

The brittle-to-viscous transition in polycrystalline quartz: An experimental study

Bettina Richter, Holger Stünitz, Renée Heilbronner

▶ To cite this version:

Bettina Richter, Holger Stünitz, Renée Heilbronner. The brittle-to-viscous transition in polycrystalline quartz: An experimental study. Journal of Structural Geology, 2018, 114, pp.1-21. 10.1016/j.jsg.2018.06.005 . insu-01817648

HAL Id: insu-01817648 https://insu.hal.science/insu-01817648

Submitted on 18 Jun 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

The brittle-to-viscous transition in polycrystalline quartz: An experimental study

Bettina Richter, Holger Stünitz, Renée Heilbronner

PII: S0191-8141(18)30275-X

DOI: 10.1016/j.jsg.2018.06.005

Reference: SG 3676

To appear in: Journal of Structural Geology

Received Date: 29 September 2017

Revised Date: 3 June 2018

Accepted Date: 3 June 2018

Please cite this article as: Richter, B., Stünitz, H., Heilbronner, René., The brittle-to-viscous transition in polycrystalline quartz: An experimental study, *Journal of Structural Geology* (2018), doi: 10.1016/j.jsg.2018.06.005.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	The brittle-to-viscous transition in polycrystalline quartz: an experimental study.
2	Bettina Richter ¹ , Holger Stünitz ^{2,3} , Renée Heilbronner ^{1,2}
3	¹ Geological Institute, Basel University, Bernoullistrasse 32, 4055 Basel, Switzerland
4	² Department of Geology, Tromsø University, Dramsveien 201, 9037 Tromsø, Norway
5	³ Institut des Sciences de la Terre d'Orléans (ISTO), Université d'Orléans, 45071
6	Orléans, France
7	Corresponding author: Renée Heilbronner (renee.heilbronner@unibas.ch)
8	
9	
10	Keywords (4-6):
11	brittle-to-viscous transition, grain size distribution, dislocation creep, quartz rheology,
12	stress exponent
13	
14	Abstract (<250 words)
15	Shear experiments on quartz gouge were performed at elevated confining pressures
16	(predominantly 1.5 GPa) and temperatures (500 °C - 1000 °C) at shear strain rates of
17	$3.5 \cdot 10^{-6}$ s ⁻¹ to $2 \cdot 10^{-3}$ s ⁻¹ to study the brittle-to-viscous transition. An unsystematic
18	temperature dependence of strength at low temperatures changes towards a clear
19	temperature weakening dependence above 650 °C. The transition from a pressure
20	strengthening to a pressure weakening relationship takes place continuously between
21	650 °C and 800 °C. Strain rate stepping experiments reveal power-law breakdown at
22	low temperatures (~650 °C). Between 800 °C and 1000 °C, a stress exponent of $n =$
23	1.9 ± 0.6 and an activation energy of Q = 170 ± 72 kJ/mol indicate a combination of
24	diffusion and dislocation creep. The Goetze criterion is confirmed as the upper stress
25	limit for viscous deformation mechanisms. Localised deformation in the form of

26	semibrittle shear bands with Riedel geometry at low temperatures changes to
27	homogeneous deformation with a pervasive foliation accompanied by a continuous
28	texture evolution between 700 °C and 1000 °C. Fracturing dominates at low
29	temperatures accompanied by increasing amounts of dissolution and precipitation in
30	fine-grained zones with increasing temperature. Above 650 °C, dislocation and
31	diffusion creep are the dominating deformation processes, with dislocation creep
32	being favoured in larger grains while dissolution-precipitation is active in the fine-
33	grained fraction.
34	
35	1. Introduction
36	The transition from fully brittle to fully viscous deformation in rocks (semi-
37	brittle field) occurs over a broad range of conditions in pressure, temperature, strain
38	rate, and H ₂ O-content with several changes in deformation mechanisms (e.g.,
39	Kohlstedt et al., 1995; Scholz, 2007; Hirth and Tullis, 1994). Viscous denotes
40	temperature- and strain-rate dependent deformation here. In the lithosphere, the
41	transition commonly takes place within the middle crust (continents) (e.g., Brace and
42	Kohlstedt, 1980; Handy, 1989; Sibson, 1989) but it may extend into the upper mantle
43	for some rocks, e.g., below the oceanic crust (e.g., Kohlstedt et al., 1995). The
44	transition region coincides with the greatest strength of rocks, and many large
45	earthquakes nucleate in this region (e.g., Sibson, 1989; Scholz, 2007).
46	Under conditions of brittle deformation (e.g., low temperatures, high strain
47	rates, typically shallow crustal levels), the strength of rocks primarily depends on
48	normal stress and pore pressure (Byerlee, 1978). Fracture strength and/or friction
49	control the rock deformation, leading to cataclastic processes (e.g., fracturing,
50	frictional sliding) with characteristic microstructures at greater strain. The intersection

51	of Byerlee's law (Byerlee, 1978) with the Mohr-Coulomb fracture criterion marks the
52	onset of semi-brittle deformation in most lithologies (e.g., Kohlstedt et al., 1995). This
53	intersection is termed "brittle-ductile transition" and is temperature independent.
54	Viscous deformation at higher temperature, typically at deeper crustal levels, depends
55	on strain rates and temperatures, and is caused by diffusion and/or dislocation creep
56	involving recovery processes like dynamic recrystallisation (e.g., Poirier and
57	Guillope, 1979; Tullis and Yund, 1977; Yund and Tullis, 1991; Hirth and Tullis, 1994;
58	Tullis, 2002). The transition from semibrittle to viscous deformation is marked by the
59	brittle-to-viscous-transition (Kohlstedt et al., 1995) (BVT). The Goetze criterion has
60	been introduced as an ad hoc approximation by Kohlstedt et al. (1995) to delineate
61	this transition. It is formulated as $\Delta \sigma = Pc$, i.e. the differential stress to drive viscous
62	flow is equal to the confining pressure.
63	In the transitional semi-brittle zone, stresses required to create new fractures
64	are lower than those for sliding on pre-existing faults (e.g., Byerlee, 1968; Kohlstedt et
65	al., 1995) causing pervasive fracturing and grain-size reduction (cataclasis).
66	Dislocations may be generated by cracking and healing processes (e.g., FitzGerald et
67	al., 1991; Tarantola et al., 2012; Trepmann and Stöckhert, 2013; Stünitz et al., 2017),
68	but whether these dislocations become important for crystal plasticity (dislocation
69	creep) depends on temperature and the efficiency of the recovery processes. At low
70	temperatures, tangling dislocations and high dislocation densities produce strain
71	hardening and greater stresses (e.g., Barber et al., 2010). Dominant crystal plasticity
72	is achieved at higher temperatures, where dislocation climb and recrystallisation are
73	rate controlling. For quartz, three types of dislocation creep regimes have been
74	identified dependent on the dominance of subgrain-rotation recrystallization or grain-
75	boundary migration (Hirth and Tullis, 1992).

76	Grain size reduction by cracking may play an important role for the onset of
77	viscous deformation by increasing the surface area and decreasing the transport
78	distances, leading to accelerated mass-transfer processes (e.g., Pec et al., 2012;
79	Trepmann and Stöckhert, 2003; Menegon et al., 2008; Van Daalen et al., 1999). As a
80	result, deformation by diffusion creep may become the dominant mechanism should
81	such cracking occur (e.g., Paterson, 2013, p. 91-105, and references therein).
82	It emerges from this brief discussion that in the transition region of brittle-to-
83	viscous deformation, several processes are competing: cracking and frictional sliding,
84	crystal-plastic deformation, and diffusive mass transfer combined with friction-less
85	grain-boundary sliding. This study will try to address their relative importance for
86	deformation in quartz over a range of temperatures and confining pressures.
87	Quartz as one of the most abundant silicates in the Earth's crust is often used
88	to model and predict the mechanical behaviour of the upper lithosphere (e.g., Brace
89	and Kohlstedt, 1980). In addition, deformation mechanisms in quartz can be studied
90	independently of chemical effects because of its simple chemistry and very limited
91	compositional variation. Laboratory conditions (e.g., high strain rates: 10^{-3} - 10^{-7} s ⁻¹ ,
92	high temperatures) have been extrapolated to natural conditions (e.g., low strain rates:
93	10^{-10} - 10^{-14} s ⁻¹ , low temperatures) via flow laws that are applicable for viscous
94	deformation (e.g., Jaoul et al., 1984; Kronenberg and Tullis, 1984; Paterson and
95	Luan, 1990; Luan and Paterson, 1992; Gleason and Tullis, 1995; Hirth et al., 2001;
96	Rutter and Brody, 2004a,b). However, few data exist to define the lower temperature
97	limit of the applicability of these flow laws. Futhermore, discrepancies exist for the
98	parameters of flow laws, so that the uncertainty for the users as to which data to use is
99	large, calling for a better characterisation of rheological properties of quartz.
100	We present a series of deformation experiments on quartz in a modified Griggs

101	apparatus to study the rheological transition from brittle-to-viscous deformation
102	mechanisms at elevated pressures and temperatures. The goal is to determine the part
103	of the pressure-temperature-strain rate-range of the transition accessible in the
104	laboratory and to extrapolate it to natural conditions. Some rheological parameters
105	determined for quartz fault-rock material in this study can be used in flow laws for
106	quartz. The extrapolation of the conditions of the brittle-to-viscous transition to
107	natural fault zones will be discussed, together with some applications of the newly
108	determined parameters for the flow law.
109	
110	2. Methods
111	
112	2.1 Experimental method
113	The experiments were carried out on a crushed quartz crystal from a
114	hydrothermally grown single crystal from an Alpine cleft (Aar Massif, Switzerland).
115	Pieces of the crystal were repeatedly crushed and sieved to obtain a grain-size fraction
116	below 100 μ m, used for what will be considered the standard experiments (referred to
117	as 'crushed'). One sample had a grain size range of 7-11 μ m (referred to as 'sieved').
118	The single crystal contained several fluid inclusions (5-200 μ m) (Tarantola et al.,
119	2010). The quartz material itself was dry with a water content close to the detection
120	limit of FTIR measurements (Stünitz et al., 2017). Most inclusions, especially the
121	larger ones, cracked during the crushing procedure. The crushed material is used to
122	represent a fault gouge. However, during the time at experimental pressure and high
123	temperature, before deformation commenced, the crushed material was effectively hot
124	pressed to a dense coherent crystalline material better termed "cataclasite".
125	Insert Figure 1 here

126	The crushed material (0.1 g) with 0.2 wt% water added was introduced
127	between alumina (Al ₂ O ₃) forcing blocks (diameter 6.35 mm), cut at 45° (to achieve
128	maximum shear stress), resulting in a layer of ~1 mm thickness (Fig. 1). The assembly
129	was weld-sealed in a platinum jacket with a nickel foil insert. Sodium chloride was
130	used as confining medium in a Griggs-type solid-medium deformation apparatus (Fig.
131	1). The temperature was controlled by S-type (Pt/Pt-Rh) thermocouples at T > 800 $^{\circ}$ C
132	and by K-type (Cr-Al) thermocouples at T \leq 800 °C. More details on the sample
133	assembly can be found in Pec (2014). Samples were pressurised to confining pressure
134	while the temperature was increased in 100 °C steps (at a rate of 20 °C per minute) to
135	experimental conditions. The deformation experiments were started by applying a
136	directional compressive force on the sample, i.e., by moving the σ_1 piston (<i>Richter et</i>
137	<i>al.</i> , 2016). The σ_1 piston had to push through a lead piece (so-called run-in) before it
138	touched the alumina forcing block on top of the sample. At this point sample
139	deformation started. When the motor was stopped, the temperature was decreased to
140	200 °C within 2-3 minutes with cooling rates between 150 °C and 300 °C per minute
141	to quench the microstructure. Five experiments included a hydrostatic hot-pressing
142	stage (at 1000 °C; 1.5-1.6 GPa confining pressure), where the sample was left for 20
143	hours before decreasing the temperature (2.5 $^{\circ}$ C per minute) to deformation
144	conditions. These samples will be referred to as 'hot pressed'.
145	Two types of experiments were conducted. Experiments of type 1 were
146	conducted at constant displacement rates. The constant displacement rate of the σ_1
147	piston resulted in an approximately constant shear strain rate. Type 2 experiments are
148	strain-rate stepping experiments, where the displacement rate was decreased by about
149	one half or one order of magnitude after reaching peak strength. When steady state
150	was achieved for this reduced rate the displacement rate was decreased again. During

151 the last step, the displacement rate was set again to the initial value.

152

174

153 2.2 Mechanical data: acquisition and processing

154 During the experiment, the applied force on the σ_1 piston, the displacement of 155 the σ_1 piston, and the oil pressure of the confining pressure cylinder were recorded 156 with a frequency of 1 Hz. These signals were converted to maximum principal stress 157 (σ_1 in MPa), minimum principal stress (σ_3 in MPa), and axial displacement (d_a in 158 mm). Data processing and determination of differential stress ($\Delta \sigma$), shear stress (τ) and 159 shear strain (γ) were performed according to *Richter et al.* (2016), including a 160 correction for confining pressure build-up and piston overlap. The shear strain (γ) is 161 calculated as the sum of incremental shear strains between recorded data points. For 162 each data point, a reduced width of the shear zone is used by assuming a constant 163 linear thinning of the sample for a known initial average width from hot pressing 164 experiments and final deformed width measured in thin sections. For the determination of the stress exponents and the activation energies, data 165 166 from the strain rate-stepping experiments and some of the constant shear strain-rate 167 experiments performed at the same deformation temperatures were used. The mean 168 steady-state differential stress and the mean shear strain-rate of each strain-rate step 169 and the differential stress at $\gamma \sim 3$ and the average shear strain rate of the constant 170 shear strain rate experiments were used. The stress corrections of Holyoke and 171 Kronenberg (2010) were not applied because they were not found to be appropriate 172 for the shear experiments in our apparatus (Richter et al., 2017). 173 The friction coefficient of the samples was calculated for the 45° angle of the

175 During deformation, the normal stress on the sample (σ_n) increases $(\sigma_n \text{ is calculated as})$

forcing block pre-cut using a simple Mohr Coulomb construction: $\mu = \tau / \sigma_n$ (Fig. 1b).

176	2D mean stress). Steady-state shear stress at $\gamma = 3$ was used to calculate the friction
177	coefficient for high strain experiments. For samples only loaded to peak-strength, the
178	maximum friction coefficient was calculated. In the strain rate-stepping experiments,
179	the stress value before decreasing the displacement rate was used for the first step, and
180	for the later strain rate steps the mean values at steady-state conditions were used.
181	
182	2.3 Microstructure and texture analysis
183	For the preparation of polished thin sections, the sample jackets were cut
184	parallel to the shear displacement direction and the samples were impregnated under
185	vacuum with epoxy before cutting. For all subsequent microstructural analyses, the
186	samples are viewed with a sinistral shear sense (shear zone boundary is horizontal).
187	All samples were analysed with light microscopy and scanning electron microscopy
188	(SEM; for imaging: a field emission Philips XL 30 ESEM, for electron backscatter
189	diffraction: a field emission Zeiss Merlin SEM with a Nordlys nano camera).
190	Electron backscatter diffraction (EBSD) was used to obtain quartz crystal
191	orientations. Polishing and lapping for EBSD analysis was carried out with colloidal
192	silica suspension Struers OP-U non dry for 3-6 minutes. Samples were coated with a
193	thin carbon layer to prevent charging under high vacuum conditions. Acceleration
194	voltages between 10 kV and 15 kV were used with step sizes of 0.1 to 0.2 μ m. EBSD
195	data were measured with AZtec software and analysed with the MTEX toolbox
196	(Hielscher and Schaeben, 2008). Initial noise reduction was performed with
197	CHANNEL 5 software by removing isolated points and replacing non-indexed points
198	with the orientation of their neighbours (iteratively filled starting with eight similar
199	neighbours down to six or five similar neigbours).
200	Grain maps obtained with MTEX show individual grains separated by a

201	misorientation angle of 10°. Dauphine twin boundaries (misorientation of $60 \pm 5^{\circ}$)
202	were not considered grain boundaries. Grains had to contain at least five pixels to be
203	considered as grains. The 2D grain diameters (d_{equ} = diameter of area equivalent
204	circle) were used as input for the StripStar programme (Heilbronner and Barrett,
205	2014) to obtain the 3D diameters (D_{equ} = diameter of the volume equivalent spheres).
206	The volume weighted distributions of D_{equ} were fitted with a Gaussian Normal, the
207	modal value and the dispersion being given by the mean and the standard deviation.
208	For details on segmentation and grain size determination, see Heilbronner and Kilian
209	(2017).
210	The kernel average misorientation of a grain (gKAM) is calculated from noise
211	reduced EBSD data with a kernel of an order of 4 (see Kilian and Heilbronner, 2017).
212	The 'mis2mean' value of each point of a grain is determined with MTEX. Averaging
213	the 'mis2mean' value of a single grain yields the grain orientation spread (GOS). The
214	GOS is normalised for the long axis (GOS_{la}) to account for the grain-size dependence,
215	which is especially pronounced for highly elongated grains. Both, GOS_{la} and gKAM,
216	indicate the misorientation density of a grain and are therefore considered a measure
217	for intragranular deformation (for derivations of GOS, see Cross et al., 2017).
218	Using smoothed grain boundaries, the PARIS factor, a measure for grain
219	boundary lobateness (Panozzo and Hürlimann, 1983) is used. It is defined by the
220	difference between the length of the convex hull of a grain and that of the real
221	perimeter.
222	
223	3. Mechanical results
224	27 constant shear strain-rate experiments between 500 $^\circ$ C and 1000 $^\circ$ C (Table
225	1) and five strain rate-stepping experiments at shear strain rates between ~2.5 x 10^{-6} s ⁻

226	¹ and ~2.5 x 10^{-3} s ⁻¹ for ~650 °C, 800 °C, 900 °C and 1000 °C (Table 2) were
227	conducted.
228	Insert Table 1 and 2 here
229	
230	3.1 Temperature dependence
231	Above temperatures of ~650 °C, samples clearly weaken systematically with
232	increasing temperature, whereas at 650 °C and below, the strength-temperature-
233	relationship is weak or unsystematic (Fig. 2a). Samples deformed at temperatures
234	below 700 °C show steady-state behaviour or slight strain hardening. At 700 °C or
235	higher, the samples deform below the Goetze criterion ($\Delta \sigma = P_c$) and show steady-
236	state or minor strain weakening at high strain. The difference in strength between 650
237	°C and 700 °C is very large (~1300 MPa). At low temperatures, no significant stress
238	drop or strain weakening occur after yield strength, except for 450br and 481br (see
239	Table 1). These samples show a stress drop as a result of slip along the forcing block.
240	In addition, the alumina forcing blocks started to deform because of the high stresses
241	(e.g., 415br).
242	The slopes of the loading curves up to temperatures of 650 °C are almost
243	identical up to a differential stress of ~1 GPa. At temperatures above 650 °C the slope
244	decreases with decreasing strength and shear strain rate (Figs. 2, 3 and 4).
245	Insert Figure 2 here
246	
247	3.2 Pressure dependence
248	At 650 °C, the sample strength increases with increasing confining pressure,
249	whereas at higher temperatures (700 °C and 800 °C; Fig. 3) strength decreases with
250	increasing confining pressure. At 800 °C, a pressure dependence is not obvious

ACCEPTED MANUSCRIPT 251 between 1.0 and 1.5 GPa, but between 0.5 and 1.0 GPa, the weakening with 252 increasing confining pressure is very clear (Fig. 3). 253 **Insert Figure 3 here** 254 255 3.3 Influence of initial grain size 256 When hot pressed at 1000 °C for 20 hours prior to deformation, samples 257 systematically reach higher strengths compared to samples without hot pressing (Fig. 258 2c). The difference in flow stress is at least 500 MPa at 600 °C at $\gamma \sim 3$ (the forcing 259 blocks start to deform in the hot-pressed sample at such high stresses). At 700 °C, the 260 hot-pressed sample is about 900 MPa stronger and shows strain hardening, whereas 261 the non-hot pressed sample weakens. At 800 °C, the difference is ~200 MPa and both 262 samples show strain weakening. One sample with a small initial grain-size fraction $(7-11 \,\mu\text{m})$ is deformed at 263 1.5 GPa, 800 °C and $2.5 \cdot 10^{-5}$ s⁻¹ (Fig. 2c, 445br). It is weaker than the experiments 264 265 with a larger initial grain-size fraction ($< 100 \,\mu m$) performed at the same strain rate 266 and temperature conditions. At $\gamma \sim 3$, the differential stress of 445br is less than half as 267 high as of 388br (difference ~500 MPa). Steady-state conditions exist between a 268 shear strain of ~ 0.5 to 2.5, after that the sample hardens by ~ 100 MPa until the end of 269 the experiment. 270 271 3.4 Strain rate dependence

Strain rate has a pronounced effect on sample strength at temperatures above 600 °C. At 650 °C and 800 °C, increasing the strain rate by one order of magnitude shifts the flow stress from below to above the Goetze criterion (Fig. 2b). At 900 °C the same shift is achieved by increasing the strain rate by two orders of magnitude.

289	Insert Figure 4 here
288	failed at the slowest strain rate step.
287	lower forcing block collided with the upper alumina piston. At 800 °C, the experiment
286	strain rate step. This behaviour is a consequence of the sample geometry where the
285	higher. The experiment at 900 °C shows abrupt strain hardening at the end of the last
284	of the thinning of the shear zone), and therefore, the differential stress is slightly
283	1000 °C, the last step has slightly higher shear strain-rates than the first step (because
282	constant strain-rate tests to check the reproducibility of the results. At 900 °C and
281	occur at all strain rates (Fig. 4). The strain-rate-stepping tests are plotted together with
280	highest stresses, and lower stresses with increasing temperature and lower strain rate
279	observed at very low strain rates ($\sim 10^{-6} s^{-1}$; Fig. 4). The fastest strain rate causes the
278	temperature experiments, except at 650 °C, where the rate dependence is only
277	experiments at different rates show distinct strain rate dependence for all higher
276	Strain rate-stepping experiments in combination with constant displacement

One strain-rate-stepping experiment included a hot-pressing stage prior to deformation (480br). The initial sample strength is similar to that of the hot-pressed constant-displacement experiment (419br, Fig. 4). At lower strain rates, the stresses of the hot-pressed sample are similar the sample 388br without hot pressing. At the end of the experiment, the strain-stepping sample (480br) is 200 MPa weaker than the constant rate sample (419br).

296

297

4. Microstructural observations

The brittle and the viscous microstructures are described in terms of being discrete Riedel surfaces without discernible shear displacement and a synthetic lowangle orientation (R) or an antithetic high-angle orientation (R²) with respect to the

301	shear plane are termed "Riedel surfaces". When such features have a discernible
302	width, they are termed "shear bands" (SB, not distinguishing C or C' orientations in
303	the sense of Berthé et al. (1979)). Riedel surfaces and shear bands may occur in the
304	same sample. Elongated quartz grains or grain aggregates typically develop a shape
305	preferred orientation, which is termed "foliation" (F) here.
306	
307	4.1 Starting material
308	From analyses with a laser diffraction particle size analyzer, we know that the
309	crushed quartz powder initially has a fractal size distribution with a fractal dimension
310	of 2.4 in the size range up to 100 μ m. During the run-in of the σ_1 -piston, before the
311	piston touches the forcing block, the samples are exposed to varying periods (up to 25
312	hours) of hydrostatic heat treatment. During this time, the same kind of grain growth
313	takes place as in the healing faults described by Keulen et al. (2008), so that the grain-
314	size fraction <1 µm disappears (Fig. 5). Grain growth creates a normal distribution of
315	grains at the lower size end of the fractal distribution.
316	A few samples were additionally hot pressed after reaching experimental
317	conditions (20h at 1000°C). After 25 h and 800°C, the 3D mode of the grain size
318	fraction <30 μ m is ~9.1 μ m, and after 20 h at 1000 °C, it is ~12.8 μ m (Table 3). The
319	initial gouge material is now fully compacted and fully cohesive. For the higher
320	temperature samples (700 °C to 1000 °C), porosity is < 1%, whereas for lower
321	temperature samples (500 to 600° C) porosity is up to ~10 % (values obtained from
322	image analysis) due to a lack of grain growth.
323	Insert Figure 5 here
324	Insert Table 3 here

326 4.2 Deformation microstructures 327 Low-temperature samples (T \leq 650°C) are dominated by a complex Riedel 328 surface geometry with synthetic R and rare antithetic R' surfaces (Fig. 6; samples 329 450br, 479br, 415br, 435br). The R surfaces form at an angle of 20-30° to the 330 direction of the applied load (σ_1 - direction) and have a predominantly brittle 331 appearance at 500°C. The R surfaces are not connected and never transect the whole 332 sample. These observations, in conjunction with the mechanical data, indicate that 333 these R surfaces do not fully control the sample strength. Most original clasts are still 334 visible but have rounded edges and corners. Undulatory extinction and discrete 335 surfaces with small misorientation and with a high angle towards the shear zone 336 boundary exist in several clasts at 650°C (Fig. 6; sample 435br). Tails at clasts are 337 partly developed without resolvable small particles at the light or scanning electron 338 microscope scale at 650°C. Deformation lamellae start to develop in clasts at 600 °C. 339 Shear bands are developed at 650 °C in addition to the R surfaces. At 600 °C, zones 340 with small, equi-axed grains evolve in R surface orientation. These zones become 341 more pronounced at higher temperatures, defining shear bands (Fig. 6; samples 479br, 342 435br, 493br, 419br).

343

Insert Figure 6 here

344 At higher temperatures (T \geq 700 °C), viscous processes dominate the 345 microstructure (Fig. 6; samples 383br, 388br, 412br, 493br, 419br). At 700 °C and 346 800 °C, a shear band and foliation fabric is developed (Figs. 6, 7; samples 383br, 347 388br, 412br, 493br, 419br, 452br, 447br, 448br, 499br), and Riedel surfaces are 348 absent. Elongated tails of recrystallized grains develop at rounded clasts. With 349 increasing shear strain and higher temperature, the shear band and foliation fabric 350 evolves into a single penetrative foliation of elongated clasts and recrystallised grains.

351	Large clasts show more penetrative recrystallisation with increasing temperature of
352	deformation and with increasing strain. At γ ~5 about 10 % clasts remain at 700 °C
353	and 5 % clasts can be distinguished at 800 $^\circ$ C (Fig. 6; samples 383br, 493br, 388br).
354	Rounded clasts are predominant at 700 °C. At 800 °C, highly elongated aggregates of
355	recrystallised grains dominate. Deformation lamellae are pronounced in clasts at 700
356	°C and 800 °C, but rare at 900 °C. At 900 °C and 1000 °C, the elongated aggregates
357	of recrystallised grains give way to a more homogeneous groundmass of recrystallised
358	grains with some clasts preserved in the recrystallised matrix (Fig. 6; samples 412br,
359	337br).

In samples with hot pressing (20h at 1000°C), pre-existing cracks are anneal 360 361 and barely visible. Subsequent deformation at 600 °C does not produce an obvious 362 brittle deformation fabric of the sample (Fig. 6; sample 415br). No Riedel surfaces 363 develop and only minor grain-boundary alignment occurs. At 700 °C and high strains, 364 a shear band and foliation fabric is present with several remaining rounded clasts that 365 develop tails (Fig. 6; samples 493br). At a given shear strain, the foliation angle with 366 the shear zone boundary is clearly larger than in samples without hot pressing and the 367 microstructure appears less deformed. At 800 °C, a pervasive foliation dominates the 368 fabric, again with a slightly larger angle after similar shear strain than in the hot 369 pressed sample (Fig. 6; sample 483br). More or less elongated clasts are present 370 compared to the sample without hot pressing.

- 371
- 372 4.3 Effect of strain rate on microstructure

Three constant shear strain-rate experiments were conducted at shear strain rates different from ~2.5 $\cdot 10^{-5}$ s⁻¹ (Fig. 2b). At 650 °C and a shear strain rate of 0.35 $\cdot 10^{-5}$ s⁻¹ several grains show more brittle deformation, and less rounded grain

376	shapes at low shear strain ($\gamma = 1.1$; Fig. 7; sample 500br). Shear bands are absent and
377	the fabric resembles samples deformed at lower temperatures at 2.5 x 10^{-5} s ⁻¹ (Fig. 6;
378	sample 479br). At 800 °C and 900 °C, faster shear strain rates $(27 \cdot 10^{-5} \text{ s}^{-1} \text{ and } 189 \cdot 10^{-5} \text{ s}^{-1})$
379	5 s ⁻¹ , respectively) cause a more heterogeneous deformation, shear bands, and samples
380	resemble those deformed at ~100 to 200 $^{\circ}$ C lower temperatures at strain rats of 2.5 x
381	10 ⁻⁵ s ⁻¹ (Fig. 7; samples 447br, 499br).
382	Insert Figure 7 here
383	
384	4.4 Effect of confining pressure on microstructure
385	Samples deformed at 1.0 GPa confining pressure and 650 °C show Riedel
386	surfaces and less commonly shear bands, very similar to samples deformed at 1.5 GPa
387	confining pressure (Figs. 6, 7; samples 494, 435br). Clast shapes are less rounded than
388	at 1.5 GPa confining pressure (cf. Figs. 6 and 7, shear strain is higher in Fig. 7;
389	samples 494br, 435br). At 700 $^{\circ}$ C, 1.0 GPa, the samples are characterised by a larger
390	number of shear bands and less homogeneous deformation than at 1.5 GPa (cf. Figs. 6
391	and 7; samples 494br, 435br), whereas at 800 °C, 1.0 GPa, more clasts survive and the
392	recrystallisation is less complete than at 1.5 GPa (cf. Figs. 6 and 7; samples 448br,
393	388br).
394	At 0.5 GPa confining pressure and 800 °C, deformation is localised in long
395	synthetic R surfaces accompanied by several transgranular fractures (Fig. 8; sample
396	386br). Most of the displacement is accumulated along the R surfaces, where the
397	gouge material is highly pulverised (submicron-scale) (Fig. 8b). Large clasts are
398	slightly rounded at the edges (Fig. 8a) and microstructures resemble those of the
399	650°C, 1.5 GPa sample (cf. Fig. 6; sample 435br). In the series of 0.5, 1.0, and 1.5
400	GPa samples, more brittle deformation microstructures clearly develop with

401 decreasing confining pressure, particularly toward the lower pressure end.

402 Insert Figure 8 here

403

404 4.5 Grain size

405	At conditions of 1.5 GPa confining pressure and shear strain rates of $\sim 3 \cdot 10^{-5}$ s ⁻
406	¹ , the 3D mode of recrystallized grain size increases from 2.1 μ m at 700 °C to >15 μ m
407	at 1000 °C (Fig. 9a, Table 3). The sample that was prepared with a grain-size fraction
408	of 7-10 μ m, yields a slightly larger grain size of 4.4 μ m compared to the standard
409	sample that yields 4.1 μ m at the same temperature (800°) (Fig. 9b). At 1.0 GPa
410	confining pressure, the recrystallised grain size is slightly smaller than at 1.5 GPa (1.5
411	versus 2.1 µm at 700 °C, and 3.3 versus 4.1 µm at 800°C). At 0.5 GPa and 800 °C, no
412	recrystallization occurs. Shear strain rates faster than the standard value of $3 \cdot 10^{-5}$ s ⁻¹
413	cause smaller recrystallised grain sizes. At 800 °C and 10 times faster, the 3D mode is
414	2.0 μm versus 4.1 $\mu m,$ at 900 °C and 100 times faster, it is 1.5 μm versus 6.1 μm
415	(Table 3).
415 416	(Table 3). Insert Figure 9 here
415 416 417	(Table 3). Insert Figure 9 here An initial hot-pressing stage causes growth of the small grains (Fig. 5, Table 3)
415 416 417 418	(Table 3). Insert Figure 9 here An initial hot-pressing stage causes growth of the small grains (Fig. 5, Table 3) and the resulting grain sizes at the onset of deformation are larger. After deformation,
415 416 417 418 419	(Table 3). Insert Figure 9 here An initial hot-pressing stage causes growth of the small grains (Fig. 5, Table 3) and the resulting grain sizes at the onset of deformation are larger. After deformation, the recrystallized grain size of these samples is similar to that of samples without hot
415 416 417 418 419 420	(Table 3). Insert Figure 9 here An initial hot-pressing stage causes growth of the small grains (Fig. 5, Table 3) and the resulting grain sizes at the onset of deformation are larger. After deformation, the recrystallized grain size of these samples is similar to that of samples without hot pressing (1.6 μm compared to 2.1 μm at 700 °C, 4.8 μm compared to 4.1 μm at 800
415 416 417 418 419 420 421	(Table 3). Insert Figure 9 here An initial hot-pressing stage causes growth of the small grains (Fig. 5, Table 3) and the resulting grain sizes at the onset of deformation are larger. After deformation, the recrystallized grain size of these samples is similar to that of samples without hot pressing (1.6 μm compared to 2.1 μm at 700 °C, 4.8 μm compared to 4.1 μm at 800 °C; cf. Fig. 9b, Table 3).
 415 416 417 418 419 420 421 422 	(Table 3). Insert Figure 9 here An initial hot-pressing stage causes growth of the small grains (Fig. 5, Table 3) and the resulting grain sizes at the onset of deformation are larger. After deformation, the recrystallized grain size of these samples is similar to that of samples without hot pressing (1.6 μ m compared to 2.1 μ m at 700 °C, 4.8 μ m compared to 4.1 μ m at 800 °C; cf. Fig. 9b, Table 3).
 415 416 417 418 419 420 421 422 423 	(Table 3). Insert Figure 9 here An initial hot-pressing stage causes growth of the small grains (Fig. 5, Table 3) and the resulting grain sizes at the onset of deformation are larger. After deformation, the recrystallized grain size of these samples is similar to that of samples without hot pressing (1.6 µm compared to 2.1 µm at 700 °C, 4.8 µm compared to 4.1 µm at 800 °C; cf. Fig. 9b, Table 3). 4.6 Texture

425 decrease with increasing temperature between 700 $^{\circ}$ C and 1000 $^{\circ}$ C (Fig. 10) with hot

pressed samples showing similar values to samples without hot pressing. For
individual grains, neither PARIS factors, indicating high lobateness, nor grain size
correlate with GOS and gKAM values.

429 Insert Figure 10 here

429 Above 650 °C, the recrystallised matrix dominates the CPO for standard 430 confining pressure (1.5 GPa) and standard shear strain rates ($\sim 2.5 \cdot 10^{-5} \text{ s}^{-1}$). Separate

432 pole figures are calculated for smaller and larger fractions of recrystallized grains

433 (Fig. 11). The delimiting size between small and large grains is derived from the 3D

434 mode of the size distribution of recrystallized grains ($< 25 \mu m$; Fig. 11). Pole figures

435 are calculated for grains with 2D diameters (= area equivalent diameters) larger or

436 smaller than the delimiting 3D diameter, i.e., pole figures for grains larger than the 3D

437 mode and pole figures for grains predominantly smaller than the 3D mode. For the

438 larger grain size fraction, the CPO is always considerably stronger. The CPO

439 progressively evolves between 700 °C and 1000 °C. At 700 °C and 800 °C, there is

440 one peripheral maximum of the *c*-axes slightly rotated with the sense of shear. At 900

441 °C, a peripheral and a central *c*-axis maximum both are established. Towards 1000 °C

the CPO evolves to a single central *c*-axes maximum.

443 The pole figures of the fine-grained fraction shows a different development 444 with increasing temperature. At 700°C, the CPO is more diffuse and the peripheral c-445 axis maximum is less pronounced compared to that of the larger grain size. The 446 orientation of the maximum is similar to the maximum of the larger grains. At 800 °C, 447 the smaller grains ($< 4 \mu m$) again show a more diffuse CPO, but the *c*-axis maximum 448 is rotated by 20° with the sense of shear with respect to that of the larger grains. At 449 900 °C, the peripheral c-axes are more dispersed and the c-axis maximum is rotated 450 by 10° with the sense of shear compared to that of the larger grains. The central

451	maximum of c -axes is less pronounced than that of the larger grains. The central c-
452	axis maximum at 1000 °C is present in fine grains as well as in larger grains. A
453	rotation with the sense of shear cannot be identified.
454	Insert Figure 11 here
455	
456	5. Discussion
457	Our series of experiments employs crushed material of natural quartz. This
458	approach simulates a cataclasite produced by brittle deformation in nature such as
459	seismic or aseismic movement along a fault. Such a cataclastic rock deforms
460	dominantly by frictional mechanisms at low temperatures, high strain rates and low
461	confining pressures, and by fully viscous mechanisms at higher temperatures, lower
462	strain rates and higher confining pressures. The differences in the mechanical data and
463	microstructures demonstrate that the starting material used here is adequate to study
464	the brittle-to-viscous transition (BVT) as a function of pressure, temperature and
465	strain rate in polycrystalline quartz rocks. Another aspect that may be studied by using
466	such a material is how deformation mechanisms change as a function of deformation
467	history, i.e. from a brittle precursor material to a subsequently viscously deformed
468	material. Such a transition may occur, e.g., as a transition from seismic to postseismic
469	creep.
470	

471 5.1 Mechanical parameters of the brittle-to-viscous transition 472 The BVT can be defined on the basis of different parameters: mechanical data 473 with respect to the Goetze criterion ($\Delta \sigma \approx P_c$); pressure dependence of differential 474 stress; friction coefficients and stress exponents, and microstructural transition from 475 dominantly brittle to viscous deformation structures.

476	The greatest difference in differential stress at a strain rate of $\sim 10^{-5}$ s ⁻¹ is
477	observed between the 600/650 $^{\circ}$ C and 700 $^{\circ}$ C samples (Fig. 2a) where the strengths
478	lie above and below the Goetze criterion that marks the transition from brittle ($\Delta \sigma >$
479	P_c) to viscous ($\Delta \sigma < P_c$) deformation ("plastic" in <i>Kohlstedt et al.</i> , 1995). This
480	observation places the BVT between 650 °C and 700 °C for a strain rate of $\sim 10^{-5}$ s ⁻¹ in
481	terms of the Goetze criterion.
482	For experiments by others at the same axial strain rates as our shear strain rates
483	(<i>Hirth and Tullis</i> , 1994), the strength of quartzite samples at 700 °C and 850 °C (at P_c
484	=1.2 GPa) shows substantial scatter, but similar average values as our samples. The
485	deformation processes in that study were identified as semi-brittle flow (700 °C) and
486	dislocation creep (850 °C). The similar sample strengths of the intact rock and our
487	gouge material indicate that at higher temperatures the cataclasite is fully compacted
488	and behaves like a normal polycrystalline material. We attribute the temperature
489	differences for the BVT between our samples and those of Hirth and Tullis (1994) to
490	differences in the amount of total strain attained and that samples in shear are weaker
491	than in axial compression, so that localisation in coaxially deformed samples occurs in
492	narrower zones than in our shear zones, causing greater strain rates.

493 The BVT coincides with another mechanical observation in the samples: At 494 stresses below the Goetze criterion, the slope of the loading part of the stress strain 495 curves decreases systematically with decreasing flow stress (Figs. 2, 3 and 4). The 496 loading curve in the Griggs apparatus is not purely elastic at higher temperatures. The 497 systematically decreasing slope at higher temperatures is the result of increasing 498 viscous deformation processes in the samples during loading. In experiments 499 deformed above the Goetze criterion, the slope is similar for all samples, indicating no 500 substantial viscous deformation processes during loading.

501	Higher confining pressures cause greater sample strength for frictional sliding
502	(Byerlee, 1978) and cracking (Paterson and Wong, 2005 and references within),
503	whereas the viscous creep strength of wet quartz decreases with increasing confining
504	pressure (Tullis et al., 1979; Kronenberg and Tullis, 1984). The observed
505	strengthening of samples with increasing pressure at low temperatures (650 $^{\circ}$ C, Fig. 3)
506	is consistent with frictional or brittle behaviour (cf. Hirth and Tullis, 1994). The
507	lowering of flow-stress with increasing pressure observed at $T > 650 ^{\circ}\text{C}$ (Fig. 3)
508	indicates the onset of viscous deformation. At a first glance, the difference in flow
509	stress between samples deformed at 1.0 and 1.5 GPa P_c (453br and 437br) does not
510	appear significant (Fig. 3), but when seen with respect to the Goetze criterion, the
511	difference is well defined: The sample at 1.5 GPa (437br) barely reaches the Goetze
512	criterion, whereas the sample at 1.0 GPa (453br) is clearly above it. The difference in
513	flow stress is clearly established at low P_c between 0.5 GPa and 1.0 GPa (Fig. 3). A
514	very similar trend was observed in novaculite by Kronenberg and Tullis (1984): a
515	smaller stress dependence at $P_c \ge 1.0$ GPa and a distinct pressure dependence at lower
516	confining pressures. The decreasing peak stress with increasing pressure is related to
517	increased water fugacity and its enhancing effect on crystal plasticity (Tullis et al.,
518	1979; Kronenberg and Tullis, 1984; Paterson and Luan, 1990; Kohlstedt et al., 1995).
519	The pressure dependence delineates the BVT also in the range of 650 °C to 700 °C for
520	$\sim 10^{-5} \text{ s}^{-1}$.

- 521
- 522 5.2 Coefficient of friction

523 To delineate the BVT better, mechanical properties such as friction coefficient 524 and stress exponent can be used. Frictional deformation should be rather temperature 525 insensitive up to 440 to 500 °C (*Paterson and Wong*, 2005, p. 172), whereas viscous

526	deformation is by definition temperature dependent. Viscous flow laws imply a strong
527	positive stress dependence for the strain rate (Orowan, 1940; Kohlstedt and Hansen,
528	2015), whereas in frictional deformation the strain rate at slow sliding rates (as
529	employed in this study) are assumed to be weakly dependent or strain-rate
530	independent as a first approximation (Byerlee, 1978; Kohlstedt et al., 1995; Paterson
531	and Wong, 2005, p. 178, and references therein). To better use the mechanical data for
532	defining the BVT, we determined the friction coefficients and stress exponents for
533	many of our experiments, even if these mechanical properties are outside the range of
534	conditions for which brittle deformation would be expected.
535	At 1.5 GPa and below 700 °C, the friction coefficient ($\mu \sim 0.45$; Fig. 12) is
536	somewhat less than normal rock friction values (0.6; Byerlee, 1978). The temperature
537	dependence is very small up to 650 °C. From 700 °C to 1000 °C, the friction
538	coefficient shows a systematic temperature dependence. At 1.5 GPa confining
539	pressure and a strain rate of $2.5 \cdot 10^{-5}$ s ⁻¹ , the friction coefficient $\mu \sim 0.3$ to 0.05, at a
540	strain rate of $2.5 \cdot 10^{-4}$ s ⁻¹ , $\mu \sim 0.35$ to 0.16. At strain rates of $\sim 10^{-6}$ s ⁻¹ , the friction
541	coefficients become very small ($\mu < 0.02$). Low confining pressures cause greater
542	friction coefficients between 650 °C and 800 °C (Fig. 12b): At 0.5 GPa and 800 °C,
543	the greatest friction coefficient occurs ($\mu = 0.53$), which is twice the value at 1.0 GPa.
544	A distinct jump in the values occurs for the friction coefficient between 650 °C and
545	700 °C for a strain rate of 2.5 x 10^{-5} s ⁻¹ , coinciding with the Goetze criterion (Fig. 12).
546	Insert Figure 12 here
547	Frictional deformation in quartz and granite, in general, is only weakly
548	temperature-dependent below 350-400 °C (Blanpied et al., 1995; Chester and Higgs,
549	1992), so that the smaller friction coefficients and the strong temperature dependence
550	at T > 650 °C also indicate a change in deformation mechanism to viscous behaviour.

551	The pronounced strain rate dependence of strength between 650 $^\circ$ C and 900 $^\circ$ C
552	(Figs. 2b, 4, 12a) is present down to temperatures as low as 650 °C (Fig. 4). This
553	behaviour emphasises the contribution of viscous deformation processes, and thus a
554	semi-brittle character at these low temperatures. It is remarkable that in one sample
555	(500br) at temperatures of 650 $^{\circ}$ C, the flow stress can be below the Goetze criterion.
556	However, in that sample, steady state was not achieved because at the low strain rate
557	of ~ 10^{-6} s ⁻¹ only a small total strain was attained (Figs. 2b and 4). Strain rates of ~ 10^{-4}
558	s ⁻¹ are required to achieve sample strengths above the Goetze criterion and realistic
559	friction coefficients at $T = 800$ °C, whereas a strain rate of ~ 10^{-3} s ⁻¹ is required at $T =$
560	900 °C (Figs. 2b, 12a). These results can be used to extrapolate the BVT to lesser
561	strain rates (see below).

562

563 5.3 Stress exponent and activation energy

Based on a power-law creep relationship, the stress and strain rate data can beused to derive a stress exponent and an activation energy (Fig. 13):

566 $\dot{\gamma} = A \cdot \Delta \sigma^n \cdot \exp^{-\frac{Q}{R \cdot T}}$ (Eq. 1)

567	where $\dot{y}[s^{-1}]$ is the shear strain rate, A [MPa ⁻ⁿ ·s ⁻¹] is a material-dependent
568	constant, $\Delta\sigma$ [MPa] is the differential stress, <i>n</i> is the stress exponent, <i>Q</i> [J/mol] is the
569	activation energy, R [J·mol ⁻¹ ·K ⁻¹] is the ideal gas constant and T [K] is the
570	temperature. At low temperatures (~650 °C), the <i>n</i> -value is high ($n = 6.4 \pm 1.3$). The
571	stress exponent of high-temperature experiments (800-1000 °C) is 1.9 ± 0.6 (Fig. 13a)
572	and shows little variation with temperature. For high temperature experiments, the
573	activation energy is determined to be ~170 \pm 72 kJ/mol (Fig. 13b).
574	The highest stress values at 900 °C (499br at ~ 10^{-3} s ⁻¹) and 800 °C (447br, fast step of
575	488br at ~10 ⁻⁴ s ⁻¹ ; Fig. 4) are not included in the determination of the stress exponent

576	and the activation energy because steady state is not indicated by the mechanical data.
577	Insert Figure 13 here
578	The calculated stress exponents confirm the transition from brittle-dominated
579	to viscous-dominated deformation at temperatures of 650 / 700 $^\circ$ C, and strain rates of
580	~10 ⁻⁵ s ⁻¹ . The stress exponent of ~6.4 of samples deformed at low temperatures (Fig.
581	13) is too high for dislocation creep deformation with typical values of $n = 3-5$ (e.g.,
582	Karato, 2008; Paterson, 2013; Kohlstedt and Hansen, 2015), thus indicating the
583	beginning of the power-law breakdown, i.e., the lack of rate-controlling viscous
584	deformation at T < 700 °C. On the other hand, the <i>n</i> -values of 1.8 to 2 derived for
585	samples deformed at $T > 700$ °C (Fig. 13) are too low for dislocation creep, yet rather
586	high for diffusion creep.
587	Our determined Q-value of 168 to 170 kJ/mole is very similar to values
588	determined by Jaoul et al. (1984) and lies in the range of other experimentally
589	determined values for dislocation creep (Table 4). Activation energies for diffusion
590	creep vary considerably and the values are highly dependent on the involved material
591	(silicon or oxygen diffusion) and the controlling process (transport or reaction) (e.g.,
592	137-178 kJ/mol for silicon diffusion in Farver and Yund, 2000; 142-243 kJ/mol for
593	oxygen diffusion in Giletti and Yund, 1984; 220 kJ/mol in Rutter and Brodie, 2004a).
594	Hence, the range of previously determined activation energies and the precision of our
595	determination are inadequate to conclude decisively about the nature of the process
596	causing it. Rutter and Brodie, 2004a,b are the only studies that have determined
597	activation energies for both processes, and the values are very similar (Table 4). Based
598	on this evidence and our observations of a constant stress exponent of n \sim 2 between
599	800 °C to 1000°C, we would like to maintain the idea that the activation energies of
600	contributing diffusion creep and dislocation creep mechanisms should be similar.

601	Insert Table 4 here
602	A stress exponent $(n \sim 2)$ has been derived for deformation by dislocation-
603	accommodated grain-boundary sliding by, e.g., Kohlstedt and Hansen (2015).
604	However, the rather strong CPOs occurring in our samples argue against grain
605	boundary sliding (GBS). Although evidence exists for strong CPOs produced by GBS
606	(e.g., Schmid et al., 1987; Gomez Barreiro et al., 2007; Hansen et al., 2011), the
607	general consensus is that dominant GBS should produce weak CPOs (e.g., Edington et
608	al., 1976; Bell and Langdon, 1967). A possible explanation is a combination of
609	deformation processes, where dislocation creep produced strong CPOs and <i>n</i> -values of
610	3 to 5, in tandem with grain-size-sensitive diffusion creep, including grain boundary
611	sliding, which produced weak CPOs. Both together yield <i>n</i> -values of ~ 2 .
612	To derive a grain-size exponent, we used samples 388br (standard), 419 (hot
613	pressed) and 445br (sieved to 7-11 μ m), which were all deformed at 800 °C, 1.5 GPa
614	and 10^{-5} s ⁻¹ , but yielded significantly different differential stresses. The grain size
615	exponent $p = m / n$, where m is the slope of the linear fit in the log(stress) versus
616	log(grain size) diagram (Fig. 13c) and n is the average stress exponent of 1.9. The
617	correlation coefficient for this fit is very low (R= 0.258), and the value of p = 1.08 is
618	not well constrained. While our database is far too small for a reliable determination
619	of the grain size exponent, it is nevertheless interesting to note that similar uncertainty
620	is present in published data (Rutter and Brodie, 2004a).
621	
622	5.4 Microstructure development at the brittle-to-viscous transition
623	The microstructural changes correspond to the transition conditions inferred
624	from the mechanical data. At strain rates of ~10 ⁻⁵ s ⁻¹ , the samples at $T \ge 700$ °C show

625 features of dynamic recrystallisation, whereas at lower temperatures, Riedel fractures

626	across grains are common (Figs. 6 and 7). The transition between brittle and viscous
627	microstructures is clearly visible between 650 °C and 700 °C at the strain rate of ~ 10^{-5}
628	s ⁻¹ and confining pressures of 1.0 and 1.5 GPa. This observation is in excellent
629	agreement with the transition defined by mechanical data discussed above. The effect
630	of confining pressure becomes obvious in the microstructures at low confining
631	pressure of 0.5 GPa, where samples at 800 °C show predominantly brittle
632	microstructures (Fig. 8). The strain rate effect is not as clearly expressed in the
633	microstructure: At 650 °C, deformation at a strain rate of $\sim 10^{-6}$ s ⁻¹ produces similar
634	microstructures as a strain rate of $\sim 10^{-5}$ s ⁻¹ (cf. Figs. 6, 7). But at $\sim 10^{-5}$ s ⁻¹ , clasts are
635	more rounded, and Riedel surfaces and shear bands are more pronounced. These
636	differences may well be due to the less total strain of the sample for a slower strain
637	rate. The faster strain rates at 800 °C and 900 °C yield microstructures that resemble a
638	mixture of microstructures at a strain rate of $\sim 10^{-5}$ s ⁻¹ between 600 °C and 700 °C (for
639	high shear strain): several remaining large clasts coexist with clusters of recrystallised
640	grains in a fabric dominated by shear bands (below referred to as "transitional").
641	At stresses above the Goetze criterion, typical regime 1 stress-strain curves
642	with pronounced weakening after peak stress (Hirth and Tullis (1992) are only
643	observed at 800 °C and a strain rate of ~ $2.5 \cdot 10^{-4}$ s ⁻¹ (Fig. 2). Bulging recrystallisation
644	concentrates along shear bands producing small new grains. After sufficient
645	recrystallisation, strain partitioning and weakening occur while mechanical and
646	microstructural steady state are not achieved. Below the Goetze criterion, generally at
647	higher temperatures and slower strain rates, minor strain weakening occurs, except at
648	1000 °C where steady state is attained (Fig. 2). The associated microstructure is
649	dominated by a pervasive shape foliation of recrystallised grains and the development
650	of a CPO. Hence, mechanical steady state is approached, but not perfectly realised,

651	and this result is consistent with incomplete recrystallisation (Fig. 6), a switch from
652	one deformation mechanism to the next, or simultaneous operation of two
653	mechanisms.
654	
655	5.5 Texture and grain size at the brittle-to-viscous transition
656	5.5.1 Misorientation density
657	So as to distinguish recrystallised grains from potential survivor grains of the
658	original quartz material on the basis of some intragranular misorientation density, the
659	grain kernel average misorientation (gKAM) and the grain orientation spread
660	normalised with respect to the long axis (GOS_{la}) were measured. We initially assumed
661	that low intragranular misorientation densities are characteristic of newly
662	recrystallised, recovered grains, whereas high misorientation densities are typical for
663	the original crushed material. However, it was found that recrystallising grains
664	continue to accumulate intragranular strain as the overall shear deformation continues.
665	Accordingly, the gKAM remains high and rather reflects grain-scale strain (Kilian and
666	Heilbronner, 2017). A correlation of high gKAM with small (recrystallized) grain size
667	has also been noted (Heilbronner and Kilian, 2017). In other words, the gKAM, or
668	any other measure of internal misorientation density, does not reflect recovery, and
669	therefore cannot be used to distinguish recrystallized grains from relict grains.
670	However, gKAM and GOS_{la} do vary as a function of temperature: The higher
671	the deformation temperature, the smaller the intragranular misorientation density (Fig.
672	10). Pre-deformation hot pressing or sieving does not significantly influence this
673	trend. At lower temperatures, large grains with high PARIS factors (more lobate
674	grains) have higher gKAM and GOS_{la} values than the small grains with low PARIS
675	factor (fully convex grains). In other words, large grains tend to have high

676 misorientation densities while small grains display the full spectrum of misorientation 677 density, from fully recovered to highly strained. This distinction becomes 678 progressively smaller with increasing temperature, until, at 1000 °C, all grains, 679 irrespective of shape and size, have very small misorientation densities, i.e., appear 680 fully recovered. 681 5.5.2 CPO of diffusion and dislocation creep 682 To investigate if diffusion creep and dislocation creep are grain-size selective, 683 we consider the textures of the small and the large grain-size fractions separately (Fig. 684 11). Small and large grain-size fractions are delimited by the 3D mode which as a 685 result the number of grains in the smaller and larger fraction differ considerably. Pole 686 figures are therefore weighted by the area of the evaluated grains to avoid artefacts. 687 We also checked by comparing number-weighted pole figures that were calculated for 688 the large grain-size fraction and for the same number of randomly selected small 689 grains. The texture indices and the pole figure maxima of [c], $\langle a \rangle$, and $\langle r \rangle$ pole 690 figures of smaller grains are weaker than those for larger grains. The weaker textures 691 are consistent with diffusion creep mechanisms being active in the smaller grain size

692 fraction.

693 At 700 °C, the weaker texture of the small grains is attributed to processes 694 such as solution precipitation and nucleation. At 800 °C and 900 °C, textures of the 695 small grains are not only weakened but also the c-axis maxima are rotated with 696 respect to those of the large grains. For 800 °C and 900 °C, the rotation is 20° and 10°, 697 respectively, clockwise in the sense of the applied shear, compatible with grain-698 boundary sliding and a stiff rotation of grains. At 1000 °C, the difference between the 699 pole figures of the smaller and larger grain size fractions is the texture strength, not in 700 the texture type. As the rotation axis of the applied shear is parallel to the (strong) c-

	ACCEPTED MANUSCRIPT
701	axis maximum, a potential rotation is difficult to discern.
702	Comparing the experimental quartz deformation analysed here with results
703	derived from naturally or experimentally deformed quartzites, we find that the CPO
704	evolution of the larger grain-size fraction (Fig. 11) is consistent with observations
705	where high temperature deformation produces a central <i>c</i> -axis maximum, whereas low
706	temperature deformation (or small shear strains in experiments) produces peripheral
707	maxima (e.g., Schmid and Casey, 1986; Stipp et al., 2002; Heilbronner and Tullis,
708	2002, 2006). In terms of the three microstructural regimes identified in nature, the 700
709	$^\circ$ C and the 800 $^\circ$ C experiments would coincide with BLG (bulging), the 900 $^\circ$ C
710	sample with SGR (subgrain rotation) and the 1000°C sample with GBM (grain
711	boundary migration). In a more recent study by Kilian and Heilbronner (2017), it was
712	found that the textures of Black Hills quartzite (BHQ) deformed in the dislocation
713	creep regimes 1, 2, and 3, develop from a peripheral <i>c</i> -axis maximum towards a
714	central c -axis maximum as the result of a transition from dominant nucleation /
715	bulging recrystallisation to dominant subgrain rotation recrystallisation.
716	5.5.3 Grain size distributions in diffusion and dislocation creep
717	In a mixed mode of diffusion creep and dislocation creep, as inferred here
718	from the stress exponents of $n \sim 2$, diffusion creep is expected to be more efficient in
719	small grains while dislocation creep, which is grain-size insensitive, should be more
720	active in larger grains (Tullis, 2002). An estimate for the upper grain-size limit of
721	grain-size-sensitive creep is given as $<1 \mu m$ (<i>Rutter and Brodie</i> , 2004a), whereas <i>Luan</i>
722	and Paterson (1992) estimate the upper size limit to be ~20 μ m. The recrystallised
723	grain size measured for our experiments at T = 800 - 1000 $^{\circ}$ C, is well within these
724	limits: Recrystallised grain sizes range from <1 μ m up to 25 μ m, with modal values

725 (3D mode) of ~4, ~6 and ~10 μm for 800 °C, 900 °C and 1000°C, respectively (Fig.

29

726	9). As was shown, the partitioning of deformation mechanisms into smaller and larger
727	grain size fractions takes place in our samples for grain size below and above these
728	modal values as a threshold. Our threshold values are closer to the transition limit of
729	Luan and Paterson (1992) for dislocation and diffusion creep.
730	Before reaching the hit point, the original fractal grain-size distribution has
731	been modified by grain growth. We can estimate from the analysis of two hot-
732	pressed samples that the very smallest size fraction has been obliterated in a manner
733	described by Keulen et al. (2008) for healed faults. However, we do not know how
734	far grain growth proceeded during pressurization and heating, and what the smallest
735	grain size may be at the start of the experiment. In contrast, when the starting
736	material consists of a grain-size fraction of 7-11 μ m (sample 445br), we know that
737	any grain smaller than 7 μ m must have formed during deformation, possibly by a
738	process such as bulging recrystallisation, nucleation (Kilian and Heilbronner, 2017),
739	or creep cavitation (Precigout and Stunitz, 2016). Comparing samples 445br
740	(sieved), 388br (standard) and 419br (hot pressed), we note that the grain sizes and
741	stress do not follow a piezometric relation. Grain sizes (3D modes) of 4.4, 4.1 and
742	4.8 μ m were measured for flow stresses of 309, 791 and 1016 MPa, respectively.
743	Rather than decreasing with grain size, stress seems to increase (cf. Fig. 13c). In
744	other words, the piezometer relation does not hold and pure dislocation creep can be
745	excluded, suggesting that a substantial contribution of diffusion creep has to be
746	inferred.
747	
748	5.6 Using the Griggs apparatus for the derivation of stress exponents
749	As mentioned above, for dislocation creep in quartz, stress exponents of $n = 3$ -
750	5 are often given in the literature (Gleason and Tullis, 1995; Luan and Paterson,

751 1992, Hirth et al., 2001), despite the fact that lower values were determined 752 experimentally (n < 2.5) in many cases (e.g., Jaoul et al., 1984; Kronenberg and Tullis, 1984; Paterson and Luan, 1990; Rutter and Brodie, 2004b, see Table 4). For 753 754 some earlier data acquired with solid-medium apparatus, a large uncertainty is 755 attributed to imprecise stress measurements in the solid-medium deformation 756 apparatus (e.g., Gleason and Tullis, 1995). However, a large part of the lack of 757 precision and accuracy of the solid medium apparatus is caused by friction and errors 758 associated with the hit point determination. Strain-rate-stepping experiments should 759 not be affected by this error, because all data within a single experiment is determined 760 with respect to the same hit point, and only a slope is fitted to the data, regardless of 761 the absolute values of stresses. In addition, a recent study indicates good accuracy for 762 stresses derived from Griggs apparatus (Richter et al., 2016). Furthermore, the lack of 763 evidence for partial melting in our samples would be consistent with expected low 764 values for stress exponents as suggested by Jaoul et al., (1984); Luan and Paterson 765 (1992).

Stress exponents can only be correlated with deformation processes if steady 766 767 state conditions are reached. Achieving this state may be especially problematic for 768 regime 1 conditions (Hirth and Tullis, 1994). The required high strain conditions are 769 difficult to achieve in coaxial compression experiments. Our shear experiments are 770 deformed to high shear strain (up to $\gamma \sim 5$) where mechanical and microstructural 771 steady state is more or less achieved, at least at high temperatures (800-1000 °C; Fig. 772 2). Hence, the low stress exponents cannot be explained by incomplete steady state 773 conditions as suggested by Gleason and Tullis (1995). In addition, Gleason and Tullis 774 (1995) associate low stress exponents with the transition from regime 2 to regime 1 775 after Hirth and Tullis (1992). Such a temperature dependent microstructural change is

776	not observed in our samples used for calculating stress exponents. However, the
777	observed microstructures indicate dislocation creep and diffusion creep between 800
778	°C and 1000 °C. In contrast, dislocation creep was solely inferred in earlier studies
779	(e.g., Gleason and Tullis, 1995; Jaoul et al., 1984). These studies used quartzites with
780	narrow grain-size ranges and large average grain sizes where grain-size-sensitive
781	deformation mechanisms are unlikely. The broad grain-size range of our starting
782	material with a pronounced fine-grained fraction enables grain-size-sensitive diffusion
783	creep in addition to grain-size-insensitive dislocation creep resulting in mixed stress
784	exponents.
785	
786	5.7 Extrapolation to natural conditions
787	It is important to attempt the extrapolation of experimental results to natural
788	conditions. As a first step, the different mechanical and microstructural criteria should
789	be combined to delineate the BVT. In the present study, sample deformation was
790	classified as viscous, semi-brittle, and transitional on the basis of the microstructural
791	suites and experimental behaviour, where transitional deformation is defined by the
792	presence of many remaining large clasts coexisting with clusters of recrystallised
793	grains, the fabric dominated by shear bands at high shear strain. Deformation
794	microstructures can be plotted for the same strain rate in a differential stress vs.
795	confining pressure diagram at a strain rate of $2.5 \cdot 10^{-5}$ s ⁻¹ (Fig. 14a). The transitional
796	samples all plot above the Goetze criterion, so that the Goetze criterion, as to be
797	expected, marks the upper stress limit of dominantly viscous deformation
798	mechanisms. For high confining pressures (1.5 GPa), the BVT can be well delineated
799	using the microstructures and strain rate - temperature relationships (Fig. 14b),
800	although the Goetze criterion is more difficult to define at low temperatures. Using the

801	broad division boundary (green line) from the experimental data, the BVT can be
802	extrapolated to natural conditions of strain rate and temperature (Fig. 14c). As can be
803	seen, the extrapolation is in fairly good agreement with the well documented BVT
804	data point of <i>Stipp et al.</i> (2002a,b) for a strain rate of $\sim 10^{-12}$ s ⁻¹ . For the representative
805	natural conditions (280 °C, $P_c = 300$ MPa, $\Delta \sigma = 250$ MPa), the stresses, which were
806	determined were converted to strain rates using the flow law from <i>Hirth et al.</i> (2001)
807	and recalculated for 1.5 GPa confining pressure using the appropriate water fugacity
808	values. The microstructures of the Stipp et al. (2002a,b) sample at 280 °C are within
809	the viscous field at stresses just below the brittle conditions, consistent with the
810	Goetze criterion and the extrapolation from this study. If natural conditions of 1.0 GPa
811	confining pressures are used, our corrected results for $P_c = 1$ GPa and the Stipp et al.
812	(2002a,b) data are consistent, too (Fig. 14d). For 0.5 GPa confining pressure, our
813	experiments have only one data point, but it is also consistent with the extrapolation
814	derived from the series of experiments at higher pressure (Fig. 14d). Thus, this
815	extrapolation should serve as a guideline to determine the BVT in quartz for a wide
816	range of conditions between experiments and nature. For example, semibrittle
817	microstructures in rocks at elevated temperatures in quartz could be used to infer
818	minimum strain rates.
819	Insert Figure 14 here

Insert Figure 14 here

820 If creep conditions of laboratory data for quartz are to be extrapolated to 821 natural conditions, a power-law behaviour (Eq. 1) is always assumed. Existing and 822 commonly used flow laws assume pure dislocation creep with a relatively high stress 823 exponent, typically n = 4 (Hirth et al., 2001; Paterson and Luan, 1990). Our flow law 824 parameter of a stress exponent of n = 1.9 (Table 4) introduces combined (mixed 825 mode) deformation mechanisms of dislocation and diffusion creep. It should be

826 pointed out that the stress exponent for silica gel in the experiments by Luan and 827 *Paterson* (1992) also show a value of n = 2.3, the data by *Jaoul et al.*, (1984) show n 828 = 1.4 to 2.4, and *Kronenberg and Tullis* (1984) show n = 2.5 for novaculite. Thus, 829 several studies have determined stress exponents of $n \approx 2$, independently from each 830 other. The reason why these stress exponents have been questioned in the past is that 831 either impurities (Luan and Paterson, 1992) or melt (Jaoul et al., 1984) may have 832 affected the rheology of the samples. In our case, no melt was detected, and we can 833 demonstrate the effect of smaller and larger grain-size fractions for the activation of 834 different deformation mechanisms. Our value for the activation energy is greater than 835 those of Hirth et al. (2001) and Kronenberg and Tullis (1984) and less than those of 836 Rutter and Brodie (2004) and Gleason and Tullis (1995), but the range of values is 837 consistent with previous determinations (Table 4). When our data are extrapolated to low temperatures at natural strain rates, the 838

BVT in terms of temperature, strain rate, and pressure will very much depend on the grain size, where small sizes that are very common at low temperatures will favour the operation of diffusion creep mechanism, which are part of the inferred deformation mechanisms in this study. In nature, the expected deformation process probably is solution precipitation creep. It is an important result of this study that the BVT in quartz is not simply a transition from cracking to crystal-plastic deformation, but, instead, it involves grain-size dependent diffusion-creep processes, too.

Cataclasis is a very efficient process to reduce grain size, so that our simulated
cataclasite is an appropriate starting material for studying the deformation history
dependent transition from cracking to viscous deformation. The results clearly show
that cataclasites are very likely candidates for subsequent viscous deformation. This
interplay of brittle and viscous deformation processes is particularly applicable to high

stress deformation settings such as seismically active deformation zones. Catclasis
will provide the fine-grained material, which helps to accommodate aseismic creep in
interseismic periods, i.e., postseismic creep deformation.

854

855 6. Conclusions

856 A set of shear experiments performed on guartz material under elevated 857 confining pressures (predominantly 1.5 GPa) and temperatures (500 °C - 1000 °C) at intermediate to fast shear strain rates $(3.5 \cdot 10^{-6} \text{ s}^{-1} \text{ to } \sim 2 \cdot 10^{-3} \text{ s}^{-1})$ documents the 858 transition from (semi)-brittle to viscous deformation. The Goetze criterion ($\Delta \sigma > P_c$) is 859 confirmed to delineate the upper limit of differential stress for viscous deformation. 860 861 Samples above the Goetze criterion are characterised by Riedel fractures or 862 shear bands at high shear strain, normal geological friction coefficients, and *n*-values 863 too high for dislocation creep. At low temperatures, increasing confining pressure 864 causes increasing strength, as is to be expected for fracturing and frictional 865 deformation. A somewhat unsystematic temperature-dependence of stress is observed 866 under these conditions. Cataclastic flow partly accompanied by stress-induced 867 dissolution precipitation is suggested as the dominating deformation process at 868 temperatures just below the transition to viscous deformation (650°C) for a strain rate of 2.5 x 10⁻⁵ s⁻¹, indicated by a power-law breakdown with a stress exponent of n = 6.4869 870 ± 1.3.

Below the Goetze criterion ($\Delta \sigma < P_c$), viscous deformation dominates, as demonstrated by weakening of samples with increasing pressure and temperature. The microstructure is dominated by a pervasive foliation at high shear strain accompanied by an increasing recrystallised grain size with increasing temperature, only partially dependent on flow stress. Presence of different CPO's in different grain-size fractions

876	and the stress exponents ($n = 1.9 \pm 0.6$) indicate a combination of diffusion creep and
877	dislocation creep. It is argued that diffusive mass transfer and grain-boundary-sliding
878	prefer the small grain-size fraction while dislocation creep is more effective in large
879	grains. The constant stress exponent between 800 $^{\circ}\text{C}$ and 1000 $^{\circ}\text{C}$ suggests no change
880	in the rate-limiting factor and a similar activation energy for the diffusion and
881	dislocation creep mechanism.
882	From these results, it can be inferred that the brittle to viscous transition with
883	increasing temperature in nature may occur as a combination of diffusion and
884	dislocation creep. The combination favours the viscous deformation to occur in fine
885	grained aggregates likely to have formed by previous cataclastic deformation. Such a
886	sequential transition in time elegantly explains the alternation of episodic seismic
887	(brittle) and aseismic deformation in high stress, seismically active zones.
888	
000	
889	Acknowledgments
889 890	Acknowledgments We would like to thank Rüdiger Kilian for extensive stimulating discussions
889 890 891	Acknowledgments We would like to thank Rüdiger Kilian for extensive stimulating discussions and help with the MTEX toolbox. Furthermore, we wish to thank Willy Tschudin for
889 890 891 892	Acknowledgments We would like to thank Rüdiger Kilian for extensive stimulating discussions and help with the MTEX toolbox. Furthermore, we wish to thank Willy Tschudin for preparing excellent thin sections, Hans-Rudolf Rüegg for supplying equipment in the
889 890 891 892 893	Acknowledgments We would like to thank Rüdiger Kilian for extensive stimulating discussions and help with the MTEX toolbox. Furthermore, we wish to thank Willy Tschudin for preparing excellent thin sections, Hans-Rudolf Rüegg for supplying equipment in the deformation lab, Trine Merete Dahl for preparing thin sections for EBSD, and the
889 890 891 892 893 894	Acknowledgments We would like to thank Rüdiger Kilian for extensive stimulating discussions and help with the MTEX toolbox. Furthermore, we wish to thank Willy Tschudin for preparing excellent thin sections, Hans-Rudolf Rüegg for supplying equipment in the deformation lab, Trine Merete Dahl for preparing thin sections for EBSD, and the team of the Nano Imaging Lab and Tom Ivar Eilertsen for support with the SEM. Raw
889 890 891 892 893 894 895	Acknowledgments We would like to thank Rüdiger Kilian for extensive stimulating discussions and help with the MTEX toolbox. Furthermore, we wish to thank Willy Tschudin for preparing excellent thin sections, Hans-Rudolf Rüegg for supplying equipment in the deformation lab, Trine Merete Dahl for preparing thin sections for EBSD, and the team of the Nano Imaging Lab and Tom Ivar Eilertsen for support with the SEM. Raw data and samples can be acquired at the corresponding author. Constructive and
889 890 891 892 893 893 894 895 896	Acknowledgments We would like to thank Rüdiger Kilian for extensive stimulating discussions and help with the MTEX toolbox. Furthermore, we wish to thank Willy Tschudin for preparing excellent thin sections, Hans-Rudolf Rüegg for supplying equipment in the deformation lab, Trine Merete Dahl for preparing thin sections for EBSD, and the team of the Nano Imaging Lab and Tom Ivar Eilertsen for support with the SEM. Raw data and samples can be acquired at the corresponding author. Constructive and insightful reviews of 2 anonymous reviewers and Raphael Gottardi and he very
 889 890 891 892 893 894 895 896 897 	Acknowledgments We would like to thank Rüdiger Kilian for extensive stimulating discussions and help with the MTEX toolbox. Furthermore, we wish to thank Willy Tschudin for preparing excellent thin sections, Hans-Rudolf Rüegg for supplying equipment in the deformation lab, Trine Merete Dahl for preparing thin sections for EBSD, and the team of the Nano Imaging Lab and Tom Ivar Eilertsen for support with the SEM. Raw data and samples can be acquired at the corresponding author. Constructive and insightful reviews of 2 anonymous reviewers and Raphael Gottardi and he very constructive input by the editor William Dunne have substantially improved the
 889 890 891 892 893 894 895 896 897 898 	Acknowledgments We would like to thank Rüdiger Kilian for extensive stimulating discussions and help with the MTEX toolbox. Furthermore, we wish to thank Willy Tschudin for preparing excellent thin sections, Hans-Rudolf Rüegg for supplying equipment in the deformation lab, Trine Merete Dahl for preparing thin sections for EBSD, and the team of the Nano Imaging Lab and Tom Ivar Eilertsen for support with the SEM. Raw data and samples can be acquired at the corresponding author. Constructive and insightful reviews of 2 anonymous reviewers and Raphael Gottardi and he very constructive input by the editor William Dunne have substantially improved the manuscript. Funding by the Swiss National Science Foundation grant no. 200021-
 889 890 891 892 893 894 895 896 897 898 899 	Acknowledgments We would like to thank Rüdiger Kilian for extensive stimulating discussions and help with the MTEX toolbox. Furthermore, we wish to thank Willy Tschudin for preparing excellent thin sections, Hans-Rudolf Rüegg for supplying equipment in the deformation lab, Trine Merete Dahl for preparing thin sections for EBSD, and the team of the Nano Imaging Lab and Tom Ivar Eilertsen for support with the SEM. Raw data and samples can be acquired at the corresponding author. Constructive and insightful reviews of 2 anonymous reviewers and Raphael Gottardi and he very constructive input by the editor William Dunne have substantially improved the manuscript. Funding by the Swiss National Science Foundation grant no. 200021- 138216 is thankfully acknowledged.

	ACCEPTED MANUSCRIPT
901	References
902	Barber, D. J., Wenk, HR., Hirth, G., Kohlstedt, D. L. (2010) Dislocations in
903	minerals In: Hirth, J. P., Kubin, L. (Ed.) Dislocation in solids, Elsevier, 171-232,
904	doi:10.1016/SI572-4859(09)01604-0
905	Bell, R. L., Langdon, T. G. (1967) An investigation of grain-boundary sliding
906	during creep, Journal of Material Science, 2, 313-323
907	Berthé, D, Choukroune, P., Jegouzo, P. (1979) Orthogneiss, mylonite and non
908	coaxial deformation of granites: the example of the South Armorican Shear Zone,
909	Journal of Structural Geology, 1, 31-42
910	Blanpied, M. L., Lockner, D. A., Byerlee, J. D., (1995) Frictional slip of
911	granite at hydrothermal conditions, Journal of Geophysical Research, 100, 13045-
912	13064
913	Brace, W. F., Kohlstedt, D. L. (1980) Limits on lithospheric stress imposed by
914	laboratory experiments, Journal of Geophysical Research: Solid Earth, 85, 6248-6252
915	Byerlee, J. D. (1968) Brittle-ductile transition in rocks, Journal of Geophysical
916	Research, 73, 4741-4750
917	Byerlee, J. (1978) Friction of Rocks, Pure and Applied Geophysics, 116, 615-
918	626, doi:10.1007/BF00876528
919	Chester, F M., Higgs, N. G. (1992) Multimechanism friction constitutive
920	model for ultrafine quartz gouge at hypocentral conditions, Journal of Geophysical
921	Research, 97, 1859-1870
922	Cross, A. J., Priop, D. J., Stipp, M., Kidder, S. (2017) The recrystalliued grain
923	size piezometer for quartz: An EBSD-based calibration, Geophysical Research
924	Letters, 44, 6667-6674, doi:10.1002/2017GL073836

925	Edington, J. W., Melton, K. N., Cutler, C. P. (1976) Superplasticity, Progress
926	in Material Science, 21, 61-158
927	FitzGerald, J. D., Boland, J. N., McLaren, A. C., Ord, A., Hobbs, B. E. (1991)
928	Microstructures in water-weakened single crystals of quartz, Journal of Geophysical
929	Research, 96, 2139-2155
930	Farver, J., and Yund, R. (2000) Silicon diffusion in a natural quartz aggregate:
931	constraints on solution-transfer diffusion creep, Tectonophysics, 325, 193-205
932	Giletti, B. J., and Yund, R. A. (1984) Oxygen diffusion in quartz, Journal of
933	Geophysical Research, 89, 4039-4046
934	Gleason, G. C., and Tullis, J. (1995) A flow law for dislocation creep of quartz
935	aggregates determined with the molten salt cell, Tectonophysics, 247, 1-23
936	Gomez Barreiro, J., Lonardelli, I., Wenk, H. R., Dresen, G., Rybacki, E.,
937	Tomé, C. N. (2007) Preferred orientation of anorthite deformed experimentally in
938	Newtonian creep, Earth and Planetary Science Letters, 264, 188-207
939	Handy, M. R. (1989) Deformation regimes and the rheological evolution of
940	fault zones in the lithosphere: the effects of pressure, temperature, grainsize and time,
941	Tectonophysics, 163, 119-152
942	Hansen, L. N., Zimmerman, M. E., Kohlstedt, D. L. (2011) Grain boundary
943	sliding in San Carlos olivine: Flow law parameters and crystallographic-preferred
944	orientation, Journal of Geophysical Research, 116, B08201,
945	doi:10.1029/2011JB008220
946	Heilbronner, R., and Barrett, S. (2014) Image analysis in earth sciences,

947 Springer Berlin Heidelberg, p. 520

948	Heilbronner, R., and Kilian, R. (2017) The grain size(s) of Black Hills
949	Quartzite deformed in the dislocation creep regime, Solid Earth,
950	https://doi.org/10.5194/se-8-1071-2017
951	Heilbronner, R., and Tullis, J. (2002) The effect of static annealing on
952	microstructures and crystallographic preferred orientations of quartzites
953	experimentally deformed in axial compression and shear, Geological Society, London,
954	Special Publications, 200, 191-218, doi:10.1144/GSL.SP.2001.200.01.12
955	Heilbronner, R., and Tullis, J. (2006) Evolution of c axis pole figures and grain
956	size during dynamic recrystallization: Results from experimentally sheared quartzite,
957	Journal of Geophysical Research, 111, B10202, doi:10.1029/2005JB004194
958	Hielscher, R., and Schaeben, H. (2008) A novel pole figure inversion method:
959	specification of the MTEX algorithm, Journal of Applied Crystallography, 41, 1024-
960	1037, doi:10.1107/S0021889808030112
961	Hirth, G., Teyssier, C., Dunlap, W. J. (2001) An evaluation of quartzite flow
962	laws based on comparisons between experimentally and naturally deformed rocks,
963	International Journal of Earth Science, 90, 77-87, doi:10.1007/s005310000152
964	Hirth, G., and Tullis, J. (1992), Dislocation creep regimes in quartz aggregates,
965	Journal of Structural Geology, 14, 145-159, doi:10.1016/0191-8141(92)90053-Y
966	Hirth, G., and Tullis, J. (1994), The brittle-plastic transition in experimentally
967	deformed quartz aggregates, Journal of Geophysical Research, 99, 11731-11747,
968	doi:10.1029/93JB02873
969	Jaoul, O., Tullis, J., Kronenberg, A. (1984) The effect of varying water
970	contents on the creep behaviour of Heavitree quartzite, Journal of Geophysical
971	Research, 89, 4298-4312

- 972 Karato, S., Jung, H., Katayama, I., Skemer, P. (2008) Geodynamic significance
- 973 of seismic anisotropy of the upper mantle: new insights from laboratory studies,
- 974 Annu. Rev. Earth Planet. Science, 36, 59-95,
- 975 doi:10.1146/annurev.earth.36.031207.124120
- 976 Keulen, N., Stünitz, H., Heilbronner, R. (2008): Healing microstructures of
- 977 experimental and natural fault gouge. J. Geophys. Research,
- 978 doi:10.1029/2007JB005039
- 979 Kilian, R., and Heilbronner, R. (2017) Texture analysis of experimentally
- 980 deformed Black Hills Quartzite, Solid Earth, https://doi.org/10.5194/se-8-1095-2017
- 981 Kohlstedt, D. L., Evans, B., Mackwell, S. J. (1995) Strength of the lithosphere:
- 982 Constraints imposed by laboratory experiments, Journal of Geophysical Research,
- 983 100, 17,587-17,602, doi:10.1029/95JB01460
- 984 Kohlstedt, D. L., and Hansen, L. N., (2015) Constitutive equations, rheological
- 985 behaviour, and viscosity of rocks, In: Schubert, G. (Ed.) Treatise on geophysics, 2nd
- 986 edition, Vol. 2, Oxford: Elsevier, 441-472
- 987 Kronenberg, A. K., and Tullis, J. (1984) Flow Strengths of Quartz Aggregates:
- 988 Grain Size and Pressure Effects due to Hydrolytic Weakening. Journal of Geophysical
- 989 Research, 89, 4281-4297, doi:10.1029/JB089iB06p04281
- 990 Luan, F. C., and Paterson, M. S. (1992) Preparation and deformation of
- synthetic aggregates of quartz, Journal of Geophysical Research, 97, 301-320
- 992 Menegon, L., Pennachioni, G., Heilbronner, R., Pittarello, L. (2008) Evolution
- 993 of quartz microstructure and *c*-axis crystallographic preferred orientation within
- 994 ductilely deformed granitoids (Arolla unit, Western Alps), Journal of Structural
- 995 Geology, 30, 1332-1347, doi:10.1016/j.jsg2008.07.007

996	Orowan, E. (1940) Problems of plastic gliding, Proceedings of the Physical
997	Society, 52, 8-22
998	Panozzo, R., and Hürlimann, H. (1983) A simple method for the
999	discrimination of convex and convex-concave lines, Microscopica Acta, 87, 169-176
1000	Paterson, M. S. (1989) The interaction of water with quartz and its influence in
1001	dislocation flow - an overview, In: Karato, SI., and Toriumi, M. (Ed.), Rheology of
1002	solids and of the earth, Oxford Univiversity Press, Oxford, 107-142
1003	Paterson, M. S. (2013) Materials science for structural geology, Springer
1004	Dordrecht Heidelberg New York London, p. 247, doi:10.1007/978-94-007-5545-1
1005	Paterson, M. S., and Luan, F. C. (1990) Quartzite rheology under geological
1006	conditions, In: Knipe, R. J., Rutter, E. H. (eds.), Deformation mechanisms, rheology
1007	and tectonics, Geological Society Special Publication, 54, 299-307
1008	Paterson, M. S., and Wong, T. (2005) Experimental rock deformation - the
1009	brittle field, Springer Berlin Heidelberg, p. 347, doi:10.1007/b137431
1010	Pec, M., Stünitz, H., Heilbronner, R. (2012) Semi-brittle deformation of
1011	granitoid gouges in shear experiments at elevated pressures and temperatures, Journal
1012	of Structural Geology, 33, 200-221, doi:10.1016/j.jsg.2011.09.001
1013	Pec, M. (2014), Experimental investigation on the rheology of fault rocks,
1014	dissertation, Basel Universität, Basel
1015	Poirier, J.P., and Guillope, M. (1979) Deformation induced recrystallization of
1016	minerals, Bull. De. Mineral. 102, 67-74.
1017	Précigout, J., Stünitz, H. (2016): Evidence of phase nucleation during olivine
1018	diffusion creep: A new perspective for mantle strain localization Earth and
1019	Planetary Science Letters, 455, p. 94-115, doi.org/10.1016/j.epsl.2016.09.029

1020	Richter, B, Stünitz, H., Heilbronner, R. (2016) Stresses and pressures at the
1021	quartz-to-coesite transformation in shear deformation experiments, Journal of
1022	Geophysical Research: Solid Earth, 121, doi:10.1002/2016JB013084
1023	Rutter, E. H., and Brodie, K. H. (2004a) Experimental grain size-sensitive flow
1024	of hot pressed Brazilian quartz aggregates, Journal of Structural Geology, 26:11,
1025	2011-2023
1026	Rutter, E. H., and Brodie, K. H. (2004b) Experimental intracrystalline plastic
1027	flow in hot pressed synthetic quartzite prepared from Brazilian quartz crystals, Journal
1028	of Structural Geology, 26, 259-270, doi: 10.1016/S0191-8141(03)00096-8
1029	Schmid, S. M., and Casey, M. (1986) Complete fabric analysis of some
1030	commonly observed quartz c-axis patterns, Geophysical Monographs, 36, 263-286
1031	Schmid, S. M., Panozzo, R., Bauer, S. (1987) Simple shear experiments on
1032	calcite rocks: rheology and microfabric, Journal of Structural Geology, 9, 747-778
1033	Scholz, C. H. (2007) The Mechanics of Earthquakes and Faulting, 2 nd edition,
1034	Cambridge University Press, Cambridge, p. 471
1035	Sibson, R. H. (1989) Earthquake faulting as a structural process, Journal of
1036	Structural Geology, 11, 1-14, doi:10.1016/0191-8141(89)90032-1
1037	Stipp, M., Stünitz, H., Heilbronner, R., Schmid, S. M. (2002a) Dynamic
1038	recrystallisation of quartz: correlation between natural and experimental conditions,
1039	Geological Society, London, Special Publications, 200, 171-190,
1040	doi:10.1144/GSL.SP.2001.200.01.11
1041	Stipp, M., Stünitz, H., Heilbronner, R. & Schmid, S. M. (2002b):
1042	DynamicRecrystallization of quartz: Correlation between Natural and Experimental
1043	Conditions. In: S. de Meer, M. R. Drury, J. H. P. de Bresser & G. M. Pennock:
1044	Deformation Mechanisms, Rheology and Tectonics: Current Status and Future

1045	Perspectives Geological Society, London, Special Publications 200, 171-190.
1046	Stünitz, H., Thust, A., Behrens, H., Kilian, R., Tarantola, A., FitzGerald, J. D.
1047	(2017) Water redistribution in experimentally deformed natural milky quartz single
1048	crystals – Implications for H2O-weakening processes, Journal of Geophysical
1049	Research: Solid Earth, 122, doi:10.1002/2016JB013533
1050	Tarantola, A., Diamond, L. W., Stünitz, H. (2010) Modification of fluid
1051	inclusions in quartz by deviatoric stress I: experimentally induced changes in
1052	inclusion shapes and microstructures, Contribution to mineralogy and Petrology, 160,
1053	825-843, doi:10.1007/s00410-101-0509-z
1054	Tarantola, A., Diamond, L. W., Stünitz, H., Thust, A., Pec, M. (2012)
1055	Modification of fluid inclusion in quartz ba deviatoric stress III: Influence of principal
1056	stresses on inclusion density and orientation, Contribution to Mineralogy and
1057	Petrology, 164, 537-550, doi:10.1007/s00410-012-0749-1
1058	Trepmann C. A., and Stöckhert B. (2003) Quartz microstructures developed
1059	during non-steady state plastic flow at rapidly decaying stress and strain rate, Journal
1060	of Structural Geology, 25. 2035-2051, doi:10.1016/S0191-8141(03)00073-7
1061	Trepmann, C. A., Stöckhert, B. (2013) Short-wavelength undulatory extinction
1062	in quartz recording coseismic deformation in the middle crust – an experimental
1063	study, Solid Earth, 4, 263-276, doi:10.5194/se-4-263-2013
1064	Tullis, J. (2002) Deformation of granictic rocks: Experimental studies and
1065	natural examples In: Karato, S.I. and Wenk, HR., Plastic deformation of minerals
1066	and rocks, Reviews in mineralogy and Geochemistry, 51, 51-95,
1067	doi:10.2138/gsrmg.51.1.51

ACCEPTED MANUSCRIPT Tullis, J., Shelton, G. L., Yund, R. A. (1979) Pressure dependence of rock 1068 1069 strength: implications for hydrolytic weakening, Bulletin de Minéralogie, 102, 110-1070 114 1071 Tullis, J., and Yund, R.A. (1977) Experimental deformation of dry Westerly 1072 granite, Journal of Geophysical Research, 82, 5705-5718 1073 Twiss, R. J., and Moores, E. M. (2007) Structural geology, W. H. Freeman and 1074 Company, New York, Second Edition, p. 736 1075 Van Daalen, M., Heilbronner, R., Kunze, K. (1999) Orientation analysis of localized shear deformation in quartz fibres at the brittle-ductile transition, 1076 1077 Tectonophysics, 303, 83-107 1078 Yund, R.A., and Tullis, J. (1991) Compositional changes of minerals 1079 associated with dynamic recrystallisation, Contributions to Mineralogy and Petrology, 1080 108, 346–355 1081 1082 1083 Figures and tables 1084 Figure 1: Sample assembly. 1085 (a) Sample (quartz powder) is inserted between 45° pre-cut forcing blocks, in a 1086 jacket surrounded by confining medium (NaCl) and a carbon furnace (after Richter et al., 2016). Displacement in the shear zone is at 45° to the plane of drawing. (b) 1087 Stresses in the sample: F = load applied to upper forcing block, $P_c = \text{confining}$ 1088 1089 pressure, σ_n = normal stress, τ = shear stress. 1090 1091 Figure 2: Stress-strain curves for constant shear strain rate experiments. 1092 Confining pressure is 1.5 GPa; horizontal lines mark the Goetze criterion. (a)

1093	Shear experiments at different temperatures; arrow indicates assumed initiation of slip
1094	at sample - forcing block interface. (b) Experiments with different shear strain rates at
1095	650 °C, 800 °C and 900 °C. (c) Experiments with different starting material: crushed
1096	= gouge (d \leq 100 μm); hot pr. = gouge (d \leq 100 μm), hot pressed before deformation
1097	(20h at 1000°C, 1.5 GPa); sieved = gouge ($7 \le d \le 11 \ \mu m$); arrow indicates the onset
1098	of forcing block deformation.
1099	
1100	Figure 3: Stress-strain curves to demonstrate the influence of confining
1101	pressure at three different temperatures.
1102	Strain rate is $2.5 \cdot 10^{-5}$ s ⁻¹ ; horizontal lines mark the Goetze criterion for
1103	different confining pressures.
1104	
1105	Figure 4: Stress-strain curves for strain rate stepping experiments.
1106	Stress-strain curves for experiments at 650 °C, 800 °C, 900 °C, 1000 °C and
1107	800 °C (hot pressed; dashed line as in Fig. 2) are shown in comparison with constant
1108	shear strain rate experiments (numbers 500br, 499br, 412br, 388br, 337br, 419br) at
1109	same conditions. Confining pressure is 1.5 GPa in all samples; horizontal lines mark
1110	the Goetze criterion. The arrow at 488br (800 °C) points to a failure of the experiment.
1111	The arrow at 482br (900 °C) at very high strain marks the change of sample geometry
1112	due to collision of forcing blocks.
1113	
1114	Figure 5: Starting material.
1115	Quartz powder after run-in of the σ_1 piston but before the hit point (pre-
1116	deformation) at 800 °C and 1000 °C. (a) Light micrograph of sample 487br at
1117	T=800°C and Pc=1.5 GPa, total time of experiment: 25h. Look-up table in upper right

1118	indicates circular polarisation. (b) SEM/band contrast image of sample 487br. (c)
1119	Light micrograph of sample 417br at T=1000°C and Pc=1.5 GPa, total time of
1120	experiment: 20h. Look-up table in upper right indicates crossed polarisation. (d)
1121	SEM/band contrast image of sample 417br. SEM and light micrographs do not show
1122	the same regions.
1123	
1124	Figure 6: Microstructures across the brittle-to-viscous transition.
1125	High strain samples deformed at temperatures between 500 °C and 1000°C,
1126	1.5 GPa and $\sim 10^{-5}$ s ⁻¹ . Look-up tables indicate circular polarisation for all
1127	micrographs, except 450br and 435br which are cross polarised; sinistral shear sense
1128	applies to all. Left two columns: experiments using crushed starting material, right
1129	column: experiments with hot pressed starting material. Solid lines (F) indicate
1130	orientation of foliation; dashed lines indicate shear band orientation (SB); dotted lines
1131	mark Riedel surfaces (R and R'), schematic of Riedel geometry in inset lower right.
1132	
1133	Figure 7: Dependence of microstructures on confining pressure and strain rate.
1134	Look-up tables indicate circular polarisation or crossed polarisation; sinistral
1135	shear sense applies to all. Solid lines (F) indicate orientation of foliation; dashed lines
1136	indicate shear band orientation (SB); dotted lines mark Riedel surfaces (R).
1137	
1138	Figure 8: Brittle structures at high temperature.
1139	Sample (386br) deformed at 800 °C , 0.5 GPa and ~10 ⁻⁵ s ⁻¹ . (a) Light
1140	micrograph showing fracturing; look-up tables indicate crossed polarisation; dotted
1141	lines mark Riedel surfaces (R and R'). (b) SEM/BSE micrograph of very fine-grained
1142	material generated by comminution along Riedel fractures.

1143	
1144	Figure 9: Grain size distribution of recrystallised grains.
1145	Histograms show volume weighted frequency distributions of the diameter of
1146	volume equivalent spheres (D_{equ}); modal values are indicated. Grain size maps for
1147	samples deformed between 700°C and 1000°C are shown with the same magnification
1148	(see scale) and color coded such that blue to yellow corresponds to $2\mu m \le D \le 9\mu m$.
1149	(a) Grain size distributions for standard starting material (d \leq 100 µm). (b) Special
1150	starting material for comparison: hot pr. = hot pressed before deformation; sieved =
1151	starting material ($7 \le d \le 11 \ \mu m$).
1152	
1153	Figure 10: Internal misorientation density of recrystallised grains.
1154	Two measures for misorientation density at the grain scale are evaluated for
1155	samples deformed at temperatures from 700 °C to 1000 °C; gKAM = grain kernel
1156	average misorientation (<i>Heilbronner and Kilian</i> , 2017); $GOS_{la} = grain orientation$
1157	spread, normalised for long axis (see text); for each data point, the PARIS factor is
1158	colour coded and the symbol size is related to the equivalent diameter.
1159	
1160	Figure 11: Textures for different grain size fractions.
1161	Textures are shown for samples with standard starting material (crushed),
1162	deformed at 700 °C to 1000 °C, standard confining pressure of 1.5 GPa, and standard
1163	strain rate of $2.5 \cdot 10^{-5}$ s ⁻¹ . For each temperature, [c], [a], and [r] pole figures are shown
1164	for all recrystallised grains in the range of $(d \le 25 \ \mu m)$ (top row), for the small grain
1165	size fraction (middle row) and the large grain size fraction (bottom row); the
1166	delimiting grain size is indicated. Contouring interval = 1 m.u.d.; pole figure
1167	maximum in the upper left and pole figure J-index on the lower right of the pole

1168	figure.
1169	
1170	Figure 12: Friction coefficients for different experimental conditions.
1171	Friction coefficient is calculated from shear and normal stress on sample: μ =
1172	τ/σ_n (Figure 1). (a) Different shear strain rates at constant confining pressure of 1.5
1173	GPa. (b) Different confining pressures at constant shear strain rate of $2.5 \cdot 10^{-5}$ s ⁻¹ .
1174	
1175	Figure 13: Derivation of stress exponent and activation energy.
1176	(a) At 650 °C, the stress exponent n ~ 6.4. For 800 °C -1000 °C, the average of
1177	the stress exponent is determined: $n = 1.9 \pm 0.6$. (b) From experiments at strain rates of
1178	10^{-4} s ⁻¹ and 10^{-5} s ⁻¹ , the activation energy is derived: Q ~ 170 kJ/mol. (II) indicates the
1179	second measurement of stress at a given strain rate in strain rate stepping experiments
1180	(cf. Table 2). (c) At 800°C, 1.5 GPa and 10^{-5} s ⁻¹ , and for a stress exponent n = 1.9, the
1181	grain size exponent p is 1.08; m = slope of liner fit. Samples used: 388br = standard
1182	starting material; 419br = hot pressed at 1000°C; 445br = sieved to ($7 \le d \le -11 \mu m$).
1183	
1184	Figure 14: Extrapolation of the brittle-to-viscous transition from the lab to
1185	nature.
1186	Discrimination of 'brittle', 'transitional' and 'viscous' is based on
1187	microstructure. (a) Differential stress versus confining pressure for experimental
1188	samples and one natural samples. (b) Shear strain rate versus temperature for
1189	experimental samples deformed at constant confining pressure; black numbers = flow
1190	stress; grey numbers = peak stress; green line traces the brittle-to-viscous transition
1191	(BVT). (c) Extrapolation of (b) to natural conditions. The transition of a natural
1192	sample (Stipp et al. (2002)) is indicated; water fugacity is considered after Hirth et al.,

1193	(2001). (d) Same extrapolation as in (c) using additional data points recalculated for
1194	1.0 GPa (orange) and 0.5 GPa (blue) confining pressure; filled circles - using flow
1195	law after Hirth et al., 2001; open circles - using flow law of this study.
1196	
1197	
1198	Table 1: Experimental conditions for constant shear strain rate experiments.
1199	1) Pre-treatment: Hot pressed = 20 hours at 1000°C and 1.5-1.6 GPa. Sieved = powder
1200	sieved to grain size fraction ($7 \le d \le 11 \ \mu m$).
1201	2) Friction coefficient determined at peak stress.
1202	
1203	Table 2: Experimental conditions for shear strain rate stepping experiments.
1204	1) Temperature approximate due to technical problem with furnace.
1205	2) Approximate value due to power failure.
1206	3) Sample hot pressed for 20 hours at 1000°C and 1.5-1.6 GPa.
1207	4) Hardening at end of experiment due to contact of forcing blocks.
1208	
1209	Table 3: Grain size analysis
1210	1) Arithmetic mean of area equivalent diameters of circles (d_{equ})
1211	2) Median of d _{equ}
1212	3) Root-mean-square of d _{equ}
1213	4) Mode = Mean of Gaussian curve fit to volume weighted histogram of volume
1214	equivalent diameters of spheres (D _{equ})
1215	5) Standard deviation of Gaussian curve fit.
1216	6) Hot pressed (24 h) undeformed sample
1217	7) Hot pressed (20 h) undeformed sample

- 1218 8) Hot pressed (20 h) at 1000°C and 1.5-1.6 GPa.
- 1219 9) Powder sieved to grain size fraction ($7 \le d \le 11 \ \mu m$).
- 1220
- 1221 Table 4: Selection of flow law parameters from literature.
- 1222

Sample	Temperature	Confining	Pre-	Shear strain	Shear strain	Maximum	Friction coefficient	Microstructure
		Pressure	treatment ¹⁾		rate	differential stress	$(\mu = \tau / \sigma_n)$ at $\gamma = 3$	(for $\gamma > 3$)
	(°C)	(MPa)			(s ⁻¹)	(MPa)		
$340br^{2}$	500	1510		1.6	1.4	2738	0.47	-
450br	500	1540		3.2	2.1	3212	0.46	brittle
338br ²⁾	600	1522		1.4	1.4	2513	0.45	-
479br	600	1538		3.9	2.1	2423	0.43	brittle
415br	600	1512	hot pressed	3.0	1.9	3246	0.51	brittle
435br	650	1507		3.6	2.1	2698	0.46	transitional
481br	650	1554		4.2	3.0	2538	0.43	transitional
380br	700	1500		0.0	0.0	0	0.00	-
339br ²⁾	700	1524		2.0	2.1	1298	0.30	-
437br ²⁾	700	1529		1.7	1.9	1483	0.32	-
383br	700	1585		4.9	2.8	1246	0.25	viscous
493br	700	1512	hot pressed	4.9	2.7	2051	0.39	transitional
487br	800	1511		0.0	0.0	0	0.00	-
439br ²⁾	800	1526		1.4	2.1	856	0.22	-
388br	800	1527		4.8	2.8	858	0.21	viscous
445br	800	1578	sieved	4.7	3.0	415	0.09	viscous
419br	800	1556	hot pressed	4.2	2.8	1159	0.25	viscous
412br	900	1530		2.9	2.8	475	0.10	viscous
417br	1000	1576		0.0	0.0	0	0.00	-
337br	1000	1506		3.2	3.0	152	0.05	viscous
494br	650	1088		5.7	4.8	2396	0.49	transitional
452br	700	1064		4.4	2.7	1536	0.40	transitional
448br	800	1067		4.5	2.9	864	0.25	viscous
386br	800	574		3.2	2.3	1500	0.53	brittle
500br	650	1502	7	1.1	0.3	1276	0.30	-
447br	800	1556		4.1	27.0	1783	0.35	transitional
499br	900	1535		4.0	189.0	2015	0.39	transitional

Sample	Temperature	Confining	Shear strain	Stress	Shear strain rate (e^{-1})	Flow stress (MPa)	Friction coefficient $(u - \tau / \tau)$
	(°C)	(MPa)		exponent			$(\mu - \iota / O_n)$
498br	650 ¹⁾	1589	5.4	6.4	2.60	2608	0.46
					1.20	2517	0.44
					0.30	1842	0.36
488br	800	1623	6.4	1.8	28.00	1811	0.37
					5.10	783	0.20
					1.20	422	0.11
					0.48 ²⁾	250	0.07
480br ³⁾	800	1601	4.5		2.30	1040	0.25
					0.63	293	0.09
					2.70	820	0.20
482br	900	1583	8.4	2.0	28.00	1272	0.29
					3.60	389	0.11
					0.49	178	0.05
					41.00 ⁴⁾	1494	0.32
485br	1000	1588	6.2	1.8	27.00	578	0.16
					4.00	189	0.06
				Q	0.37	75	0.02
					34.00	794	0.20

Sample	Т	Pc	γ	Width	Height	Step size	No. of	2D mean ¹⁾	2D median ²⁾	$2D RMS^{3}$	3D mode ⁴⁾	3D st.dev. ⁵⁾
	[°C]	[GPa]	$[10^{-5} \cdot s^{-1}]$	[px]	[px]	[µm]	grains	[µm]	[µm]	[µm]	[µm]	[µm]
$187 hr^{6}$	800°	1.5		700	625	0.20	386	5 21	4.31	6 50	0.1	27
46701	800	1.5	-	700	025	0.20	380	5.21	4.51	0.50	9.1	2.1
417br ⁷⁾	1000°	1.5	-	1250	1649	0.20	583	7.56	6.65	9.21	12.8	4.3
383br	700	1.5	2.8	525	325	0.20	3988	0.98	0.75	1.41	2.1	0.5
388br	800	1.5	2.8	500	500	0.20	1517	2.27	1.86	2.90	4.1	1.9
412br	900	1.5	2.8	925	850	0.20	2789	3.02	2.67	3.79	6.1	0.9
337br	1000	1.5	3	1250	1000	0.20	696	5.80	4.53	7.99	15.3	13.4
493br ⁸⁾	700	1.5	2.7	400	350	0.20	3518	0.93	0.77	1.36	1.6	0.2
419br ⁸⁾	800	1.5	2.8	800	900	0.15	2257	2.34	1.99	3.00	4.8	0.8
445br ⁹⁾	800	1.5	3	1200	700	0.10	2495	1.30	0.78	2.05	4.4	3.7
452br	700	1	2.7	820	600	0.15	9716	0.77	0.63	1.12	1.5	0.2
448br	800	1	2.9	1600	900	0.10	4102	1.49	1.17	2.1	3.3	0.5
447br	800	1.5	27	1000	750	0.20	16390	1.173	1.01	1.51	2.0	0.3
499br	900	1.5	189	708	512	0.20	11521	0.914	0.81	1.22	1.5	0.2

Source	Confining pressure Pc [GPa]	Stress exponent n	Activation energy Q [kJ/mol]	Factor A [MPa-1 s-1]	Material	Water content
Jaoul et al. (1984)	1.5	1.4 - 2.4	146 - 172	$\begin{array}{c} 2.95 \cdot 10^{-4} \text{ to} \\ 7.68 \cdot 10^{-8} \end{array}$	Heavitree Quartzite $d = 0.2 \text{ mm}$	H ₂ O in different amounts
Kronenberg & Tullis (1984)	0.9 - 1.45	2.9 - 3.2	170 - 220	-	Heavitree Quartzite $d = 211 \ \mu m$	As-is
Kronenberg & Tullis (1984)	1.5	2.5	120 - 150	- d	Novaculite d = 4.9 μm	0.4 wt% H ₂ O added
Paterson & Luan (1990)	0.3	2.3	150		Silica Gel d = 30 – 80 μm	1000 – 10000 H/106 Si
Paterson & Luan (1990)	0.3	3.9	150	$\sim 4.0 \cdot 10^{-10}$	Silicic Acid d = 20 µm	1000 – 10000 H/106 Si
Gleason & Tullis (1995)	1.5 – 1.7	3.9 – 4.1	137 - 223	$1.1 \cdot 10^{-4}$	Black Hills Quartzite d = 100 µm	0.15 wt% H ₂ O added
Hirth et al. (2001)	-	4	135	$6.3 \cdot 10^{-12}$	Fitted flow law experimental / natural	-
Rutter & Brodie (2004a)	0.3	2.97	224	1.17. 10-5	Synthetic $d = 12 - 20 \ \mu m$	0.6 wt%
Rutter & Brodie (2004b)	0.3	1	220	0.4	Synthetic d = 0.4, 1.3, 4.5 μm	0.6 wt%
This Study	1.5	1.8 - 2.0	168 - 170	3.1 · 10 ⁻⁴	Crushed Quartz d < 100 μm	0.2 wt% H ₂ O added
		A CRIME	Y			

1.3

900 °C 412br {r} [c] {a} 4.4 2.4 2.0 all grains (# 2320) 0 1.7 1.2 1.1 3.3 1.9 2.0 $d < 6 \, \mu m$ (# 1984) 0 1.4 1.1 1.2 6.3 3.3 2.5 $d > 6 \, \mu m$ C (# 236) (

1.4

2.4

pf max pfJ 0 2 4 6 8 10

shear stress

 $337br - 1000^{\circ}C, \gamma = 3.2$

50 μm

 $\dot{\gamma} \sim 2.5 \cdot 10^{-5} \text{ s}^{-1}$, $P_{C} = 1.0 \text{ GPa}_{CCEPTED}$ MANUSCRIPT $P_{C} = 1.5 \text{ GPa}$, various $\dot{\gamma}$

494br - 650°C, γ = 5.7, 1.0 GPa

452br - 700°C, γ = 4.4, 1.0 GPa

448br - 800°C, γ = 4.5, 1.0 GPa

50 µm

—— 50 μm

50 μm

447br - 800°C, $\gamma = 4.1$, $\dot{\gamma} = 2.7 \cdot 10^{-4} \text{ s}^{-1}$

499br - 900°C, $\gamma = 4.0$, $\dot{\gamma} = 1.9 \cdot 10^{-3} \text{ s}^{-1}$

—— 25 μm

Highlights:

(1) New large data set defines brittle to viscous transition in quartz

(2) Low stress exponent of n = 1.9 + 0.6 between 800C and 1000C for viscous deformation

(3) Viscous deformation by combination of dislocation and diffusion (solution

precipitation) creep

(4) Simultaneous diffusion and dislocation creep partition into different grain sizes,

shown by CPO

(5) Goetze criterion is confirmed as upper stress limit of viscous deformation

CEP CEP