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Abstract Synthetic multidecadal spaceborne lidar records are used to examine when a cloud response to
anthropogenic forcing would be detectable from spaceborne lidar observations. The synthetic records are
generated using long-term cloud changes predicted by two Coupled Model Intercomparison Program 5
models seen through the COSP/lidar (CFMIP, Cloud Feedback Model Intercomparison Project, Observation
Simulators Package) and cloud interannual variability observed by the CALIPSO (Cloud Aerosol Lidar and
Infrared Pathfinder Satellite Observations) spaceborne lidar during the past decade. CALIPSO observations do
not show any significant trend yet. Our analysis of the synthetic time series suggests that the tropical cloud
longwave feedback and the Southern Ocean cloud shortwave feedback might be constrained with 70%
confidence with, respectively, a 20-year and 29-year uninterrupted lidar-in-space record. A 27-year record
might be needed to separate the two different model predictions in the tropical subsidence clouds.
Assuming that combining the CALIPSO and Earth-CARE (Earth Clouds, Aerosols and Radiation Explorer)
missions will lead to a spaceborne lidar record of at least 16 years, we examine the impact of gaps and
calibration offsets between successive missions. A 2-year gap between Earth-CARE and the following
spaceborne lidar would have no significant impact on the capability to constrain the cloud feedback if all the
space lidars were perfectly intercalibrated. Any intercalibration shift between successive lidar missions would
delay the capability to constrain the cloud feedback mechanisms, larger shifts leading to longer delays.

Plain Language Summary The atmospheric water cycle has many components (clouds, aerosol,
precipitation, and water vapor), and how they interact with the other climate elements to produce the
precipitation necessary for life on land is complex. How this cycle will evolve over the coming decades in a
warming world is uncertain and must be more fully understood. There are currently unprecedented
opportunities to increase our understanding and capacity to predict cloud changes. Pioneering satellite
missions developed over the last decade have provided for the first time observed detailed profiles of clouds
on a global scale. Such profiles are especially important because they are expected to change faster and with
larger amplitudes in response to human-caused climate modifications than the other characteristics of
clouds. Here we show that multidecade global-scale climate record of cloud profiles obtained by combining
observations collected by successive space lidars (pulsed lasers) could likely be used to identify fingerprints of
human-caused cloud modifications.

1. Introduction

Multimodel analysis suggests that cloud response to anthropogenic forcing will contribute to enhance the
Earth warming. While the global multimodel annual mean longwave (LW) and shortwave (SW) cloud feed-
back are positive based on CFMIP (Cloud Feedback Model Intercomparison Project) simulations (Zelinka
et al., 2012), these predictions are not yet fully verified in the observations and the multimodel spread
remains significant. As a consequence, clouds remain the main source of uncertainty for model-based esti-
mates of climate sensitivity and for future climate prediction (e.g., Boucher et al., 2013; Ceppi et al., 2017;
Colman, 2003; Soden & Held, 2006; Ringer et al., 2006; Webb et al., 2006; Vial et al., 2013). Constraining cloud
feedback is a necessary step for progressing in our confidence in future climate predictions.

As passive visible/infrared satellites have been observing clouds at global scale for a few decades (e.g., Loeb et al.,
2013; Norris & Slingo, 2009; Stubenrauch et al., 2013), they are a priori good candidates to provide observational
constraints on cloud feedback mechanisms at play in the current climate. Nevertheless, cloud observations have
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not been useful for constraining cloud feedbackmechanisms so far, because they are limited to documenting only
a few variables of the system, usually with insufficient accuracy, and at insufficient spatial and time scales.
Moreover, the available records (25 years at most) are likely too short to unravel the natural variability of the cli-
mate system from the response to anthropogenic forcing. Finally, as the stability in time of the measurements
is often inadequate in comparison to the expected amplitude of the signal tracked, the accuracy of the retrievals
is also an issue. Acknowledging these limits, recent studies (Marchand et al., 2010; Marvel et al., 2015; Norris et al.,
2016) explored advanced analysis of satellite observations to detect cloud change and cloud feedback signatures
due to climate warming in current passive sensor satellite records, andWielicki et al. (2013) explored the potential
of long-term almost perfect top of the atmosphere (TOA) spectral radiance measurements.

As the vertical distribution of clouds is more sensitive to climate forced changes than vertical integrated vari-
ables (Chepfer et al., 2014), long-term observations from spaceborne active sensors (lidar/radar) might be
indispensable tools to constrain cloud feedback. Cloud observations from active sensors are likely more accu-
rate and likely more stable in time than those from passive remote sensing satellites (Winker et al., 2017), and
active sensors provide direct measurements of the detailed vertical distribution of clouds and precipitations,
key variables for climate. But today, the active sensor records are limited to the 12 years observed by CALIPSO
lidar (Winker et al., 2010) and CloudSat radar (Stephens et al., 2002). This does not allow yet to constrain cloud
feedback mechanisms. The four-year Earth-CARE lidar/radar satellite mission (Illingworth et al., 2015) will be
launched in 2020 to complement the existing record, but Earth-CARE instruments have significantly different
characteristics compared to CALIPSO/Cloudsat (Reverdy et al., 2015), and the Earth-CARE overpass local time
is 30 min later than CALIPSO. The purpose of this paper is to explore the potential of a multidecades active
satellite sensors record—here a lidar—to constrain cloud feedback mechanisms and to constrain cloud feed-
back spread predicted by climate models.

Using climate model simulations and physical understanding of the physics of the climate system, Klein and
Hall (2015) identified cloud feedback mechanisms that are playing in both the current climate and a warmer
climate and that are likely also driving the cloud response to climate warming. For example, they highlighted
the sensitivity of the extratropical low-level cloud optical depth to temperature and the sensitivity of the sub-
tropical marine low-level cloud cover to sea surface temperature (SST). Learning from this study, we exam-
ined simulated current climate atmospheres and simulated warmer climate atmospheres through a lidar
lens (thanks to a lidar simulator). We defined three different cloud diagnostics observable with a space lidar
that should contain the signature of cloud feedback mechanisms in three regions: the “low cloud volume” in
subsidence tropical region, the “opaque cloud altitude” in deep convective tropical region, and the opaque
“cloud volume” in the Southern Ocean. We built synthetic, hundred-years lidar record of these cloud diagnos-
tics, their long-term trend being forced by climate model simulations, and their intradecadal variability being
forced by CALIPSO observations (Diagram 1). Using this hundred-year record, we explored the capability of a
long-term spaceborne lidar time series to constrain the tropical deep convective LW feedback, the SW sub-
sidence tropical feedback, and the extratropical cloud SW feedback. In particular, we examine how long
the lidar record would need to be (1) for the forced cloud change to be detectable, that is for the forced cloud
change to get out of the natural climate variability; (2) to constrain the sign of the feedback in each region;
and (3) to constrain the magnitude of the feedback in each region, assuming that the climate models were
correct. Then, adapting a method proposed by Loeb, Wielicki, Doelling, et al. (2009), we perturb the hundred
years record, assuming calibration errors or gaps between successive active sensor space missions within the
record, in order to estimate their impacts on the capability to constrain cloud feedback.

Section 2 presents the observations and modeling tools. Section 3 presents the motivation for the selection
of feedback, regions, and cloud diagnostics. Section 4 describes the method used to estimate when a forced
cloud change would be detectable. Section 5 shows the results in the three regions (tropical ascent, tropical
descent, and Southern Ocean) and examines the impact of mission gaps and intercalibration shifts between
successive lidar missions.

2. Tools
2.1. Observations

To describe the cloud radiation at the TOA, we used Clouds and the Earth’s Radiant Energy System
(CERES)-Energy Balanced and Filled Edition 2.8 (Loeb, Wielicki, Doelling, et al., 2009; Loeb et al., 2012)
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upward TOA SW and TOA LW fluxes as a well as the cloud radiative effect (CRE) in the SW and LW derived
from CERES observations during the CALIPSO time period.

To characterize the cloud amount and the cloud vertical distribution, we used observations collected by
spaceborne lidar that do not face the same calibration challenges as passive visible/infrared instruments
do. Lidar data are calibrated by comparisons between the profile of observed stratospheric molecular back-
scatter with themodeled values derived from radiosonde or numerical weather prediction model forecasts of
temperature and pressure (Chepfer et al., 2010). This can be done more accurately than passive sensor cali-
bration, which involves using onboard calibration sources that can degrade with time. Our analysis uses nine
years of CALIPSO-General Circulation Model (GCM) Oriented Cloud Climate Product (CALIPSO-GOCCP, fully
described in Chepfer et al., 2010, 2013) collected during the last decade.

1. Single profiles. We use the profile of scattering ratio (SR), defined as the ratio of the Attenuated Backscatter
Lidar profile (ATB) measured by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) to the
Attenuated molecular Backscatter Lidar profile (ATBmol) that would be observed if the atmosphere con-
sisted of only molecules—no aerosols and no clouds. Each vertical profile is made of 480-m-thick layers
from the surface to the tropopause and documents an atmospheric column of 330 m (along the satellite
track) by 75 m (cross track).

2. Gridded height-intensity histograms. The height intensity histograms are fully described in Chepfer et al.
(2010). They inherit from the CloudSat radar Cloud Frequency Altitude Diagnostic (Marchand et al.,
2010) and have been widely used for evaluating the cloud description in climate models (e.g., Bodas-
Salcedo et al., 2011; Chakroun et al., 2016; Nam & Quaas, 2012).

Height-intensity histograms are built for each 2° × 2° grid box by accumulating all the SR profiles within that
grid box during amonth. The histograms of the various grid boxes included in a given region can be summed
up. The histograms of different months can also be summed up. As an example, Figure 1a shows the height-
intensity histogram for Tropical convective regions over the last decade: it is the sum of the monthly height-
intensity histograms from the 2 × 2° grid boxes located between latitudes ±30° where and when the monthly
averaged vertical wind speeds at 500 hPa is ascending (w500 < 0).

The height-intensity histogram lets one visually identify the cloud types. Intensity values (x axis in Figure 1a)
close to 1 correspond to clear-sky layers, and layers with small values of intensities (1.2< SR< 5) correspond
typically to aerosol layers. Figure 1a shows many high-altitude echoes (10–17 km) of intermediate intensity
(5 < SR < 30), typical of cirrus of moderate optical depth (3 to 5). At lower altitude, below 2 km, some low-
altitude large-intensity echoes (SR ~ 80 below 2 km) are typical of boundary layer cumulus. Below 10 km,
Figure 1a shows numerous extremely weak intensities (SR < 0.01) in the leftmost column corresponding
to opaque clouds with optical depth larger than 5; these clouds fully attenuated the laser.

Diagram 1. Observation and model data processing chain. Lidar observation processing is in blue and illustrated in
Figure 1. Processing of model output is in green. Cloud feedback constraints are in orange.
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We used height-intensity histograms to build vertical profiles of opaque cloud fraction (CF; Figure 1b) and
vertical profiles of optically thin CF (Figure 1c) as in Chepfer et al. (2014). The thin CF profile is the number
of occurrence in thin cloud bins (5 < SR < 80) divided by the total number of occurrence (all SR bins) at a
given level. The opaque CF profile is the number of occurrence in opaque cloud bins (SR < 0.01) divided
by the total number of occurrence (all SR bins) at a given level. In Figure 1c, the thin CF reaches a max-
imum of 17.5% in the upper troposphere and the opaque CF a maximum of 19% in the lower

Figure 1. Construction of the cloud diagnostics in tropical deep convection region. (a) Height-SR intensity histogram for
tropical deep convection region. (b) Opaque cloud fraction profile (blue line) opaque cloud volume (pink shade), and
opaque cloud fraction at 6 km of altitude (black dashed lines) built from (a). (c) Thin cloud profile (blue line) and low cloud
volume (blue shade) built from (a). Figure 1a sums up gridded monthly histograms from CALIPSO-GOCCP collected
between 30°N and 30°S during the period 2008–2014 over grid boxes where monthly vertical air speed is ascending at
500 hPa based on ERA-Interim reanalysis. CALIPSO observations collected before the laser tilt (2006–2007) are not used.
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troposphere. Values of thin/opaque CF are always much smaller than values of cloud cover: a grid box
containing 10 single profiles will have a cloud cover of 100% if each of the 10 single profiles contains
at least one cloudy layer (480 m thick), while this same grid box will have a CF profile of 10% if each
of the 10 single profiles contains a single cloudy layer (480 m thick) at a different altitude of the other
single profiles.

From these optically thin and opaque CF profiles (Figures 1b and 1c) we build three cloud diagnostics:

The opaque cloud altitude (in kilometer) is the altitude at which the opaque CF in a given profile equals the
opaque CF at 6 km in the current climate (black dotted horizontal line in Figure 1b). We choose 6 km
because it is above the boundary layer and it is below 8 km where the CALIPSO lidar signal-to-noise ratio
changes due to onboard satellite data averaging. A change in the opaque cloud altitude is due to a change
in the altitude where the cloud emissivity is close to 1 in the thermal infrared (Vaillant de Guélis, Chepfer,
Noel, Guzman, Dubuisson, et al., 2017). The opaque cloud altitude is strongly correlated to the TOA LW
CRE (Guzman et al., 2017; Vaillant de Guélis, Chepfer, Noel, Guzman, Dubuisson, et al., 2017; Vaillant de
Guélis, Chepfer, Noel, Guzman, Winker, et al., 2017). We use this diagnostic to study the LW feedback in
the deep convective clouds in section 3.1.

The low cloud volume (in %) is the sum of the vertically integrated opaque (Figure 1b) and thin (Figure 1c)
CF profiles between the sea level and 4 km. The low cloud volume is typically 11% in the tropical subsidence
regions (Table S1). A change in the low cloud volume is due to a change in the boundary layer cloud horizon-
tal extent (like a cloud cover change) and/or a change in the boundary layer cloud vertical extent. A change in
the vertical extent can be associated to a change in optical thickness and a change in cloud optical depth
when the cloud shrinks or grows up. Hence, the low cloud volume influences the outgoing SW flux at the
TOA in the subsidence tropics. We use the low cloud volume to study the Cloud SW feedback in the tropical
subsidence regions in section 3.2.

- The opaque cloud volume (in %) is the vertically integrated opaque CF profile between the sea level and
9 km (filled pink area in Figure 1b). The opaque cloud volume is typically 10% (Figure 1b) in the tropical con-
vection region and 3% in the Southern Ocean (Table S1). It is less in the Southern Ocean than in the tro-
pics, since Opaque clouds are mostly in the lower troposphere in the Southern Ocean, unlike in the
tropics where they reach 9 km of altitude. In the Southern Ocean the opaque cloud volume is 3% while
the cloud cover is larger than 70%. This is due to two reasons: (1) most of the free troposphere does not
contain opaque clouds (they are mostly in the lower troposphere) and (2) the CF profiles are always smal-
ler than the cover. A change in theopaquecloudvolume isdue toachange in thecloudhorizontal extent (like
a cloudcover change) and/or a change in thevertical extentpossibly associated to a change inoptical thickness
(like a cloud optical depth change). As a consequence, the opaque cloud volume influences the TOA outgoing
SWflux (Guzmanet al., 2017).Weuse theopaque cloudvolume to study the cloudSW feedback in the Southern
Ocean in section 3.3.

2.2. Climate Model Simulations and Lidar Simulator

We built the same three cloud diagnostics—opaque cloud altitude, opaque cloud volume, and low cloud
volume—as in the observations but using climate model simulations.

We considered global atmospheric properties generated by the Hadley Centre Global Environmental Model
version 2-A (HadGEM2-A; Martin et al., 2011) and the Canadian Atmospheric Global Climate Model version 4
(CanAM4; von Salzen et al., 2013) GCMs. During the Coupled Model Intercomparison Program 5 (CMIP5;
Taylor et al., 2012) and CFMIP-2 (Bony et al., 2009) projects, HadGEM2-A and CanAM4 outputs were processed
through the CALIOP lidar simulator (Chiriaco et al., 2006; Chepfer et al., 2007, 2008) included in the CFMIP
Observations Simulator Package (COSP, Bodas-Salcedo et al., 2011). The created synthetic lidar observations
simulate what the CALIOP spaceborne lidar would observe if it was overflying the atmosphere predicted by
HadGEM2-A and CanAM4. Those synthetic observations have been compared many times against actual
ones to evaluate the description of clouds in climate models (e.g., Bodas-Salcedo et al., 2014; Cesana &
Chepfer, 2012, 2013; Kay et al., 2016; Klein et al., 2013; Nam & Quaas, 2012). In the current paper we do not
focus on the reliability of model cloud representation, but instead on how the models predict clouds will
change in a future climate (Chepfer et al., 2014), and how these changes would appear if sampled by multi-
decades lidar observations.
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Here we used synthetic monthly height-intensity histograms generated from HadGEM2-A and CanAM4 out-
puts in 2008 conditions (the codenamed “AMIP” scenario, Atmospheric Model Intercomparison Program) and
in a scenario where the global mean surface temperature increases by +4 K in average (the AMIP+4K sce-
nario). Only the AMIP and AMIP+4K scenarios feature the height-intensity histograms from COSP/lidar out-
puts needed for the current study; more complete runs featuring a fully couple atmosphere-ocean do not.
In the rest of the study we use only these two models for which the height-intensity histogram outputs
are available in AMIP and AMIP+4K. We used these simulated histograms to build the three simulated cloud
diagnostics—opaque cloud altitude, opaque cloud volume, and low cloud volume—following the same
steps as for the observations in section 2.1.

3. Selection of Feedback, Regions, and Cloud Diagnostics
3.1. Positive LW Feedback in the Deep Convective Clouds

Our current understanding of the cloud feedback problem ties LW feedback to deep convective clouds (e.g.,
Soden & Vecchi, 2011). While the LW cloud feedback is positive in global mean average among CMIP models
(+0.21 W · m�2 · K�1), the magnitude of the predicted LW feedback varies significantly between models
(�0.13 to 0.69 W · m�2 · K�1). At global scale, HadGEM2-A (0.20 W · m�2 · K�1) is close to the CMIP multimodel
mean value (0.21 W · m�2 · K�1), whereas CanAM4 (0.62 W · m�2 · K�1) is one of the models that predict the
largest LW feedback.

Over the tropical deep convective region, CanAM4 remains larger (0.57 W · m�2 · K�1) than the multimodel
mean over the same area (0.39 W · m�2 · K�1; Zelinka et al., 2012). Table S2 sums up the CREs for both models
and scenarios.
3.1.1. Choice of the Observable Cloud Diagnostic: Opaque Cloud Altitude
The LW cloud feedback is tied dominantly to increase in cloud altitude. Increases in the height of tropical high
clouds as the climate warms have been noticed in climate simulations for decades, going back at least as far
as papers by Hansen et al. (1984) and Wetherald and Manabe (1988), and appearing in cloud-resolving mod-
els (Kuang & Hartmann, 2007) and in GCMs. Hartmann and Larson (2002) explained this tendency as a con-
sequence of the Fixed-Anvil Temperature (FAT) hypothesis. Zelinka and Hartmann (2010) ties the FAT and
the Proportionately Higher Anvil Temperature (PHAT) hypotheses to LW CRE and LW cloud feedback.
Because increases in cloud top height under climate warming are expected to exceed natural variability,
cloud vertical distribution is a good candidate for a direct observable cloud response to anthropogenic for-
cing (Chepfer et al., 2014). For this reason we choose the opaque cloud altitude diagnostic to track the cloud
change in the ascending tropical regions, that is defined as the region where the air is ascending at 500 hPa
(w500 < 0) between ±30° in latitude.

The restriction to negative w500 conditions in models and observations makes the forthcoming
observation/model comparison less sensitive to differences in atmospheric large-scale circulations between
model and observation (e.g., Bony et al., 2004): the model cloud diagnostics are used where the GCM w500
are negative, while the observed cloud diagnostics are used where reanalyses w500 are negative. We built
observed time series of the cloud diagnostic as follow. We created decadal monthly height-intensity histo-
grams (Figure 1b) by summing all the monthly height-histogram intensity contained in grid boxes where
w500 < 0 in the tropics (±30° latitude). We used ERA-Interim reanalyses (Dee et al., 2011) to derive appropri-
ate maps of vertical wind speeds. We summed up all January height-intensity histograms from the last dec-
ade, and from the single histogram remaining (which spans the entire record) retrieved the value of opaque
CF at 6 km. We then retrieved for each month at which altitude the same value of opaque CF is reached. The
obtained values create the diagnostic associated with opaque clouds in deep convection.

Figure 2a shows the time evolution of the anomaly in opaque cloud altitude over ascent tropics as observed
by CALIPSO during the last decade: it remained stable and does not exhibit any significant trend.
3.1.2. LW CRE Increases With the Opaque Cloud Altitude in the Observations and in the Models
From Zelinka and Hartmann (2010, ZH2010 hereafter), LW CRE increases in a warmer climate, not because of
the increase in the altitude of anvil clouds but because of an increase in high CF (see section 5.1 of ZH2010).
The increase in anvil cloud altitude with a warming climate is, however, important for LW cloud feedback as
explained in section 5.2 of ZH2010. An increase in the opaque cloud altitude diagnostic (section 2) can be due
to either an increase in altitude of anvil clouds or an increase in the high CF profile. Discrimination between
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the two effects might be possible in the actual lidar observations, but not in the COSP/lidar outputs that are
currently available.

First, we examine if the opaque cloud altitude drives the CRE LW. The observations (Figure 2a) show that opa-
que cloud altitude anomaly is correlated with the CRE LW anomaly, except before 2008 when the CALIPSO
laser pointed 0.3° off-nadir and was frequently blinded by specular reflections from preferentially oriented
ice crystals (e.g., Noel & Chepfer, 2010). Values computed in Table S1 only use data collected after 2008, when
CALIPSO was pointed 3° off nadir. Comparing the variability of the opaque cloud altitude with the CRE LW in
current climate (Table S1), we found that the CRE LW robustly increases with the opaque cloud altitude in

a.

b.

c.

Figure 2. Observed time series of the cloud diagnostic anomaly in blue (CALIPSO) and the CRE anomaly green (CERES) over
the last decade. (a) Ascent tropics. (b) Subsidence tropics. (c) Southern Ocean. The thin lines are the monthly anomalies
(e.g., for (a) LWCREJanuary_2010-<LWCRE>all_Januarys_2008_to_2015). The thick lines are the anomalies of the 12-month
moving averaged (e.g., for (a)<LWCRE>12_succesive_ months-<LWCRE>all_months_2008_to_2015). The red vertical line show
the date at which the pointing of the CALIPSO-laser changed from 0.3° to 3° off nadir. The 12-month moving averaged
(thick green and blue lines) are influenced by the laser pointing change until June 2008, and the monthly anomalies (thin
green and blue lines) until January 2008. Only data collected 3° off-nadir (after December 2007) are used to compute the
values given in Table S1 and in the following figures.
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both observations and models as expected, but the amplitude of the change differs: +3.5 W/m2 for a +1 km
elevation in the observations compared to +6.05 and +1.96 W/m2, respectively, in the two climate models.
Independent single-column direct radiative transfer computation indicates that the CRE LW increases of
11% for an elevation of +1 km for a typical optical thick clouds initially around 240 K, which is consistent with
the observations (8.3%) and the HadGEM2-A rate (+14%). The comparison between the observed increase
and the model increase uses % instead of W/m2 because the model absolute values are biased compared
to the observations, as shown in Table S1 and in previous literature (Figure S03 in Chepfer et al., 2014) related
to the evaluation of the model mean state. The correlation is smaller in the observations (0.7) than in the
models (0.93) because the variation of the actual opaque cloud cover is larger than the simulated one. The
significant correlations between the increase of the CRE LW and the opaque cloud elevation found within
the observations, the numerical climate models, and the independent direct radiative transfer computation
confirm that the opaque cloud altitude is a robust observable diagnostic that influences the CRE LW in deep
convective tropical clouds.
3.1.3. The Opaque Cloud Altitude Increases With the SST in the Observations and in the Models
Here we examine how the opaque cloud altitude changes with SST in the current climate in the observa-
tions and in the models. In the observations (Figure 2a), the opaque cloud altitude increases over warm
SST during an El Niño event like in 2010 and 2015 and decreases over low SST during a La Niña event like
in 2008, 2011, and 2012, consistently with previous work (Su & Jiang, 2013). Consistently with the obser-
vations, the HadGEM2-A opaque cloud altitude increases with SST but the model (+20%/K; Table S1) is
much more sensitive to the SST than observations (+4%/K). In the second model, CanAM4, the opaque
cloud altitude does not vary with the SST in current climate, possibly because the SST range of variation
is too small.

Finally, we examined the predicted change in the opaque cloud altitude in a warmer forced climate
compared to current climate (Table S1). We consider the height-intensity histograms produced by the
COSP lidar simulator applied on the atmospheric conditions simulated by HadGEM2-A and CanAM4
in the current climate (AMIP scenario; section 2). We sum these gridded histograms over the tropics
(30°N–30°S) in ascent conditions (monthly mean w500 < 0) as predicted by the GCM and derive the
opaque CF at 6 km (as in Figure 1c, but from model + COSP outputs). We then follow the same proce-
dure considering atmospheric conditions predicted by the GCMs in the warmer scenario (AMIP+4K).
From the height-intensity histogram that eventually remains, we derive the opaque CF profile and find
the altitude of clouds that create an opaque fraction equal to the one found at 6 km in current climate
conditions. Considering the predicted atmosphere from the HadGEM2-A model in the tropical ascent
region, this altitude is 7.44 km in AMIP+4K conditions, a +1.44 km altitude change compared to current
climate (Table S1).

Both models consistently predict an elevation of the opaque cloud altitude for a +1 K increase of the glo-
bal mean SST. Nevertheless, the ranges of these elevations differ from one model to another: +6% and
+10%, respectively, which is symptomatic of the intermodel spread of the LW cloud feedback described
in Zelinka et al. (2012). Moreover, comparing HadGEM2-A changes in current climate conditions (+20% for
+1K SST) with HadGEM2-A changes in a warmer climate (+6% for +1 K SST, AMIP+4K) suggests that the
LW feedback in current climate cannot be used as a direct qualitative proxy of the forced change as they
vary by a factor of more than 3.

3.2. Cloud SW Feedback in the Tropical Subsidence Regions

In the tropical subsidence region, multimodel simulations suggest that the response of clouds to green-
house warming is uncertain: even the sign of the low-level tropical cloud feedback differs from one model
to another. In this region, model simulations indicate that the cloud feedback is dominated by the SW term,
whereas the LW term is small (Zelinka et al., 2012). In global mean, the sign and the magnitude of the cloud
SW feedback vary a lot among models, typically from �0.2 to +1 W · m�2 · K�1, whereas the two models
used in the current study share small values (0.09 and 0.41 W · m�2 · K�1; Table S2). For both models, the
SW feedback in the subsidence tropical regions (0.33 and 0.42 W · m�2 · K�1) is larger than the SW global
means (0.09 and 0.41 W · m�2 · K�1). This underlines the important contribution of this region to the total
SW cloud feedback term.
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Recent model-based studies confirm the expectation for a positive cloud SW feedback mechanism (Qu et al.,
2014, 2015; Klein & Hall, 2015; Bretherton, 2015) in the subsidence tropical clouds: the cloud cover is expected
to decrease as climate warms, while the cloud optical depth change and altitude change are expected to
have negligible impact.
3.2.1. Choice of the Observable Cloud Diagnostic: The Low Cloud Volume
The subsidence tropical regions are dominated by two types of clouds, both confined in the boundary
layer: (i) a large belt of shallow cumulus sparse clouds, which contain a significant amount of optically
thin clouds (Konsta et al., 2012; Leahy et al., 2012), and (ii) optically thicker stratocumulus clouds located
along the east coast of the oceans (e.g., Guzman et al., 2017) with frequent cumulus underneath the stra-
tocumulus. These two populations are not independent, as the cloud optical depth varies from thin (typi-
cally τ < 5) to opaque (typically τ > 5).

Former studies (e.g., Klein & Hall, 2015; Qu et al., 2014) suggested that low-level SW cloud feedback could
be decomposed by category of Estimated Inversion Strength (EIS, Bretherton, 2015) that characterizes the
coupling between the boundary layer and the free troposphere, because the response of cloud to a SST
change is different from one EIS category to another. Comparing a map of EIS (Bretherton, 2015; Leahy
et al., 2012) with maps of tropical subsidence low-level opaque clouds and thin clouds (not shown) indi-
cates that thin clouds and opaque clouds are associated to different categories of EIS. We find no correla-
tion (i) between the observed anomaly of low cloud volume thin and the observed anomaly of SW CRE or
(ii) between the observed anomaly of low cloud volume opaque and the observed anomaly of SW CRE.
This suggests that the variation of the CRE SW is not significantly dominated by the variation of one of
these two populations.

Finally, we also found (not shown) that the interannual evolution of the anomaly in low cloud volume
thin is anticorrelated with the interannual evolution of the anomaly in low cloud volume opaque. This
highlights the constant transitions between those two types of clouds at an interannual time scale, and
inclined us to consider all low clouds together instead of separating thin and opaque clouds in this
region. We unsurprisingly found some correlation (0.71; Table S1) between low cloud volume (thin and
opaque clouds) and the CRE SW, as the subsidence tropical SW TOA CRE is influenced by changes in
the low cloud volume.
3.2.2. The SW CRE is Driven by the Low Cloud Volume in the Observations and Models
Figure 2b shows time series of the observed low cloud volume and the observed SW CRE in anomalies.
The low cloud volume influences the SW CRE: when the low cloud volume increases, the boundary
layer contains more condensed water and the SW CRE cooling effect increases. During the last 10 years,
neither the observed low cloud volume nor the observed SW CRE exhibit significant trends. In the cur-
rent climate, the model SW CRE varies with the modeled low cloud volume (Table S1), consistently with
observations: typically 16% change in SW CRE (+6.1 W/m2) for a 1% absolute change in the low cloud
volume, confirming that the low cloud volume influences the CRE SW consistently in observations
and models.
3.2.3. Sensitivity of the Low Cloud Volume to the SST
In the observations over the last decade, the low cloud volume decreases when the SST increases (Table S1).
In the current climate simulations, the sensitivity of the cloud volume to an SST increase depends on the
model. In HadGEM2, the sign of the sensitivity with respect to SST (�2.23 absolute % change per K) is consis-
tent with observations in present-day climate (�0.42% per K), and also as the climate warms (�0.35% per K):
the cloud volume in the boundary layer subsidence in the tropics decreases, consistently with mechanisms
described in the recent literature (e.g., Klein & Hall, 2015). On the other hand, for the second model, the cor-
relation between the low cloud volume and the SST is insignificant in the current climate, and then as the
global climate warms (Table S1; warmer climate), CanAM4 model predicts a small increase of the low cloud
volume associated to a decrease of SW CRE. This suggests that the clouds in this model do not respond to
SST increase following the same mechanism as in the previous model.

The different behaviors of these two models underline (1) the uncertainty on the sensitivity of the boundary
clouds to the SST in this region in the modeled current climate and (2) the likely related uncertainty on the
modeled cloud feedback estimates from different climate models. Monitoring changes in low cloud volume
may provide useful constraining information by pointing out which model, and which cloud feedback
mechanism, are closer to reality.
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3.3. Cloud SW Feedback in the Southern Ocean

In a warming climate, while the global mean cloud-climate feedback in response to increase greenhouse
gases is likely positive (Boucher et al., 2013), most climate models feature negative cloud feedback in the
Southern Ocean (Zelinka et al., 2012). These negative cloud feedback are dominated by the SW term, and
they are a consequence of optical depth increases, with a contribution from clouds changing in phase from
ice to liquid (Kay et al., 2014; Tsushima et al., 2006) and a contribution from poleward jet shifts (Bodas-Salcedo
et al., 2014; Ceppi & Hartmann, 2015; Grise & Polvani, 2014; Kay et al., 2014). Gordon and Klein (2014) and Klein
and Hall (2015) identified the sensitivity of the low-level cloud optical depth to the SST in the extratropics as
the most promising emergent constraint on cloud feedback.

The Southern Ocean (35°S–65°S) is the region with the largest SW negative feedback. The twomodels used in
the current study produce negative SW feedback (�0.6 W · m�2 · K�1; Table S1) representative of the multi-
model mean in the region.
3.3.1. Choice of the Observable Cloud Diagnostic: The Opaque Cloud Volume
The Southern Ocean is overcast almost all the time. The storm track clouds found there are optically thick. In
such conditions the lidar often cannot probe the atmosphere entirely from the TOA down to the surface:
usually it reaches the top of the boundary layer, 1 to 2 km above sea level (Guzman et al., 2017). Most of
the liquid clouds and part of the ice clouds contained in this region are opaque, which the lidar laser light
cannot penetrate. Due to the ubiquity of opaque clouds in that region, and the fact that they are responsible
for a large SW CRE, we retain the opaque cloud volume diagnostic in the Southern Ocean.
3.3.2. Link Between the SW CRE and the Opaque Cloud Volume
Figure 2c shows the observed evolution of SW CRE anomalies and opaque cloud volume during the last dec-
ade over the Southern Ocean. The SW CRE remains stable and large: 66.5 ± 0.5 W/m2. Such small variations
make it hard to evaluate its correlation with any other variable. We find none with the opaque cloud volume,
either in observations from the last decade or in climate model simulations. Nevertheless, Guzman et al.
(2017) showed that at global scale and in zonal mean, the SW CRE is correlated to the opaque clouds
observed by CALIPSO.

When the climate is significantly warmed up (AMIP+4K compared to AMIP), both models predict the opaque
cloud volume increases (+0.7% absolute opaque cloud volume/K) together with the SW CRE
(�0.6 W · m�2 · K�1) producing a negative SW feedback. In the model world, the opaque cloud volume
and the SW CRE are correlated. This cannot be verified in the real world because the SW CRE and the opaque
cloud volume do not change enough.

In current climate conditions, CanAM4 simulates a SW CRE mean state similar to the observed mean state,
whereas its opaque cloud volume mean state is significantly too large (15%) compared to observations
(3%), meaning that the modeled mean clouds in this region are unrealistic. HadGEM2-A simulates a SW
CRE mean state biased by 10 W/m2 compared to observations, and like CanAM4 significantly overestimates
the opaque cloud volume (15%). This overestimate of opaque clouds in the Southern Ocean is shared by
many models (e.g., Bodas-Salcedo et al., 2014; Guzman et al., 2017; Kay et al., 2016).
3.3.3. Sensitivity of the Opaque Cloud Volume to the SST
In the current observational record, the opaque cloud volume varies with the mean SST (Table S1): a warmer
ocean produces a larger volume of opaque clouds. Consistently with the observations, in the current climate,
the models simulate an increase in opaque cloud volume when the SST increases, but the correlation is much
less significant in themodels (0.3 and 0.5) than in the observations (>0.8; details of the computation are given
in the supporting information). Moreover, the sensitivity of the opaque cloud volume to the SST in current cli-
mate is five times larger in the observations (+1% absolute volume per K) than in the models (+0.2% absolute
volumeper K). Thismight be because in themodels the correlation opaque cloud volume and the SST are poor
compared to in observations, or because the model mean state is strongly biased toward too large opaque
cloud volume that may be less sensitive to SST changes than clouds having a lower opaque cloud volume.

In warmer climate conditions, both models predict an increase in opaque cloud volume in the Southern
Ocean, typically +0.7% for a +1 K global temperature increase (Table S1). This increase is consistent with a
negative SW feedback, but since we cannot verify the correlation between the opaque cloud volume and
the SW CRE in current climate (which might be or might not be there), the conclusion of this study in the
Southern Ocean is weaker.
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4. Method to Estimate When a Forced Cloud Change Due to Climate Warming
Would be Detectable

Having selected the feedback, the regions, and the cloud diagnostics, this section describes how we deter-
mine when a spaceborne lidar record would be able to detect a cloud change due to climate warming.
Throughout this description, we apply the method to the opaque cloud altitude (section 3.1.1) in tropical
ascent conditions as an example.

4.1. Building Long-Term Synthetic Time Series

First, we characterize the observed time series over the last decade following the approach outlined in
Weatherhead et al. (1998), referred to hereafter as W98. We use almost 10 years of observations, for compar-
ison Loeb, Wielicki, Wong, et al. (2009) used 5 years. We remove seasonal variations from the diagnostic
monthly time series by subtracting from each monthly value the average of all values associated with the
same month. From this deseasonalized time series, we remove the linear trend. We suppose that the remain-
ing monthly fluctuations (or “noise”) can be modeled as an AR(1) process, that is, that the noise at month t Nt

can be derived from the noise from the previous month by Nt = ΦNt � 1 + εt, with Φ the lag-1 autocorrelation
between time series lagged by one month, and εt the random variables with mean zero and common var-

iance σ2ε . As in W98, we obtain this last value from σ2ε ¼ 1� Φ2
� �

σ2N , with σ2N as the variance of the noise.

We find that for the opaque cloud altitude diagnostic, the deseasonalized and detrended time series can
be described byΦ = 0.04, σN = 0.2366 m and σε = 0.2367 m. The autocorrelationΦ is quite low; thus, the noise
is almost normally distributed. This is not the case for all diagnostics. The AR(1) process has been tested and
found to be a good one for typical weather and climate observations (Phojanamongkolkij et al., 2014). The
AR(1) process provides the ability to simulate the typical “red noise” spectrum seen in weather/climate data
by introducing an autocorrelation time scale. Gaussian white noise would be a much poorer approximation.
The Leroy, Anderson, Dykema, et al. (2008) and Leroy, Anderson, and Ohring (2008) method is in theory more
general, but Phojanamongkolkij et al. (2014) show that the AR(1)-based Weatherhead et al. (1998) analysis
gives similar results to the Leroy, Anderson, Dykema, et al. (2008) and Leroy, Anderson, and Ohring (2008)
method.

Second, we calculate 100-year time series. Using Φ, σ2N , and σ2ε , it is possible to generate time series of
monthly fluctuations, of arbitrary length, that respect and reproduce the behavior of the original observed
diagnostic time series. We followed the methodology outlined in Phojanamongkolkij et al. (2014) to gen-
erate 100-year time series of fluctuations. We can generate any number of such time series and settled on
200 (for comparison, Loeb, Wielicki, Wong, et al., 2009, used 50). For each model, we then impose these
fluctuations to the linear trend it predicts. For example, considering the atmosphere predicted by
HadGEM2-A in the tropical ascent region, the opaque cloud altitude is +1.44 km higher than in current
climate (Table S1). Supposing, as Chepfer et al. (2014), a linear transition between the current climate
and +4 K conditions translates that change to a trend of ω0 = +14.4 m/year.

For each model, we obtain 200 long-term synthetic time series for each diagnostic (the blue line in
Figure 3a shows one) that respect both the observed natural variability and the GCM-predicted long-term
trend ω0 (+14.4 m/year for HadGEM2-A; black dashed horizontal line in Figure 3b). From such time series
we can estimate how fast the cloud change due to SST forcing of each diagnostic exceeds natural
climate variability.

4.2. Computing the Trend

For a particular spaceborne record length t (with t< 100 years) we can extract a subset of the synthetic diag-
nostic time series between 2008 and 2008+t. Applying a linear regression on that subset provides a linear
trend ωt. Figure 3a shows that considering t = 5 years predicts a negative trend (red line), while considering
t = 17 years predicts a positive trend (yellow line). The magnitude and the sign of the retrieved trend can fluc-
tuate significantly depending on the length of the available lidar record, especially in the early years. When
the considered record becomes long enough, the retrieved trend eventually stabilizes.

Computing the linear regression ωt, considering all possible record lengths from 0 (2008) to 100 years
(2108) leads to Figure 3b. After oscillating wildly during the first years, ωt stabilizes as the record gets
longer, to finally settle near the ω0 = +14.4 m/year predicted by HadGEM2-A (horizontal black dashed
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line). In the rest of the study we try to estimate when the trend retrieved from a particular diagnostic
comes close to the value predicted by the model, enough that the model trend could be retrieved
from analyzing the observations. In the rest of the study we label this event the “convergence time” of
the time series. Early convergence time means we will be able to identify the considered cloud trend
unambiguously with even a short spaceborne lidar record. Conversely, a convergence time further in
the future means that longer spaceborne lidar records will be required to identify unambiguously the
associated cloud trend, that is for the climatic signal to exceed natural climate variability. Convergence
requires two conditions.

First, as W98, we posit that a real trend is indicated at the 95% confidence level when ω
σω

��� ��� > 2, with σω as the

standard deviation of the trend approximated by σωeσN
ffiffiffiffiffiffiffi
1þϕ
1�Φ

q
n�

3=2 . In practice, for a time t, we compute σN

(standard deviation of the noise), Φ (lag-1 autocorrelation), and n (number of years) using the time series
between 0 and t. From these we derive σω and ωt and evaluate from the decision rule above if the trend ω
is real. We also impose the trend value ωt to be close to the predicted value ω0 using the following criteria:
ω0 ∈ [ωt � 2σω, ωt + 2σω]

5. Results
5.1. Detectability of the Feedback Signatures in a Lidar Record
5.1.1. Detectability of Deep Convective LW Feedback Signature in a Lidar Record
Figure 4 shows the elevation trend of opaque cloud altitude, for the twomodels, as a function of the length of
the record, considering an ideal time series without mission gaps and without calibration offsets between
successive missions for two different models.

Regarding the detectability of the feedback, Figure 5 shows the PDF of what year each of the random
time series samples (Figure 4a) reached that confidence level (50%, 70%, and 90%). Figures 5a and 5b

Figure 3. Method used to determine when the forced change goes out of the natural climate variability. (a) Synthetic time
series of elevation for opaque clouds in ascent tropics. The synthetic time series forced by HadGEM2-A prediction uses
COSP output. (b) Slope of the linear regression as a function of lidar observation record length using one model + COSP/
lidar prediction and different confidence interval (50%, 70%, and 90%). All figures consider a best-case scenario of con-
tinuous lidar record with constant performance and sensitivity.
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suggest that the two models consistently predict that a 20-year record (2006–2026) is necessary to observe a
robust increase in the opaque cloud altitude at 70% confidence, if we had a continuous observations record
since CALIPSO launch. It means that in absence of a third lidar cloud satellite mission after CALIPSO and Earth-
CARE (i.e., beyond 2023), our confidence on any retrieved trend would remain at most 50% even in the ideal
situation—no gap between CALIPSO and Earth-CARE, both lidars perfectly cross calibrated with the same
equatorial crossing time. Adding a third ideal lidar mission overlapping with Earth-CARE would allow
completing the record and increase the confidence.

As predictions from the two models are quite similar and pretty consistent for this opaque cloud altitude
trend, it would require a long record (typically 50 years at 50% confidence; Figure 5c) to distinguish between
the small differences in their predictions. Nevertheless, CanAM4 has much stronger LW feedback than
HadGEM2-A (section 4.1 and Table S1), but cloud altitude only increases 30% faster than HadGEM2-A. This
suggests that high CF might play a more discriminating role between models than cloud altitude. But just
because these two models agree on the opaque cloud altitude increase, with something as uncertain as
cloud physics, we cannot assume that reality will agree with the models. We must measure the height trends
from nature, not just models.
5.1.2. Detectability of Tropical Subsidence SW Feedback in a Lidar Record
Figure 6a shows deseasonalized time series of low cloud volume that would be observed over the subsidence
tropical region by a lidar overflying continuously around the Earth during 100 years, assuming that the global
mean Earth temperature warms up by 4 K in 100 years. HadGEM2 (blue) predicts a decrease in the low cloud
volume, associated to a positive SW cloud feedback, whereas CanAM4 (green) predicts a slight increase in
time associated to a negative SW cloud feedback. Figure 6b shows the trend (in low cloud volume change
per year), at 50% confidence interval, computed from the records shown in Figure 6a, as a function of the
length of the record.

Figures 7a and 7b show that a perfect CALIPSO-like record, without interruption or calibration differences
between missions, would allow to detect the trend with 70% confidence in 2028 for one model and in
2037 for the other model. Figure 8c shows that the two model predictions (one leading to a positive

Figure 4. Ascent tropics. (a) Same as Figure 3a but for twomodels instead of one. (b) Same as Figure 3b but for twomodels
instead of one.
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SW cloud feedback and the other to a negative feedback) would be robustly separated with 70%
confidence in 2033, so with a 26-year lidar record.
5.1.3. Detectability of SW Southern Ocean Feedback Signature in a Lidar Record
Figure 8a shows the opaque cloud volume record that would be retrieved over the Southern Ocean by an
ideal long-term lidar, assuming an increase of the global mean Earth temperature of +4 K in 100 years and
considering the cloud changes predicted by the two models. It shows that the slopes of the expected trends
are quite large compared to the noise of the natural climate variability, suggesting that climate signal should
show up rapidly in this region if model predictions were right. In the realization shown in Figure 8b, the trend
(i.e., the change of opaque cloud volume by year) is reported positive typically after 2025 for both models at
50% confidence.

Figures 9a and 9b show that models consistently predict that the opaque cloud volume change asso-
ciated to the SW Southern Ocean feedback could be observed with 70% confidence by 2029 if there
was continuous perfect lidar observation record since 2008 launch, and if model predictions
were robust.
5.1.4. Comparison of the Convergence Time in the Different Regions: Impact of the Record Length
In sections 5.1.1 to 5.1.3, we applied the method to three regions, each with its own cloud diagnostic
(Table S1) considering a best-case scenario of uninterrupted lidar record with no performance change.
This idealized scenario lets us quantify the time of convergence associated to an interval of confidence.
If the record is too short, the change from the long-term trend remains within the range of natural varia-
bility, and both cannot be unraveled.

Comparing the three regions indicates that if model predictions are right and the lidar record is perfect, then
the climatic signal goes out of the natural variability fastest in the tropical deep convective regions (2026 at
70% confidence), and later in the Southern Ocean (2029 at 70% confidence) and the subsidence tropical
regions (2028 at 70% confidence).

Figure 5. Ascent tropics. PDF of the date at which a robust trend can be reached for a given model. (a) HadGEM2-A model.
(b) CanAM4 model. (c) PDF of the date at which the two model predictions robustly separate.
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5.1.5. Sensitivity of the Convergence Time to the Speed of the Earth Warming
The choice of the length of the time series (100 years) is arbitrary, and one could argue that it might not be a
realistic choice. The amount of warming that will occur over the next 100 years is uncertain, and it will depend
on the socioeconomic pathway and the transient sensitivity of the system.

We analyzed an ensemble of scenarios that span a range of warming: +4 K in 50 years and +4 K in 125 years.
We found that the uncertainty on the time of convergence depends on the speed of the Earth warming: the
slower Earth warming (125 years) leads to larger PDFs than the faster Earth warming (50 years). Nevertheless,
the mean time of convergence over all the realizations is poorly sensitive on the speed of the Earth warming.
For example, the opaque cloud elevation trend of opaque cloud altitude shifts from 2033 for 50 years to 2034
for 125 years, for the 90% confidence level.

5.2. Impacts of Mission Scenarios (length, gaps, shifts) on the Ability to Constrain Cloud Feedback

Real-life constraints, such as mission launch schedules and instrument performance variations, will affect the
spaceborne lidar record and convergence time. To study how, we modify the 100-year time series of syn-
thetic height-intensity histograms based on the expected spaceborne lidar mission schedule. We then extract
diagnostic time series from these tainted data sets that we compare to the original one.

We segmented the 100-year timeline based on the expected launch dates and lifetimes of ongoing and
future lidar missions. As an example, Figure 10a shows this segmentation applied to the trend retrieved from
a HadGEM2-A realization of opaque cloud altitude in tropical deep convection conditions. We consider that
the following missions will contribute the most to an extended spaceborne lidar record dedicated to the
monitoring of changes in the global cloud distribution (Figure 10a):

1. The CALIPSO mission (Winker et al., 2010), launched in 2006, source of the CALIPSO-GOCCP data used to
derive diagnostics (section 3) and expected to operate until 2018 at least, is at the time of writing the only
cloud lidar in space operating continuously.

2. The Earth-CARE mission (Illingworth et al., 2015), expected to launch in 2020, will operate a 355-nm lidar
that will provide cloud detections reconcilable with CALIOP’s (Reverdy et al., 2015).

Figure 6. Same as Figure 4 but for subsidence tropics.
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3. The MESCAL project is a spaceborne lidar project, currently in preliminary phase definition, to follow-up
CALIPSO and Earth-CARE.

4. Another unnamed mission in the far future to reach the spaceborne lidar record length necessary to
detect climate-related cloud trends.

We consider the possibility of “blind” periods with no spaceborne lidar measurement, two years between the
CALIPSO and Earth-CARE missions (scenario 1) and two years between Earth-CARE and MESCAL missions
(scenario 2), which might happen due to schedule priorities. In these scenarios, we remove data from the syn-
thetic height-intensity histograms for the expected blind period, retrieve the appropriate diagnostic for the
pruned data set, and apply to it the regression steps described in section 4. In addition, we also consider pos-
sible intercalibration errors between successive instruments, which is highly probable, for many reasons: for
instance, Earth-CARE carries a high spectral resolution lidar that does not use the same calibration technique
as the CALIPSO non–high spectral resolution lidar (see Reverdy et al., 2015, for a list of instrumental and orbi-
tal differences between missions that could impact the intercalibration of their instrument). These might
result in either positive or negative offsets in cloud altitude retrievals between successive instruments. We
explore how both factors affect the convergence time of a given diagnostic time series.

Figure 7. Same as Figure 5 but for subsidence tropics.
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We first examined the impact of a gap between two successive missions that are perfectly intercalibrated. In
the deep convective tropical region, we concluded (not shown) that a two-year gap between two successive
missions has no impact on the time of convergence if the two missions are perfectly intercalibrated (not
shown). A longer gap (not showed) increases the time of convergence and delay the capability to
detect trends.

Figure 10b shows the trend value as a function of the length of the record for the same trend as Figure 10a,
but adding ±100m shifts between CALIPSO and Earth-CARE and between Earth-CARE andMESCAL (the black
vertical lines show mission changes). The detection of a trend date gets later if there is a negative opaque
cloud height error, and shorter if there is a positive error. This is because the model expected climate trend
is positive, and therefore, the positive height error exaggerates the true trend to a larger than real value and
therefore is “detected” earlier. But this is a false detection, due to intercalibration issues, that would disappear
once the issues are recognized and fixed. To avoid this situation, one needs to examine not only the trend but
also the actual value of the opaque cloud altitude.

Figure 9. Same as Figure 5 but for Southern Ocean.

Figure 8. Same as Figure 4 but for Southern Ocean.
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Figure 10. Impact of intercalibration shifts between successive missions on the convergence date for tropical ascent:
(a) opaque cloud elevation change as a function of the length of the lidar record. Operation periods of satellite lidar
missions, supposed successive, are delimited by black vertical dotted lines, and the horizontal dashed green line is the
reference trend from model predictions in +4 K conditions. (b) Elevation trend for opaque clouds as a function of
observation time. The black line considers a continuous and unbiased lidar record; the dotted lines, respectively, add a
+100 and �100 m intercalibration shift between Earth-CARE and MESCAL. (c) Time of convergence as a function of
Earth-CARE shift with respect to CALIPSO.
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Figure 10c shows the convergence as a function of the amplitude of the shift between Earth-Care and Mescal
when there is a negative opaque cloud altitude error. When two successive missions are not perfectly intercali-
brated (Figure 10b), then the convergence time is delayed compared to when they are perfectly intercalibrated.
The time to detect a trend (convergence time) is delayed by several years, depending on the amplitude of the shift.

6. Conclusion

This study explores the potential for a multidecade active sensor record to observe cloud feedback signatures
and to constrain cloud feedback spread predicted by climate models.

We focused on three different regions where cloud feedback mechanisms have been proposed in model-
based literature, but have not yet been robustly verified in the observations: the LW positive cloud feedback
in deep convective tropics (w500 < 0), the SW positive cloud feedback in the subsidence tropics (w500> 0),
and the SW negative feedback in the Southern Ocean (35°S–65°S). In each region, we identified observable
cloud diagnostics (opaque cloud altitude, low cloud volume, and opaque cloud volume) derived from
Level 1 lidar observations that (i) influence the CRE (SW or LW) and (ii) respond to SST change in both obser-
vations and climate simulations in current and future conditions.

We then built synthetic records of these cloud diagnostics as they would be observed by a perfect long-term lidar
in space overflying the atmosphere predicted by two climatemodels during a century. These synthetic records are
currently our best guess of the predicted evolution of the Earth’s atmosphere through a lidar lens. We forced the
short-term variability of these records based on observations during the last decade by CALIPSO, whereas their
long-term trend is forced by predictions from climate models in a specific climate warming scenario.

Analyzing these records, we found that if model predictions were right, a perfect 20-year lidar record would
be able to constrain with 70% confidence the positive LW deep convective feedback. The differences in the
SW tropical subsidence feedback predicted by the two models could be distinguished at 70% confidence
with a 27-year perfect lidar record. The negative SW Southern Ocean would be constrained with 70% confi-
dence by a 29-year perfect lidar record. The Southern Ocean results are less robust than the others because
the correlation between the cloud diagnostic and the SW CRE has not been robustly demonstrated yet in cur-
rent climate. We also found that any intercalibration shift between successive lidar-in-space missions would
delay the capability to constrain the cloud feedback, and the delay depends on the amplitude of the interca-
libration shift. Analyzing the current CALIPSO data set, by comparison, did not reveal any significant trend in
any diagnostic in any region.

The numbers given here above are only indicative and should not be overinterpreted, as they rely on climate
model simulations fromonly twomodels. Allmodels have significantbiases in their current climate cloudmean
state, those likely impact our results. Moreover, the simulations used in this study are not considering
atmosphere-ocean interactions, which would influence the results (Armour, 2016): in particular, estimates of
how long itwill take for feedback signature toclearly emergecanbecurrentlyunderestimateddue topatterned
warming responses. In addition, the hypothesis on the rate of increase in SST (a linear rise to +4 K in 100 years)
also influences the results. Uncertainties in the results are also due to observations, as, for example, the A-Train
and Earth-CARE sampling have a 30-min difference in local time, which may impact the trend detectability.
Future CMIP6 simulations (Webb et al., 2017) should provide lidar simulator outputs for more models, fully
coupled simulations, improvedclouddescriptions, and tools to evaluate and to improve themodel cloudmean
state. Hence, the numbers given abovewill be refined in a future studyusingCMIP6outputs. In particular, these
newmodel data sets could be used in the future to reduce the noise in the relationships between lidar chosen
metrics and the CRE by using better metrics, in particular over Southern Ocean (but not only).

The virtual lidar record exercise done in this paper provides a strong motivation for producing more refined
simulations and for further exploring the potential of a multidecade lidar-in-space record to constrain
cloud feedback.
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