
variables were checked for GAM concurvity—we only reported multiple rela-
tionships with a variance inflation factor <10 between the independent variables.
We tested the presence of a boundary in our data59. The test compared the density
of points in the region of the data set’s upper envelope to the expected density of
the upper envelope of a bivariate normally distributed data set of the same size59.

Literature analysis. In order to compare our model with independent external
data, we surveyed literature referenced in the Thomson Reuters Web of Science.
The search terms were: N2O and organic soil and nitrous oxide and organic soil.
We only included publications that reported time series of at least a year’s duration
that reported N2O fluxes and simultaneous soil temperature and soil moisture
observations (either VWC or WFPS). Eleven papers17,24,31,32,34,53–58 qualified
under these criteria. The study sites were fairly evenly distributed throughout major
organic soil regions of the world. Only three of these papers reported soil NO3

−

concentrations17,24,58. We converted the WFPS values to VWC as follows66:

VWC ¼ WFPS � TP; ð5Þ

where:
VWC is volumetric water content, m3 water m−3 fresh soil,
WFPS is water-filled porosity, m3 water m−3 pore space, and
TP is total porosity, m3 pore space m−3 soil.
To standardise the highly different absolute N2O values among data sets we

normalised them by scaling to the maximum value measured at each site70. We
calculated average relative N2O fluxes in 15 soil temperature classes: 0 °C to 2 °C, 2
°C to 4 °C, … and 28 °C to 30 °C, and 10 soil moisture classes: 0% to 10%, 10% to
20%,… and 90% to 100%. Linear and GAM regressions with minimal smoothness
(k= 3) were determined between soil temperature, soil moisture and both the
individual and average relative N2O fluxes.

Data availability. The data reported in this paper are deposited in the PANGAEA
repository https://doi.pangaea.de/10.1594/PANGAEA.885897.
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