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Abstract: PICARD is a space-based observatory hosting the Solar Diameter Imager and Surface Mapper (SODISM) 

telescope, which has continuously observed the Sun from July 2010 and up to March 2014. In order to study the fine structure 

of the solar surface, it is helpful to apply techniques that enhance the images so as to improve the visibility of solar features 

such as sunspots or faculae. The objective of this work is to develop an innovative technique to enhance the quality of the 

SODISM images in the five wavelengths monitored by the telescope at 215.0 nm, 393.37 nm, 535.7 nm, 607.1 nm and 782.2 

nm. An enhancement technique using interpolation of the high-frequency sub-bands obtained by Discrete Wavelet Transforms 

(DWT) and the input image is applied to the SODISM images. The input images are decomposed by the DWT as well as 

Stationary Wavelet Transform (SWT) into four separate sub-bands in horizontal and vertical directions namely, low-low (LL), 

low-high (LH), high-low (HL) and high–high (HH) frequencies. The DWT high frequency sub-bands are interpolated by a 

factor 2. The estimated high frequency sub-bands (edges) are enhanced by introducing an intermediate stage using a stationary 

Wavelet Transform (SWT), and then all these sub-bands and input image are combined and interpolated with half of the 

interpolation factor α/2, used to interpolate the high-frequency sub-bands, in order to reach the required size for IDWT 

processing.  Quantitative and visual results show the superiority of the proposed technique over a bicubic image resolution 

enhancement technique. In addition, filling factors for sunspots are calculated from SODISM images and results are presented 

in this work. 

Keywords—SODISM low-resolution images, interpolation, DWT, IDWT, Enhanced image, filling factor. 

1. Introduction  

The enhancement of images is an important processing issue in many image and video-processing applications, such as medical 

imaging, astronomy, and satellite surveillance [1].     

Because of the image capturing conditions, images may appear blurred and be candidates for improvement before visual 

assessment. This is the case for the Solar Diameter Imager and Surface Mapper (SODISM) onboard the PICARD Satellite [2]. 

The aim of this manuscript is to improve the quality of PICARD/SODISM images (blind corrections), so that the resulting 

images become more suitable than the original ones for extraction of features such as sunspots. SODISM is a high-resolution 

radio-imaging telescope with a Ritchey-Chrétien configuration. SODISM is an 11-cm diameter telescope with a charge coupled 

device (CCD) at its focal plane. The CCD is anti-reflective (AR) coated. The CCD detector array has 2048×2048 pixels of 

13.5µmpitch. The focal length is 2,626mm. Focal length and CCD format lead to a Field of view(FOV) of 36×36 arcmin, and a 

plate scale of ∼1.06 arcsec per pixel [3][4]. 
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To improve the visibility of features in an image both contrast and resolution enhancement techniques are used, and the latter 

are of most interest here. Alternative techniques such as bicubic interpolation, which are commonly used to increase the 

number of pixels in an image, tend to smooth edges and fine detail in the final result  [5]. This enhancement technique uses 

DWT to decompose the input image into different sub-bands. Then, the high-frequency sub-band images and the input low 

resolution image are interpolated, followed by combining all these images to generate a new resolution enhanced image. 

Comparisons are made between the benchmark, bicubic enhanced and resolution enhanced images visually and quantitatively 

using both pixel differences and segmented features, namely sunspot filling factors. This paper is arranged as follows: Section 2 

summarizes some related work, Section 3 describes the proposed enhancement method and Sections 4 and 5 present the 

assessment methods and some experimental results respectively. Conclusions of this study are presented in Section 6.   

2. Related work 

The SODISM instrument acquired the first image of the Sun at 607.1 nm on July 22, 2010 during the commissioning phase. 

It was a raw image at level L0, with no correction of instrumental factors [6]. Gradually, the quality of the SODISM images has 

deteriorated due to the harsh space environment. The pictures are becoming more and more blurred. One of the goals is to 

improve the quality of the SODISM images with a blind correction method. 

In 2017, Alasta et al. [7] used the following automated method to detect sunspot; noise was removed from images by 

applying Wavelet Kuwahara and A Trous filters.  Moreover, brightness outliers were also removed from noisy pixels, and a 

Bandpass filter was applied to display sunspots on a normalized background.  Finally, the threshold was run to obtain a masked 

image that determined the sunspot location. 

In 2015, Qahwaji et al. [8] used a method to detect photospheric solar features (sunspots) and calculated their filling factors, 

using a Wavelet Harr filter to remove noise from the image, a band pass filter to detect sunspots and Gaussian smoothing to 

remove isolated noisy pixels on SODSIM band at 535.7 nm images taken between 5th August 2010 to 4th January 2014.  

Meftah et al. [9] applied morphological operations (a top-hat operation followed by a bottom-hat operation), and a contrast 

enhancement technique, which is used before for detecting sunspots using Otsu thresholding. They also focused on solar 

metrology and could not find any direct link, when analyzing PICARD’s data, between solar activity and fluctuations in solar 

oblateness and solar radius. 

Lefebvre et al. [10] develop a method apply on MIRESOL (Mesures et Identifications des REgions actives au limbe 

SOLaire) instrument, which has aperture close to SODSIM. This method based on analysis Singular Spectrum Analysis (SSA) 

of two signals, the first signal called radius and coming from the analysis of the distance between the center and the inflexion 

points of the limb profiles and the second signal called intensity which reflects concerning intensity, the method detect features 

without remove centre-to-limb darkness. In this work, we chose to explore applying size increasing techniques to SODISM in 

order to improve the visibility and measurements made on solar features such as sunspots. The main deficiency of an image 

after being increased in size by applying interpolation techniques is the smoothing caused by interpolation [11].  

The simplest interpolation methods used, nearest neighbour, bilinear, and bicubic, for example, each has its own advantages 

and disadvantage. The first is quickest but results in significant jagged distortion of edges. The second results in smoother 

edges, yet has a somewhat blurred appearance. Finally, although the third is slowest, it produces smooth but sharpest edges 

 [5][12].  

Bicubic interpolation is often chosen over bilinear interpolation or nearest neighbor when speed is not an issue. In the examples 

in the related literature [13][11], bicubic interpolation gives better results than the other techniques. However, in order to 
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increase the quality of the enhanced image, preserving the sharpness of edges by means of a resolution enhancement technique 

is essential. In this paper, a Discrete Wavelet Transform (DWT) based approach has been employed in order to preserve the 

sharpness of edges of the image. Related work that describes different schemes available in resolution enhancement is as 

follows. 

Demirel et al [14] propose a technique, which uses a Dual-Tree Complex Wavelet Transform (DT-CWT) to decompose satellite 

images into different sub-band images. The benchmark image is interpolated with half of the interpolation factor used for 

interpolation of the high-frequency sub-band images, after that, they used the inverse transform (IDT-CWT) to generate a 

super-resolved image of combined images. Y. Piao et al [15] use inter-sub-band correlation in the wavelet domain to enhance 

image resolution, and their method utilizes the correlation of sub-bands with different sampling phases in the Discrete Wavelet 

Transform (DWT). 

Li and Orchard [16] developed a novel edge-directed interpolation algorithm which demonstrated significant improvements 

over linear interpolation on the visual quality of their interpolated images. In [17], C. B. Atkins et al. created a new method for 

optimal image scaling called Resolution Synthesis (RS), with a simple derivation to illustrate that RS generates the minimum 

mean-squared error (MMSE) estimate of the high-resolution image, given the low resolution (LR) image. Temizel and Vlachos 

[18] provide an  approach, which estimates local edge orientation from a wavelet decomposition of the available LR image; this 

information is used to control Cycle Spinning (CS) parameters. No work of this type has previously been applied to SODISM 

images of the Sun. 

Interpolation is the technique that estimates a new pixel value from the neighboring pixels in the original image [19]. However, 

the computational burden increases as the order of interpolation factor increases [20], a problem that may be resolved by 

interpolating the image in a sub-sampled wavelet domain. The 2-D DWT of an image is performed by applying the 1-D DWT 

first along the rows of the image before down-sampling, and then repeating along the columns of the results as shown in the 

filter band approach of Figure 1. This operation decomposes the original image into four lower resolution sub-bands referred to 

as low-low (LL), low-high (LH), high-low (HL), and high-high (HH) as shown in Figure 2. The latter three sub-bands occupy 

the upper frequency spectrum of the original image and the resolution enhancement technique is applied here in this 

application [21].  

 

 

Figure 1: Applying the LL, LH, HL, and HH sub-band DWT three times on the lowest sub-band starting from the input image 

 
 

A transformation related to the DWT, which is also used in the present application as well as in many other  image processing 

applications, is the stationary wavelet transform (SWT) [21] [22], Here, the low and high frequency sub-bands of the SWT are 

not down sampled and have the same size as the input image. 

3. Proposed resolution Enhancement Method 

Resolution improvement of SODISM images is done in the wavelet domain; the wavelet coefficients are estimated in order 

to improve sharpness and observation of the resulting inverse transformed image. Image resolution enhancement using a 

Discrete Wavelet Transform method has been found to give better results than interpolation techniques both visually and using 
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quantitative measures including filling factors calculated for solar features defined as the proportion of the solar disk covered 

by the detected feature [9]. Conventional image resolution enhancement methods, such as bilinear and bicubic interpolation 

methods may generate false information and blurred images because they do not utilize any information relevant to edges in the 

original image [15]. Wavelet-based methods can provide a way of doing this, enhancing the image resolution by estimating high 

frequency information from the given image. They are based on the idea that the image to be enhanced is a low-frequency sub-

band among wavelet-transformed sub-bands and the target is to estimate the corresponding high-frequency sub-bands so that an 

inverse wavelet transform can then be performed to obtain a resolution-enhanced image. The input image to be enhanced is 

regarded as a low- frequency sub-band in the context of an IDWT. The aim of this work is to estimate the corresponding high 

frequency sub-bands of the IDWT, so that a resolution-enhanced image can be obtained using the algorithm shown in fig.3. In 

this work, DWT is used to preserve the high frequency components of the feature image. The redundancy and shift invariance 

of the DWT mean that DWT coefficients are inherently interpolated.[23]. 

          Down sampling of the DWT sub-bands causes information loss in the respective sub-bands and SWT is used to reduce 

this loss. Both of the SWT high frequency sub-bands and interpolated high frequency sub-bands have the same size which 

means they can be added to each other.                      

         The new corrected high frequency sub-bands can be interpolated further for higher enlargement. As well as the low 

resolution image is obtained by lowpass filtering of the high resolution image [24]. Actually, low frequency sub-band is the low 

resolution of the benchmark image. 

A DWT and an SWT are each used to decompose the input image into four sub-bands. The LL sub-bands are rejected and 

the pairs of SWT and DWT low-high (LH), high-low (HL) and high-high (HH) sub-bands are combined after the latter have 

been increased in size to match the former by bicubic interpolation. Assuming the output image is to be interpolated by a factor 

α over the input image, the high-frequency sub-band images are interpolated by a factor α and the input low resolution image is 

interpolated by a factor α before they are input to the IDWT to produce the enhanced image. 
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Figure 2: Algorithm to obtain an image enhanced by the proposed technique 
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4. Assessment method. 

 

The proposed technique has been tested on several SODISM benchmark images taken on the same day at different times and in 

different wavelengths. The test images used as subjects to be enhanced are obtained by reducing the resolution of original 

benchmark SODISM images by applying a DWT and preserving the LL sub-band, as illustrated in [1].  

Two approaches are used to examine the effectiveness of the enhancement methods used. The first is by visual comparison of 

the benchmark and enhanced images. The second is to calculate a Peak Signal-To-Noise Ratio (PSNR), for a quantitative 

comparison, using the following formula: 

 

   

 
Here R is the maximum fluctuation in the input image (255 in our case), MSE represents the Mean Squared Error between the   

benchmark image, Iin, compared with the enhanced image, Iout, defined as follows. 

 
 

Here M and N are the dimensions of both the benchmark and enhanced images. Both MSE and PSNR measure the similarity 

of the two images but as the pixel by pixel matching of the two images become perfect. The MSE value decreases to zero while 

the PSNR increases without limit. 

Although the MSE and PSNR provide quantitative measures of the similarity between pairs of images they do not correlate 

highly with human visual perception. Visual quality assessment measures are also needed to monitor the quality for SODISM 

images as provided in our results. 

The proposal method is applied for seven days per year for five wavelengths except wavelength 215 nm where data not 

available for 2012 and 2013, the format of these image files is JPGS and each image has a size of 2048× 2048 pixels 

see figure 3.  

5. Experimental Results  

SODISM images for the five wavelengths 215.0, 393.37, 535.7, 607.1 and 782.2 nm were downloaded
1
 for the first week of 

each year from 2010 to 2014 (approximately 900 images in jpg format), when available, and results are shown in Figure 3, but 

in tables 1 and 2 and on the left sides in Figures 4, 6, 8, 10 and 12 results for only one day only are shown. The latter were 

taken on the 1st October 2011, near the beginning of satellite operation. The downloaded images are used as the benchmark 

images and the test images were constructed from them as indicated in Section 4, using a value of 2 for the factor α. The DWT 

used throughout this work to decompose input images into different sub-bands was the Daubechies 9/7 wavelet transform [10].  

Although the data present in the SODISM images are for different times, they represent the closest times available for the 

different wavelengths, to process by the same technique. It will be noticed from Figures 4 to 13 that the features visible in 

SODISM images vary from one wavelength to another and from Figure 3 that SODISM images vary with time. These variations 

are due to: 

 Out-of-focus optics 

 Motion blur 

 Deteriorating instrumental conditions  

 
1
 http://picard.busoc.be/sitools/invoquerSva.do?sva=picard&svaAction=searchFiles 
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The simulation results presented in this section were obtained using a PC computer with a Core i5 2.5 GHZ CPU processor and 

6 GB of RAM, running Windows 7 Home Premium edition and MATLAB_R2012b software.  

In this paper, MSE values are used to compare the benchmark images with the enhanced versions of the test images in Figure 3 

and Table 1 and PSNR values are used in table 2. As can be seen in Tables 1 and 2, the proposed technique gives nearly a 

factor 4 improvement in MSE values and nearly a 6dB improvement in PSNR values compared with bicubic interpolation for 

all five wavelengths. Visual comparisons of test images with corresponding enhanced images are shown in Figures 4 to 13. 

These all show the improvement of the proposed method of resolution enhancement techniques over bicubic interpolation. A 

further advantage is that a Bicubic interpolation result took 40 seconds of processing time while the proposed technique took 

only 10 seconds using the previously mentioned computational environment.  

We use magnified local features in order to visually compare SODISM images before and after enhancement in figures 5, 7, 

9, 11 and 13. The improved visibility of sunspot regions between the enhance image and corresponding test image can clearly 

be seen.   

 

Table 1: Comparison of MSE values obtained by Bicubic interpolation and the proposed technique for different wavelengths 

Wavelength  & Time 
Bicubic 

interpolation 
Proposed technique 

215.0 nm   At   02:55:00 am 0.0196 0.005 

393.37 nm   At   02:47:00  am 0.0966 0.024 

535.7 nm   At   12:30:00 am 0.1918 0.0489 

607.1 nm   At   01:01:00 am 0.3530 0.0896 

782.2 nm   At   02:07:00 am 0.3089 0.0791 

 

Table 2: Comparison of PSNR values obtained by Bicubic interpolation and the proposed technique for different wavelengths  

Wavelength  & 

Time 

Peak Signal-To-Noise Ratio  (PSNR) 

Bicubic 

interpolation 
WZP 

Proposed 

technique 

215.0 nm  At   

02:55:00 am 
41.1521 47.0320 47.0902 

393.37 nm  At   

02:47:00  am 
34.2144 40.2071 40.2429 

535.7 nm  At   

12:30:00 am 
31.2375 35.2195 37.1737 

607.1 nm  At   

01:01:00 am 
28.5881 34.5235 34.54 

782.2 nm  At   

02:07:00 am 
29.1669 35.0464 35.086 
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Figure 3: a, b, c, d and e Comparison of MSE values obtained by Bicubic interpolation and the proposed technique for 5 wavelengths over the 

period 2010-2014 
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(a) 

 

(b) 

Figure 4: (a): Test image on left and image enhanced by Bicubic interpolation on the right. (b): Reference image on left and proposed 

technique on right. For WL 215nm at 02:55am 
 

 
 (a) 

 
(b) 

Figure 5: (a) Magnified sunspot region for Test image of fig 4(a) and (b) after enhancement by the proposed technique.  

 

 
 

(a) 
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(b) 

Figure 6: (a): Test image on left and image enhanced by Bicubic interpolation on the right. (b): Reference image on left and proposed 

technique on right.  WL 393nm at 02:47am 

 

 
(a) 

 
(b) 

 
Figure 7: (a) Magnified sunspot region for Test image of fig 6(a) and (b) after enhancement by the proposed technique. 

 

 
(a) 

 

 
(b) 

Figure 8: (a): Test image on left and image enhanced by Bicubic interpolation on the right. (b): Reference image on left and proposed  

technique on right. For WL 535nm at 12:47am 
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(a) 

 

 
(b) 

Figure 9: (a) Magnified sunspot region for Test image of fig 8(a) and (b) after enhancement by the proposed technique. 

 

 
(a) 

 
(b) 

Figure 10: (a): Test image on left and image enhanced by Bicubic interpolation on the right. (b): Reference image on left and proposed  

technique on right. For WL 607nm at 01:01am 

 

 
(a) 

 

 
(b) 

Figure 11: (a) Magnified sunspot region for Test image of fig 10(a) and (b) after enhancement by the proposed technique 
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(a) 

 

 
(b) 

 

Figure 12: (a): Test image on left and image enhanced by Bicubic interpolation on the right. (b): Reference image on left and proposed 

technique on right. For WL 782nm at 02:07am 

 

 
(a) 

 
(b) 

Figure 13: (a) Magnified sunspot region for Test image of fig 12(a) and (b) after enhancement by the proposed technique.  

 

 

 

 

 

 

6. Filling factor results

As  a  further  test  of  the  proposed  enhancement  method,  the  sunspot  regions  in  the  benchmark,  enhanced  and  test  images   for  WL  393  and

WL  535  have  been  segmented  in  an  equivalent  manner  and  are  shown  in  figures  14  (a,  b  and  c),  and  15  (a,  b  and  c)  in  red.  A  numerical

comparison of the results of the segmentations is shown in tables 3 and 4. The solar disc is divided into concentric  rings about a central circle

by  10  progressively  larger  circles  [8][25].  The  ratios  of  the  areas  of  sunspots  within  each  ring  to  the  areas  of  the  corresponding  ring,  called

the sunspots filling factor, are shown in a separate column for each of the images. Also shown in  Tables 3 and 4 are the inner and outer radii

of  each  ring  (in  pixels),  RI  and  RO,  expressed  as  a  ratio  of  the  solar  radius,  the  total  numbers  of  segmented  sunspot  pixels  and  the  solar

radius for each image.
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Figure 14a: Sunspots detected in benchmark image WL 393 nm on  1st  October 2011 at 02:47am 

 

 
Figure: 14b: Sunspots detected in Enhanced image WL 393 nm on 1st  Qtober 2011 at 02:47am 

 

 
Figure 14c: Sunspots detected in test image   WL 393 nm on 1st  October 2011 at 02:47am 
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Figure 15a: Sunspots detected in benchmark image WL 535 nm on 1st  October 2011 at 12:30 am 

  

 

 
Figure 15b: Sunspots detected in Enhanced image WL 535 nm on 1st  October 2011 at 12:30 am 

 

 
Figure 15c: Sunspots detected in test image WL 535nm on 1st  October 2011 at 12:30 am 

 

Table 3 The sunspot filling factors for the solar image taken on 1 October 2011 in wavelength 393 nm are shown as percentages for the test, 
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enhanced and benchmark images in the labelled columns.  

 

Index RI RO Test Enhanced Benchmark 

1 0.00 0.07 4.100560 3.591427 4.376178 

2 0.07 0.16 0.663240 1.019617 1.069726 

3 0.16 0.25 0 0.032318 0.06814 

4 0.25 0.35 0.117983 0.124814 0.111262 

5 0.35 0.45 0.188773 0.271585 0.283712 

6 0.45 0.55 0.471932 0.057454 0.084364 

7 0.55 0.65 0.310688 0.658951 0.6003 

8 0.65 0.75 0.004494 0.019073 0.015427 

9 0.75 0.85 0 0.008835 0.012517 

10 0.85 0.95 0.002621 0.006108 0 

11 0.95 1.00 0 0.03222 0.012083 

feature pixels for 

image A, B and C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1114 4052 3975 

Solar radius in pixels 449.8 900.8 900.8 
Filling factor %  0.1752536 0.159115 0.156091 

 

7. Conclusions  

In order to improve the visibility of solar features such as sunspots, in five wavelengths, a combination of Discrete and Stationary Wavelet 

decomposition is used for resolution enhancement of PICARD/SODISM images.  

900                4132                4107

Solar radius in pixels 449.8  898 898
Overall Filling factor 0.1415798 0.162257 0.161275

Inspecting the results in Table  3, the most obvious difference is that the overall filling factor percentage from the enhanced image is closer to

that from the benchmark image than that from the test image. This is reflected in the numbers of feature  pixels if the test value is multiplied

by  a  factor  4  to  account  for  the  different  radius.  In  the  individual  rows  the  results  for  the  enhanced  image  are  closer  to  the  benchmark  than

the  test  image  in  7  out  of  11  cases,  the  same  in  one  and  worse  in  3.  The  biggest  discrepancy  is  in  the  first  row ,  but  taken over the first two

rows the enhanced result wins out.

Inspecting  the  results  in  Table  4,  again  the  most  obvious  difference  is  that  the  overall  filling  factor  percentage  from  the  enhanced  image  is

closer  to  that  from  the  benchmark  image  than  that  from  the  test  image  and  this  is  reflected  in  the  numbers  of  feature  if  the  test  value  is

multiplied  by  a  factor  4  to  account  for  the  different  radius.  In  the  individual  rows  the  results  for  the  enhanced  image  are  closer  to  the

benchmark than the test image in 5 out of 11 cases, the same (at 0) in five and marginally worse in 1.

Table 4 The sunspot filling factors for the solar image taken  on 1 October 2011 in wavelength 535 nm are  shown as percentages for the test,

enhanced and benchmark images in the labelled columns.

Index        RI         RO            Test            Enhanced       Benchmar

k

1          0.00       0.07              0                     0                     0

2          0.07       0.16       2.355988        2.227101        2.105691

3          0.16       0.25              0                     0                     0

4          0.25       0.35       0.073415        0.128931        0.12435

5          0.35       0.45              0                     0                     0

6          0.45       0.55       0.162038        0.191629        0.196734

7          0.55       0.65       0.430226        0.392458        0.398384

8          0.65       0.75       0.372882        0.265254        0.251476

9          0.75       0.85       0.012782         0.01178         0.014726

10         0.85       0.95              0                     0                     0

11         0.95       1.00              0                     0                     0

Number of feature
pixels
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Many data were used to compare the performance of the proposed technique (around 900 images) at different wavelengths with some state 

of the art interpolation techniques; it is obvious from Figures (4-8) that the images, enhanced by the proposed technique, are sharper and 

cleaner than the other methods. 

Quantitative comparisons by PSNR and MSE also confirm the effectiveness of the proposed method for resolution enhancement.  In all the 

cases the proposed technique, shows good performance in terms of PSNR, MSE and visual clarity. A further test was done on the proposed 

enhancement technique, the sunspot regions in the benchmark, enhanced and test images of WL 393 and WL 535 have been segmented in an 

equivalent manner. A numerical comparison of the results of the segmentations is done. Using the enhanced images for segmentation and 

calculating the filling factors is a further test of the proposed technique and applied to the sunspot features seen in 393.37 nm and 535.7 nm 

images shows that an improvement in result is possible by first enhancing the test images using the proposed technique. Inspecting the 

results, the overall filling factor percentage from the enhanced image is closer to that from the benchmark image than that from the test 

image. 
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