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Abstract Global models of the interaction of the solar wind with the Martian upper atmosphere have
proved to be valuable tools for investigating both the escape to space of the Martian atmosphere and
the physical processes controlling this complex interaction. The many models currently in use employ
different physical assumptions, but it can be difficult to directly compare the effectiveness of the models
since they are rarely run for the same input conditions. Here we present the results of a model comparison
activity, where five global models (single-fluid MHD, multifluid MHD, multifluid electron pressure MHD,
and two hybrid models) were run for identical conditions corresponding to a single orbit of observations
from the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. We find that low-altitude ion
densities are very similar across all models and are comparable to MAVEN ion density measurements from
periapsis. Plasma boundaries appear generally symmetric in all models and vary only slightly in extent.
Despite these similarities there are clear morphological differences in ion behavior in other regions such
as the tail and southern hemisphere. These differences are observable in ion escape loss maps and are
necessary to understand in order to accurately use models in aiding our understanding of the Martian
plasma environment.

1. Introduction

Mars presents a richly complicated and time variable obstacle to the solar wind, consisting of both a con-
ducting ionosphere and localized crustal magnetic fields, but no global dipole field. The interaction region
between the undisturbed solar wind and the lower ionosphere hosts a wide variety of physical processes and
plays an important role in the energization of planetary particles, atmospheric escape, and upper atmospheric
phenomena such as aurora.

Computer models can greatly assist our understanding of these physical processes when used in conjunction
with data. The first models of Martian gas dynamics were Spreiter et al. (1970) and Dryer and Heckman (1967).
Since then the number of models capable of simulating the Martian magnetosphere has proliferated greatly,
and now includes a variety of magnetohydrodynamic (MHD; Dong et al., 2015; Harnett & Winglee, 2007; Ma
et al., 2015; Najib et al., 2011; Terada et al., 2009), Hybrid (Boesswetter et al., 2010; Brecht et al., 2016; Holmstrom
& Wang, 2015; Jarvinen et al., 2018; Kallio & Janhunen, 2002; Modolo et al., 2016), and test particle (Cravens
et al., 2002; Fang et al., 2008; Liemohn et al., 2013) models.

These models have been used to understand an extensive array of Martian plasma processes and interac-
tions. Plasma boundaries (Bertucci et al., 2005; Bößwetter et al., 2004; Najib et al., 2011), spatial ion distribution
(Najib et al., 2011), ion escape (Brecht et al., 2016; Brecht & Ledvina, 2014; Dong, Fang et al., 2015; Fang
et al., 2010; Kallio, Fedorov et al., 2006), magnetic topology (Liemohn et al., 2006), energetic neutral atoms
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(ENAs; Gunell et al., 2006; Kallio, Barabash et al., 2006; Wang et al., 2014, 2016), solar wind alpha particles
(Chanteur et al., 2009), and X-ray emission (Gunell et al., 2004) have all been studied using Martian plasma
models. Transient processes including coronal mass ejection (CMEs; Dong, Ma, et al., 2015; Ma et al., 2017),
changes in dynamic pressure (Ma et al., 2014), changes in solar extreme ultraviolet (EUV) flux (Modolo et al.,
2006, 2005), seasonal variation (Dong et al., 2015), and crustal field rotation (Fang et al., 2015; Ma et al., 2014)
have also been topics of study. Long-term Martian evolution has also been examined through estimation of
early conditions and the corresponding escape rates (Terada et al., 2009).

The wide variety of models presents a unique challenge in cross-validation of results. In addition to different
implementations and numerical methods, each model type makes different implicit physical assumptions.
This means that the study of a particular plasma process may be more or less valid with the use of a
particular model. The strengths and weaknesses of various models have been discussed previously in the
literature (Ledvina et al., 2008). Directly comparing model results provides a complementary approach to
the aforementioned discussion, to determine how the fundamental differences affect the interpretation
of simulations.

Here we perform a model comparison challenge where we run a variety of models with the same input con-
ditions to understand the strengths and weaknesses of each one. Running a model challenge allows the
comparison across a variety of model types in a one-to-one manner and isolates the effects of different physics
from the effects of the input conditions.

Model challenges are a commonly used tool across a variety of disciplines (e.g., Hurrell, 1995; Kim et al.,
2016). Within the Martian modeling community, one such model challenge has previously been performed
(Brain et al., 2010); however, substantial model development has occurred in the interim, and it is useful to
provide an updated effort and expand the types of analysis performed. Here we evaluate different quantities,
beyond boundaries and global escape rates. Additionally, we compare to Mars Atmospheric Volatile EvolutioN
(MAVEN; Jakosky et al., 2015) data from a single orbit with upstream conditions that correspond to our
model inputs. This provides a baseline measurement for comparison in the region of the spacecraft orbit. In
particular, MAVEN adds critical information due to its simultaneous measurements of particles and fields.

In this paper we report the results from such a model comparison challenge. We identified a suitable MAVEN
orbit, extracted the upstream solar wind drivers, and ran a variety of models using nearly identical input con-
ditions. In section 2 we describe the input conditions and codes. Our results are shown in section 3, where we
focus on the plasma boundaries (3.1), low-altitude ion behavior (3.2), southern hemisphere (3.3), and global
escape (3.4). We conclude with a discussion and summary in section 4, as well as brief projection of our
future work.

2. Methods
2.1. Orbit
This model challenge was designed such that the results can be compared to data from a specific MAVEN
orbit. The trajectory of the chosen orbit (#2349, 14 December 2015) is depicted in Figure 1. The coordinates
are labeled in the Mars Solar Orbital (MSO) coordinate system; +x⃗ is the direction from Mars to the Sun, +z⃗
is perpendicular to the orbital plane of Mars, and +y⃗ is the completion of a right-handed coordinate system.
This orbit is almost entirely in the terminator plane, with periapsis near dawn at the equator. The subsolar
longitude is 170∘, indicating that the dominant crustal fields are on the dayside of the planet as the dominant
crustal fields are centered around a geographic longitude of 180∘.

Figure 1 also shows data from the Solar Wind Electron Analyzer (SWEA; Mitchell et al., 2016), Solar Wind Ion
Analyzer (SWIA; Halekas et al., 2015), Suprathermal and Thermal Ion Composition (STATIC; McFadden et al.,
2015), and the Magnetometer (MAG; Connerney et al., 2015) rotated into MSO coordinates. MAVEN exits and
enters the upstream solar wind at times 17:12 and 20:24, respectively. At times 17:30–18:30 both STATIC and
SWIA show a group of highly energetic ions whose energy increases with altitude in the northern hemisphere,
commonly referred to as the ion plume. Periapsis occurs around 18:43 where many heavy ions are measured.
The outbound portion of the orbit shows another section of heavy ions from times 19:05–19:25. The model
results for these regions will be explored in section 3.

2.2. Upstream Boundary
The upstream boundary conditions (Table 1) were calculated from period of orbit #2349 MAVEN in the
upstream solar wind and are listed in Table 1. These conditions are relatively moderate, not representing
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Figure 1. Trajectory and data from the MAVEN orbit (2349, 14 December 2015) that the upstream conditions are drawn from. (left) Panels show (a) electron flux
per energy as measured by SWEA, (b) ion flux per energy as measured by SWIA, (c) ion flux per energy as measured by STATIC, (d) ion flux per mass as measured
by STATIC, and (e) magnetic field as measured by MAG. The x axis is labeled by time, altitude, and Solar Zenith Angle (SZA). (right) Trajectory of MAVEN orbit in
MSO coordinates. Empirical boundaries (Trotignon et al., 2006) are plotted as dashed lines, and the color corresponds to the time bar on the left.

an extreme event, and are consistent between the inbound and outbound portions of the orbit.

The interplanetary magnetic field (IMF) is almost entirely in the +y⃗ direction, perpendicular to the solar

wind velocity.

2.3. Models
As shown in Table 2, a wide variety of models were run for this model challenge, with different codes and

underlying physical assumptions. Each model will be referred to by the tag given in the first column to

minimize confusion between similar models. In this section we describe the models, some of the relevant

implementation details, and any differences in the parameters used to run the simulations. Although multiple

crustal field models were used, this will not cause a significant difference in the results.

2.3.1. MHD Models
The three MHD models were all run within the BATS-R-US (Block Adaptive-Tree Solar wind Roe-type Upwind

Scheme) code (Glocer et al., 2009; Ma et al., 2004; Najib et al., 2011). The BATS-R-US platform has a nonuni-

form spherical grid to maximize resolution near the planet while minimizing computation time. The radial

resolution varies from 10 to 600 km, and the angular resolution varies between 1.875 and 3.75. The simulated

domain extends from −24 to +8 RM (where RM is the radius of Mars) in the x direction, and −16 to +16 in the

y and z directions. Local time stepping is utilized such that the time step can vary dynamically between cells

while satisfying the Courant condition.
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Table 1
Upstream Conditions and Derived Parameters Extracted From MAVEN
Data, Used to Drive the Models

v [−350, 0, 0] km/s

np 4.9 cm−3

n𝛼 0.14 cm−3

Tp 59,200 K

B [−0.74, 5.46,−0.97] nT

Pdyn 0.5 nPa

vA 55 km/s

Note. Here Pdyn is the dynamical pressure and vA is the Alfven
speed.

Within this platform, three separate simulations were performed with increasing
complexity. The first, BATSRUS-MS (Ma et al., 2004), is a multispecies run where ions
H+, O+, O+

2 , and CO+
2 were included and treated as a single fluid. This model solves

a single momentum and energy equation but separate continuity equations for
each species. BATSRUS-MF, the second model (Najib et al., 2011), includes the same
ion species, but each species is treated as a separate fluid with its own continuity
and momentum equations. BATSRUS-MF+Pe (Ma et al., 2013) includes the same
ion species as independent fluids and also solves an equation for the electron pres-
sure analogous to the energy equation that dictates ion pressure (see details in Ma
et al., 2011), allowing the electron temperature to differ from the ion temperature.

For all three simulations the lower boundary of the code is set at 100 km above
the planet, and the O+, O+

2 , and CO+
2 densities are set by the photoequilib-

rium values. The velocity condition at the lower boundary is reflexive, leading
to an approximately zero value. Crustal fields were included as modeled by
Arkani-Hamed (2001).

2.3.2. Hybrid Models
The two hybrid simulations were run using two different codes: HELIOSARES (Modolo et al., 2016), and RHybrid
(Jarvinen et al., 2018). As hybrid codes they both treat ions as macroparticles that evolve kinetically according
to the Lorentz force, while the electrons are implemented as a charge neutralizing fluid. A macroparticle does
not represent a single physical particle, rather a group of particles with a given density and the same proper-
ties. Fields are advanced by accumulating particle moments according to macroparticle shape functions onto
a grid using a cloud-in-cell technique and then solving the magnetic and electric field equations accordingly.
In order to improve particle statistics, multiple independent time steps were averaged together to create the
data sets that were analyzed here. Both models include planetary H+, O+, O+

2 , He++, and H+. Although CO2+
is included in the HELIOSARES simulation, due to the limited resolution compared to the ion scale height, it is
not included in further analysis. The RHybrid run analyzed here does not include CO2+.

This HELIOSARES run uses a Cartesian grid with a resolution of 60 km and a lower boundary at 110 km, and
bounds X = [−2.7RM, 2.1RM], Y, Z = ±4.7RM. Crustal fields are included via the Cain et al. (2003) model.
HELIOSARES also implements a particle-splitting technique to limit numerical noise that results from having
large particles; when a macroparticle with a statisical weight ≥3 times the solar wind density exceeds 700 km
in altitude, it is split into two child particles with the same velocity and half the statistical weight. Solar wind
and ionospheric electrons are modeled as two separate fluids, with densities set by the solar wind ion density
and ionospheric ion density, respectively. The solar wind electron population is assumed to be adiabatic with
polytropic index 𝛾sw = 5∕3, while the ionospheric population follows a polytropic equation varying smoothly
between isobaric and adiabatic as 𝛾ion = a(1 + (a∕𝛾sw)4)−1∕4 where a = (log(ne))−1 and ne is the ionospheric
electron density.

To initialize the simulation, ion macroparticles are loaded to match ionospheric profiles computed assuming
photoequilibrium. For the first 2,500 time steps, planetary ion motion is inhibited to allow a bow shock to
develop before direct interaction of the solar wind with the ionosphere. Additionally, this HELIOSARES run
was simulated using a different thermosphere, exosphere, and photoionization rates than are discussed in
section 2.4. Full 3-D models for the exosphere and thermosphere generated for solar median, LS = 90 using

Table 2
A Summary of the Models Used in this Model Challenge Along With Some of the Relevant Parameters

Model type Crustal fields Highest resolution (km) Inner boundary (km)

BATSRUS-MSa MHD Yes 10 100

BATSRUS-MFb MHD Yes 10 100

BATSRUS-MF+PEc MHD Yes 10 100

HELIOSARESd Hybrid Yes 60 110

RHybride Hybrid No 113 300

Note. For reference, scale heights for O+ , O+
2 , and CO+

2 are 40 km, 20 km, and 10 km, respectively.
aMa et al. (2004), bNajib et al. (2011), cMa et al. (2013), dModolo et al. (2016), and eJarvinen et al. (2018).
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Laboratoire de Méteorologie Dynamique Martian General Circulation Model (LMD-MGCM; González-Galindo
et al., 2007), were utilized. Although they are not identical to the models used for the rest of the simulations,
they are similar when averaged radially and should not greatly affect the presented results. The photopro-
duction is based on the EUVAC (EUV model for Aeronomic Calculations) model (Richards et al., 1994), which
takes into account 27 wavelength groups, combined with the ionization and absorption cross sections for
each species from Schunk and Nagy (2000). The computed photoionization frequencies are similar, with less
than 20% difference from the other models.

This RHybrid run uses a Cartesian grid with a resolution of 113 km, bounds X, Y, Z = ±4RM, and does not
include crustal fields. Resistivity and electron velocity are set as zero at the altitude of 300 km and below.
All ions are absorbed and removed from the simulation at the altitude of 200 km and below. Ionospheric O+

and O+
2 ions are emitted upward from a spherical shell at 400 km with the temperature of 2× 104 K. The emis-

sion has a maximum flux at noon and cos(SZA) (Solar Zenith Angle) dependence toward terminator where
the flux reaches 10% of the noon value and is constant for the nightside. Total ionospheric emission rates are
1.4× 1025 s−1 for O+ and 2× 1025 s−1 for O+

2 . Photoionization of the exospheric monatomic oxygen and hydro-
gen neutral coronas are included at the altitude of 400 km and above in the dayside. The total photoionization
rate in the simulation domain is 2.15 × 1024 s−1 for hydrogen and 2.67 × 1023 s−1 for monatomic oxygen.
The exospheric neutral profiles and ionospheric emission rates are the same as in earlier studies such as Brain
et al. (2010) and Jarvinen et al. (2016).

2.4. Inner Boundary
For all models except HELIOSARES, a 3-D neutral atmosphere and 1-D exosphere were used. The 3-D neutral
atmosphere was computed using the Mars Global Ionosphere-Thermosphere Model (MGITM; Bougher et al.,
2015) for an areocentric longitude of the Sun (LS) of 90∘ at moderate EUV (F10.7 = 130). MGITM uses Martian
physical parameters, ion-neutral chemistry, and radiative processes in order to simulate the dynamical struc-
ture of Mars from the surface to the exosphere. The exosphere is implemented via 1-D profiles for hydrogen
(Chaufray et al., 2008) and oxygen (Lee et al., 2015), with oxygen containing both a hot and cold component.
Photoionization rates were also calculated using MGITM, and the additional rate coefficients were set from
Schunk and Nagy (2000).

3. Results
3.1. Boundaries
The interaction of the solar wind with the Martian plasma environment produces several boundaries and tran-
sitions within the plasma, including the bow shock, and the transition region including the Magnetic Pileup
Boundary (MPB) due to the pileup of the IMF as it drapes around the planet and the Induced Magnetosphere
Boundary (IMB) marked by a transition from solar wind to planetary plasma (Nagy et al., 2004).

Figure 2 shows slices of H+, O+, and magnetic field magnitude in the Y = 0 and Z = 0 planes for each model.
Overplotted in white are the locations of the empirical bow shock and MPB boundaries (Trotignon et al., 2006).

Each model well predicts the magnetic standoff distance and the position of the bow shock along the
Mars-Sun line. Along the wings of the bow shock the H+ and magnetic field magnitude slices show that all
the BATSRUS models show a more extended shock region than the conic fits, while both hybrid models show
a more compressed shock region. The shock boundary in the fluid models is symmetric with respect to Y and
Z. This general lack of asymmetry is driven by an almost entirely +y-oriented IMF.

The HELIOSARES bow shock is more compressed in the +z⃗ hemisphere than in the −z⃗ hemisphere, driven
by the electron pressure gradient and motional electric field, which points inward in the −z⃗ hemisphere and
outward in +z⃗ hemisphere. As described in Simon et al. (2007), these two forces lead to the formation of a
sharply pronounced boundary layer in the hemisphere where they are antiparallel. This effect is present in
simulations that treat the ions kinetically, so is not present in the MHD models. RHybrid also shows asymmetry
due to the motional electric field, but it is less pronounced in the y = 0 plane compared to HELIOSARES.

The transition to planetary plasma (depicted by O+) along the subsolar line occurs simultaneously with the
empirical boundary location for all models. In the X-Z plane (Figure 2a), the BATSRUS-MS and BATSRUS-Pe
models show little asymmetry in O+ number density and well reproduce the empirical boundary location,
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Figure 2. Slices in the XZ (top) and XY (bottom) planes. From top to bottom the rows show H+ number density, O+ number density, and magnetic field
magnitude. The columns indicate the model, from left to right: BATSRUS-MS, BATSRUS-MF, BATSRUS-MF+Pe, RHybrid, and HELIOSARES. The empty space in the
HELIOSARES data occurs because a slightly smaller domain is simulated while the plotting limits are kept constant. Each column uses identical color space limits.

while BATSRUS-MF and HELIOSARES show strong Z asymmetry, and RHybrid only shows planetary plasma
along the plume and current sheet outside the ionosphere. All models show very little asymmetry in the X-Y
plane (Figure 2b).

Figure 3 confirms the intuition gained with slices, but by flying through the models we are also able to com-
pare with MAVEN data from this orbit. On the inbound portion of the orbit the MAVEN data show a bow shock
at roughly the same location as the empirical boundary, but the outbound crossing happens lower in alti-
tude than the empirical crossing. This indicates the presence of some combination of asymmetry and time
variability. As the shocked region is relatively extended in the MHD models, none of them show a bow shock
crossing in this flythrough; instead, MAVEN’s orbit encounters only modeled magnetosheath and lower. Thus,
both the H+ number density and the magnetic field magnitude appear to be larger in the fluid models than
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Figure 3. Flythrough of model results of the inbound and outbound portions of the orbit (#2349, 14 December 2015)
excluding periapsis with corresponding MAVEN data. Panels show H+ number density and magnetic field magnitude.
The location at which the orbit passes through the analytic boundary locations (Trotignon et al., 2006) for the bow
shock and MPB/IMB are plotted as vertical dashed lines.

the data and hybrid models. The RHybrid and HELIOSARES models both show a clear shock crossing that is
lower in altitude than the inbound MAVEN crossing, but very similar on the outbound crossing.

3.2. Low Altitude
MAVEN enters the ionosphere on Mars’ northern hemisphere along the terminator plane. Measurements in
this region from the Neutral Gas and Ion Mass Spectrometer (NGIMS; Mahaffy et al., 2015) are shown along
with model results in Figure 4. RHybrid is not shown here due to the absence of ionosphere in the run.

At the lowest altitudes there is strong agreement across all models and data for O+, O+
2 , and CO+

2 , indicating
that the ion production physics is well represented in each model. Previous studies, including Ma et al. (2015)
also found good agreement in ionospheric densities between data and models. The difference in shapes of the
heavy ion profiles are indicative of different dominant heights. The relative steepness in decline with altitude
between ions and the shape of the distributions are consistent with predicted scale heights. The jaggedness of
the HELIOSARES profiles is due to the limited resolution of the grid that the ion macroparticles are deposited
onto. The shallow drop off of the HELIOSARES densities on the outbound segment relative to the inbound
segment is due to contributions from the southern hemisphere’s slow escaping ions (see section 3.3).

For each ion, the inbound portion of the MAVEN data shows some excess number density relative to the steep
drop off shown by the models, likely due to time and spatial variability not captured by the models.

3.3. Southern Hemisphere
Cold ion escape likely plays an important role in heavy ion loss on Mars (Dong, Fang et al., 2015; Fränz et al.,
2015). Here we discuss differences between the models in the southern (−z) hemisphere where an extended
population of cold ions connects to the tail. This region of the tail is not affected by the northern pickup ions,
which we will discuss in a future paper.

As shown in Figure 5, all models show a region of planetary ions that extends from the southern hemi-
sphere toward the tail. These ions are cold and have near-zero bulk velocity. HELIOSARES shows slightly higher
number densities than the BATSRUS and RHybrid models, and the region extends farther in the −z direction.

Figure 5 also shows vectors of the magnetic field. From this figure it is clear that the topology varies sub-
stantially in this region across the models. The top row shows a draped field configuration in the BATSRUS

EGAN ET AL. 3720



Journal of Geophysical Research: Space Physics 10.1029/2017JA025068

Figure 4. Flythrough of model results at low altitudes with corresponding MAVEN data from orbit #2349, 14 December
2015). Panels show O+

2 , O+ , CO+
2 number densities from top to bottom. RHybrid results are excluded due to the lack of

ionosphere. No HELIOSARES results are shown for CO+
2 because it was not included in the model.

and RHybrid models, while the field in the HELIOSARES model appears toroidal where the ion densities are
highest. In the YZ plane (middle row) the HELIOSARES model again appears toroidal in the tail, while the
BATSRUS models all show magnetic field vectors predominately in the ±x direction.

From examining the field line topology in three dimensions the magnetic field in HELIOSARES appears coiled
in the southern hemisphere, forming a channel for slow ion escape. This differs from the magnetic topology
in BATSRUS, which appears more like a basic current sheet model created by a draped IMF. These differences
are likely related to differences in the obstacle boundary and conductivity.

3.4. Global Escape
One of the foremost areas of interest to the Martian community is the rate at which ions are lost to space,
and the channels this escape proceeds through. Global ion escape has been measured (Barabash et al., 2007;
Lundin et al., 1989), as has variance in escape with solar wind and EUV (Ramstad et al., 2015), and variance
with crustal fields (Ramstad et al., 2016); for full review of global ion escape at Mars see Dubinin et al. (2011).
Brain et al. (2015) has mapped the spatial distribution of inflowing and outflowing ion fluxes by averaging
data across many orbits. Here we present similar maps to Brain et al. (2015) but of the entire system at a single
instance in time as simulated by the models.

Figure 6 shows maps of the modeled ion fluxes at 1.8RM across latitude and longitude in the Mars-Solar-Electric
field (MSE) coordinate system; +x⃗ is the direction from Mars to the Sun, +z⃗ is along the upstream solar wind
motional electric field, and +y⃗ is the completion of a right-handed coordinate system. The maps are created
by defining a set of points in a spherical shell, equally spaced in 5∘ increments in latitude and longitude, and
probing the net ion flux at each point in each model without averaging or interpolation.

On the dayside (centered on longitude = 0), all models have inbound heavy ion flux. In BATSRUS-MS this
is symmetrical around latitude = 0 and longitude = 0. In the BATSRUS-MF, BATSRUS-MF+Pe, RHybrid, and
HELIOSARES models the dayside inbound ion flux is confined to the southern hemisphere.

This symmetry breaking is related to the plume presence in the BATSRUS-MF, BATSRUS-MF+Pe, RHybrid,
and HELIOSARES models. The plume feature is seen as a dark blue (outbound flux) feature at high latitudes
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Figure 5. Slices of O+ number density with magnetic field vectors overlaid. Panels show (top to bottom) planes Z = −1.3RM , Y = 0, X = 0, and (left to right)
simulations BATSRUS-MS, BATSRUS-MF, BATSRUS-MF+Pe, RHybrid, and HELIOSARES. All color bars are consistent and labeled to the right.

(>45∘ directly above the northern pole) centered around longitude −30∘, and as a channel connecting to the

tailward outbound flux centered at longitude 180∘. Furthermore, due to the limited number of heavy ions at

large radii on the dayside, the H+ dynamics dictate the ion flux for BATSRUS-MS.

All models except HELIOSARES show predominately outbound flux in the tail. RHybrid shows only outbound

flux, while all the BATSRUS models have regions where ions are inflowing. These inflow regions are present

in the same locations at lower altitudes (down to 1.1RM) but shrink at higher altitudes out to ∼3.0 RM). They

are also correlated to the magnetic field vector at this point. This indicates that they are likely related to the

dynamics of the current sheet and the presence of crustal fields, as only RHybrid does not include crustal

fields. As the dynamics of these regions are sensitive to tail plasma processes, crustal field implementation, and

low-altitude nightside ions, and our orbit does not probe this region, we leave further study to future work.

We find that the modeled maps are qualitatively similar to maps created from MAVEN data (Brain et al., 2015).

The dayside shows predominately inward flux, while the tail shows outward flux. Northern MSE latitude shows

relatively more outward flux than the southern MSE latitude region. However, coverage of this space is still

relatively incomplete due to the limited amount of MAVEN orbits there have been, so further conclusions and

more detailed model-data comparison are not yet possible.

By summing across all latitude/longitude bins and weighting by area, global ion fluxes can be calculated for a

given radius for each model. The rates for R = 1.8RM are shown in Table 3, along with observed rates calculated

by Brain et al. (2015) and Ramstad et al. (2015). A full comparison with all observed rates is beyond the scope

of this paper, we just show Brain et al. (2015) for comparison with the escape maps and Ramstad et al. (2015)

for a recent result calculated for comparable solar wind conditions. For a full comparison of ion escape rates

at Mars, see Dubinin et al. (2011).
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Figure 6. Total heavy ion flux maps for (left to right, top to bottom) BATSRUS-MS, RHybrid, BATSRUS-MF+Pe,
BATSRUS-MF+Pe, HELIOSARES, and MAVEN data. Axes limits and color bar are identical for each panel (except the
MAVEN panel which is labeled separately), with blue indicating outward flux and red indicating inward flux. The map
created from MAVEN data is adopted from Brain et al. (2015).

Table 3
Calculated and Observed Escape Rates for O+, O+

2 , and Total

Model/Survey O+ (× 1024 #/s) O+
2 (× 1024 #/s) Total (× 1024 #/s)

BATSRUS-MS 1.0 1.1 2.1

BATSRUS-MF 0.6 1.8 2.4

BATSRUS-MF+Pe 1.3 2.1 3.4

RHybrid 1.1 1.1 2.2

HELIOSARES 2.3 0.9 3.2

Brain et al. (2015) – – 1.6

Ramstad et al. (2015) – – 2.1 ± 1.1

Note. For each model the total includes all species included in the model, while the total
for the observed rates includes all ions with energies above the relevant cutoff.

EGAN ET AL. 3723



Journal of Geophysical Research: Space Physics 10.1029/2017JA025068

These results are very constant with radius for all models and are very similar for such a large variation in
escape maps. There is greater agreement between these rates than those calculated by Brain et al. (2010),
indicating some level of convergence over time across models. These rates are also within a factor of 3 of
those calculated by Brain et al. (2015), though those rates are for a wide variety of solar wind conditions and
planetary orientation and also include all heavy ion species. When compared to rates calculated by Ramstad
et al. (2015) for similar solar wind and EUV conditions our calculated rates are all within the appropriate range
(2.1 ± 1.1 × 1024 s−1).

4. Conclusion

Five models of the Martian magnetosphere have been run for nearly identical input conditions (aside from
the small variations discussed in section 2); these models were then compared to each other and to MAVEN
data. The input conditions were chosen to reflect the upstream drivers of MAVEN orbit #2349, an orbit chosen
because the solar wind data is steady and typical, while the rest of the orbit probes other interesting regions.
Model flythroughs along the orbit trajectory, slices through different regions, spherical ion flux maps, and
global escape rates were obtained for each data set.

Most models showed little boundary asymmetry due to the IMF being nearly completely in the +y⃗ direction.
The overall extent of the shocked region was larger in the fluid models than both the empirical boundaries
and the MAVEN results, while the hybrid models matched the outbound crossing very well.

From comparing NGIMS ion data to model flythroughs at low altitude it is clear that all models that have
an inner boundary lower than ∼200 km do a good job modeling the low-altitude dayside ions. Both overall
normalization and scale heights are well recreated by all the BATSRUS models as well as HELIOSARES.

The outflow of cold ions in the southern hemisphere varied substantially across models. More study of the
effects of lower boundary conditions and the impact they have on the magnetic topology and ion outflow in
tail could impact ion escape estimates. However, although this outflow was much denser and more localized
in the HELIOSARES model than the BATSRUS models, overall global escape rates were relatively constant.

Future efforts on this front are still necessary. This model challenge focused specifically on one orbit with a
moderate solar wind and +y directed IMF. Changing input conditions will vary how the solar wind interacts
with the ionosphere and likely how variations in model physics appear. Furthermore, we have limited our
analysis to certain regions and delayed comparison of the plume region for a future paper. More analysis and
comparisons with data from additional MAVEN orbits will be necessary to probe other regions such as the tail.
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