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Abstract We derive the relationships that link the general elastic properties of rock masses to the
geometrical properties of fracture networks, with a special emphasis to the case of frictional crack surfaces.
We extend the well-known elastic solutions for free-slipping cracks to fractures whose plane resistance is
defined by an elastic fracture (shear) stiffness ks and a stick-slip Coulomb threshold. A complete set of
analytical solutions have been derived for (i) the shear displacement in the fracture plane for stresses below
the slip threshold and above, (ii) the partitioning between the resistances of the fracture plane on the one
hand and of the elastic matrix on the other hand, and (iii) the stress conditions to trigger slip. All the
expressions have been checked with numerical simulations. The Young’s modulus and Poisson’s ratio were
also derived for a population of fractures. They are controlled both by the total fracture surface for fractures
larger than the stiffness length lS (defined by ks and the intact matrix elastic properties) and by the
percolation parameter of smaller fractures. These results were applied to power law fracture size
distributions, which are likely relevant to geological cases. We show that if the fracture size exponent is in the
range�3 to �4, which corresponds to a wide range of geological fracture networks, the elastic properties of
the bulk rock are almost exclusively controlled by ks and the stiffness length, meaning that the fractures of
size lS play a major role in the definition of the elastic properties.

1. Introduction

Assessing fractured rock mass effective mechanical properties is a prerequisite to many geotechnical appli-
cations and a still major scientific issue about the way to take account of heterogeneities of the rock mass.
Among all potential heterogeneities, fractures are those whose impact on rock strength and stiffness is pre-
valent (Amadei & Goodman, 1981; Barton et al., 1974; Bieniawski, 1973, 1978; Hoek, 1994; Hoek & Diederichs,
2006; Hoek et al., 1995; Singh, 1973), with the difficulty that the distribution of fractures is complex with a
wide range of spatial scales involved; the density can be highly variable in space, and the geometrical and
statistical models of fracture patterns are still debated.

The importance of fractures in altering the effective properties of a rock was noted by Simmons and Brace
(1965) and Walsh (1965a). The quantitative analysis of these expected consequences is well established for
simple cases, as a single frictionless disk crack embedded in a homogeneous elastic rock matrix (see
Fabrikant, 1990; Sneddon & Lowengrub, 1969, for detailed mathematics or the review by Atkinson, 1987),
but the properties of rock masses with a complex set of fractures are still an issue. Expressions have been
derived for networks of frictionless cracks with limited size range by neglecting or simplifying stress interac-
tions (see review in Grechka & Kachanov, 2006; Guéguen & Kachanov, 2011; Kachanov, 1993; Sayers &
Kachanov, 1995; Schoenberg & Sayers, 1995). The main controlling factor is the percolation parameter of
the fracture network (the definitions are given in the next section), which is a volumetric measure (the
sum of sphere volumes around cracks divided by the total volume) that also controls network connectivity
(de Dreuzy et al., 2000).

The application of these theories to actual rock masses raises two main issues. The first is about the role of
frictional stresses in the damaged elastic modulus, since friction is likely prevailing on large geological
fractures. Friction was introduced in the damaged elastic models as a force independent of the displace-
ment, generally defined by a Coulomb law (Gambarotta & Lagomarsino, 1993; Halm & Dragon, 1998; Horii
& Nemat-Nasser, 1983; Kachanov, 1982; Walsh, 1965b, 1965c, among others) or as a series of elastic
contacts between fracture walls (Kachanov et al., 2010; Sevostianov & Kachanov, 2008a, 2008b, 2009;
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Yoshioka & Scholz, 1989a, 1989b). This is even an issue for open cracks, where near-tip contact zones have
consequences on the general repartition of stresses as well as on the stress intensity factors that describe
the concentration of stress at the crack tips and control potential crack growth (Audoly, 2000; Comninou,
1977; Comninou & Dundurs, 1980; Rice, 1988). In the geomechanical or geophysical literature, the
complexity of contact processes that make friction is generally lumped into a few relationship and
constitutive parameters of which the fracture stiffness, either normal or shear, relates stress and displace-
ment at the fracture walls (Bandis et al., 1983; Goodman et al., 1968; Yoshioka & Scholz, 1989a, 1989b)
and the Coulomb criterion marks the limit between friction stick (elastic deformation) and slip (Byerlee
& Brace, 1968).

A second issue relevant to actual rocks is the intrinsic complexity of fracture networks, which results in a wide
range of fracture sizes from micrometer to kilometer scales (Bonnet et al., 2001). This raises key questions
about the integration of this large density distribution on the mechanical properties and on the critical scales
that control them.

In this paper, we aim to discuss the relationship between a discrete fracture network (DFN) description of
fractured rock masses (Davy et al., 2013; Dershowitz & Einstein, 1988; Elmo et al., 2014; Jing et al., 2007;
Long et al., 1982; Painter & Cvetkovic, 2005; Selroos et al., 2002) with their effective elastic properties (mainly
Young’modulus and Poisson’s ratio). We develop the case, where the matrix surrounding fractures is homo-
geneous, and the friction on fracture walls is defined by constant shear and normal stiffnesses in the fracture
plane with a stress threshold. Although very simple in the description of friction processes, this model allows
us (i) to derive simple analytical expressions for the elastic parameters based on measurable parameters and
(ii) to discuss the scaling and critical scales of rock mass properties for the cases of fracture network with a
large range (power law) size distribution.

The paper is organized as follows: We first present the analytical equations of a single frictional fracture
embedded in an elastic intact rock, we derive the expressions for a population of fractures, we discuss the
relationships between fracture network densities and elastic properties, and finally, we derive the conse-
quences of these concepts to geologically relevant fracture size distributions.

2. Fracture Embedded in an Elastic Intact Rock

Although very simple and commonly described in geomechanics textbooks, we develop the expression of
the stress, strain, and fracture displacement of a disk-shaped fracture embedded in an elastic medium. We
generalize the classical expression originally developed for a freely slipping crack to fractures, whose surface
is resisting with an elastic shear stiffness ks.

2.1. Generalization of the Free-Slip Relationship for Frictional Cracks

The shear and normal displacements, t and u, respectively, are well known for a freely slipping disk fracture of
diameter lf, embedded in an infinite elastic rock matrix (i.e., intact rock) with Young’s modulus Em and
Poisson’s ratio νm (e.g., Kachanov & Sevostianov, 2013; Sneddon & Lowengrub, 1969; the subscripts m and
f refer to matrix and fracture properties, respectively)

t rð Þ ¼ 4 1� ν2m
� �

π 1� νm
2

� � τm
lf
Em

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2r

lf

� �2
s

(1)

u ¼ 4 1� ν2m
� �

π
min σm; 0ð Þ lf

Em

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2r

lf

� �2
s

(2)

where r is the distance to the disk center. Since these equations are established for freely slipping fractures,
the stresses τm and σm are the shear and normal stresses (respectively) due to the matrix deformation only
(with the convention that normal stress and displacement are positive in compression). The average displa-
cement, t, calculated by integrating equation (1) over the fracture plane, is two thirds the displacement at the
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fracture center, which leads to an apparent elastic shear stiffness of the
matrix surrounding the fracture, km, such as

km ¼ τm
t
¼ 3π

8

1� νm
2

1� ν2m

Em
lf

(3)

km will be called the matrix-fracture stiffness thereafter; to simplify the
equation writing, it may also be written in the following as

km ¼ E�m
lf

E�m ¼ 3π
8

1� νm
2

1� ν2m
Em (4)

A similar expression can be derived for the normal stress and displace-
ment, which will be discussed later in this section.

We generalize these expressions for nonfreely slipping fractures, that
is, when there exists a resistance between both fracture walls that
can be either elastic or frictional (i.e., a friction stress). This problem
was partly addressed by Glubokovskikh et al. (2016) and Kachanov
et al. (2010) for a set of asperity contacts between fracture walls. In

this study, we consider a simplified elastic-plastic behavior, where the elastic resistance of fracture walls
is modeled by constant elastic stiffness coefficients, ks for shear and kn for normal displacement, which
are supposed constant over the whole fracture surface. A plastic limit τp is defined for shear displacement,
above which the fracture freely slips, that is, the displacement t becomes independent of τ (see, e.g.,
experimental data in Grasselli & Egger, 2003; Figure 1):

τf ¼ min kst; τp
� �

(5)

The shear displacement along the fracture plane is supposed to be 10 to >1,000 larger than the normal
one (Bandis et al., 1983; Yoshinaka & Yamabe, 1986) in compression. Depending on the stress intensity
and on the fracture spacing, the normal displacement can be equivalent or even larger than the matrix
deformation; thus, kn must be considered if the stress and fracture orientations preclude shearing. We dis-
cuss in detail the shear displacement in the following lines and briefly the normal displacement in
section 2.6.

The remote stress τ is partitioned into two terms: (i) the resistance to shear displacement across fracture walls
τf and (ii) the elastic stress generated by matrix deformation τm ¼ kmt (equation (3)).

In the case where the fracture resistance is elastic, the eventual result consists in summing both stresses
in the fracture and in the matrix, while the displacement of the former induces the deformation of the
latter. For this configuration (same displacement, additional stress), we expect the total system stiffness
to be the sum of fracture and matrix-fracture stiffnesses as it is done for asperity contacts (Barber,
2003; Kachanov et al., 2010; Sevostianov & Kachanov, 2008a, 2008b, 2009). For a simple shear applied
to the fracture surface, we expect the displacement t(r) along the fracture walls to be written
as follows:

τ
t rð Þ ¼

2
3 kmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2r
lf

� �2
r þ ks (6)

If τf = τp, the above equation must be rewritten as follows:

τ � τp
t rð Þ ¼

2
3 kmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2r
lf

� �2
r (7)

Figure 1. Rheological model of fracture slip: Relationship between the shear
stress acting on the fracture plane τf and the relative displacement between
the fracture walls t. The stress threshold τp marks the limit between an elastic
behavior characterized by a fracture stiffness ks, and a regime of constant friction
τf = τp.
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Both expressions have been verified by numerical simulations using the 3-D distinct element code 3DEC@
(Israelsson, 1996; Itasca Consulting Group, 2016; Figure 2).

The average displacement relationship can be formally deduced from integrating equations (6) and (7) over
the fracture plane:

t ¼ 1

πR2
∫θ∫

R
0t rð Þrdrdθ ¼ 2

R2
∫R0t rð Þrdr (8)

where R is the fracture radius, R ¼ lf
2. The case, where the fracture is slipping (equation (7)), is similar to the

free-slipping case and can be easily integrated as follows:

t ¼ τ � τp
km

(9)

If the fracture is not slipping, the integral combines equations (6) and (8):

t ¼ τ
km

2

R2
∫R0

rdr
2=3ffiffiffiffiffiffiffiffiffiffiffi
1� r

Rð Þ2
q þ k�s

(10)

with k�s ¼ ks
km
.

By substituting r by u ¼ 1þ 3
2 k

�
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

R

� �2q
, we obtain

t ¼ τ
km

∫
1þ3

2k
�
s

1
u� 1ð Þ2
3
2 k

�
s

� �3
u
du ¼ τ

ks
1� 4

3
1
k�s

þ 8
9

ln 1þ 3
2 k

�
s

� �
k�s2

� �
(11)

Figure 3 shows that a reasonable approximation of equation (11) is
given by the simple expression:

t ¼ τ
km þ ks

(12)

Figure 2. Displacement along the fracture plane calculated for a fracture embedded in an elastic matrix for four different
values of k�s ¼ ks=km : 0 (black), 0.5 (red), 1 (green), and 2 (blue). The symbols are values obtained from 3DEC’s
calculations; the full lines are analytical expressions (equations (6) and (7)). A compressive stress is applied on one axis with
no pressure on the other two axes, and the friction-slip condition is a linear Mohr-Coulomb relationship with a friction
angle of 30° and no cohesion: τp = tan 30° · σn. Left graph: No-slipping case (τ < τp) obtained with an angle between the
fracture normal and the compressive stress axis of 20°. Right: Slipping case (τ > τp), obtained with an angle of 60°; the
red, green, and blue symbols are almost overlapping for this case. For both graphs, displacements are normalized by
the ratio τ

km
, and the fits are obtained by using equations (6); left) and (7); right).

Figure 3. Plot of the ratio between equations (11) and (12). The latter gives an
approximate solution of the average displacement in the fracture plane, which
is accurate to within 4% compared to the exact solution.
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Equation (12) is valid for both end-members km ≫ ks and km ≪ ks. For any value of ks, the difference between
equations (11) and (12) is less than 4% (Figure 3).

Equations (9) and (12) actually quantify the stress partitioning between the average resistance of the
fracture plane τf on the one hand and the resistance to deformation of the surrounding matrix on the
other hand τm .

τ ¼ τf þ τm ¼ min kst; τp
� �þ kmt (13)

This result calls for several remarks that we develop below.

2.2. Difference With Other Models With Elastic Matrix and Fracture Stiffness

The expression is different from the infinite-fracture model, such as theorized by Griffith et al. (2009; see
Figure 4). In the infinite-fracture case, the same stress applies to both fractures and matrix in between frac-
tures, but the deformation of the matrix ϵm and the displacement of fracture walls tf are independent; the
former depends on the matrix shear modulus Gm and the latter on ks. In the case of a fracture embedded
in an infinite medium, tf is both the displacement of fracture walls and the cause of matrix deformation ϵm,
so that tf applies to both τf and τm but both stresses are independent.

Both models lead to a stress-displacement relationship, which combines the fracture (ks) and matrix (Em or
Gm) properties with a characteristic length scale λ that is required to compare stiffness and elastic modulus.
The expression can be written in a general way as: t ¼ τ

average ks;
Em or Gm

λð Þ, where average() is an averaging func-

tion, which differs from onemodel to the other. In the infinite-fracture model, the displacement is the harmo-
nic average of the shear modulus Gm and fracture stiffness ks, and λ is equal to the fracture spacing

t ¼ τ� λ
Gm

þ 1
ks

� �
. In contrast, the fracture-in-matrix model leads to an arithmetic average of Em and ks, with

a characteristic length equal to the fracture length.

This leads to very different predictions that can be highlighted by the example of an infinitely rigid
matrix (Gm, Em ≫ 1). For fractures of finite size, the rigid matrix prevents the fracture to shear what-
ever ks, while for infinite fracture, the shear is possible on fracture planes with a displacement equal
to the ratio τ/ks.

2.3. Fracture Stiffness Length as an Indicator of the Partitioning Between Fracture Plane and Matrix
Elastic Resistance

Equation (13) emphasizes the partitioning in stress between elastic resistances of both the fracture surface
stiffness on the one hand and the matrix deformation at fracture tips on the other hand, in a ratio equal to
ks
km
, which depends onmatrix and fracture properties, and on the fracture length lf. To focus on the importance

of fracture length, we define the stiffness length lS as the fracture length for which ks = km:

lS ¼ E�m
ks

¼ 3π
8
·
1� νm=2
1� ν2m

Em
ks

(14)

Figure 4. Difference between the model of a crack embedded in an elastic rock matrix that we treat in this paper (a) and
the infinite crack model (Griffith et al., 2009). In the former, (a) the same displacement t applies to both fracture and matrix,
while fracture and matrix stresses are additive (τ = τf + τm); in the latter, (b) the same shear stress τ applies to fracture and
matrix, while the total displacement is the sum of that of fracture and matrix (t = tf + tm).
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lS is defined by intrinsic mechanical properties of both fracture
and matrix.

For fractures much larger than lS, most of the elastic resistance is due to
the stiffness of the fracture surface (surface-dominated stiffness); for
fractures much smaller than lS, the resistance is due to the matrix defor-
mation at fracture tips (matrix-dominated stiffness).

lS can be used to rewrite the stress-displacement relationship. For
instance, for noncritically stressed fracture (τf< τp), equation (13) writes
as τ ¼ ks þ kmð Þ�t. Replacing ks by ls leads to

τ ¼ E�m
1
l
þ 1
lS

� �
�t

Wewill see in the next paragraphs that the concept of stiffness length is
interesting to assess the contribution of the different elements of a
fracture population to the bulk mechanical properties. Note that ks
may depend on fracture length (Bandis et al., 1981; Barton, 1976;
Fardin, 2003; Giwelli et al., 2014; Yoshinaka & Yamabe, 1986;

Yoshinaka et al., 1993), which would change the transition between matrix-dominated and surface-
dominated fractures. But as long as ks does not decrease as l

�1, which seems the case, there exists a stiffness
length lS that separates both the matrix- and stiffness-dominated regimes.

2.4. The Stress Ellipsoid on the Fracture Plane

Because of the matrix stiffness, the remote shear stress τ is different from the stress at the center of the frac-
ture plane τf = kstf. For nonslipping fractures, τf can be deduced from τ by applying a coefficient ks/(ks + km)

τf ¼ τ
ks

ks þ km
(15)

In contrast, the stress normal to the fracture plane is similar when measured on the center of the fracture disk
or remotely (Figure 5).

The Mohr’s circle derived from the shear and normal stress (Figure 6) calls for two remarks:

• The stress tensor at the fracture center is necessarily different from the remote stress. In particular, the
deviatoric part is smaller.

• For different fracture orientations, the stress conditions at the fracture (τf, σn) center define an ellipse.

2.5. The Mohr-Coulomb Envelope

In the previous paragraphs, we introduced τp as the limit of the shear
stress acting on the fracture plane, τf, above which frictional slip is trig-
gered. At the system boundary, this requires a stress larger than τp, due
to the stiffness of the matrix. According to equations (9) and (13), the
critical stress for the boundary stress τ is τ�p such as

τf > τp⇔τ > τ�p ¼ τp
ks þ km

ks
(16)

If ks ≫ km, which also corresponds to very large fractures, the contribu-
tion of the matrix stress is negligible, and both thresholds are about
similar τ�p ¼ τp . The other end-member case with ks ≪ km corresponds

to free-slipping fracture, for which there is no reason to consider a
threshold for slip (τ�p→∞Þ. Figure 7 illustrates a case, where both contri-

butions (fracture and matrix) are about similar.

Figure 5. Normal stress versus fracture orientation for different values of the
ratio ks/km. The normal stress is normalized by the applied remote stress. The
analytical solution is σn(θ) = σrcos

2θ.

Figure 6. Illustration of the stress ellipse. For a given orientation (vertical dashed
line), the remote stress tensor (solid black line) defines the remote shear and
normal stress conditions (point M). The stress conditions on the fracture plane
(pointM

0
and blue solid line) are defined by the same normal stress as inM but a

shear stress that is reduced by a factor ks
ksþkm

below the slip threshold. The blue
dashed line indicates the stress conditions on the fracture plane for different
orientations of fractures.
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Another consequence of matrix stresses is that the angle at which a
fracture can slip must be predicted by the stress ellipse (see previous
paragraph) rather than by the Mohr’s circle. This is illustrated in
Figure 8 top, where the dashed blue line indicates the orientationwhere
the shear stress τf on the fracture plane reaches the slip threshold. It is
different from the orientation that would be obtained by comparing
the Mohr’s circle and the Mohr-Coulomb slip envelope. The conse-
quence in terms of fracture displacement is given in Figure 8 bottom.

2.6. The Normal Displacement

For the normal displacement, we obtain the same result except that
both elastic components (stiffness of the fracture plane and matrix
deformation) hardly operate together. If the normal stress σn is positive,
the fracture walls can hardly interpenetrate if the normal stiffness of the
fracture walls kn is very large, and thus, the deformation in the sur-
rounding matrix is limited. The displacement normal to the fracture
plane uf is controlled by kn: uf = σn/kn. kn is generally much larger than
ks so that the displacement uf is small compared to the shear
displacement tf.

For tensional stress (σn < 0), the fracture walls separate and the total

displacement is due to the resistance of the surroundingmatrixuf ¼ σn
=k

0
m, where k

0
m is slightly different from km (see equation (2))

k
0
m ¼ π

4
1

1� ν2m

Em
lf

(17)

3. The Effective Elastic Properties of Rock Volume With a Population of Fractures

The mechanical behavior of a rock mass depends on the elastic properties of the matrix and the contribution
of individual fractures. We first develop the contribution of individual fractures to the total strain, and then we
develop the theories that account for a large number of fractures. To simplify the equations, we calculate only
the shear displacement on each fracture. The generalization to shear and normal displacements is, however,
straightforward. Note that, for compressive systems with a wide range of orientations, the contribution of
normal displacement to deformation is negligible compared to that of shear displacement.

3.1. The Contribution of a Fracture to the Deformation of a Rock Volume

We calculate the contribution to rock strain of a fracture, whose displacement at the fracture center is t given

any stress tensor σ at the system boundary. For a fracture plane, whose normal vector is n, the shear stress
conditions are fully defined by the couple (τ, σn), whose expressions can be derived from the stress

tensor σ and n

σn ¼ nT·σ ·n τ ¼ nT·σ ·s (18)

with the shear direction given by

s ¼ sg
sg

		 		 sTg ¼ nT·σ · 1� n⊗nT
� �

(19)

where 1 is the identity matrix.

The previous expressions are calculated in the fracture plane. The contribution of the fracture to the displace-
ment of a specific boundary X is obtained by projecting and integrating the displacement field on X (see, e.g.,
Kachanov, 1980, 1992; Kachanov & Sevostianov, 2013)

Figure 7. Shear stress as a function of displacement on the fracture plane (blue
curve) and at the system boundary (black curve), which includes fracture and
matrix deformation. The critical shear stress required to trigger fracture slip is τ�p.
It is larger than τp (τ�p ¼ ksþkm

ks
τp) because of the matrix resistance. tp is the

maximum shear displacement in the elastic regime.
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tX ¼ n·nxð Þ ∬St dS
Sx

(20)

where Sx and nx are the surface and normal vector to X, respectively, S is the plane that includes the fracture F,
and t the displacement vector field in the plane. This expression is used to calculate the deformation of a
sample, for which X is a boundary and whose volume V is V = Sx * lx with lx the dimension perpendicular to X
(i.e., in the direction nx). The contribution of the fracture to the deformation component ϵxy, where x refers to
the surface X and y to a direction vector ny, is

ϵxy ¼ tX ·ny

lx
¼ n·nxð Þ ∬S t·ny

� �
dS

V
(21)

Since most of the displacement t that contributes to boundary displacements is within the fracture disk, the
expression is generally expressed with the average displacement in the fracture disk tf and the fracture disk of
area Sf

Figure 8. (top) Conditions of slip defined in a Mohr-Coulomb stress diagram (shear versus normal stress). The blue solid line
defines the stress conditions on the fracture plane for different orientations. For angles where no slip occurs, it is defined by
theminimum of the Mohr-Coulomb ellipse (Figure 6) and the slip threshold. The blue dashed line indicates the angle above
which slip occurs. (bottom) Average displacement t calculated at the fracture center for different angles to the main
compressive stress axis σ1. The displacement is normalized by σ1/km. Fractures follow a linear Mohr-Coulomb slip criterion
with a friction angle of 30° and no cohesion. The four curves are plotted for different ratio ks/km as indicated in the
framed box. The dots are calculated from 3DEC, while the lines are derived from equations (6) and (7). The break in
the curves marks the angle limit between nonslipping and slipping conditions; the larger is ks, the smaller the angle limit is.
The black dashed line gives the ratio between the applied shear stress τ and σ1.
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ϵxy ¼ n·nxð Þ Sf
V

tf ·ny
� �

(22)

For the sake of completeness, the stress components τ and σn are defined by equation (18), the shear displa-
cement of tf is parallel to the vector s defined in equation (19), and the normal component is parallel to the
fracture normal n.

3.2. The Contribution of a Population of Fractures to the Deformation of a Rock Volume

We calculate the effective elastic properties of a multifracture system by summing all the contributions of the
different fractures to the displacement at the system boundary. We first estimate the Young’s modulus and
Poisson’s ratio from analytical expressions derived from different theories, and we compare the predictions
for a series of models given in Table 1 with calculations performed with 3DEC© version 5.2 (Itasca
Consulting Group, 2016; Figure 9). 3DEC is a three-dimensional numerical software based on the distinct ele-
ment method for discontinuum modeling. 3DEC is based on a Lagrangian calculation scheme, which is well
suited to model large movements and deformations, and an explicit solver.

Most of the effective theories are written by incrementally adding fractures in a medium, which is already
damaged by others. The total deformation is the sum of two terms:

• The deformation of the damaged matrix, (ϵ)i, due to the remote stress tensor σ applied on the equivalent
medium constituted of (i � 1) fractures with equivalent elastic properties (E)i and (ν)i,

• plus the deformation induced by the displacement on the additional ith fracture.

Written in the same general way as equations (21) and (22), this gives

ϵxy
� �

i ¼ ϵxy
� �

i�1 þ ni ·nxð Þ Si
V

ti ·ny
� �

(23)

Si is the surface of the fracture i, ni its normal, and ti its displacement on the additional ith fracture.

The main assumptions of any effective theory (ET) aim at statistically evaluating the average displacement ti,
which depends on both the stress applied to the fracture and the properties of the medium that the fracture
will deform. The former (stress) is controlled by the remote stress tensor σ and to some extent by the fluctua-
tions of stresses induced by the (i � 1) fractures. To our knowledge, the role of stress fluctuations is not
usually considered in effective theories; it will not be either in this study. The latter (medium behavior) is con-
trolled by the matrix properties Em and νm, which may be altered by the previous (i � 1) fractures to some
extent.

The shear component of ti can be evaluated from equation (12), which depends on three terms: the shear

stress τ ¼ nT
i ·σ ·siwith si the direction of shear (equation (19)); the elastic shear stiffness ksi, which may depend

Table 1
List of Simulations PerformedWith the Itasca Software 3DEC© to Calculate the Young’s Modulus and Poisson’s Ratio of a Series of Fractures Embedded in an Elastic Matrix

Name
Sample

dimensions (m3)
Fracture
size (m)

DFN density
(p32;m

2/m3)
DFN percolation
parameter (�) ks (GPa/m) km(GPa/m)

Indicative number
of fractures (�)

Number of
realizations (�)

n01 8 × 4 × 4 0.5 1 0.785 0; 12; 72 117 890 10
n02 8 × 4 × 4 1 1 1.571 0; 12; 72 58 298 10
n03 8 × 4 × 4 0.5 2 1.571 0; 12; 72 117 1,700 10
n04 8 × 4 × 4 0.5 3 2.356 0; 12; 72 117 2,580 10
n06 8 × 4 × 4 2 1 3.142 0; 12; 72 29 97 10
n05 8 × 4 × 4 1 2 3.142 0; 12; 72 58 580 10
n08 8 × 4 × 4 1 3 4.712 0; 12; 72 58 835 10
n09 8 × 4 × 4 2 2 6.283 0; 12; 72 29 200 10
n11 8 × 4 × 4 2 3 9.425 0; 12; 72 29 320 10
n12 8 × 4 × 4 2 5 15.708 0; 12; 72 29 510 10

Note. For all the simulations, the Young’s modulus of the elastic matrix is Em = 53 GPa, the Poisson’s ratio νm = 0.25, and the normal stiffness kn = 12,600 GPa/m.
DFN = discrete fracture network.
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on each fracture; and the local matrix-fracture stiffness kmi, which is a function of the elastic properties of the

medium surrounding the ith fracture. With these assumptions, evaluating ti comes to assessing this latter term.

The normal component of of ti is assumed to be equal to σn/kn.

We write, as an example, the eventual deformation for noncritically stressed fractures, obtained by summing
the contribution of all fractures:

ϵxy
� �

i ¼ ϵxy
� �

m þ ∑i ni ·nxð Þ Si
V

nT
i ·σ ·si

ksi þ kmi
si þ nT

i ·σ ·ni

kni
ni

� �
·ny

� �
(24)

The elastic modulus and Poisson’s ratio can be calculated by applying equation (24) to different boundary
planes and directions. For a uniaxial compression σ along the x axis without confining pressure along y
and z axes, the Young’s modulus and Poisson’s ratio can be calculated from

Eð Þi ¼
σxx
ϵxx

νð Þi ¼
�ϵzz
ϵxx

(25)

With confining pressure, the apparent Young’s modulus and Poisson’s ratio are derived from the general

equation ϵii ¼ 1
E σii � ν σjj þ σkk

� �� �
, where i, j, and k denote iteratively the x, y, and z directions. In any cases,

the total deformation is increased by the contribution of fracture displacements, so that the Young’s modulus
is smaller than Em and the Poisson’s ratio is larger than νm.

Figure 9. Young’s modulus (left) and Poisson’s ratio (right) calculated, in 3-D for all the cases shown in Table 1, as a function
of the no-interactionmodel estimate. The dashed line shows the prediction by the no-interactionmodel. The full line on the
left graph indicates the prediction by the effective theory for the case ks = 0.

Figure 10. Young’s modulus (left) and Poisson’s ratio (right) calculated with 3DEC for all the cases shown in Table 1, as a
function of the effective theory estimate. The dashed line shows the prediction y = x. The dotted line in the Poisson’s
ratio graph is y = x � 0.15.
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We now review different theories that aim at predicting the Young’s modulus and Poisson’s ratio from
equation (24). The differences stem from the way the matrix-fracture stiffness term kmi is calculated.
3.2.1. No-Interaction Model
The simplest model is to consider that the medium is not damaged at the vicinity of the fracture, so that the
elastic properties are those of the intact matrix Em and νm (no-interaction model). This gives an expression of
kmi similar to equation (3):

kmi ¼ 3π
8

1� νm
2

1� ν2m

Em
li

(26)

where li is the length of the ith fracture.

The no-interaction model is a good description of systems with a small density of fractures, where any new
fracture is on average surrounded by the intact elastic matrix. This also entails that the contribution of each
fracture to (ϵxy)i is independent of the other. It predicts well the Young’s modulus of a fractured media when
the density of fractures is small (i.e., fractures are far from each other). It gives a good estimate of the Poisson’s
ratio whatever the fracture density.
3.2.2. The Effective Medium Theory
The effective medium theories (see the review in Guéguen & Kachanov, 2011; Jaeger et al., 2009; Kachanov,
1987, for the case ks = 0) approximate the interaction between fractures with different schemes, the most
popular of which being the self-consistent theory (O’Connell & Budiansky, 1974) and the differential scheme
(Hashin, 1988). Here we develop the differential scheme, which avoids some inconsistencies of the differen-
tial scheme at high crack densities (Bruner, 1976). It basically considers that the ith fracture is surrounded by a
damaged medium with homogeneous properties, whose Young’s modulus and Poisson’s ratio are the
average properties of the medium constituted by the (i � 1) fractures, (E)i � 1 and (ν)i � 1, respectively:

kmi ¼ 3π
8

1� νð Þi�1
2

1� νð Þ2i�1

Eð Þi�1

li
(27)

The effective medium theory predicts Young’s modulus smaller than the no-interaction model since fractures
are supposed to be embedded in a softer matrix entailing a larger displacement in fractures. Results from the
ET with ks = 0 are reported in Figure 9 (solid line); they underpredict the Young’s modulus whatever the frac-
ture density, but the difference with simulations tends to be smaller and smaller when fracture density
increases (i.e., when the Young’s modulus decreases). Figure 10 shows two additional facts:

• The ET tends to the no-interaction model when ks increases, emphasizing the fact that the fracture plane
resistances impede the interactions between fractures.

• If ks = 0, the results are independent of the fracture size distribution. The dependency on ks observed for
ks > 0 is related to the fracture-size dependency of the ratio between ks and the matrix-fracture stiffness.

Note that all the results shown in this section have been obtained with a value of kn 175–1,000 times larger
than ks (see Table 1), precluding any significant contribution of the normal displacement compared to shear.
3.2.3. Shear Versus Normal Contribution to the Young’s Modulus and Poisson’s Ratio
The contribution of normal displacement to elastic parameters is likely varying with the ratio between kn and
ks. To assess it, we calculate the Young’s modulus and Poisson’s ratio in both ways, the first by taking both
normal and shear components (E(ks, kn) and ν(ks, kn), respectively) and the second by taking only shear
(E(ks) and ν(ks), respectively). The contribution of the normal displacement is then calculated as the difference
between both expressions normalized by one of them: Cn(E) = (E(ks)� E(ks, kn))/E(ks) and Cn(ν) = (ν(ks) � ν(ks,
kn))/ν(ks), for the Young’s modulus and Poisson’s ratio, respectively.

Figure 11 shows Cn(E) and Cn(ν) calculated by using the effective-medium approximation as a function of the
ratio κ = kn/(ks + km) for different fracture densities and ks values. For both elastic parameters, the contribution
varies as follows: Cn(E) = 1/3κ and Cn(ν) = 1/2κ.

A ratio of 100 between kn and ks gives a contribution of normal displacements of 0.3–0.5% for the largest frac-
tures (for which ks ≫ km) and even less for the smaller ones. This justifies to neglect normal displacements in
the deformation for most of the cases reported in the literature.
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4. Relationship Between Fracture Network Densities and Elastic Rock
Mass Properties

In this section, we link elastic rock mass properties with fracture network densities. We relate the results on
the DFN description of fractured rock mass (Davy et al., 2013; Dershowitz & Einstein, 1988; Elmo et al.,
2014; Jing et al., 2007; Long et al., 1982; Painter & Cvetkovic, 2005; Selroos et al., 2002), which is basically
defined by a density distribution of fracture sizes and orientations n(l, θ) with θ the orientation vector that
includes both the strike and dip.

Two DFN metrics are worth being mentioned (Maillot et al., 2016): the total fracture surface per unit volume
(often named p32 Dershowitz & Herda, 1992), which controls permeability of dense networks (Kirkpatrick,
1973; Oda, 1985), and the percolation parameter p, which controls the network connectivity (Bour & Davy,
1997, 1998; de Dreuzy et al., 2000; Nakaya & Nakamura, 2007):

p32 ¼
π
4V

∫θ∫l l
2n l; θð Þdldθ p ¼ π2

8V
∫θ∫l l

3n l; θð Þdldθ (28)

where p is a dimensionless measure of the total volume occupied by fractures including overlaps; p32 is the
inverse of a length, which represents the average distance between fractures.

We first develop the case where no fracture is critically stressed from equation (24). We make a series of rea-
sonable assumptions to develop analytical or semianalytical solutions:

1. We assume that fracture sizes and orientations are not correlated, so that density distribution can be writ-
ten as n(l, θ) = n(l)pdf(θ), where pdf(θ) is the probability density function of fracture orientations.

2. The stress-orientation term in equation (24) is Τθ ¼ nT
i ·σ ·s θð Þ� �

: n θð Þ·nxð Þ s θð Þ·ny
� �

. We assume that Τθ can
be simplified to

Tθ ¼ σ s θð Þ;
where σ is a value characterizing the applied stress.

3. The Young’s modulus is calculated as

E ¼ σ
ϵ
;

where ϵ corresponds to the deformation in the adequate direction with respect to the stress tensor. We cal-
culate the sum of fracture contributions to deformation by integrating equation (24) over the entire

Figure 11. Contributions of the normal displacements to Young’s modulus (left) and Poisson’s ratio (right) as a function of
the ration kn/(ks + km). The way the normal contributions are calculated is given in the text. The simulations were
performed by using the effective-medium approximation for two networks with a fracture size l = 1 and percolation
parameters of 4.7 and 7.8. For each network, the Young’s modulus of the intact matrix is 76 GPa, and the Poisson’s ratio is
0.25. And two ks values were used of 109 and 1010 GPa (see the graph legends).

10.1029/2017JB015329Journal of Geophysical Research: Solid Earth

DAVY ET AL. 6532



population of fractures. To account for a possible dependency of km on the Young’s modulus, as it is assumed
in the ET, we rewrite equation (24) as a differential equation on the Young’s modulus, where the incremental
addition of a set of fractures leads to an incremental increase of the deformation ϵ and a consequent
decrease of the Young’s modulus:

d2ϵ ¼ σ:d
1
E

� �
¼ σ s θð Þpdf θð Þdθð Þ π

4V
l2 n lð Þ dl
ks þ km lð Þ (29)

The integral over the θ term can be done independently, which leads to a size-dependent
differential equation:

d
1
E

� �
¼ Fθ:

π
4V

l2 n lð Þdl
ks þ km lð Þð Þ (30)

Fθ = ∫θs(θ)pdf(θ)dθ is an orientation factor that takes into account both fracture and stress orientations. For
uniaxial compression and uniformly distributed orientations, Fθ ¼ 2

15. Integrating equation (30) is straightfor-

ward for both end-member cases, where ks is much larger or much smaller than km.

4.1. Case of km ≪ ks

If km(l) ≪ ks ∀ l, fracture stiffness controls the total stress resistance; the integral of equation (30) leads to:

1
E
¼ 1

Em
þ Fθ p32

ks
(31)

The integral does not require any assumption on the matrix elastic properties, so it is valid for both the no-
interaction model and the ET.

4.2. Case of km ≫ ks

This case km(l) ≫ ks ∀ l corresponds to frictionless cracks and have already been dealt with extensively in many
studies, either from energy considerations (Budiansky & O’Connell, 1976; Jaeger et al., 2009; O’Connell &
Budiansky, 1974; Walsh, 1965c) or by following the same approach as described here based on the Green’s
function of Fabrikant (1988; Guéguen & Kachanov, 2011; Kachanov, 1992, 1993; Sayers & Kachanov, 1995;
Schoenberg & Sayers, 1995).

In this case, matrix deformation controls the total stress resistance; equation (30) can be written as follows:

d
1
E

� �
¼ Fθ:

π
4V

l3n lð Þdl
E�m

(32)

With the no-interaction hypothesis, E�m ¼ km�lð ; see equation (4)) is constant, and the integral gives

1
E
¼ 1

Em
þ 2
π
Fθ

p
E�m

(33)

In the ET framework, E�m reflects the properties of the damaged matrix E and ν. We rewrite equation (30) as
follows:

d
1
E

� �
¼ Fθ::

π
4V

l3n lð Þdl
Ν νð Þ E Ν νð Þ ¼ 3π

8
1� ν=2
1� ν2

� �
(34)

Ν(ν) is varying between 1.099 and 1.178 when ν varies between 0.0 and 0.5, so it is not a big assumption to
assume it constant and equal to its average value <Ν(ν) > = Νa~1.125. Then we can rewrite the
differential equation (32)
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E:d
1
E

� �
¼ �dlnE ¼ Fθ

Νa
:
π
4V

l3n lð Þdl (35)

whose integral expression is

E ¼ Em exp � 2 Fθ
π Νa

:p

� �
(36)

For uniformly distributed orientations, the constant term in the exponential function is 2 Fθ
π Νa

≅0:0754 .

Expressions (33) and (36) are consistent with the references cited in the first paragraph of this section.
Note that Fθp is an extension of the percolation parameter that takes into account the orientations of frac-
tures with respect to stress and boundaries.

4.3. General Case

In the general case, equation (30) can be solved semianalytically with either the no-interaction hypothesis or
the assumptions of the ET. The Young’s modulus results from the contribution of small fractures, whose
deformation is dominated by the deformation of the surrounding matrix, and large ones, whose deformation
is due to the stiffness and the friction on the fracture walls. The limit between both groups is the stiffness
length lS defined in equation (14). For the no-interaction model, an approximate solution can be used to
either equation (31) or (33) for the group of fractures larger, or smaller, than lS. This gives

1
E
¼ 1

Em
þ Fθ

p32 l > lSð Þ
ks

þ 2
π
p l < lSð Þ

E�m

� �
(37)

where p32(l > lS) is the surface of all fractures larger than lS divided by the total volume; p(l < lS) is the perco-
lation parameter for fracture smaller than lS. In most of the cases, the prediction gives a fairly good approx-
imation of the actual integral. This point will be developed in the next paragraph for power law
length distribution.

We also derive an approximate analytical solution for the ET by calculating first the deformation due to frac-
tures larger than lS from equation (33) and then by considering this value as the initial elastic property of the
damaged medium for smaller fractures in equation (31). The eventual result gives

E ¼
Em exp � 2 Fθ

π Νa
p l < lSð Þ

� �
1þ Fθ p32 l>lSð Þ Em

ks

(38)

Introducing small fractures first and then large ones would give

E ¼
Em exp � 2 Fθ

πΝa
p l < lSð Þ

� �
1þ Fθ p32 l>lSð Þ Em

ks
exp � 2 Fθ

π Νa
p l < lSð Þ

� � (39)

The difference between both expressions is the exponential term in the denominator of equation (39). The
expression obtained by introducing small fractures first (equation (39)) predicts a slightly larger value than
equation (40). For the density distributions studied in the next paragraph, the difference between both
expressions is less than 10%.

5. Application to Geologically Relevant Fracture Distribution

Geological fractures are complex, ubiquitous, and observables at all scales (Tchalenko, 1970). This is one rea-
son to consider power laws as good candidates for the distributions of fracture sizes (Bonnet et al., 2001).
Another argument is that power law distributions emerge from the analysis of fracture maps at different
scales (Bonnet et al., 2001; Bour et al., 2002; Darcel et al., 2006; Fox et al., 2007; Odling, 1997), as well as from
mechanistic models of fracture growth (Davy et al., 2010, 2013). Power laws are the only distributions that
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have no characteristic scale, except their upper and lower bounds, which poses the issue of the scales that
control fracture network properties.

A special case is obtained when the exponent of the power law size distribution lies in the range �3 to �4.
For this range, the density parameter p32, which represents the total fracture surface and the secondmoment
of the size distribution, is dominated by the lower bound of the size distribution; the percolation parameter,
which represents the total volume surrounding fractures and the third moment of the size distribution, is
dominated by the upper bound. The consequence is that the Young’s modulus of fracture networks with this
size distribution is entirely controlled by lS. This can be shown by developing equation (37), which is an
approximate solution for the no-interaction model, for n(l) = αVl�a and a ∈ ]3, 4[.

1
E
¼ 1

Em
þ Fθ

p32 l > lSð Þ
ks

þ 2
π
p l < lSð Þ

E�m

� �
≅

1
Em

þ π
4
α Fθ l

�aþ3
S

1
a� 3ð Þ ks þ

lS
4� að Þ E�m

� �
(40)

The expression has been obtained by neglecting the smallest term of each integral p32 and p. In the special
cases where a = 3 or a = 4, the bounds of the integral cannot be neglected anymore. For both cases, the full
equation (30) can be integrated for the no-interaction model, which gives:

for a = 3,

1
E
¼ 1

Em
þ π

4
α Fθ
ks

log
lS þ lmax

lS þ lmin

� �
for a = 4

1
E
¼ 1

Em
þ π

4
α Fθ
E�m

log
1þ lS=lmin

1þ lS=lmax

� �
(41)

lmax and lmin are the largest and smallest fracture sizes, respectively. If lmax is much larger than lM and lmin

much smaller, we obtain simplified relationships as follows:

for a = 3,

1
E
e 1
Em

þ π
4
α Fθ
ks

log
lmax

lS

� �
for a = 4

1
E
e 1
Em

þ π
4
α Fθ
E�m

log
lS
lmin

� �
(42)

For a = 3, large fractures are dominant, and the Young’s modulus depends on the fracture stiffness ks and (loga-
rithmically) on all the scales between lS and the largest fracture lmax. For a = 4, the Young’s modulus depends on
the matrix properties E�m and (logarithmically) on all the scales between lmin and lS. The dependency on small
(large, respectively) fractures is even higher if the exponent a is larger than 4 (respectively smaller than 3).

All these results are qualitatively similar for the ET. As an illustration of the above analysis, we show in
Figure 12 the Young’s modulus calculated with the ET from equations (24) and (27) for different exponents
of the power law fracture size distribution. The Young’s modulus is plotted as a function of p32 (left), of the
percolation parameter p (middle), and of the parameter pk that derives from equation (37):

pk ¼
p32 l > lSð Þ

ks
þ 2
π
p l < lSð Þ

E�m
(43)

From the three parameters, pk is by far the best parameter to describe univocally the Young’s modulus evolu-
tion for different fracture size distribution and mechanical properties (i.e., different values of ks). A good fit of
the so calculated Young’s modulus is obtained by the following equation (dashed line, Figure 12 right):

1
E
¼ 1

Em
þ 0:8�Fθ�pk (44)

The preceding discussion emphasizes the critical contribution of fractures whose length is close to lS in the
elastic properties of rock masses. In hardrock geological systems (gneissic or granitic), we estimate lS to
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range between 1 and 50m, taking reasonable values of the matrix Young’s modulus (30–80 GPa) and of ks (3–
30 GPa/m; Grasselli & Egger, 2003; Yoshinaka & Yamabe, 1986). Amore complete discussion on lSwill be given
in a further study.

This is a preliminary attempt to apply the model to geological cases. Further discussions will be pursued in
subsequent studies from field example cases that take into account measured fracture-size distribution
and mechanical parameters (including the dependency of ks on fracture size).

6. Conclusion

The objective of this paper was to derive the relationships that link the elastic properties of rock masses to the
geometrical properties of fracture networks, with a special emphasis to the case of frictional crack surfaces
that is relevant to geological applications. For simplicity, we consider fracture networks to be made of
disk-shaped cracks. We extend the well-known elastic solutions for free-slipping cracks to fractures whose
plane resistance is defined by an elastic fracture (shear) stiffness ks and a stick-slip Coulomb threshold.
Together with the elastic matrix Young’s modulus and Poisson’s ratio, ks defines a characteristic fracture size
lS (called the stiffness length), below which the rock mass elastic behavior is dominated by the rock matrix
deformation and above which is controlled by the resistance on the fracture plane.

A complete set of analytical solutions have been derived for the shear displacement in the fracture plane for
stresses below the slip threshold and above, including the variations of displacement in the fracture plane
and the relationship between stress and average displacement. All the expressions have been checked with
numerical simulations. From these, we derive a simple expression of the stress partitioning between the resis-
tances of the fracture plane on the one hand and of the elastic matrix on the other hand. We demonstrate
that the stress conditions on the fracture plane define a stress ellipse, which derives from the remote
Mohr’s circle. The remote conditions for triggering slip must take into account not only the resistance of
the fracture plane but also the mechanical resistance of the surrounding matrix. This has both consequences:

(i) the remote stress threshold is larger than the fracture plane stress threshold by a ratio ksþkm
ks

, where km is the

matrix-fracture stiffness (i.e., the ratio between stress and displacement for free-slipping fractures) and (ii) the
angle at which fracture can slip must be predicted from the stress ellipse rather than from the remote stress
Mohr’s circle.

The Young’s modulus and Poisson’s ratio were also derived for a rock mass with a population of fractures,
with the intrinsic difficulty to describe properly the fracture interactions. In the case of large ks values (ks ≫ km),
the bulk elastic modulus is controlled by the total fracture surface and more precisely by the ratio p32/ks,
where p32 is the total fracture surface divided by the sample volume; this is the case of fractures larger than
the stiffness length lS. This result differs from the slipping case (ks ≪ km), where the elastic moduli is controlled
by the percolation parameter, that is, by the third moment of the fracture size distribution; this is the case for
fractures smaller than lS. For a complete fracture size distribution, the elastic modulus can be efficiently

Figure 12. Plot of the Young’s modulus E calculated from the effective theory for fracture networks with power law size
distributions. The stress conditions are similar to those described in the previous figures. E is plotted versus p32 (left), the
percolation parameter p (middle), and pk defined in equation (43); right). The dashed line in the graph to the right is given
by equation (41).
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deduced from a combination of these density parameters, provided that they are calculated for the right sub-
set of the fracture size distribution: p32/ks for large fractures (>lS) and p for small fractures (<lS).

Thanks to a comparison with numerical simulations, we show that the ET gives a very good approximation of
the bulk elastic properties. ET can be calculated analytically by introducing fractures one by one and assum-
ing that the surrounding elastic matrix has the property of the bulk damaged medium.

These results were applied to power law fracture size distributions, which are likely relevant to geological
cases. We show that if the power law fracture size exponent is in the range �3 to �4, which corresponds
to a wide range of geological fracture networks, the elastic properties of the bulk rock are almost exclusively
controlled by ks and lS, meaning that the fractures of size lS play a major role in the definition of the elastic
properties. In hardrock geological systems (gneissic or granitic), we estimate lS to range between 1 and 50 m.

These results are obtained for constant ks, but a dependency of ks with fracture size or normal stress can be
implemented straightforwardly, and it does not change the general features, that is, the control of elastic
properties by a stiffness length—as long as the dependency of kswith fracture size does not call into question
the existence of lS.
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