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The study of dust-gas outflow from cometary nuclei has a long history and has now reached a remarkable degree of sophistication. The pioneering dust coma studies (Whipple (1951), [START_REF] Dobrovolskiy | Nonstationary process in comets and solar activity[END_REF], [START_REF] Dobrovolskiy | Komety[END_REF], Probstein (1969 ), Shulman (1972), Wallis (1982), [START_REF] Gombosi | Dust and Neutral Gas Modeling of the Inner Atmospheres of Comets[END_REF]) tried to derive analytical expressions keeping as much as possible a meaningful physical description, but often using exceedingly crude simplifications (e.g. omitting of gravity and/or solar pressure, assuming constancy of gas expansion velocity etc.).

More recently, numerical models of much higher complexity for the description of dust dynamics in the cometary coma appeared (e.g. [START_REF] Crifo | Multidimensional physicochemical models of the near-nucleus coma: Present achievements and requested future developments[END_REF], Rodionov et al. (2002)). These models either solve a system of differential equations describing the dust motion, or, perform a numerical simulation of the process. To predict the spatial and temporal distribution of physical variables (density, velocity etc.) in the coma, such models introduce a large number of governing parameters characterizing processes. Therefore the relative role of these processes is not easy to ascribe and relevant intercomparison of model results becomes difficult.

Our present work may look surprising. Following older models, we study the motion of a single spherical particle in a spherically expanding flow of an ideal perfect gas. However, contrary to previous models, we always keep in mind that, in all possible cases, the motion of the particle is governed by at least three forces: the aerodynamic drag, the nucleus gravity and the solar radiation pressure force. The aim of this study is to reveal the general properties of dust motion in an expanding flow and to reveal the relative influence of the three principal forces -drag, gravity and radiation pressure.

The model

The nucleus gravity and solar pressure force acting on a grain have simple classical expressions (see below) -as long as we assume the nucleus to be a homogeneous sphere.

The assessment of the aerodynamic drag force on the grain is more complex. It requires, first, computing the whole gas flow field. In general, the gas expansion from a spherical source into vacuum has three characteristic regions (see Lukianov and Khanlarov (2000)). The non-equilibrium nearsurface layer (Knudsen layer), where initially non-equilibrium flow (due to the boundary conditions)

relaxes to an equilibrium state, then a region of equilibrium flow, and finally once more a region of non-equilibrium flow resulting from the lack of intermolecular collisions. This scheme is shown in Fig. 1. The sizes of these three regions depend on the gas production of the source and may vary considerably. In the present study, we simplify the problem by assuming that the Knudsen layer is thin and the rest of the flow is in equilibrium. The gas flow is postulated as an adiabatic expansion of ideal perfect gas from a sonic spherical source, which means that on the nucleus surface we assume that the gas velocity is equal to the local sound velocity ( γT g k b /m g , where T g is the gas temperature, m g is the mass of the molecule, k B is the Boltzmann constant and γ is the specific heat ratio). This assumption about sonic conditions on the initial surface is justified by the fact that the expanding flow into vacuum is always supersonic and therefore irrespective of the conditions of gas production, the sonic surface surrounds the nucleus.

This approximation has the merit of having a fully analytical solution (Landau and Lifshitz (1966)), which we use here.

In conclusion, the motion of a particle with invariable size and mass under the influence of aerodynamic drag, nucleus gravity, and solar pressure forces is described in our model by:

m d dv d dt = (v g -v d ) 2 2 ρ g πa 2 C D (s, T d T g ) - GM N m d r 2 -πa 2 Q ef c cr 2 h cos(z ) (1) 
dr dt = v d (2)
where a, m d , v d , T d are the particle radius, mass, velocity and temperature, ρ g , v g are the gas density and velocity, M N is the mass of the nucleus, G is the gravitational constant, Q ef is the radiation pressure efficiency, c is the velocity of light, c is the solar energy flux, z is the solar zenith angle, r h is the heliocentric distance (in AU), C D is the drag coefficient, and r and t are radial distance and time, respectively. To use once more an existing analytical expression, we assume that the particle size a is everywhere much smaller than the mean free path of the gas molecules. The drag coefficient C D is then given by the "free-molecular" expression for a spherical particle (see [START_REF] Bird | Molecular Gas Dynamics and the Direct Simulation of Gas Flows[END_REF]):

A C C E P T E D M A N U S C R I P T s C D (s,τ)
C D s, T d T g = 2s 2 + 1 s 3 √ π exp(-s 2 ) + 4s 4 + 4s 2 -1 2s 4 erf(s) + 2 √ π 3s T d T g (3) 
where

s = | v g -v d |/ 2T g k B /
m g is a speed ratio. The variation of C D in a wide range of s for three ratios of T d /T g is shown in Fig. 2.

In order to let chacteristic dimensionless parameters appear, let us rewrite the governing dust equations in dimensionless form, introducing the following dimensionless variables:

θ = T d /T * , ṽg = v g /v max g , ṽd = v d /v max g , r = r/R N , t = t/∆t, τ = T d /T g , ρg = ρ g /ρ * . Here v max g = γ γ+1 γ-1 k b mg T * is
the theoretical maximal velocity of gas expansion, ρ * and T * are the gas density and temperature on the sonic surface (i.e. on the surface of the nucleus) and ∆t = R N /v max g .

Then equations ( 1) and ( 2) can be rewritten as: 

dṽ d d t = ρg (ṽ g -ṽd ) 2 C D (s, τ ) • Iv -Fu • 1 r2 -Ro • cos(z ) (4) A C C E P T E D M A N U S C R I P T r/R N M v g /v g max , T g /T * ρ g /
dr d t = ṽd (5) 
Where ṽg , r, τ and s in adiabatic spherical expansion (Landau and Lifshitz (1966)) are:

ṽg = (γ -1)M 2 2 + (γ -1)M 2 1/2 (6) r2 = 1 M 2 + (γ -1)M 2 γ + 1 γ+1 2(γ-1) (7) s = |ṽ g -ṽd | γ γ -1 + γ 2 M 2 (8) τ = θ 2 + (γ -1)M 2 γ + 1 (9) ρg = 2 + (γ -1)M 2 γ + 1 -1 γ-1 (10) 
Here M = v g / γT g k b /m g is the Mach number. An example of the spatial distribution of gas parameters for γ=1.33 is given in Fig. 3.

The dimensionless parameters are:

Iv = 1 2 ρ * σ d R N m d = 3Q g m g 32R N aρ d π T * γk B /m g (11) A C C E P T E D M A N U S C R I P T and Fu = GM N R N 1 (v max g ) 2 (12) 
and

Ro = 1 m d (v max g ) 2 R N σ d Q ef c cr 2 h (13)
Here Q g is the total gas production rate, σ d and ρ d are the particle cross-section and specific density respectively.

We note that the theoretical maximum velocity of gas expansion could be expressed also in terms of a stagnation temperature T 0 and a heat capacity C p as v max g = 2C p T 0 . In this way the gas velocity on the sonic surface is v * = 2C p T 0 γ-1 γ+1 and the gas production in [kg m -2 s -1 ] is

q = ρ * v * .
Therefore we can rewrite Iv as:

Iv = γ + 1 2(γ -1) 3qR N 8 C p T 0 aρ d (14) 
The second term in this equation is the reciprocal of a dimensionless similarity parameter characterizing the ability of a dust particle to adjust to the local gas velocity introduced in Probstein (1969 ).

As can be seen the three parameters have the following meaning:

1. Iv represents the ratio of the gas mass present in a flow tube with the cross section of the particle and a characteristic length, R N , to the particle mass. This parameter characterizes the efficiency of entrainment of the particle within the gas flow (i.e. the ability of a dust particle to adjust to the gas velocity);

2. Fu represents the ratio of the comet surface gravitational potential to the flow thermodynamic potential (enthalpy, C p T 0 ). This parameter characterizes the efficiency of gravitational attraction;

3. Ro represents the ratio of the specific work done by the solar pressure force on the characteristic length R N to the flow thermodynamic potential. This parameter characterizes the contribution of solar radiation pressure.

In order to define Iv, Fu, Ro it is necessary to know: m g , γ, Q g (or ρ * ), T * , R N , M N , a and ρ d (or

σ d and m d ), Q ef and r h . A C C E P T E D M A N U S C R I P T

Results

The present study covers the range of Iv = 10 5 -10 -10 , Fu = 0.1-10 -10 , Ro/Fu = 1.0-0.0 and γ = 1.33 and θ = 1. For simplicity, we study only the case when cos(z )=1 (i.e. sunward direction).

The gas velocity is permanently increasing -initially rapidly and then quite slowly. For γ=1.33 it reaches 0.9 and 0.99 of v max g at r=6.4 and 185 correspondingly (see fig. 3). Therefore we limited the radial size of the computational domain to r ≤ 10 3 . For numerical integration of the system defined by equations ( 4) and ( 5) we used the Bulirsch-Stoer method (Press (1986)).

The condition that the grain could be lifted from the surface is:

γ -1 γ + 1 C D ( γ/2, θ) • Iv > Fu + Ro (15)
For θ=1, γ=1.33 and Ro = 0 this condition is: 0.794 Iv > Fu.

If we neglect the solar pressure force (i.e. Ro = 0), the maximum liftable size a max is:

a max = 3Q g m g C D ( γ/2, θ) T * γk B /m g 32ρ d πM N G (16) 
and a max = 1.075 • 10 -2 Q g T * m g /(ρ d M N ) for θ=1, γ=1.33.

Case when Ro = 0

Let us first study the case when the solar pressure force could be neglected (i.e. Ro = 0). The accelerating aerodynamic force decreases with the same rate as the decelerating gravity attraction and therefore if a particle is lifted from the surface then it is continuously and monotonously accelerating.

Fig. 4 shows the particle velocity ṽd and transit time t at the distances r=10, 10 2 and 10 3 (the particle velocities at r = 10 2 and 10 3 are practically indistinguishable and therefore shown only for r = 10 3 ). For the maximum values of Iv the grain velocity at r = 10 3 and the gas maximal velocity are very close. For Iv > 1 the velocity of a particle at r = 10 3 is practically the same for any Fu < 1. For Iv < 1 the velocity of the particle is very sensitive to Fu and is considerably smaller then the gas velocity. This is intuitively correct from inspection of equation ( 14), which shows that Iv is proportional to q/a.

Though the gas and dust velocity permanently increase at large distance their acceleration is very small and therefore as a terminal velocity of the particle (v max d

) we take v d at r = 10 3 . Fig. 5 A shows the distance and transit time when ṽd reaches 0.9 and 0.99 of the velocity at r = 10 3 . For the maximum values of Iv the particle reaches 0.9 and 0.99 of the terminal velocity at r = 6 and 116.5, correspondingly. For Iv > 1 this distance does not depend on Fu (for Fu < 1) but for Iv < 1 it is very sensitive to Fu. It is interesting to note that the distance where the particle acceleration practically finishes (i.e. v d ≈ const) has three characteristic ranges of Iv. For Iv > 10 4 , it assymptotically approaches r ≈ 6 for 0.9 of v max d (or r ≈ 116.5 for 0.99

C C E P T E D M A N U S C R I P T log 10 (Iv) v d /v g max (r/R N =10) v d /v
• v max d
). For Iv < 10 -2 it assymptotically approaches r ≈ 5.6 (or r ≈ 51.7 for 0.99

• v max d
). In the range 10 -2 < Iv < 10 4 the variation of this distance is non-monotonic with minimum r ≈ 3.5 (or r ≈ 30 for 0.99

• v max d ) at Iv ≈ 3.162.
In the above discussed cases the initial velocity of the particle was ṽ0 d =0. Now we study the cases when the particle has initial velocities from 0 up to 0.5. For a sonic source the gas velocity on the surface is: ṽ * = γ-1 γ+1 = 0.376, for γ=1.33. Note that we included also the case when the initial particle velocity is greater than the gas velocity at the surface (case ṽ0 d = 0.5). Fig. 6 shows the particle velocity ṽd at the distances r=10 and 10 3 and it allows us to estimate the influence of the initial velocity at various Iv and Fu. For Iv > 1 a non-zero initial velocity is undetectable already at r = 10. But for Iv < 1, depending on Fu, the non-zero initial velocity may affect the particle velocity up to the external boundary of the region. The lower is Fu, the more noticeable is the influence of an initial velocity; this is particularly evident for the low values of the initial velocity. d for γ = 1.33 and θ=1.0. The color of the lines and labels corresponds to log 10 (Fu), the pattern of lines and values of labels correspond to ṽ0 d .

For example, at Iv < 10 -4 and Fu < 10 -4 the initial velocity ṽ0 d ≥ 10 -2 (and at Iv < 10 -2 and Fu < 10 -2 the initial velocity ṽ0 d ≥ 0.1) remains practically constant until exiting from the region.

In the case Iv < 10 -2 and Fu = 10 -1 the particle with an initial very high velocity ṽ0 d = 0.5 even decelerates.

Case when Ro > 0

Here we study only the case when cos(z ) = 1 (i.e. sunward direction) and Fu ≥ Ro. To simplify results representation, we express the solar pressure force as a fraction of the gravity force on the surface, which is equivalent to Ro/Fu. Since gas and dust velocity for r > 6 vary not much and the first term in eq.4 decrease as r-2 , the ratio Ro/Fu allows one to estimate the distance at which the solar pressure force starts to be sizeable.

The presence of non-zero solar pressure force, which does not decrease with distance, leads to a final deceleration of the particle motion. Fig. 7 shows the particle velocity ṽd at distances r=10 and 10 3 , the transit time t at distances r=10, 10 2 and 10 3 , the particle maximal velocity, and the distance and time when it is reached. For this figure, if the particle did not start deceleration before r = 10 3 , the particle velocity at the exit of the region is taken as the maximal velocity ṽmax that since we use same ratios Ro/Fu in all cases, with increasing of Fu grows Ro as well. Fig. 7 shows the distance where ṽmax 

Conclusion

The dust flow preserves typical general features regardless the particular coma model and the characteristics of the real cometary coma. We have presented an elementary model of particle motion in a spherically expanding flow parametrized by three dimensionless parameters (Iv, Fu, Ro). This model could be used as a reference model for the comparison of more sophisticated cometary dust coma models. It can also be used for rough estimations of the asymptotic behaviour of particle motion (terminal velocity, and distance and time when it is reached).

We intentionally skip the processes in the layer close to the surface since they are strongly
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Figure 1 :

 1 Figure 1: Flow structure in the source (∆ * , ∆ Kn are the thickness of subsonic layer, non-equilibrium or Knudsen layer) .

Figure 2 :

 2 Figure 2: Variation of the drag coefficient C D for 10 -2 ≤ s ≤ 10 2 and τ = T d /Tg=0.1, 1 and 100.

Figure 3 :

 3 Figure 3: Radial distribution of M , vg/v max g , Tg/T * , ρg/ρ * for γ=1.33.

Figure 4 :Figure 5 :

 45 Figure 4: Particle velocity ṽd at r=10 (top left), particle velocity ṽd at r = 10 3 (bottom left) and transit time t (top right) for γ = 1.33 and θ=1.0 (color numbers indicate the corresponding log 10 (Fu)).

Figure 6 :

 6 Figure 6: Velocity at radius r = 10 (left) and r = 10 3 (right) for different initial velocity ṽ0 d for γ = 1.33 and θ=1.0. The color of the lines and labels corresponds to log 10 (Fu), the pattern of lines and values of labels correspond to ṽ0 d .

  r=10 there is no remarkable variation of velocity for 0 ≤ Ro/Fu ≤ 0.1. But at the distance r=10 3 the distinction in velocity increases with increase of Fu. It should be noted

Figure 7 :Figure 8 :

 78 Figure 7: Particle velocity ṽd at r=10 (top left), particle velocity ṽd at r = 10 3 (top right), transit time t (middle left), radius r(ṽ d = ṽmax d ) (middle left), transit time t(ṽ d = ṽmax d ) (bottom left) and maximum particle velocity

d

  is acquired (for Ro/Fu=0 this is r = 10 3 ) and the transit time required to achieve ṽmax d . The transit time depends weakly on Iv < 1 for the given Fu and Ro. Note also that the transit times and the distances where ṽmax d is acquired are similar for the same Ro independently on Fu.

Fig. 8

 8 Fig.8shows the distance and time when the particle decelerates down to zero velocity. With growth of Iv the distance and transit time to the apex of the trajectory (where ṽd = 0) become similar for the same Ro irrespective of Fu (since the value of Fu relative to Iv decreases).

A C C E P T E D M

A N U S C R I P T dependent on the local properties (irregularity and inhomogeneity of the nucleus). For the same reasons, in the case when dust grains have an initial velocity, we have omitted any discussion of the reasons how such an initial velocity might occur.

For evaluation of the aerodynamic force we used a spherically expanding flow of an ideal perfect gas. This idealized model of the flow practically never happens in real cometary atmosphere (nonequilibrium and rarefied) but it physically preserves integral properties of the real flow on a large scale correctly.

We would like to emphasize that the model, being oversimplified, cannot be used as a cometary coma model. But, based on the results presented, it is possible to estimate the relative influence of the main factors (aerodynamics, gravity, solar pressure, initial velocity) affecting every dust flow and reveal processes similarity.

OSIRIS data constrain the dust acceleration limited within six nuclear radii for a broad range of particle sizes [START_REF] Gerig | On deviations from free-radial outflow in the inner coma of comet 67P/Churyumov-Gerasimenko[END_REF], in agreement with our model.