
HAL Id: insu-01835687
https://insu.hal.science/insu-01835687

Submitted on 28 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantifying the contribution of the Megha-Tropiques
mission to the estimation of daily accumulated rainfall

in the Tropics
Rémy Roca, Nicolas Taburet, Estelle Lorant, Philippe Chambon, Matias

Alcoba, Hélène Brogniez, Sophie Cloché, Christophe Dufour, Marielle Gosset,
Clément Guilloteau

To cite this version:
Rémy Roca, Nicolas Taburet, Estelle Lorant, Philippe Chambon, Matias Alcoba, et al.. Quantifying
the contribution of the Megha-Tropiques mission to the estimation of daily accumulated rainfall in
the Tropics. Quarterly Journal of the Royal Meteorological Society, 2018, Supplement: Advances in
Remote Sensing of Rainfall and Snowfall, 144 (S1), pp.49-63. �10.1002/qj.3327�. �insu-01835687�

https://insu.hal.science/insu-01835687
https://hal.archives-ouvertes.fr


Received: 14 June 2017 Revised: 15 March 2018 Accepted: 3 May 2018

DOI: 10.1002/qj.3327

A D V A N C E S I N R E M O T E S E N S I N G O F R A I N F A L L A N D S N O W F A L L

Quantifying the contribution of the Megha-Tropiques mission
to the estimation of daily accumulated rainfall in the Tropics

Rémy Roca1 Nicolas Taburet1,∗ Estelle Lorant2 Philippe Chambon3 Matias Alcoba4

Hélène Brogniez5 Sophie Cloché2 Christophe Dufour5 Marielle Gosset4

Clément Guilloteau1,4,†

1Laboratoire d’Études en Géophysique et
Océanographie Spatiales, Toulouse, France
2Institut Pierre Simon Laplace, Palaiseau, France
3CNRM UMR 3589, Météo-France and CNRS,
Toulouse, France
4Géoscience Environnement Toulouse, Toulouse,
France
5LATMOS/IPSL, UVSQ Université Paris-Saclay,
UPMC University, Guyancourt, France

Correspondence
Rémy Roca, Observatoire Midi-Pyrénées,
Laboratoire d’Études Géophysiques et
d’Océanographie Spatiale, 14 Av. Edouard Belin,
31000 Toulouse, France.
Email: remy.roca@legos.obs-mip.fr

*Now with CLS.
Now with UC Irvine.

Funding information
CNRS.

Satellite estimation of accumulated precipitation is an important facet of the study of
the tropical water cycle. An advanced data merging approach using infrared geosta-
tionary imagery and microwave constellation based instantaneous rain rate estimates
has been implemented in the framework of the Megha-Tropiques and Global Precip-
itation Measurements missions. The Tropical Amount of Rainfall with Estimation
of ERors (TAPEER) algorithm has been tailored to account for the loss of the
MADRAS conical scanning radiometer by using the SAPHIR sounder rainfall detec-
tion capability, thanks to a novel two-constellation implementation of the algorithm.
A new bias correction module based on the TRMM PR observations is also pre-
sented. The performances of this new version of the product are reviewed with
emphasis on West Africa. In particular, using data-denial experiments, the contri-
bution of SAPHIR data to the rainfall daily accumulation is quantified for various
configurations of the microwave constellation and various algorithmic parameter
selections. The results show that the daily accumulation statistics are well improved
when SAPHIR is taken into the constellation. The improvements can be quanti-
fied using bulk statistics but are more evident following a frequency analysis. The
pattern of the impact is a complex convolution of rainfall occurrence and of the
Megha-Tropiques mission original sampling. Over the 20◦N–20◦S belt, in zonal
mean, the inclusion of SAPHIR data alters the daily accumulation substantially
(more than 50% of the daily accumulation) more than 10% of the time and more
than 20% when conditioned upon rainfall. Under both metrics, the improvement is
majored in the 12◦–17◦ latitude band where the Megha-Tropiques mission sampling
is at its maximum.
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1 INTRODUCTION

Rainfall is at the heart of the energy cycle of the planet. Not
only is rainfall part of the positive water vapour feedback
loop (Stephens and Ellis, 2008) but its distribution includ-
ing extremes, both in space and in intensity is anticipated to
evolve in the course of climate change (Roca et al., 2010a;

O’Gorman et al., 2012). In particular, recent theoretical con-
siderations suggest a substantial increase in rainfall accumu-
lation per event with global warming, with strong societal
implications (Neelin et al., 2017). Accumulation estimates are
also identified as a key to climate model evaluation (Tapi-
ador et al., 2017). As a consequence, the monitoring of the
surface rainfall distribution and accumulation has received
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considerable attention over the past decades. In the Tropics
where the conventional observing network is sparse, satellite
observations are the only way to address this critical need for
a better documentation of rainfall. Significant progress has
been achieved on this front from the early attempt in the 1970s
to the most recent algorithms (Kidd and Levizzani, 2011).
Beyond instantaneous estimates of the surface precipitation
from passive and active microwave sensors, the sampling
of the atmosphere by the microwave satellite fleet has long
been recognized as a key element of rainfall accumulation
estimation from space.

Hence, a number of space missions and constellation con-
cepts dedicated to the enhancement of the measurement
sampling have been proposed and/or realized: the precessing
Tropical Rainfall Measuring Mission (TRMM: Kummerow
et al., 1998) and the Megha-Tropiques (Desbois et al., 2007;
Roca et al., 2015) missions; FLORAD (Marzano et al., 2009),
the Global Precipitation Measurement Mission constellation
(Hou et al., 2014) and more recently the Time-Resolved
Observations of Precipitation structure and storm Intensity
with a Constellation of Smallsats (TROPICS: Blackwell et al.,
2018, this issue). Along with the increased availability of the
platforms came a suite of algorithms and high-level products
that take benefit from these large datasets (also using geosta-
tionary infrared imagery) to provide surface rainfall accumu-
lation estimates at various scales over the globe (or a signif-
icant part of it). The exhaustive list of products can be found
on the International Precipitation Working Group (IPWG)
website and we highlight here only a few that showcase the
various approaches followed to use the microwave constella-
tion observations. The TRMM Multiple Platform Algorithm
(Huffman et al., 2007) maps the microwave-derived instanta-
neous rain rate data on a regular grid and fills the gaps using
infrared (IR) images. The National Oceanic and Atmospheric
Administration (NOAA) Climate Precipitation Center MOR-
PHing technique (CMORPH: Xie et al., 2017) and Global
Satellite Mapping of Precipitation (GSMAP: Kubota et al.,
2007) products both fill the gaps by morphing the Level-2
data using cloud motion winds derived from IR imagery. The
Tropical Amount of Precipitation with Estimation of Errors
(TAPEER) product is based on the Universally Adjusted
Geostationary Operational Environmental Satellite (GOES)
Precipitation Index (Xu et al., 1999) and the adapted rain
detection threshold and mean conditional rain rate are derived
from the constellation Level-2 data to train the IR imagery
(Chambon et al., 2013).

Evaluation of such products at various scales over the
Tropics (e.g. Hong et al., 2007; Sapiano and Arkin, 2009;
Roca et al., 2010a; Jobard et al., 2011; Gosset et al., 2013;
Gebremichael et al., 2014; Guilloteau et al., 2016; Maggioni
et al., 2016; Gosset et al., 2018) have revealed high perfor-
mances of the merged IR–microwave recent products. While
these bulk statistics are useful to showcase the usefulness and
the maturity of the products, they do not provide insights
into the reasons for success or failure. The performance of

these products not only depends upon the quality of the
Level-2 retrievals but also to a large extent on the configura-
tion of the constellation and associated sampling (Chambon
et al., 2012a). One objective of this article is to quantify
such dependency with emphasis on the contribution of the
Megha-Tropiques mission to the performance of the daily
accumulated rainfall TAPEER products.

Due to the early loss of the MADRAS instrument on
Megha-Tropiques (hereafter MT), the multiplatform approach
that can benefit from the sampling of this low inclination
mission has to rely on the Sondeur Atmosphérique du Pro-
fil Humidité Intertropicale par Radiométrie (SAPHIR) 183
GHz sounder instead of the conical scanning imager. The
secondary objective of this article is hence to introduce
the approach followed to include SAPHIR in the current
TAPEER algorithm and to provide a description of some
recent upgrades to the original implementation (Chambon
et al., 2013), namely a new bias correction scheme based
on the TRMM Precipitation Radar (PR) data. The article is
organized as follows. The data used in the study are first intro-
duced. Then Section 3 details the functioning of the algorithm
and the performances of the baseline implementation. Section
4 quantifies the contribution of the MT mission to the quality
of the daily rainfall estimation. A conclusion section ends the
article.

2 DATA

2.1 The Global Precipitation Mission constellation
during boreal summer 2012

2.1.1 Level-1 data
The characteristics of the numerous microwave-imaging plat-
forms that were operating during 2012 boreal summer are
summarized in Table 1. The GPM constellation is composed
of satellites operated by meteorological, military and research
space agencies (Hou et al., 2014). Note that here the nominal
calibration of the data is used and the benefit of the intercal-
ibrated radiances effort of the Global Precipitation Mission
(GPM) X-CAL group (Berg et al., 2016) will only be used in
a future version of the TAPEER product.

2.1.2 Level-2 data
The Level-2 data correspond to the instantaneous rain rate
estimates for each footprint of the microwave imagers. In this
study, these rain rates are obtained using the Bayesian Rain
Algorithm Including Neural network (BRAIN) algorithm that
is described in detail in Viltard et al. (2006) and Kirstetter
et al. (2013b). It is a fork of the original Goddard Profiling
algorithm (GPROF) retrieval (Kummerow et al., 1998) that
follows the Bayesian framework and relies upon a database
built mainly out of the TRMM PR data (see Section 2.4) and
mesoscale cloud simulations. The algorithm outputs a large
amount of information from the original vectors of microwave
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TABLE 1 Microwave imagers and sounders on board precessing missions

Precessing

Instrument TMI SAPHIR

Satellite platform TRMM Megha-Tropiques

Inclination (◦) 35 20

Altitude (km) 402.5 867

Orbital period (mn) 92.4 100

Swath width (km) 878 1,700

Scan Conical Across

Channels used 10VH, 19VH, 21 V,
37VH, 85VH

183 GHZ± 0.2;
±1.1; ±2.8; ±4.2;
±6.6; ±11.0

Typical resolution (km) 85 GHz : 8× 6 10 (at nadir)

brightness temperatures, but in the following, only the esti-
mated surface rain rates are used. While over the oceans all
the channels from the conical imagers are used, over land the
retrieval is restricted to the 37 and 85 GHz channels to min-
imize the surface emissivity issues with the low-frequency
channels. Prior to the estimation of rain rate, a screening
step is applied based on Adler et al. (1994) as summarized
in Kacimi et al. (2013). Despite the various resolutions of
the constellation instruments, the output resolution is set to a
circular pixel of 12 km diameter (Roca et al., 2015).

The BRAIN-derived Level 2 have been evaluated as part of
the Megha-Tropiques Ground Validation activities (MTGV),
by comparing them with ground data over the validation
super-sites and at the global scale by comparing them with the
TRMM PR. More details on BRAIN evaluation can be found
in Gosset et al. (2018). One of the outcomes from BRAIN
evaluation is that BRAIN exhibits strong biases, both in the
detection and in the estimation of the rain rates. These biases
vary a lot among regions, according to the rainfall type (with
an overestimation of the amount of convective rain, and a
global under-detection of small rain rates) and depending on
the satellite platform used. Quantifying the propagation of

these platform and rainfall regime dependent biases into the
Level-4 TAPEER is complex (Chambon et al., 2013), as some
of the errors may compensate within the TAPEER training
window.

Figure 1 illustrates the regional and rainfall regime depen-
dence of BRAIN’s biases. Here BRAIN is compared to the
TRMM PR rain rates (2A25 v7) on the basis of coincident
overpasses (with a time window tolerance of±10 min), for the
period June to September 2012. The PR data are aggregated to
match BRAIN pixel resolution. The analysis is decomposed
over several spatial windows for illustrative purposes: one
window is representative of continental India (longitude 76 to
79◦E; latitude 10 to 18◦N; label “India”), one is representa-
tive of the Atlantic Ocean (longitude 50◦W to 20◦W; latitude
8 to 18◦N; label “Atlan”), and two sub-windows cover the
Sudanese climate regime (longitude 10◦E to 10◦W; latitude
8 to 10.5◦N; labeled “Benin”) and the Sahelian (longitude
10◦E to 10◦W; latitude 12 to 14.5◦N; label “Sahel”) regime in
West Africa. Over these coincident pixels, BRAIN and PR are
compared in terms of the number of pixels (at BRAIN’s res-
olution) above a given rain rate threshold and in terms of the
rainfall accumulation, also above the given threshold (i.e. for
each dataset, the sum of the pixels above threshold multiplied
by the rain rate on pixel is calculated). Figure 1a displays the
relative bias in BRAIN, compared to PR, on the total rainfall
amount. The calculations are made on coincident BRAIN–PR
pixels where the BRAIN rain rate was above the threshold
indicated on the x-axis. Figure 1b illustrates the relative bias
in number of pixels detected, for each rainfall threshold. The
rainfall rate (and thus rainfall type) dependence of BRAIN
performance is clearly seen. BRAIN underestimates the num-
ber of rainy pixels except for relatively high threshold. The
underestimation of low rain rates is somehow compensated by
an overestimation of the number of pixels and of the rainfall
amount for higher rain rates thresholds. The rain rate thresh-
old for which the bias is cancelled depends strongly on the
region (and to a lesser extent on the period – not shown).

FIGURE 1 Relative bias in the Level-2 data by comparison with TRMM/precipitation radar surface rain rate, as function of rain rate threshold (see text). (a)
Relative bias in rainfall amount above given threshold, conditioned on BRAIN rain rates, (b) bias (unconditional) in number of pixels above given threshold
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FIGURE 2 Zonal mean sampling of the GPM constellation for summer 2012

Globally biases are strongly negative in India, positive or
negative depending on the sub-region in Africa, and smaller
(closer to the 0 line) in the Atlantic window. The overall
bias induced on TAPEER is region-dependent and a solution
to correct it, based on PR climatology, was implemented as
described in Section 3.3.

2.2 The Megha-Tropiques mission and the SAPHIR
data

The MT mission is described at length in various references
(Desbois et al., 2007; Roca et al., 2010b; 2015) and here only
its salient features are briefly recalled. The mission is jointly
built by the Indian Space Research Organization (ISRO) and
Centre National d’Études Spatiales (CNES) and was launched
on 12 October 2011 from Sri Haricota in India on a unique
orbit with a 20◦ inclination to the Equator to enhance the
sampling of the tropical regions (Capderou, 2009). The plat-
form carries on board a broad-band radiometer, Scanner for
Radiation Budget (ScaRaB), dedicated to the Earth radia-
tion budget measurements, a multichannel conically scanning
microwave radiometer Microwave Analysis and Detection of
Rain and Atmospheric Structure (MADRAS) that stopped
operation in January 2013 after more than a year of data
acquisition. The fully functional SAPHIR sounder completes
the payload of the mission (Roca et al., 2015). SAPHIR is
a cross-track microwave sounder with six channels around
183 GHz with pixel diameter of 10 km at nadir. It is dedi-
cated to the water vapour measurements in non-precipitating
conditions (Brogniez et al., 2015; Sivira et al., 2015) and to
assimilation efforts (Chambon et al., 2015). The rainy pix-
els are screened thanks to a three-channel threshold approach
initially introduced for intense rainfall detection (Hong et al.,
2005; Brogniez et al., 2015; Guerbette et al., 2016). This
SAPHIR-derived rain mask is used in the multi-platform
rainfall estimation algorithm as detailed in the next section.
The weak inclination on the Equator and the elevated alti-
tude confers a large swath to the instrument and a significant
sampling contribution to the 2012 microwave imager constel-
lation as shown in Figure 2. The 2012 configuration yields
between 6 and 7 overpasses per day over the tropical belt and
is augmented substantially when SAPHIR observations are

accounted for, with a maximum of ∼11 overpasses per day
within the 10–15◦ band typical of the Megha-Tropiques orbit
and SAPHIR characteristics (Roca et al., 2015).

2.3 Geostationary thermal infrared data

2.3.1 Platforms
Table 2 summarizes the details of the geostationary thermal
infrared observations used to compute the accumulated pre-
cipitation and associated uncertainty for the boreal summers
of 2012, 2013 and 2014. No specific effort to inter-calibrate
the georing IR imagery or to correct for slight spectral dif-
ferences among the sensors is undertaken. The very nature
of the adaptive threshold estimation (see the section on the
algorithm) as well as the overall good performance of the
fleet does indeed not require such a step in dealing with
the data. The TAPEER seasonal statistics exhibit no plat-
form dependencies unlike other similar products (Roca et al.,
2015).

2.3.2 Quality control
All of the input data have undergone a careful quality-control
effort following the method of Szantai et al. (2011). A conser-
vative approach is followed here and only images with a 100%
good scan line index over the 30◦S–30◦N belt have been kept
in the computations. Despite such a strong criterion being
imposed, Table 3 further reveals that the fleet of operational
geostationary imagers provides a very good coverage of the
Tropics. Indeed only a few per cent of the images are miss-
ing or are not fitting our high quality standards. The major
reason for low-quality data is the satellite eclipse that pre-
vents nominal quality data acquisition. This phenomenon is
mainly felt during the boreal summer June–September period
on the Meteosat-7 platform and the Multi-functional Trans-
port Satellite (MTSAT) platform. The second reason concerns
the specific operation of GOES-East that prevents some of
the full disk acquisition during dedicated scanning modes.
The final and relatively very small contribution to low quality
or missing images is the daily operation of the satellites that
yields a few bad images per season.
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TABLE 2 Microwave imagers on board Sun-synchronous missions

Sun-synchronous

Instrument AMSR-2 SSM/I SSMIS

Satellite platform GCOM-W1 DMSP F15 DMSP F16 DMSP F17 DMSP F18

Equator crossing time 1:30 PM ascending ∼3:45 PM ascending* ∼5:45 PM ascending* ∼5:45 PM ascending* ∼8:15 PM ascending*

Altitude (km) 700 851 833 833 833

Swath width (km) 1,450 1,500 1,700 1,700 1,700

Scan Conical Conical Conical Conical Conical

Channels used 10VH, 19VH, 23VH,
37VH, 89VH

19 VH, 22 V, 37VH,
85VH

19 VH, 22 V, 37VH, 91
VH

19 VH, 22 V, 37VH, 91
VH

19 VH, 22 V, 37VH, 91
VH

Typical resolution (km) 89 GHz: 5× 3 85 GHz: 15× 13 91 GHz: 13× 14 91 GHz: 13× 14 91 GHz: 13× 14

*For the DMSP satellites, the orbits are drifting in time and the reported Equator crossing time is at their approximate summer 2012 value.

TABLE 3 Geostationary data for summer 2012, 2013 and 2014. Source WMO/OSCAR. The GOES-W and –E statistics correspond to Northern
Hemisphere data acquisition. Southern Hemisphere observations details have not been reported here for sake of simplicity

MSG

2012 2013 2014Nominal
configurationSatellite

GOES-W
GOES-15

GOES-E
GOES-13 MSG-2 MSG-3 MSG-3

MFG
METEOSAT-7

MTSAT
MTSAT-2

IR channel (μm) 10.2–11.2 9.80–11.8 10.5–12.5 10.3–11.3

Nadir location 135◦W 75◦W 0◦E 57.5◦E 145◦E

Time resolution (min) 30 30 15 30 30

Space resolution at nadir (km) 4 4 3 5 4

Effective longitude span 175◦W– 105◦W 105◦W –40◦W 40◦W– 40◦E 40◦E –100◦E 100◦E – 175◦W

Missing images (%) 9.41 14.21 0.18 5.24 1.80

Low quality images (%) 2.09 2.13 0.28 0.55 0.97

Overall availability (%) 88.50 83.66 99.54 94.21 97.23

2.4 The Tropical Rainfall Measuring Mission
Precipitation Radar Level-2 products

The TRMM PR 2A25 product (Iguchi et al., 2000) Ver-
sion 7 is used in this study. Near-surface rain rates esti-
mated from the TRMM PR from the common period of
existence of both Megha-Tropiques and the TRMM PR (Octo-
ber 2011–September 2014) are used for the bias correction
scheme of the TAPEER product. The Version 7 has bene-
fited from a large investment from the developers yielding a
much improved analysis (Kirstetter et al., 2013a; Hamada and
Takayabu, 2014). The near-surface rain rates have been fur-
ther increased by 6% to account for the orbit boost, following
Wang et al. (2014).

2.5 West Africa ground validation data

The short assessment of the contribution of Megha-Tropiques
to the constellation-based rainfall daily accumulation is per-
formed over the MT validation super-site in Ouagadougou,
Burkina Faso in West Africa (Gosset et al., 2013) and using
the dense research network of the African Monsoon Multi-
disciplinary Analysis (AMMA) – Couplage de l’Atmosphère
Tropicale et Cycle Hydrologique (CATCH) programme over
Niamey, Niger and over the Ouémé basin, Bénin (Lebel et al.,

2009). These networks have been extensively used for vali-
dation purpose (Roca et al., 2010a; Gosset et al., 2013; Guil-
loteau et al., 2016) and are presented in detail in these various
previous works. During summer 2012, each degree square
was populated with between 15 and 41 rain-gauges insur-
ing a well characterized estimation of the daily accumulation
and a small kriging variance here used as the uncertainty of
the ground-based measurements (Roca et al., 2010a). These
three sites correspond to different rain regimes both in terms
of seasonal mean amount and in terms of the phenomenol-
ogy of the associated storms and span a wide variety of cases
well suited for algorithms evaluation (Gosset et al., 2018,
this issue).

3 THE TROPICAL AMOUNT OF RAIN
WITH ESTIMATION OF ERRORS
ALGORITHM

3.1 Algorithm description

The Tropical Amount of Rain with Estimation of Errors
(TAPEER) algorithm provides both the daily accumulated
rainfall as well as the associated uncertainty for each 1◦×1◦

grid box over the whole intertropical belt. The accumulation
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computation simply reads

𝐴𝑐𝑐 = Rcond × Frac × L, (1)

where L is the duration over which the accumulation is com-
puted (in h), Acc stands for Accumulated rainfall amount (in
mm/day), Rcond is the conditional rain rate (in mm/h) and Frac
the precipitation fraction (in %). Note that in the case of the
present product, L is 24 h.

It is based on the Universally Adjusted GOES Precipitation
Index technique (Xu et al., 1999; Kidd et al., 2003). During
the first step of the algorithm called the training phase, the
average of Rcond is computed from all the Level-2 data derived
from the passive instruments available within a dedicated
training volume (space+time) named VRcond. Here VRcond is
taken as a region of 5◦×5◦ during 5 days, hereafter noted
5◦×5◦×5 day. The fraction of precipitating pixels as indicated
by the Level-2 data is computed over another training volume
V frac which is used to derive the IR brightness temperature
threshold that matches this precipitating fraction in the collo-
cated Level-2 data and IR brightness temperature dataset. In
a second step, the application phase, the actual precipitation
fraction for the 1◦×1◦×1 day grid box is calculated thanks to
the infrared threshold determined in the training phase and
applied to all the infrared imagery of the day at full resolution.

The uncertainty estimate comes in the form of a standard
error and reads

𝜎𝐴𝑐𝑐 =
𝜎√
Nind

, (2)

where 𝜎 is the standard deviation in mm/day. N ind is the num-
ber of independent points and is obtained thanks to variogram
computations (Roca et al., 2010a). The standard deviation and
N ind are estimated for each 1◦×1◦×1 day grid box and the var-
iogram parameters are computed every 10 days over a 5◦×5◦

region surrounding the grid box (Chambon et al., 2012b).
The Algorithm Theoretical Basis Document (Chambon et al.,
2012b) summarizes the details of the implementation of the
technique and we here focus on the recent additions to this
initial configuration.

Note that owing to the difficulties in the Level-2 data
to retrieve realistic rain amounts in high mountainous ter-
rains (Sohn et al., 2010; Shige and Kummerow, 2016; You
et al., 2016), 1◦×1◦ grid boxes with average elevation above
3,000 m are not considered in the final product and are
flagged as missing. This impacts the Himalayas and the Andes
regions.

3.2 A two-constellations implementation

The accuracy of the final product is sensitive to the approach
used to identify the IR threshold for rain/no rain classifica-
tion and the computation of the conditional rain rate. The
difficulty lies in finding a threshold that is representative
of the local situation in space and time and at the same
time populated with enough Level-2 data to insure statistics
stability (Kummerow and Giglio, 1995). This fundamental

trade-off has been explored from the GOES Precipitation
Index (GPI) era (IR threshold= 235 K and Rcond = 3 mm/h)
to the locally adjusted perspective like the one used in the
TAPEER algorithm (Kidd et al., 2003; Chambon et al.,
2012a). At the 1◦×1◦×1 day scale, the IR threshold for rain
detection varies significantly from day to day due to the
very indirect relationship between cloud top and precipita-
tion (Kidd, 2001), and its optimum identification requires the
smallest training volume to benefit from the microwave-based
detection capability of the low Earth-orbiting satellites. As
far as the conditional rain rates are concerned, we rely on
Level-2 data that originate from a Bayesian retrieval. By
consequence, the more observations used to compute Rcond ,
the closer to the reference database the estimates are. This
calls for an extended training volume for conditional rain rate
computations.

The analysis of the day-to-day variability of Rcond and of
the rain fraction over the AMMA-CATCH regions during the
monsoon season reveals the stability of the former (sigma
∼15%) and the strong variance of the latter (sigma ∼150%).
Assuming a constant value of Rcond over the season only
decreases the correlation coefficient of the satellite estimate
with the ground data from 0.9 to 0.86. Similar statistics holds
for the Burkina Faso and Bénin networks. This is consistent
with multi-scale investigations performed on ground-based
radar observations that at 1◦×1◦×1 day scale, the precipitation
fraction controls the daily accumulation (Guilloteau et al.,
2016).

Tropics-wide analysis confirms the low variance of Rcond

over a season compared to that of the rain fraction (Figures 3
and 4). This is indicative of the fact that at the 1◦×1◦×1 day
scale, the accumulated rainfall day-to-day variability in the
Tropics is primarily due to the detection capability of the
observing system and that the conditional rain rate and the
rain fraction operate on two different time-scales. A direct
consequence of this analysis is that two sets of refresh time
and representativity trade-offs, one for conditional rain rate
and one for detection, can be elaborated upon. In particu-
lar, the computation of Rcond can be performed on a larger
time-scale than that of the rain fraction without sacrificing too
much on the accuracy of the product.

An indirect consequence is that one can use different suites
of instruments to compute each of these two terms. In partic-
ular, the use of microwave sounders for the detection step per-
mits us to increase the detection-relevant sampling and hence
to use a smaller and more representative training volume (see
next section for a quantitative discussion). While such an
approach opens the door for using the full fleet of microwave
sounders in complement to the microwave imagers fleet, it is
here restricted to the single use of SAPHIR as a first proto-
type of such a double constellation based merging technique
with emphasis on the tropical regions. The baseline followed
here is to consider a training volume for Rcond of 5◦× 5◦×5 day,
and of 3◦×3◦×1 day for the detection. The sensitivity to these
assumptions is discussed in the Performances section.
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FIGURE 3 The conditional rain rate: (a) seasonal average (mm/h), (b) seasonal relative standard deviation (%)

FIGURE 4 The fraction of rain: (a) seasonal average (%), (b) seasonal relative standard deviation (%)

3.3 Bias correction scheme

3.3.1 Rationale
The inherent limitations of the instantaneous rainfall detec-
tion and estimation issues (Elsaesser and Kummerow, 2015)
propagate into the daily accumulated rainfall estimation
(Chambon et al., 2012b) yielding to significant global and
regional bias at the monthly and seasonal scales with respect
to various references (Gosset et al., 2018). To cope with
bias issue, various scalings of the satellite data on various
references have been implemented in the literature and two
major proposals have been followed. At the local scale, the
use of rain-gauge data at a monthly time-scale has shown
promising results over land (e.g. Huffman et al., 2007; Bergès
et al., 2010). Some of these adjustments can also involve
rain-gauges but with a climatological perspective (Huffman
et al., 2015). Here the latter approach is followed using
large-scale regions and long-term periods to compute the bias
correction. The TRMM PR products are used as a reference
as a way to (a) provide correction over the oceans, (b) provide
an independent estimate from the Global Precipitation

Climatology Centre (GPCC) references (Becker et al., 2013)
and (c) to keep the final product as a satellite-only product.

3.3.2 Details
The adjustment consists of a ratio between mean TAPEER
rainfall estimates and the mean PR rain rates, where compu-
tations have been elaborated heuristically thanks to numerous
attempts to account for trade-offs between statistical signif-
icance, robustness and efficiency. The proposed approach
works as follows:

Averaging periods

The ratios are computed for each calendar month using
a 3-month window to increase the PR and TAPEER
statistics. At this stage, a 3-year period is used when
TAPEER (with SAPHIR) and the TRMM Precipitation
Radar overlapped to compute the statistical adjustment.
It includes January–September 2012, 2013 and 2014 and
October–December 2011, 2012 and 2013.
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FIGURE 5 Map of the magnitude of the bias correction factor on average for JJAS 2012–2014

Land and oceanic basin

Adjustment is computed independently for land and oceanic
basins to account for the Level-2 data retrievals that differ
over land and ocean. The Americas, Africa and Asia conti-
nents are considered separately, as are the Atlantic and Indian
Oceans. The Pacific Ocean is separated into west and east
Pacific basins at the date-line. This is done in order to account
for the large-scale regional variability in the TAPEER bias as
revealed in the following sections.

Coastal area

In opposition to the large-scale continental land and oceanic
basins, coastal regions exhibit a large geographical bias vari-
ability, principally due to the combination of the different
spectral configuration for the land and oceanic retrievals. As
a consequence, the statistical adjustment is here applied at
the 1◦×1◦ scale using the 1◦×1◦ Precipitation Radar and the
TAPEER totals.

3.3.3 Magnitude of the adjustment
Figure 5 shows the distribution of the bias correction fac-
tor magnitude. Bias correction factors are greater than 1 for
all continents and oceans except for Africa where it is of the
order of 0.85. In all other regions, its value is of the order
of 1.05–1.15, meaning that the amplitude of the correction is
lower than 15%. The only exception is the Asian continent
where the factor value is 1.4. Due to the local calibration,
coastal bias correction factors present a larger range of val-
ues. In particular, we point out multiplicative coefficients
higher than 2 in coastal west India, showing that uncalibrated
TAPEER-BRAIN products present a strong rain deficit in
this region. The standard deviation of the bias correction fac-
tors within a season (not shown) is of the order of a few
per cent, except in coastal areas where the local calibration
makes it more likely to fluctuate. These low standard devia-
tion values indicate that our algorithm estimates do not behave
differently from the climatological PR estimates along the
4-month period covered in this illustration study.

At the global scale, the impact of this bias correction
increases the mean 2012 seasonal tropical daily rain amount
from 2.50 to 2.87 mm/day, close to the TRMM PR 2012–2014
seasonal mean of 2.91 mm/day. The GPCP data read a little

higher at 3.01 mm/day for summer 2012, probably due to their
adjustments onto the GPCC data.

4 PERFORMANCES AND SENSITIVITY
STUDIES

4.1 Data-denial experiments

The quantification of the contribution of the MT/SAPHIR
observations to the GPM constellation-based rainfall esti-
mates is performed via a series of data-denial experiments.
The baseline configuration of the constellation is composed
of the Level-2 data from the Sun-synchronous platforms of
Table 2 plus the TMI microwave imager on board TRMM
for the conditional rain estimation. The baseline configura-
tion of the constellation for fraction estimation is the same as
the baseline for conditional rain rate plus the addition of the
detection of the SAPHIR on board Megha-Tropiques observa-
tions (Table 1). Then algorithm parameters are varied or the
constellation members are modified to explore the sensitivity
of our results to the various assumptions and to the back-
ground constellation configuration. These data-denial exper-
iments are summarized in Table 4 and the acronyms used
hereafter to refer to these experiments are introduced. Note
that all the experiments have been bias-corrected using the
2012 bias departure values. These experiments are then either
compared to the ground-based reference data set over West
Africa and/or to the baseline results at global tropical scales.
The comparisons are performed by including the uncertainty
estimates when relevant. The methodology to achieve it is
taken from Roca et al. (2010a) and it is summarized in
Appendix along with the modified, uncertainty-aware, scores
and metrics used.

4.2 West Africa statistics

4.2.1 Bulk performances and sensitivities to algorithm
parameters
Table 4 summarizes the bulk statistics of the comparisons
between the TAPEER products under various assumptions
and the ground-based data over the three West African sites
during the summer season of 2012. These performances are
focused on using the errors bars of TAPEER products and
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TABLE 4 The data-denial experiments

Rcond estimation Fraction estimation

Name Constellation Training volume Constellation Training volume Bias correction Acronym

Reference run Baseline Estimation 5◦×5◦×5 day Baseline detection 3◦×3◦×1 day Yes Refrun

Uncorrected Baseline Estimation 5◦×5◦×5 day Baseline detection 3◦×3◦×1 day No Uncorrected

No SAPHIR Baseline Estimation 5◦×5◦×5 day Baseline detection – SAPHIR 3◦×3◦×1 day Yes NoS

Larger training Baseline Estimation 5◦×5◦×5 day Baseline detection 5◦×5◦×5 day Yes 555_base

LT no SAPHIR Baseline Estimation 5◦×5◦×5 day Baseline detection – SAPHIR 5◦×5◦×5 day Yes 555_NoS

1998+ SAPHIR 1998 5◦×5◦×5 day 1998+ SAPHIR 3◦×3◦×1 day Yes 1998like+S

1998 1998 5◦×5◦×5 day 1998 3◦×3◦×1 day Yes 1998like

No precessing Baseline estimation-TMI 5◦× 5◦× 5 day Baseline detection-TMI 3◦× 3◦× 1day Yes NoTMI -S

No TMI Baseline estimation-TMI 5◦×5◦×5 day Baseline detection-TMI-SAPHIR 3◦× 3◦× 1day Yes NoTMI+S

TABLE 5 Sensitivity to the algorithm parameters. Comparisons with ground-based references

POD FAR
R

Cond.
Ground
ave (mm/day)

Cond.
Bias (%)

Cond.
RMS
(mm/day) Best Worst Best Worst F-score

Burkina
Ref run 0.96 9.45 −18.9 2.51 0.82 0.58 0.15 0.28 1.15

Uncorrected 0.96 9.45 −11.7 2.75 0.82 0.58 0.15 0.28 1.11

NoS 0.91 9.55 −25.2 3.74 0.82 0.54 0.15 0.25 1.35

555_base 0.78 9.66 −4.0 6.11 0.78 0.56 0.15 0.31 1.41

555_NoS 0.78 9.66 −7.2 6.09 0.78 0.56 0.15 0.31 1.47

Niger
Ref run 0.99 8.00 −6.5 1.21 0.73 0.51 0.00 0.28 0,98

Uncorrected 0.99 8.00 +1.19 1.3 0.73 0.51 0.00 0.28 0.94

NoS 0.95 8.48 −19,2 2.74 0.68 0.47 0.00 0.23 1.27

555_base 0.93 8.22 −10.1 3.39 0.72 0.42 0.05 0.25 1.34

555_NoS 0.91 8.34 −23.2 3.47 0.71 0.42 0.05 0.23 1.45

Bénin
Ref run 0.96 9.47 −25.2 2.28 0.86 0.76 0.00 0.66 1.40

Uncorrected 0.96 9.47 −18.5 2.44 0.86 0.76 0.00 0.66 1.35

NoS 0.96 9.56 −22.5 2.00 0.86 0.76 0.00 0.66 1.35

555_base 0.80 9.91 −29.2 5.13 0.82 0.75 0.00 0.66 1.73

555_NoS 0.81 9.81 −27.8 4.78 0.82 0.75 0.00 0.66 1.69

limited to a few metrics. A companion article by Gosset et al.
(2018 this issue) explores more systematic metrics of vali-
dation over longer periods and provides intercomparisons to
complement the present compact performances assessment.

Overall, over these three sites, the reference and the uncor-
rected runs show very high correlations (R> 0.96) and very
good probability of detection and false alarm rates compared
to the ground-based data. The impact of the large-scale bias
correction scheme is to locally increase the bias. All the statis-
tics are made worse when SAPHIR is removed from the
constellation, quantifying over these sites the importance of
the Megha-Tropiques mission to the daily accumulated rain-
fall estimates. The data-denial experiments further indicate
that the use of a larger training volume for the fraction esti-
mate cancels the benefit of adding Megha-Tropiques to the
constellation (Table 5). This degradation of the performance
is even stronger in the experiment without SAPHIR (555_NoS

experiment). This showcases the need to make use of the
smaller training volume for better daily accumulation esti-
mations and confirms the relevance of the selection of the
training volume for our baseline configuration of the retrieval.

4.2.2 The case-study of 4 July 2012 over Niamey
Over Niamey, 4 July 2012 stands out in the above comparison
(Figure 6). Indeed without SAPHIR, the satellite estimates
reads 3.5 mm (±1.7 mm), while including SAPHIR, the base-
line configuration estimations yields 30.2 mm (±4.4 mm) to
be compared with the rain-gauges measurement of 30.1 mm
(±3.1 mm). The reasons for such a strong difference can
be tracked to the IR threshold identified by the algorithm
in the two configurations for this day and the actual sam-
pling of the training volume by the SAPHIR instruments on
board Megha-Tropiques. That particular day almost none of
the TMI, AMRS2, SSMI or SSMIS instruments observed the
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FIGURE 6 Time series over the Niger site of the satellite (triangle) and the ground-based (diamond) daily accumulation (mm/day): (a) for the baseline
configuration, (b) without SAPHIR. The vertical thin dashed line indicates 4 July 2012

TABLE 6 Sensitivity to constellation configuration. Comparisons to the ground-based references

POD FAR
R

Cond. Ground
ave (mm/day)

Cond.
Bias (%)

Cond. RMS
(mm/day) Best Worst Best Worst F-score

Burkina
98like+S 0.97 9.73 −14.4 2.54 0.79 0.57 0.15 0.31 1.15

98like 0.88 9.97 −20.8 4.88 0.79 0.52 0.15 0.25 1.42

NoTMI-S 0.91 9.77 −28.9 3.48 0.80 0.55 0.15 0.25 1.34

NoTMI+S 0.96 9.46 −18.4 2.48 0.82 0.59 0.15 0.28 1.13

Niger
98like+S 0.99 8.09 −7.74 0.63 0.71 0.48 0.00 0.28 0.95

98like 0.92 8.8 −21.7 3.53 0.65 0.40 0.00 0.39 1.45

NoTMI-S 0.99 8.72 −11.8 1.27 0.67 0.45 0.05 0.20 1.01

NoTMI+S 0.99 8.08 −4.1 1.22 0.71 0.49 0.05 0.28 0.98

Bénin
98like+S 0.91 9.74 −27.1 3.28 0.83 0.74 0.00 0.66 1.53

98like 0.91 9.94 −24.7 3.46 0.81 0.72 0.00 0.66 1.53

NoTMI-S 0.96 9.48 −24.7 2.16 0.86 0.76 0.00 0.66 1.38

NoTMI+S 096 9.47 −26.5 2.30 0.86 0.76 0.00 0.66 1.40

rainy structures associated with cold clouds over the Niger
because they all sampled the 3◦× 3◦×1 day sampling vol-
ume in the late morning or afternoon while the rainy event
happened before 0800 UTC. The SAPHIR instrument had
five overpasses over the training volume between 0000 and
0800 UTC on 4 July. As a result, SAPHIR observed 44%
of the collocated pixels in the training volume correspond-
ing to 97% of the collocated rainy pixels. The resulting IR
threshold is 200.1 K for the baseline constellation but a much
colder 190.4 K threshold when SAPHIR is removed, prevent-
ing the fraction estimation exceeding 1% compared to 14.8%
for the baseline configuration. When the training volume is
larger (5◦×5◦×5 day), the rainfall estimates reads 36.9 mm
(±4.7 mm) with and 34.1 mm (±4.5 mm) without SAPHIR,
corresponding to fractions of 18% with and 16.5% without

SAPHIR, respectively. In both configurations, while the miss
is not as important as in the previous case, the final esti-
mates are less accurate than for the baseline configuration,
confirming the suitability of the smaller training volume.
In complement to the bulk analysis, this case-study high-
lights that in some cases the SAPHIR observations bring
invaluable information to accurately determine the rain/no
rain threshold and by consequence the daily accumulated rain
estimate.

4.2.3 Sensitivity studies to the constellation configuration
The data-denial experiments (Table 4) are further analysed to
assess the sensitivity of these results to the constellation of
microwave imagers, and the results are compiled in Table 6 for
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FIGURE 7 (a) Number of days with daily accumulation greater than 1 mm/day for the baseline product for the JJAS 2012 period. (b) Relative difference (%)
between the NoS experiment and the baseline product. Only grid points with at least 10 days greater than 1 mm/day are represented

FIGURE 8 Fraction of the time for which the NoS experiment differs from the baseline product by more than 50% of the daily accumulation

the three West African sites. A 1998-like constellation and the
2012 baseline constellation without TMI are considered. First
it is important to note that in both configurations the correla-
tion, RMS and detection statistics reveal good performances
of the products in the degraded cases for all the sites. In terms
of bias, the Megha-Tropiques sampling clearly improves the
scores except for Bénin where the impact is hardly noticeable.
In both configurations and over the different rain regimes,
adding the Megha-Tropiques mission improves or is neu-
tral to the F-score. Comparing the results in Table 5, the
No SAPHIR 2012 baseline is outperformed by the 1998-like
plus SAPHIR constellation over Burkina and Niger sites,
suggesting a stronger impact of Megha-Tropiques than a cou-
ple of Sun-synchronous platforms in the constellation. Over
Niger and Bénin, the NoTMI-S run exhibits similar scores
to the 2012 baseline run although with a slightly stronger
bias over Niger (−11.8% vs. −6.5%) while such a configu-
ration is clearly underperforming on the baseline run over
Burkina with F-scores of 1.34 and 1.15, respectively. These
local results are consistent with the Observing System Sim-
ulation Experiments and results of Chambon et al. (2012a)
where simulated data were used to show the saturation of the
performances of the constellation retrievals to the adding of
Sun-synchronous observations on the top of an already dense
constellation.

4.3 Tropical-scale statistics

4.3.1 Baseline performances

As identified over the West African networks, the bulk statis-
tics (seasonal bias, correlation) are not substantially altered
when the SAPHIR observations are removed from the 2012
constellation. When more-refined metrics are elaborated, the
impact of the Megha-Tropiques data is quantified more easily.
As discussed in the first part of this article, the occurrence of
daily accumulation greater than 1 mm/day closely resembles
the rainfall seasonal accumulation maps owing to the steadi-
ness of Rcond and is likely more influenced by the enhanced
detection capability brought by the Megha-Tropiques mis-
sion. Indeed, over the oceanic intertropical convergence zone
(ITCZ), where more than 50 days per season read over
1 mm/day daily accumulation, the difference of the NoS
experiment and the baseline products varies between 0 and
8 days, roughly within 10% of the season totals (Figure 7).
Note that, even in the core of the ITCZ, some locations (white
boxes in Figure 7) exhibit no sensitivity in their occurrence of
rainy days to the presence of Megha-Tropiques. Over the land,
similar impacts hold except for the Sahel band that reveals
a stronger sensitivity with value differences ranging from
−20 to −50% between the two configurations of the constel-
lation. To complement this frequency analysis, the fraction
of the time for which the NoS experiment and the baseline
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FIGURE 9 (a) Zonal mean percentage of the time for which the NoS
experiment differs from the baseline product by more than 50% of the daily
accumulation. (b) Zonal mean percentage of the time for which the NoS
experiment differs from the baseline product by more than 50% of the daily
accumulation number of days normalized by the total number of rainy days

configuration differs by more than 50% of the daily accumu-
lations has been computed. A larger part of the intertropical
belt exhibits values larger than 20%, both over the ocean and
land (Figure 8). The pattern of the impact is a complex con-
volution of the daily rainfall accumulation patterns and the
sampling patterns of the SAPHIR instrument on board the
Megha-Tropiques mission.

The zonal conditional mean of these metrics indicates
that over the 20◦S–20◦N belt more than 10% of the daily
accumulation estimates are changed by more than 50%
when the SAPHIR data are accounted for in the product

(Figure 9a). This again results from the complex sampling
pattern (Figure 2) and the rainfall distribution. When con-
ditioned upon rainy days, the patterns further resemble the
sampling patterns of Megha-Tropiques, and more than 20%
of the rainy days are impacted all through the 20◦S–20◦N belt
reaching up to 35% in the southern 15◦S–17◦S region where
the sampling is maximized (Figure 9b).

5 CONCLUSIONS

A new implementation of the TAPEER algorithm is intro-
duced that provides the daily accumulated rainfall infor-
mation at 1◦ scale over the Tropics. A climatological bias
correction scheme based on the TRMM PR v7 products is
presented. Two different constellations are used. One is used
for estimating the mean conditional rain rates and relies on
a large training volume. The second is used for the detection
of the rain and the estimation of the rain fraction, and oper-
ates on a smaller training volume. In this second constellation,
the detection capability of the SAPHIR sounder on board
Megha-Tropiques is used. The baseline run shows very good
performances when compared to a subset of ground-based
data over West Africa. Thanks to a set of data-denial exper-
iments, the impact of the Megha-Tropiques mission is quan-
tified and the sensitivity of the products to the assump-
tions and parameters is assessed. Over the three West Africa
sites covering different rain regimes, the impact of adding
Megha-Tropiques to the constellation is neutral to positive in
terms of bulk statistics. A case-study further highlights the
conditions for which the MT mission brings in crucial obser-
vations that positively alter the comparison with the ground
data. Tropics-wide results are computed and indicate that the
MT mission, through the SAPHIR instrument, significantly
alters the constellation daily accumulation estimates more
than 20% of the rainy days in the zonal average. The pattern
of the impact is a convolution of the rainfall occurrence and
the sampling pattern of the SAPHIR instrument.

Future work is oriented towards estimating accumulated
rainfall at finer time- and space scales. It is planned to make
use of the GPROF Level-2 datasets (Kummerow et al., 2015).
In particular, recent improvements for orographic rainfall esti-
mates (e.g. Shige and Kummerow, 2016) will likely improve
the TAPEER estimate in these difficult conditions. Further-
more, it is planned to include the whole fleet of microwave
sounders, and not just SAPHIR, to complement the current set
of microwave imagers, thanks to recent advances in instan-
taneous rainfall estimates from sounders (e.g. Laviola and
Levizzani, 2011; Kidd et al., 2015; You et al., 2016).
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APPENDIX

The strength of the TAPEER algorithm is to provide error
bars on the daily rainfall estimates. This information is very
valuable when comparing two datasets, as accounting for the
error bars can significantly change some metrics like the cor-
relation, root-mean-square error (RMS), bias and contingency
tables as shown in Roca et al. (2010a). For computing cor-
relations, biases and RMS of the regression presented in this
article between the TAPEER rain estimates and rain-gauge
data, accounting for their respective errors, we used the Kelly
(2007) approach that is based on a maximum likelihood
estimate technique.

Contingency tables can also be computed taking into
account error bars. Indeed, when the relative standard error
is larger than 100% of the rain estimate provided by either
rain-gauges or TAPEER, this affects the rain detection statis-
tics. One conservative way to compute a probability of
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detection (POD) and a false alarm rate (FAR) account-
ing for errors is to choose the worst scenarios, which
minimize the POD and maximize the FAR. This can be
achieved by defining the POD as the ratio of the num-
ber of cases where RainSat-errorSat>0 and RainGauges>0
over the number of cases where RainGauges>0, and the
FAR as the ratio of the number of cases where RainSat>0
and RainGauges-errorGauges<=0 over the number of cases
where RainSat>0.

In order to compare the various experiments described
in this article, another metric is used which combines the
metrics described before into a single one called the F-score

as defined in Chambon et al. (2012a). The F-score accounts
for the biases, RMS, POD and FAR between the TAPEER
estimates and the ground measurements, and their associ-
ated uncertainties. The bias and RMS are computed using
the Kelly regression, so as to account for the error bars as
indicated by the ‘REG’ subscript in Equation (4). It reads:

F = 1 +
||||
BIASREG

⟨RREF⟩
|||| +

||||
𝑅𝑀𝑆REG

⟨RREF⟩
|||| − 𝑃𝑂𝐷worst + 𝐹𝐴𝑅worst,

(A1)
where <RREF> is the average rainfall of the ground measure-
ments. With this metric, the lower the F-score is, the better
the TAPEER estimations are.




