
HAL Id: insu-01857103
https://insu.hal.science/insu-01857103

Submitted on 14 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transferability of continuous- and class-pedotransfer
functions to predict water retention properties of

semiarid Syrian soils
Hassan Al Majou, B Hassani, Ary Bruand

To cite this version:
Hassan Al Majou, B Hassani, Ary Bruand. Transferability of continuous- and class-pedotransfer
functions to predict water retention properties of semiarid Syrian soils. Soil Use and Management,
2018, 34, pp.354-369. �10.1111/sum.12424�. �insu-01857103�

https://insu.hal.science/insu-01857103
https://hal.archives-ouvertes.fr


1 

 

 Transferability of continuous- and class-pedotransfer functions to predict water 1 

retention properties of semiarid Syrian soils 2 

 3 

 4 

H. Al Majou
a b*

, B. Hassani
c
, A. Bruand

a
 5 

 6 

a
Institut des Sciences de la Terre d’Orléans (ISTO), Université d’Orléans, CNRS/INSU, 7 

BRGM, 1A Rue de la Férollerie, 45071 Orléans Cedex 2, France. 8 

b
Department of Soil Science, Faculty of Agronomy, University of Damascus, PO Box 9 

30621, Damascus, Syria. 10 

c
Department of Soil & Land Reclamation, Faculty of Agriculture, Aleppo University, Aleppo, 11 

Syria.   12 

 13 

*Corresponding author: email Hassan.Almajou@univ-orleans.fr 14 

 15 

Running title: Water retention properties of semiarid Syrian soil 16 

17 



2 

 

Abstract 18 

Hydraulic properties of soils, particularly water retention, are key for appropriate management 19 

of semiarid soils. Very few pedotransfer functions (PTFs) have been developed to predict 20 

these properties for soils of Mediterranean regions, where data are particularly scarce. We 21 

investigated the transferability of PTFs to semiarid soils. The quality of the prediction was 22 

compared to that for soils originating from temperate regions for which most PTFs were 23 

developed. We used two soil datasets, one from the Paris basin (French dataset, n = 30), and a 24 

Syrian dataset (n = 30). Soil samples were collected in winter when the water content was 25 

near field capacity. Composition and water content of the samples were determined at seven 26 

water potentials. Continuous- and class-PTFs developed using different predictors were tested 27 

using the two datasets and their performance compared to those developed using artificial 28 

neural networks (ANN). The best performance and transferability of the PTFs for both 29 

datasets used soil water content at field capacity as predictor after stratification by texture. 30 

The quality of prediction was similar to that for ANN-PTFs. Continuous- and class-PTFs may 31 

be transferable to other countries with performances that vary according to their ability to 32 

account for variation in soil composition and structure. Taking into account predictors of 33 

composition (particle size distribution, texture, organic carbon content) and structure (bulk 34 

density, porosity, field capacity) did not lead to a better performance and best transferability 35 

potential.  36 

Keywords: Pedotransfer functions, Soil water retention, Syrian soils, Field capacity, Texture, 37 

Bulk density.  38 

 39 

Introduction 40 

The hydraulic properties of soils, particularly soil water retention properties, are key data for 41 

the appropriate management of soils. These properties, which are generally unavailable and 42 
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expensive to measure, can be predicted from other more easily measured properties using 43 

prediction tools called “pedotransfer functions (PTFs)” (Bouma, 1989). PTFs have been 44 

applied in a large number of studies in recent decades (e.g. Cornelis et al., 2001; Wösten et 45 

al., 2001; Al Majou et al., 2007; Nasta et al., 2009; Haghverdi et al., 2015; Nemes, 2015; 46 

Khlosi et al., 2016; Nguyen et al., 2017).  47 

PTFs can be grouped into two categories, continuous-PTFs and class-PTFs (Wösten et al., 48 

1999). Continuous-PTFs enable the continuous prediction of the water retention curve (WRC) 49 

over the whole soil water content range, i.e. from water saturation to residual water content 50 

(e.g. Vereecken et al., 1989; Wösten et al., 1999; Hodnett & Tomasella, 2002; Al Majou et 51 

al., 2008a; Ghorbani et al., 2010; Haghverdi et al., 2012; Medrado & Lima, 2014) (Table 1). 52 

The class-PTFs predict the water retention curve discontinuously by grouping the data 53 

according to the functional behaviour of different horizons but may also be grouped according 54 

to some other criteria, such as texture or bulk density (Wösten et al., 1990; Baker, 2008). 55 

Thus, a single mean value or several mean values of the hydraulic properties are selected to 56 

represent each class (Wösten et al., 1999; Schaap et al., 2001; Hodnett & Tomasella, 2002; 57 

Nemes, 2002; Bruand et al., 2003; Pachepsky et al., 2006; Al Majou et al., 2007). Class-PTFs 58 

are often easy to use because they usually require little information about the soil compared 59 

with most continuous-PTFs that are more demanding of soil characteristics (Lilly et al., 1999; 60 

Nemes et al., 2003). However, they are often regarded as leading to poorer quality predictions 61 

than continuous-PTFs (Wösten et al., 1995). The issue of whether WRC prediction is best 62 

carried out with continuous-PTFs or with class-PTFs is still debated (Wösten et al., 1999; 63 

Medeiros et al., 2014) as is the issue of their transferability to other regions than those from 64 

which the soils originated to establish the PTFs considered (Cresswell et al., 2006; Touil et 65 

al., 2016). Few studies relate to the prediction of the WRC of soils in the Mediterranean basin 66 

(Dridi & Dilmi, 2011; Mohawesh, 2013; Wösten et al, 2013). Thus, in Syria and in other 67 
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countries of the Mediterranean basin, there is still little information available on hydraulic 68 

properties of soils and establishment of national soil databases is only just beginning 69 

(Sommer et al., 2012; Khlosi et al., 2013).  70 

Other approaches, such as artificial neural networks (ANN) (Haykin, 1994; Schaap et al., 71 

2001), support vector machines (SVM) (Twarakavi et al., 2009) or the k-nearest neighbor 72 

technique (k-NN) (Nemes et al., 2006a) have also been developed in recent decades to predict 73 

the water retention properties of soils. The approach using artificial neural networks (ANN) 74 

use one or more hidden layers or hidden units and are based on a self-learning process by 75 

using a set of soils for which the water retention properties and the basic properties are known 76 

(Table 1). Artificial neural network-based PTFs were introduced by Pachepsky et al. (1996) 77 

and Schaap and Bouten (1996). Unlike continuous- and class-PTFs, they do not require an a 78 

priori model (e.g. linear or exponential functions) (Nemes et al., 2002). During the last two 79 

decades, ANNs have been used extensively to predict soil water retention and their 80 

performance has been compared with PTFs based on other approaches (Minasny et al., 2004; 81 

Twarakavi et al., 2009; Nguyen et al., 2017).  82 

The objective of the present study was to select continuous- and class-PTFs from the literature 83 

and to analyze the quality of prediction when used for a set of French soils and a set of Syrian 84 

soils originating from temperate and Mediterranean regions, respectively. Prediction 85 

performance results for the selected continuous- and class-PTFs were also compared with 86 

those for ANN-PTFs. Additionally, their transferability to soil in France and Syria were 87 

assessed, given that the compared PTFs were established with soil samples from different 88 

origins. 89 

 90 

Materials and methods 91 

Soil data sets 92 
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A first set of soil samples was collected in France. Thus, 30 horizons (12 horizons A or Ap 93 

and 18 horizons E, B or C) originating from soils developed on sedimentary rocks in the Paris 94 

basin were sampled in winter. The climate of the Paris basin is temperate and influenced by 95 

the Atlantic Ocean, according to the distance from the coast. The soils were Cambisols, 96 

Luvisols and Fluvisols (ISSS Working Group R.B., 1998) (Bruand & Tessier, 2000).  97 

Another set of soil samples was collected in Syria. The soil samples were also collected in 98 

winter between latitudes 32 and 37° N and longitudes 35 to 42° E, an area with a 99 

Mediterranean or degraded Mediterranean climate (Rigot, 2006). Along the coast, the climate 100 

is Mediterranean but continental influences and aridity contribute to a rapid degradation of the 101 

Mediterranean climate as the distance from the coast increases. A set of 30 horizons (16 102 

horizons A or Ap and 14 horizons E, B or C) resulting from four sites were chosen as being 103 

representative of the main soil types. They were developed on calcareous and volcano-104 

sedimentary (basaltic) parent materials and collected in Aridisols, Inceptisols and Vertisols 105 

(Ilaiwi, 1980; Yuksel, 1982; Land Classification and Soil Survey of the Syrian Arab Republic, 106 

1982) or Calcisols, Gypsisols, Inceptisols and Vertisols (van Liere, 1995).  107 

For each horizon, the particle size distribution without decarbonation (Robert & Tessier, 108 

1974), the bulk density of clods and horizons (Bruand & Tessier, 2000), the organic carbon 109 

content by oxidation using an excess amount of potassium dichromate in a sulphuric acid 110 

controlled at 135°C (Baize, 2000), the CaCO3 content (Dupuis, 1969) and cation exchange 111 

capacity (CEC) (Ciesielski & Sterckeman, 1997) were determined. The volumetric water 112 

content was determined for the 60 soil samples from the two datasets at the water potential 113 

values –10 hPa (1.0), –33 hPa (1.5), –100 hPa (2.0), –330 hPa (2.5), –1000 hPa (3.0), –3300 114 

hPa (3.5), –15000 hPa (4.2) using the pressure plate extractor method (Bruand & Tessier, 115 

2000). 116 

The continuous- and class-PTFs selected 117 
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Among continuous-PTFs, some enable the direct prediction of the parameters of a WRC 118 

model (Table 1). In most studies, these continuous-PTFs are multiple linear regressions or 119 

non linear regressions providing the parameters of the van Genuchten model (1980) as output 120 

variables by using the particle size distribution, the organic carbon content and the bulk 121 

density as input soil properties (e.g. Tomasella et al., 2003; Schaap et al., 2001) (Fig. 1a). 122 

Among this group of continuous-PTFs, those established with a large number of European 123 

soils (Wösten-continuous-PTFs, see Table 5 in Wösten et al. 1999), with Belgian soils 124 

(Vereecken-continuous-PTFs, see Table 7 in Vereecken et al., 1989), and with French soils 125 

(VG-continuous-PTFs, see Table 6 in Al Majou et al., 2008a) were selected for this study 126 

(Table 1). They all estimate the parameters of the van Genuchten model (1980). 127 

Other continuous-PTFs do not directly predict the parameters of a WRC model but rather the 128 

water content at several matric potentials as output variables, generally by using the particle 129 

size distribution, the organic carbon content and the bulk density as input data (e.g. Pachepsky 130 

& Rawls, 1999; Reichert et al., 2009; Ghanbarian & Millán, 2010; Minasny & Hartemink, 131 

2011) (Fig. 1b). Then, knowing the water content at different water potentials, a WRC model 132 

is adjusted to the predicted water contents. Among this group of continuous-PTFs, those 133 

established with Brazilian soils (Reichert-continuous-PTFs, see Table 4 in Reichert et al., 134 

2009), with French soils (PSD-continuous-PTFs and FC-continuous-PTFs, see Table 4 & 5 in 135 

Al Majou et al., 2008a), with soils originating from the USA (Ghanberian-continuous-PTFs, 136 

see Table 5 model 1 in Ghanbarian & Millán, 2010) and with soils originating from tropical 137 

regions (Minasny-continuous-PTFs, see section 5.1 in Minasny & Hartemink., 2011) were 138 

selected for this study (Table 1). They estimate water contents at three to seven values of 139 

water potential and concern a large range of soil types. 140 

On the other hand, some of the class-PTFs directly predict the parameters of a WRC model 141 

after stratification according to soil characteristics such as texture, bulk density, the type of 142 
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horizon or type of soil, as input data (Table 1, Fig. 1c). Among this group of class-PTFs, those 143 

established after stratification by texture alone, and by both the type of horizon and texture 144 

with soils originating from North America (Schaap-class-PTFs, see Table 1 in Schaap et al., 145 

2001), Europe (Wösten-class-PTFs, see Table 4 in Wösten et al., 1999) and France (T-H-VG-146 

class-PTFs, see Table 3 in Al Majou et al., 2008a), respectively, were selected for this study 147 

(Table 1). 148 

Finally, other class-PTFs are sets of water contents at different values of water potential, these 149 

water contents being related also to classes of soil characteristics such as texture, bulk density, 150 

the type of horizon or type of soil, as input data (Table 1, Fig. 1d). Among this group of class-151 

PTFs, those established with French soils after stratification by either texture alone, by both 152 

texture and bulk density or by all the three predictors texture, bulk density and type of horizon 153 

(T-FC-class-PTFs, see Tables 5 Al Majou et al., 2008a; T-class-PTFs, T-BD-class-PTFs, T-154 

BD-H-class-PTFs, see Tables 2, 4 and 5 in Al Majou et al., 2008b) and providing sets of 155 

water content at seven values of water potential were selected for this study.  156 

The Artificial Neural Networks-PTFs 157 

The type of ANN selected was the one most commonly used to predict the hydraulic 158 

properties of soils (Børgesen & Schaap, 2005; Fashi, 2014). It usually consists of a three-layer 159 

feed forward back propagation network using, for each model, input layers (basic soil 160 

properties), hidden layers, and output layers (soil hydraulic properties), (Fig. 1e). Each neuron 161 

of the hidden layer calculates the sum s, of a weighted combination wi, of its input signals xi, 162 

and a bias term w0, and passes the result through the activation functions that were tangent 163 

hyperbolic and linear in the hidden and output layers, respectively. 164 

0

1

wxws ii

n

i


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 165 
(1) 

https://www.researchgate.net/profile/Christen_Borgesen
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The Levenberg-Marquardt algorithm (Demuth & Beale, 2000) was implemented to speed up 166 

the training of the multi-layer feed-forward neural network. The number of neurons in the 167 

hidden layer has to be found through trial and error; the number tested here varied from 1 to 168 

10 neurons. The feed-forward process stops once the output is predicted. Back-propagation 169 

algorithms try to minimize the error (minimize the sum of squares of the residuals between 170 

the measured and predicted outputs) of the mathematical system represented by the neural 171 

network’s weights. The error is estimated as the difference between the actual and computed 172 

outputs. 173 

The French national database used by Al Majou et al. (2008b) to develop continuous- and 174 

class-PTFs, including those discussed in this study, and which consists of 456 samples was 175 

used to train and evaluate the predictive performance of the ANN developed (Table 2). To 176 

continue to test the ANN method, the ANN developed was then applied to the French and 177 

Syrian datasets. The ANN simulations were performed by using the neural network toolbox 178 

provided by Matlab (R2014b). 179 

Criteria used to evaluate the performance of the continuous- and class-PTFs 180 

To assess the continuous and class-PTFs performance, we used the mean error of prediction 181 

(MEP) and the standard deviation of prediction (SDP) which provide information on the 182 

estimation bias and precision, respectively, as follows: 183 
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where p,j,i is the predicted water content at matric potential i for the horizon j, m,i,j is the 187 

measured water content at matric potential i for the horizon j, and l is the number of matric 188 

potentials for each horizon (l=7 in this study) and l’ is the number of horizons studied. 189 

The root mean square error (RMSE) which is commonly used to test PTFs (e.g. Wösten et al., 190 

2001; Schaap, 2004; Lamorski et al., 2008) and which varies according to both the overall 191 

prediction bias and the overall prediction precision was also computed: 192 

 193 
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Beside these three statistical criteria, the coefficient of determination (R²) was computed: 195 
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where  m,i represents the average of the measured water content at the matric potential i. The 197 

value of the coefficient of determination (R²) measures the strength of the linear relation 198 

between the predicted and measured values.  199 

Results and discussion 200 

Characteristics of the studied soils  201 

The studied horizons showed Fine, Very Fine or Medium texture in the European triangle of 202 

texture (Commission of the European Communities, 1985) and no coarse elements (Table 2, 203 

Fig. 2a). Particle size distribution mean values for the datasets from France and Syria were 204 

close (Fig. 2bc). However, the Syrian dataset showed a smaller mean OC content because of 205 

the higher temperatures, limited precipitation and tillage systems that rapidly oxidize organic 206 

matter (Mrabet, 2011). As for the smaller mean bulk density of the Syrian soils, it can be 207 

(4) 

(5) 
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attributed to a larger macroporosity in most horizons as observed in the field (data not 208 

shown). The mean CaCO3 content and CEC were greater in the Syrian dataset.  209 

Results also showed a greater water content for matric potential ranging from –10 hPa (θ1.0) to 210 

–330 hPa (θ2.5) for the Syrian dataset. These greater water contents are consistent with the 211 

smaller mean bulk density recorded for the Syrian dataset and a greater proportion of swelling 212 

clays in the Syrian dataset as indicated by the greater mean CEC (36.5 cmolc/kg), the OC 213 

content being smaller in Syrian soils and the clay content similar in the two data sets. 214 

Evaluation of the continuous- and class-PTFs developed with the French national database 215 

The performance of the continuous- and class-PTFs developed with the French national 216 

database showed that the best prediction was recorded for the French dataset with the class-217 

PTFs using the water content at field capacity as predictor after stratification by texture (T-218 

FC-class-PTFs). These class-PTFs are the only ones that perform best for three statistical 219 

criteria (Table 3): the root mean square error (RMSE = 0.023 cm
3
/cm

3
) was the smallest and 220 

the precision (SDP = 0.023 cm
3
/cm

3
) and coefficient of determination (R

2
 = 0.81), the greatest 221 

(Table 3) (Fig. 3d). The worst prediction was recorded with the class-PTFs after successive 222 

stratification by texture and bulk density (T-BD-class-PTFs) with the smallest precision (SDP 223 

= 0.036 cm
3
/cm

3
) and coefficient of correlation (R

2
 = 0.52) and the largest root mean square 224 

error (RMSE = 0.036 cm
3
/cm

3
) (Table 3) (Fig. 3f). The continuous-PTFs developed for the 225 

parameters of the van Genuchten model (1980) (VG-continuous-PTFs) led to similar results 226 

to those obtained with the T-BD-class-PTFs, with small precision (SDP = 0.036 cm
3
/cm

3
) and 227 

high root mean square error (RMSE = 0.036 cm
3
/cm

3
) (Table 3) (Fig. 3a).   228 

With the Syrian dataset, the best performance was also recorded with the class-PTFs using 229 

water content at field capacity as predictor after stratification by texture (T-FC-class-PTFs) 230 

(Table 3). The estimation bias (MEP = –0.001 cm
3
/cm

3
) and the root mean square error 231 
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(RMSE = 0.029 cm
3
/cm

3
) were the smallest and the precision (SDP = 0.029 cm

3
/cm

3
) the 232 

greatest, the coefficient of determination (R
2
 = 0.75) being the second largest with the T-FC-233 

class-PTFs (Table 3) (Fig. 4d). The worst prediction was recorded with the continuous-PTFs 234 

developed for the parameters of the van Genuchten model (1980) (VG-continuous-PTFs) with 235 

the smallest precision (SDP = 0.046 cm
3
/cm

3
), a high estimation bias (MEP = 0.022 cm

3
/cm

3
) 236 

and the highest root mean square error (RMSE = 0.048 cm
3
/cm

3
) (Table 3) (Fig. 4a). The 237 

class-PTFs after successive stratification by texture and bulk density (T-BD-class-PTFs) gave 238 

results that had rather poor precision and root mean square error, though the estimation bias 239 

was very small (MEP = 0.001 cm
3
/cm

3
) and the coefficient of determination was much 240 

smaller (R
2
 = 0.51) (Fig. 4f) than with the VG-continuous-PTFs. 241 

In accordance with the results published by Cresswell et al. (2006), the rather good results 242 

recorded with the class-PTFs that used the water content at field capacity as predictor are 243 

likely related to the fact that the field capacity corresponds to a point on the water retention 244 

curve corresponding to a water potential close to –100 hPa (Al Majou et al., 2008a). 245 

Preliminary stratification by texture increases the prediction quality (Table 3) since the shape 246 

of the WRC and the relative location of the water content corresponding to field capacity on 247 

that curve vary according to texture. Comparison of the performance recorded with the French 248 

and Syrian datasets using the averaged criteria show that the continuous- and class-PTFs 249 

perform better when used for the French dataset (Table 3) which can be considered to be 250 

related to the origin of the soils used to develop the tested PTFs.   251 

Evaluation of the selected continuous- and class-PTFs from the literature and not using 252 

French soils exclusively 253 

Results recorded with the French dataset show that there was no PTF that performed best for 254 

all four criteria (Table 4). The smallest estimation bias was recorded with the Wösten-255 
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continuous-PTFs (MEP = –0.002 cm
3
/cm

3
), the best precision with the Vereecken-256 

continuous-PTFs (SDP = 0.040 cm
3
/cm

3
), the smallest root mean square error with the 257 

Ghanbarian-continuous-PTFs (RMSE = 0.046 cm
3
/cm

3
) and the greatest correlation 258 

coefficient with the Wösten-class-PTFs (R
2
 = 0.83 cm

3
/cm

3
) (Fig. 5a, b, d, g). However, the 259 

performance of the Ghanbarian-continuous-PTFs is among the best except for the correlation 260 

coefficient (R
2
 = 0.26 cm

3
/cm

3
) (Table 4) (Fig. 5d).   261 

On the other hand, results recorded with the Syrian dataset show that the Wösten-class-PTFs 262 

led to the best results for precision (SDP = 0.045 cm
3
/cm

3
), the smallest root mean squared 263 

error (RMSE = 0.047 cm
3
/cm

3
), the greatest correlation coefficient (R

2
 = 0.83) but a rather 264 

intermediate prediction bias (MEP = 0.019 cm
3
/cm

3
) (Table 4) (Fig. 6g).  265 

Comparison of the results recorded with the French and Syrian datasets using the averaged 266 

criteria show similar performances but much smaller than those recorded with the continuous- 267 

and class-PTFs derived from the French national database (Tables 3 and 4). 268 

Evaluation of the performance of the Artificial Neural Networks 269 

The ANN-PTFs developed with the French national database (Fig. 7a) led to a prediction 270 

quality for the French dataset used in this study (Table 5) that was close to the prediction 271 

quality recorded with the best PTFs tested (T-FC-class-PTFs, Table 3) (Fig. 7c). The RMSE 272 

which varies inversely with the overall prediction quality was slightly greater with the ANN 273 

than the one recorded with the T-FC-class-PTFs (0.030 and 0.023 cm
3
/cm

3
, respectively) 274 

(Tables 3 and 5). The correlation coefficient, which measures the strength of the linear 275 

relation between the predicted and measured water content, was slightly greater with the 276 

ANN-PTFs than with the T-FC-class-PTFs (0.85 and 0.81, respectively). It should also be 277 

mentioned that the prediction quality recorded with the T-FC-class-PTFs was not so far from 278 

the one observed with the ANN-PTFs when applied to the test dataset (20% of the original 279 
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data, i.e. 91 samples belonging to the French national database) since the RMSE were 0.023 280 

and 0.029 cm
3
/cm

3
, respectively, and the R

2
, 0.81 and 0.89, respectively (Tables 3 and 5). 281 

On the other hand, the ANN-PTFs developed with the French national database led to a 282 

smaller prediction quality for the Syrian dataset than with the T-FC-class-PTFs developed by 283 

Al Majou et al. (2008a). The RMSE recorded with the ANN-PTFs and the T-FC-class-PTFs 284 

was much greater (0.049 and 0.029 cm
3
/cm

3
, respectively) (Tables 3 and 5) and the 285 

correlation coefficients recorded with the ANN-PTFs slightly greater than with the T-FC-286 

class-PTFs (0.78 and 0.75, respectively) (Fig. 7b). 287 

The analysis of the results also showed that the PTFs selected in the literature and not using 288 

French soils performed less well than the ANN-PTFs, as already reported in the literature 289 

(Nguyen et al., 2017) (Tables 4 and 5). The RMSE and R
2
 were respectively greater and 290 

smaller than with the ANN-PTFs, using the PTFs selected in the literature and not using 291 

French soils. The Wösten-class-PTFs had however a much higher correlation coefficient (R
2
 292 

= 0.83 for the French and Syrian datasets) than that recorded for the other PTFs selected in the 293 

literature and fairly similar to the correlation coefficient recorded with the ANN (Tables 4 and 294 

5). 295 

 296 

Conclusion 297 

Our results show that PTFs developed for French soils are transferable to the Syrian soils 298 

selected for this study of semiarid Mediterranean soils. With the class-PTFs which use the soil 299 

water content at field capacity as predictor after stratification by texture, the quality of 300 

prediction is similar to that recorded with ANNs which are nowadays recognized as leading to 301 

a quality of prediction better or similar to those recorded with the PTFs published in the 302 

literature. The performance of these PTFs can be explained by the fact that a point on the 303 

water retention curve is actually used as a predictor even if the attribution of an accurate water 304 
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potential value to the field capacity state is not possible. Stratification by texture prior to the 305 

development of these PTFs then increases their ability to predict the water retention properties 306 

properly, as the shape of the water retention curve is closely related to the soil texture. In 307 

other words, the performance of the class-PTFs which use the field water content as predictor 308 

after stratification by texture is likely related to using information about both the elementary 309 

particle size distribution (texture) and their assemblage (structure and related porosity) which 310 

are known to be major basic soil properties responsible for variability in water retention 311 

properties. When the soil water content at field capacity is not available, the best performance 312 

recorded remains less clear. If the coefficient of determination recorded with continuous-PTFs 313 

is large when using texture information as predictor, the bias is large when applied to Syrian 314 

soils. With a lower coefficient of determination but the other statistical criteria close to those 315 

recorded when using water content at field capacity as predictor, our results show that worthy 316 

results in terms of transferability potential were recorded with class-PTFs using bulk density 317 

as predictor after stratification by texture.  318 

Analysis of the performance recorded with the continuous- and class-PTFs selected in the 319 

literature shows a poorer quality of prediction than PTFs developed with French soils. This 320 

probably has nothing to do with the origin of the soils but with a more appropriate 321 

consideration of soil characteristics related to soil composition and structure. The high 322 

correlation coefficients recorded with the class-PTFs developed by Wösten et al. (1999) and 323 

Shaap et al. (2001) are therefore likely related to their use of stratification by texture, thus 324 

leading to a high consistency of the water content variation according to water potential even 325 

if the prediction bias and prediction accuracy are high and low, as shown by the MEP and 326 

SDP, respectively.  327 

Finally, our results show that continuous- or class-PTFs could be considered as transferable 328 

with satisfactory performance to other countries where database of hydraulic soil properties 329 
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are not available to establish their own PTFs. The expected prediction quality of the PTFs 330 

transferred appeared to be mainly related to their ability to take into account predictors related 331 

to the characteristics of the elementary particles and their assemblage, since the best results 332 

were recorded with PTFs which combine predictors related to both soil composition and 333 

structure. Our results also showed that taking into account several predictors related to soil 334 

composition together (particle size distribution, texture, organic carbon content) and soil 335 

structure together (bulk density, porosity, field capacity) does not lead to a better performance 336 

and subsequently to the best transferability potential. It is noteworthy that the best 337 

performance were recorded by the class-PTFs that use texture as stratification criteria and 338 

then the water content at field capacity as structure information. 339 
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Table 1 537 
List of continuous- and class-PTFs according to the output variables and relationship between input and output variables.  538 

Output variables Relationship between input and 

output variables (continuous-PTFs) 

and stratification type (class-PTFs) 

Input variables Geographical domain 

or country 

Reference 

     

  Continuous-PTF   
     

Parameters of a water 

retention curve model 

MLR PSD, BD, OC 

PSD, BD, OM 

PSD, BD, OC, pH, CEC 

PSD, BD, Me 

PSD 

PSD, BD, OC 

PSD, OC, pH 

PSD, BD, dg, g 

PSD, BD, OC 

PSD, BD, OM 

Belgium 

Europe 

Tropics 

Brazil 

India 

France 

India 

Iran 

India 

Brazil 

Vereecken et al. (1989) 

Wösten et al. (1999) 

Hodnett & Tomasella (2002) 

Tomasella et al. (2003) 

Adhikary et al. (2008) 

Al Majou et al. (2008a) 

Santra & Das (2008) 

Ghorbani et al. (2010) 

Patil et al. (2012) 

Medrado & Lima, (2014) 

ANN PSD, BD, 33, 1500 

PSD, BD, OM, 1, 10, 100, 1500 

PSD, BD, OC, log(h) 

North America, Europe 

Denmark 

Iran, Australia 

Schaap et al. (2001) 

Børgesen & Schaap (2005) 

Haghverdi et al. (2012) 

SVM PSD, BD, log(h) USA Twarakavi et al. (2009) 

     

Set of  at different 

water potentials  

MLR and LR PSD, BD, Me 

FC 

PSD, BD, OM 

PSD, BD, dg, g, (h) 

PSD, BD, dg, g 

PSD, BD, OC 

PSD, BD, OM, PL 

PSD, BD, OC, log(h) 

Brazil 

France 

Brazil 

USA, France 

Iran 

Tropics, USA 

Syria 

Vietnam 

Tomasella et al. (2003) 

Al Majou et al. (2008a) 

Reichert et al. (2009) 

Ghanbarian & Millán (2010) 

Ghorbani et al. (2010) 

Minasny & Hartemink (2011) 

Khlosi et al. (2016) 

Nguyen et al. (2017) 

 ANN PSD, BD, OM, 1, 10, 100, 1500 

PSD, BD 

PSD, BD, OC, log(h) 

PSD, BD, OC 

PSD, BD, OM, PL 

PSD, BD, OC, log(h) 

Denmark 

Poland 

Iran, Australia 

India 

Syria 

Vietnamese  

Børgesen & Schaap (2005) 

Lamorski et al. (2008) 

Haghverdi et al. (2012) 

Patil et al. (2012) 

Khlosi et al. (2016) 

Nguyen et al. (2017) 

SVM PSD, BD Poland Lamorski et al. (2008) 
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PSD, BD, OC 

PSD, BD, OM, PL 

PSD, BD, OC, log(h) 

Vietnam 

Syria 

Vietnam 

Nguyen et al. (2015) 

Khlosi et al. (2016) 

Nguyen et al. (2017) 

k-NN PSD, BD, OM 

PSD, BD, OC 

PSD, BD 

PSD, BD, OC 

PSD, BD, OC, log(h) 

USA 

India 

USA, Belgium 

Vietnam 

Vietnam 

Nemes et al. (2006a) 

Patil et al. (2012) 

Haghverdi et al. (2015) 

Nguyen et al. (2015) 

Nguyen et al. (2017) 

 

   

Class-PTF 

  

 

Parameters of a water 

retention curve model  

 

Multiple parameters class distribution 

 

T, Hor. 

T, Hor. 

T, Hor. 

T, Hor. 

 

Europe  

Tropics 

France 

France 

 

Wösten et al. (1999) 

Hodnett & Tomasella (2002) 

Al Majou et al. (2007) 

Al Majou et al. (2008a) 

Mono parameter class distribution T  North America, Europe Schaap et al. (2001) 

     

Set of  at different 

water potentials 

Multiple parameter class distribution T, BD  

T, BD, Hor. 

Statistical distribution of 

dataset (texture, horizon) 

T, BD, Hor. 

France 

France 

 

Europe  

Portugal 

Bruand et al. (2003) 

Al Majou et al. (2008b) 

 

Baker (2008) 

Ramos et al. (2013) 

Mono parameter class distribution  T, FC  France  Al Majou et al. (2008a) 

 T  France  Al Majou et al. (2008b) 

MLR : multiple linear regression, LR: linear regression, ANN: artificial neural networks, SVM: support vector machine,  k-NN: k nearest neighbor technique, PSD: particle size distribution, BD: 539 
bulk density, OC: organic carbon, OM: organic matter, CEC: cation exchange capacity, Me: moisture equivalent, dg: geometric mean particle size diameter, g: geometric standard deviation, PL: 540 
plastic limit, FC: volumetric water content at field capacity, (1, 10, 33, 100, 1500) volumetric water content at matric potential (kPa), log(h): logarithm of the absolute value of matric head in cm water, T: 541 
texture class, Hor: type of horizon (topsoil or subsoil). 542 
 543 
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Table 2 544 

Descriptive statistics of main characteristics of the soil dataset used in this study. 545 

 Coarse elements          

(%) 

Particle size distribution 

(%) 

OC 

g/kg 

CaCO3 

g/kg 

CEC 

Cmolc/kg 

Db 

g/cm3 
Volumetric water content (cm3/cm3) at matric potential h (h) in 

hPa 

>2000  

µm 

<2 

µm 

2-50 

µm 

50-2000 

µm 
10 33 100 330 1000 3300 15000 

 

French National database used to train and test the PTFs (n = 456) 

 

mean <1 29.3 43.8 26.9 6.0 54.2 14.8 1.52 0.354 0.335 0.315 0.289 0.259 0.221 0.187 

s.d.  15.4 21.8 25.6 5.1 171.3 9.0 0.15 0.068 0.070 0.075 0.076 0.079 0.076 0.073 

min.  1.9 1.6 0.1 0.0 0.0 0.6 0.95 0.134 0.100 0.080 0.056 0.045 0.033 0.013 

max.  92.9 82.1 95.4 28.8 982 52.8 1.98 0.605 0.596 0.586 0.557 0.510 0.462 0.370 

 

French soil samples used to test the PTFs (n = 30) 

 

mean <1 42.1 32.0 25.9 8.58 34.30 22.03 1.45 0.387 0.365 0.347 0.326 0.307 0.274 0.244 

s.d.  14.4 13.7 15.1 6.8 98.5 10.1 0.16 0.049 0.050 0.051 0.054 0.055 0.050 0.058 

min.  20.1 10.5 3.1 0.0 0.0 5.30 1.10 0.310 0.295 0.275 0.242 0.203 0.167 0.142 

max.  68.9 53.5 59.8 28.8 424 45.90 1.77 0.496 0.489 0.469 0.446 0.415 0.366 0.363 

 

Syrian soil samples used to test the PTFs (n = 30) 

 

mean <1 41.4 32.8 27.8 1.18 63.7 36.5 1.22 0.436 0.417 0.388 0.344 0.307 0.277 0.239 

s.d.  16.0 9.8 11.7 0.96 77.9 7.3 0.10 0.061 0.058 0.055 0.050 0.051 0.062 0.067 

min.  12.2 11.6 8,0 0.36 7.2 23.7 1.04 0.352 0.341 0.324 0.285 0.242 0.198 0.149 

max.  69.1 53.3 53.0 3.9 310 49.2 1.41 0.577 0.559 0.507 0.474 0.444 0.435 0.404 
s.d., min, max are the standard deviation, minimum and maximum of soil variables. 546 
 547 

 548 

 549 

 550 

 551 

 552 
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Table 3 553 

Validation criteria of the continuous-PTFs and class-PTFs developed with the French national 554 

database when applied to the French and Syrian datasets.  555 

 

PTFs type 

 

 

Descriptive statistics of the relationship between measured and predicted water content 

  

MEP  

(cm3/cm3) 

 

SDP  

(cm3/cm3) 

 

RMSE  

(cm3/cm3) 

 

R²  

     

 

 

 French dataset (n=30)   

VG-continuous-PTFs -3*10-4 0.036 0.036 0.77 

PSD-continuous-PTFs -0.003 0.033 0.033 0.81 

FC-continuous-PTFs -0.012 0.028 0.031 0.66 

T-FC-class-PTFs -0.001 0.023 0.023 0.81 

T-class-PTFs -0.002 0.028 0.028 0.71 

T-BD-class-PTFs 0.003 0.036 0.036 0.52 

T-BD-H-class-PTFs  -0.002 0.029 0.029 0.69 

T-H-VG-class-PTFs -0.003 0.030 0.030 0.68 

Average 0.003* 0.030 0.031 0.71 

 

 

 

  

Syrian dataset (n=30) 

  

VG-continuous-PTFs 0.022 0.046 0.048 0.74 

PSD-continuous-PTFs -0.021 0.033 0.035 0.85 

FC-continuous-PTFs -0.005 0.033 0.034 0.66 

T-FC-class-PTFs -0.001 0.029 0.029 0.75 

T-class-PTFs -0.025 0.039 0.047 0.36 

T-BD-class-PTFs 0.001 0.041 0.041 0.51 

T-BD-H-class-PTFs  0.002 0.039 0.039 0.56 

T-H-VG-class-PTFs -0.024 0.037 0.044 0.43 

Average 0.013* 0.037 0.040 0.61 

*: Computed using the absolute value of every MEP. VG-continuous-PTFs are the continuous pedotransfer functions developed for the 556 
parameters of the van Genuchten model using multiple regression equations, PSD-continuous-PTFs are the continuous pedotransfer 557 
functions developed by multiple regression equations using particle-size distribution (PSD), organic carbon and bulk density, FC-continuous-558 
PTFs are the continuous pedotransfer functions developed by using the water content at field capacity, T-FC-class-PTFs are the class 559 
pedotransfer functions developed by using the water content at field capacity as predictor after stratification by texture,, T-class-PTFs are the 560 
pedotransfer functions developed after stratification by texture, T-BD-class-PTFs are the pedotransfer functions developed after stratification 561 
by texture and bulk density, T-BD-H-class-PTFs are the pedotransfer functions developed for texture and bulk density classes according to 562 
the type of horizon, T-H-VG-class-PTFs are the pedotransfer functions developed after stratification by texture and type of horizon (topsoil 563 
and subsoil) for the parameters of the van Genuchten model (1980). 564 

 565 

 566 

 567 

 568 

 569 

 570 

 571 

 572 

 573 

 574 
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Table 4 575 

Criteria enabling assessment of the prediction quality for the continuous- and class-PTFs 576 

selected in the literature and not using the French national database. 577 

 

PTFs type 

 

 

Descriptive statistics of the relationship between measured and predicted water content 

  

MEP  

(cm3/cm3) 

  

SDP  

(cm3/cm3) 

  

RMSE  

(cm3/cm3) 

 

R² 

       

 

 

  French dataset 

(n=30) 

   

Wösten-continuous-PTFs -0.002  0.051  0.051 0.30 

Vereecken-continuous-PTFs 0.038  0.040  0.055 0.21 

Reichert-continuous-PTFs 0.031  0.042  0.052 0.12 

Ghanbarian-continuous-PTFs 0.005  0.045  0.046 0.26 

Minasny-continuous-PTFs 0.016  0.051  0.054 0.20 

Schaap-class-PTFs -0.019  0.072  0.075 0.60 

Wösten-class-PTFs 0.040  0.050  0.064 0.83 

Average 0.022*  0.050  0.057 0.36 

 

 

 

   

Syrian dataset 

(n=30) 

   

Wösten-continuous-PTFs 0.005  0.059  0.059 0.43 

Vereecken-continuous-PTFs 0.022  0.052  0.052 0.20 

Reichert-continuous-PTFs -0.020  0.044  0.048 0.42 

Ghanbarian-continuous-PTFs -0.006  0.051  0.051 0.21 

Minasny-continuous-PTFs 0.003  0.050  0.050 0.30 

Schaap-class-PTFs -0.048  0.056  0.074 0.76 

Wösten-class-PTFs 0.019  0.043  0.047 0.83 

Average 0.018*  0.051  0.054 0.45 

*: Computed using the absolute value of every MEP 578 

 579 

 580 

 581 

 582 
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 584 
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 587 
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Table 5 591 

Descriptive statistics of the relationship between measured and predicted water content 592 

developed by artificial neural networks (ANN). 593 

 Training data Test data 

RMSE  

(cm3/cm3) 

R² RMSE  

(cm3/cm3) 

R² 

  

French National database 0.030 0.90 0.029 0.89 

Syrian dataset - - 0.049 0.78 

French dataset - - 0.030 0.85 

Soil properties used in predictive procedures are the sand, silt, clay and organic carbon contents, and the bulk density. 594 
 595 

 596 

597 
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 598 

 599 
Figure 1: The typical topologies of the continuous and class-PTFs used in this study. (a): continuous-PTFs 600 
providing the parameters of the van Genuchten model (1980), (b): continuous-PTFs providing the water content 601 
at several matric potentials, (c): class-PTFs providing the parameters of the van Genuchten model (1980), (d): 602 
class-PTFs providing the water content at several matric potentials, and (e): artificial neural networks (ANN)-603 
PTFs. 1, 1.5..., 4.2: volumetric water content in cm

3
 cm

-3
 at seven different matric potentials, r, s,  and n are 604 

the parameters of the van Genuchten equation, T: texture, BD: bulk density, OC: organic carbon, H: type of 605 
horizon (topsoil or subsoil). 606 
 607 
 608 
 609 

610 
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 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 

 622 

 623 

 624 

Figure 2: FAO triangle (FAO, 1990) of texture used (a), distribution of soil texture from samples used in this 625 
study to test the validity of the continuous- and class-PTFs selected, Syrian soil samples (b) and French soil 626 
samples (c). 627 
 628 

 629 

 630 

 631 

 632 
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 635 
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 637 
 638 
Figure 3: Evaluation of the continuous-PTFs (a, b, c, d) and class-PTFs (e, f, g, h) developed with the French 639 
national database and applied to the French dataset. Continuous-PTFs developed for the parameters of the van 640 
Genuchten model (1980) (a), continuous-PTFs developed by multiple regression equations (b), continuous-PTFs 641 
with the volumetric water content at field capacity (c), class-PTFs with the volumetric water content at field 642 
capacity after stratification by class of texture (d), class-PFTs by class of texture (e), by class of texture and bulk 643 
density (f), by class of texture and bulk density after grouping according to the type of horizon (g) and finally by 644 
class of texture for the parameters of the van Genuchten model (1980) (h).  645 

646 
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 648 

Figure 4: Evaluation of the continuous-PTFs (a, b, c, d) and class-PTFs (e, f, g, h) developed with the French 649 
national database and applied to the Syrian dataset. Continuous-PTFs developed for the parameters of the van 650 
Genuchten model (1980) (a), continuous-PTFs developed by multiple regression equations (b), continuous-PTFs 651 
with the volumetric water content at field capacity (c), class-PTFs with the volumetric water content at field 652 
capacity after stratification by class of texture (d), class-PFTs by class of texture (e), by class of texture and bulk 653 
density (f), by class of texture and bulk density after grouping according to the type of horizon (g) and finally by 654 
class of texture for the parameters of the van Genuchten model (1980) (h).  655 

656 
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 658 

Figure 5: Evaluation of the continuous-PTFs (a, b, c, d, e), and class-PTFs (f, g) selected in the literature when 659 
applied to the French dataset. R

2
 were computed for all matric potential values together. 660 
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 666 

Figure 6: Evaluation of the continuous-PTFs (a, b, c, d, e), and class-PTFs (f, g) selected in the literature when 667 
applied to the Syrian dataset. R

2
 were computed for all matric potential values together. 668 
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 670 
Figure 7: Measured and predicted water content (cm

3
/cm

3
) recorded with the artificial neural networks using 671 

soil properties (clay, silt, sand, organic carbon and bulk density) for the French national database (Al Majou et 672 
al., 2008b) (a), Syrian dataset (b) and the French dataset (c).  673 
 674 


