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Abstract Numerical simulations of the geodynamo have successfully represented many observable char-
acteristics of the geomagnetic field, yielding insight into the fundamental processes that generate magnetic
fields in the Earth’s core. Because of limited spatial resolution, however, the diffusivities in numerical dynamo
models are much larger than those in the Earth’s core, and consequently, questions remain about how realis-
tic these models are. The typical strategy used to address this issue has been to continue to increase the reso-
lution of these quasi-laminar models with increasing computational resources, thus pushing them toward
more realistic parameter regimes. We assess which methods are most promising for the next generation of
supercomputers, which will offer access to O(106) processor cores for large problems. Here we report perform-
ance and accuracy benchmarks from 15 dynamo codes that employ a range of numerical and parallelization
methods. Computational performance is assessed on the basis of weak and strong scaling behavior up to
16,384 processor cores. Extrapolations of our weak-scaling results indicate that dynamo codes that employ
two-dimensional or three-dimensional domain decompositions can perform efficiently on up to �106 proces-
sor cores, paving the way for more realistic simulations in the next model generation.

1. Introduction

The Earth’s magnetic field is generated by convection in the liquid iron alloy of the Earth’s outer core.
Understanding the origin and evolution of the Earth’s magnetic field and the dynamics of the outer core
are long-standing grand challenges in geophysics that have been approached with a variety of theoretical,
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observational, laboratory, and computational methods. Numerical simulations have played a central role in
this quest, particularly since Glatzmaier and Roberts [1995]. These challenges also exist in numerical studies of
convective dynamos in other planets [Stanley and Glatzmaier, 2010] and in stars [Glatzmaier, 1984;
Featherstone and Hindman, 2016; Hotta, 2016]. Nevertheless, these simulations have yet to answer some fun-
damental questions about how the geodynamo actually works, because of the extreme resolution that is
required to reach fully Earth-like behavior in dynamo models. In particular, it is anticipated that the flow in the
outer core exhibits a vast range of length scales, ranging from the thickness of viscous boundary layers
(�0.1 m) to the diameter of the core (�73106 m), plus a commensurately full range of time scales, which
present generation models cannot capture. Researchers currently deal with this challenge by adopting values
for viscosity and thermal diffusivity that are much larger than those expected in the Earth’s core. Achieving
Earth-like values is unlikely in the foreseeable future, but by pushing the parameters toward more extreme
values we hope to realize solutions that are dynamical similar with the appropriate balance of forces.

In order to access these more extreme parameter regimes, the next generation of numerical dynamos will
require much improved spatial and temporal resolution, and consequently, efficient, massively parallel com-
putational capability is a must. However, most existing dynamo codes involve data structures and solution
methods for which efficient parallelization is problematic, the best example being the traditional spherical
harmonic representations of the fluid velocity, magnetic field, and other dependent variables as described
in section A1.2. Following the method described in Orszag and Patterson [1972] for periodic boundary con-
ditions, the advection, Lorentz force, magnetic induction, and in some codes, the Coriolis force, are eval-
uated in physical space using spherical harmonic transforms, while the time integration and linear terms
are solved in spectral space for each spherical harmonic mode. Consequently, spherical harmonic trans-
forms must be used to transform the nonlinear terms back to spectral space, making this the most time
consuming step in geodynamo simulations, and the most difficult to efficiently parallelize. For small-sized
and mid-sized dynamo simulations, deviations from ideal parallel efficiency are often not the primary con-
cern, but they become the limiting factor for the massive-scale simulations which will be used for the next
generation dynamo models.

To meet this challenge, we have carried out performance and accuracy tests on 15 widely used numerical
dynamo models. We chose two standard, well-studied benchmarks for our tests. Our first benchmark is the
same as dynamo benchmark 1 in Christensen et al. [2001, 2009], which uses vacuum (i.e., electrically insulating)
magnetic field conditions on the outer and inner boundaries of the spherical shell. This vacuum boundary
condition is local in spherical harmonic space but global in physical space, and therefore it poses a challenge
for codes that are based on local physical-space methods [Chan et al., 2001; Matsui and Okuda, 2004b].
Because of this, we have added a second benchmark that uses so-called pseudo-insulating (-vacuum) mag-
netic boundary conditions, as described in Jackson et al. [2014]. These boundary conditions are local in physi-
cal space, although they are less realistic than the insulating conditions for most planetary applications.

Briefly, each benchmark consists of solving an initial value problem for convection and magnetic field gen-
eration in a rotating, electrically conducting spherical shell. Exact definitions of our two benchmarks, includ-
ing the full set of governing equations, dimensionless input parameters and output variables, run
diagnostics, plus boundary and initial conditions, are given in Appendix A, along with the standard solutions
we use to measure code accuracy.

Identical tests were performed on a common platform on all 15 codes, representing the 14 participating
individuals or teams in Table 1. Of these codes, 13 use spherical harmonic transforms, while the remaining
2 use local methods. Among the codes using spherical transforms, nine use so-called transpose methods, in
which the parallelization direction alternates between the linear calculations and the spherical transforms.
For the two spherical harmonic codes (Parody and XSHELLS), parallelization is in the radial direction
throughout the simulation. SPmodel is parallelized in h direction for the spherical harmonic transform, and
H2000 is not parallelized. Calypso and Rayleigh are parallelized in two directions for each calculation (2-D
parallelization), and the other spherical harmonic expansion codes are parallelized in one direction for each
calculation (1-D parallelization). SFEMaNS is parallelized three dimensionally because the finite element
mesh in SFEMaNS can be decomposed in either direction in a meridional plane, and the Fourier transform
used in the longitudinal direction is also parallelized. Summaries of the numerical schemes used in each of
the participating codes are given in section A4.
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A primary motivating factor for the present study is to explore which numerical methods might be most
useful on a ‘‘petascale computer,’’ which can carry out one quadrillion floating point operations per second
(i.e., 1015 FLOPS, equivalent to one petaflops, or PFLOPS). To that end, we have conducted a rather ambi-
tious extrapolation of our weak-scaling results to 106 processor cores in section 2.1. While a ‘‘petascale-sized
problem’’ (‘max � 4096, where ‘max is the truncation level of the spherical harmonics) would be most ideal
for testing the capabilities of these different codes, the resources currently available, combined with the
fact that many existing codes have yet to optimize for the memory and communication issues associated
with such large problems, means that our test problems are much more modest in size. A side effect is that
a substantial drop-off in parallel efficiency is observed for many codes at processor core counts of 103 and
104 in the strong scaling test because the test problems are relatively small. For larger problem sizes, how-
ever, the point at which this drop-off occurs is pushed to larger core counts, and we expect our weak-
scaling results to remain valid.

2. Performance Tests

Performance benchmarks measure the speed and parallel capability of the codes in a single computational
environment. This study uses TACC Stampede consisting of 6400 computational nodes, each node config-
ured with two Intel 8-core Xeon E5 series processors. The computational nodes are connected with Infini-
Band. The total peak performance for the Xeon processors of Stampede is more than two PFLOPS, and
network performance is 56 Gb/s [Texas Advanced Computing Center, 2013]. Each node also has Xeon Phi
coprocessor which has more than seven PFLOPS of peak performance in total, but we only use the main
Xeon processors in the present benchmark. We use Intel compiler version 14.0 and Intel MPI Ver. 4.1.3 to
build executable processes. (Performance also depends on the compiler. For example, the elapsed time for
MagIC5 compiled by Intel compiler Ver. 15.0 with 2048 processor cores is 0.48 times of Intel compiler ver-
sion 14.0 in Appendix B.)

We conducted two different tests of code performance, termed weak and strong scaling, respectively. To
standardize our performance tests, we measure the elapsed time per time step averaged over 100 time
steps from the initial condition and excluding data IO and initialization (e.g., LU decomposition for the linear
calculation). Although some of the codes feature variable time stepping, all of our tests were conducted
with a fixed time step.

Table 1. List of Participated Codesa

Code Version Author MPI OpenMP

Spherical Harmonic Expansion With Chebyshev Collocation Method
MagIC 3 and 5 Johannes Wicht, Thomas Gastine, and Ulrich Christensen 1-D TP Yes
Rayleigh Nicholas Featherstone 2-D TP No
SBS 1.6.0 Radostin Simitev, Friedrich Busse, and Luis Silva 1-D TP No
SPmodel 0.8.0 Youhei Sasaki, Shin-ichi Takehiro, and Yoshi-Yuki Hayashi 1-D h Yes
UCSC code R2-p0 Gary A. Glatzmaier 1-D TP No

Spherical Harmonic Expansion With Radial Compact FDM
SpF-MoSST Weijia Kuang and Weiyuan Jiang 1-D TP No
TITECH code Futoshi Takahashi 1-D TP Yes

Spherical Harmonic Expansion With Radial FDM
Calypso Dev. Hiroaki Matsui 2-D TP Yes
ETH code 1.2.1 Philippe Marti, Andrey Sheyko, and Andy Jackson 1-D TP No
H2000 Rainer Hollerbach No No
LSD code 14 Mar 2014 Ashley Willis, Christopher Davies, Margaret

Avery, Chris Jones, and David Gubbins
2-D TP No

PARODY-JA 2.6 Maylis Landeau, Julien Aubert 1-D r Yes
XSHELLS Dev. Nathana€el Schaeffer 1-D r Yes

Code Version Author and Methods MPI OpenMP

Local Methods
GeoFEM 12 Mar 2012 Author: Hiroaki Matsui 3-D Yes

Method: Finite element method (FEM)
SFEMaNS Ver. 2.2 Author: Jean-Luc Guermond, Adolfo Ribeiro, and Francky Luddens 3-D No

Methods: quadratic FEM in meridional section and Fourier
expansion for / direction

aDev.: development version (see detailed description); r: parallelized in radial direction; h-NL: parallelized in h direction for nonlinear terms; TP: transpose method.

Geochemistry, Geophysics, Geosystems 10.1002/2015GC006159

MATSUI ET AL. DYNAMO PERFORMANCE BENCHMARKS 1588



2.1. Weak Scaling
In a weak-scaling test, a
sequence of runs is performed
using an increasing number of
processor cores, keeping the
problem size on each core
approximately constant, while
measuring the elapsed time per
time step. In our tests, we fix
the problem definition, but vary
the resolution, increasing the
number of grid points in pro-
portion to the number of proc-
essor cores, so that the number
of degrees of freedom (DOFs)
for each scalar on each proces-
sor remains approximately con-
stant from one run to the next.
We adjusted the DOFs on each
core so that the elapsed time
per time step is between 0.1
and 1.0 s. For reference, approx-
imately 107 time steps are
needed for one magnetic diffu-
sion time at an Ekman number

of E5131025 and at a magnetic Prandtl number Pm 5 0.5, so the imposed elapsed time per step is required
to ensure practical calculations. To account for the differences in accuracy among the spherical harmonic
codes in Appendix C, we increase the radial resolution of the finite difference models. We use 2 times and 4
times more radial DOFs in the compact finite difference method (CFDM) and finite difference method (FDM)
codes compared with the Chebyshev codes, respectively. By comparison we run SFEMaNS with a total DOFs
comparable to that used in Rayleigh. For the specific case of 4096 processor cores, SFEMaNS has slightly fewer
DOFs (i.e., 92%). Thus, the spherical harmonic codes have similar accuracy, whereas SFEMaNS is performed
with somewhat lower accuracy. The precise definition of DOFs we use is given in Appendix B.

As illustrated in Figure 1, ideal weak scaling defined this way corresponds to constant elapsed time per
time step, independent of the number of processor cores used. Said another way, ideal weak scaling corre-
sponds to elapsed time being independent of the total DOFs in the calculation. Codes that use spherical
transforms often perform poorly in this test because the number of computations for the Legendre trans-
form in the spherical transform grows like Oð‘3

maxÞ. In the present weak-scaling test, ‘max increases with
OðN1=3

CoreÞ, where NCore is the number of processor cores. Consequently, ideal weak scaling for the Legendre
transform is OðN1=3

CoreÞ. Good performance in weak scaling corresponds to a small slope in Figure 1.

Weak-scaling results for three codes that use two-dimensional or three-dimensional domain decomposition
are plotted by marks in Figure 2a. Rayleigh and Calypso use spherical harmonic transforms, whereas SFE-
MaNS uses locally based finite elements in the meridional plane and Fourier transforms in the longitudinal
direction. We fit the elapsed times shown in Figure 2a to power laws of the form

t5ANp
Core; (1)

in which the exponent p measures the departures from ideal weak scaling. In particular, if the Legendre
transform controls elapsed time, then the predicted exponent is p 5 1/3. Although the absolute value of the
elapsed time is different in Figure 2a, all three codes have exponents below p 5 1/3 and the local-based
code SFEMaNS has a p value much less than 1/3. Rayleigh and Calypso need less computation time than
SFEMaNS up to 23106 processor cores because Rayleigh and Calypso have smaller power law coefficients A
than that for SFEMaNS. A value less than 1/3 for Rayleigh and Calypso implies that additional factors, such
as communication and memory bandwidth, have a significant impact on the total computation time.

Figure 1. Schematic diagram illustrating the difference between strong and weak-scaling
tests. In the weak-scaling test, the number of degrees of freedom (DOFs; proportional to grid
size) increases in proportion to the number of processor cores; ideal weak scaling corre-
sponds to constant elapsed time. In the strong scaling test, the DOFs is held constant, so with
ideal strong scaling the elapsed time decreases linearly with the number of processor cores.
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We performed a weak-scaling
test on all the codes except
H2000, and derived the best fit-
ting p values shown in Figure 3.
Compared to Rayleigh and
Calypso, larger deviations from
ideal weak scaling are evident
in the spherical harmonic codes
that use only 1-D domain
decompositions. The general
result is around p 5 1/3 for
codes based on spherical har-
monic expansion. Parody has p
’ 0:9 due to the increased
expense of its linear solver rela-
tive to the other codes. SBS-DRS
and SPmodel also have p ’ 1.

Our weak-scaling results lead to
several general conclusions.
First, codes using a two or more
dimensional domain decompo-
sition have a large paralleliza-
tion capability. In some cases,
according to our extrapolations,
such codes may retain enough
efficiency to use on platforms
with millions or even tens of
millions of processor cores. Sec-
ond, parallelization of the trans-
pose methods applied to the
spherical transform has a
greater effect on the elapsed
time compared to paralleliza-
tion in the radial direction,
because time for the linear cal-

culation increases faster than the Legendre transform in the radial parallelization. Finally, the code XSHELLS,
with MPI in the radial direction and OpenMP in the angular direction, also performed well in our scaling
tests. Although more limited than 2-D MPI domain decomposition, this approach may also be interesting
with future computers that feature greater numbers of cores per node.

What about our goal to extrapolate to millions of processor cores? The weak-scaling results in Appendix B
include only four data points for most of the codes, and it is meaningless to extrapolate such small samples
that far. In order to extrapolate our weak scaling to a million processor cores, we additionally tested the per-
formance of three particularly promising codes, Rayleigh, Calypso and SFEMaNS, using up to 16,384 proces-
sor cores, then fit the results to a power law with exponent p. As the results in Figure 2a show,
extrapolating the two spherical harmonic codes Rayleigh and Calypso achieves approximately 1 and 2 sec-
onds per time step at 221 ’ 2:13106 processor cores, respectively. In 221 core case, spatial resolution for
Rayleigh and Calypso would be ðNr ; ‘maxÞ5ð2048; 4095Þ and (8192, 4095), respectively. SFEMaNS would
also achieve a time step between 1 and 2 seconds per time step at 221 processor cores with a slightly lower
number of DOFs than that for Rayleigh.

One way to more effectively compare the results is to normalize the computation time by the number of
DOFs (see Figure 2b). In this representation, the exponents of the scaling and extrapolation change. For
example, Calypso scales with an exponent of p 5 20.875 which is smaller than the ideal scaling for the
Legendre transform (see below), whereas Rayleigh scales p 5 20.760 but with a smaller A value. The

Figure 2. Weak-scaling test: (a) wall clock time per time step versus number of processor
cores for three codes with two-dimensional or three-dimensional domain decomposition
described in section A4. The wall clock time per step normalized by the total DOFs is plot-
ted in Figure 2b. Lines are power law fits of elapsed time t in seconds/step extrapolated to
a million processor cores. Spatial resolutions for 4096 processor cores case are
6:73107; 2:83108, and 6:23107 DOFs for Rayleigh, Calypso, and SFEMaNS, respectively.
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SFEMaNS exponent is
p 5 20.935, much smaller
than both Calypso and Ray-
leigh but with a larger A
value. The extrapolated
elapsed times for SFEMaNS
and Rayleigh converge
approximately at 1 3 107

processor cores. However, as
described in Appendix C,
codes using spherical har-
monics expansion need less
DOFs than that for local
methods. Ectrapolating the
present results, Rayleigh will
require much less computa-
tional time than SFEMANS to
obtain comparable accuracy
for 1 3 107 processor cores.

It is fair to ask if our extrapolation to millions of processor cores is actually meaningful. In Figure 2a, the ideal
exponent for the Legendre transform is p 5 1/3, which is larger than the exponents of Calypso and Rayleigh.
The small exponents p for Calypso and Rayleigh might simply reflect the communication time, which has
the ideal exponent of p 5 0 when bandwidth, not latency, is the limiter, as we expect for these problem
sizes. However, communication time may increase faster with larger parallelization level [Engelmann, 2014].
We evaluate the exponent p for the communication time in Figure 4. The exponent p 5 0.129 for Calypso is
almost the same as our previous estimate for the total elapsed time (p 5 0.131) and smaller than the ideal
scaling for the Legendre transform p 5 1/3. And, the exponent p for Rayleigh is almost same as the ideal
scaling for the Legendre transform. We might expect the exponent to approach p 5 1/3 with increasing par-
allelization level and spatial resolution for Rayleigh and Calypso, confirming that our scaling does not reflect
the communication time.

2.2. Strong Scaling
In a strong scaling test, a sequence of runs is performed using an increasing number of processor cores,
while fixing the total problem size. In our test, we ensure fixed problem size by fixing the grid and the
spherical harmonic truncation, so that the DOFs per core decrease in proportion to the number of processor

Figure 4. The data communication time per step in the weak-scaling test for the three codes shown in Figure 2. Lines are power law fits of
elapsed time t in seconds/step extrapolated to a million processor cores.

Figure 3. Fitted exponent p of the elapsed time as a function of Ncore for weak-scaling test.
Ideal weak scaling for Legendre transform (p 5 1=3) is shown by the thick line. The result for
code H2000 is not shown because H2000 is not parallelized. Symbol type denotes the number
of directions of MPI parallelization and OpenMP parallelization.
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cores used. With ideal strong scaling, according to this prescription, the trend of elapsed time in Figure 1
should have a slope of 21. Good performance in strong scaling is therefore characterized by a trend with
slope close to 21, whereas poor performance is often characterized by a trend with slope near zero.

To quantify the deviations from ideal strong scaling, we define an efficiency factor � as

�5
tref

t
Nref

NCore
; (2)

where t is the elapsed time, NCore is the number of processor cores used, and tref and Nref denote a reference
time and number of processor cores. In this scaling test, Nref 5 16, which corresponds to a single Stampede
node. According to (2), �5 1 for ideal strong scaling.

Figure 5 shows � versus Nref for all 15 codes except for H2000, grouped by spherical harmonic-Chebyshev
and local methods (Figure 5a) and spherical harmonic-finite difference methods (Figure 5b). Efficient strong
scaling is difficult to maintain for this problem size with 1-D MPI parallelization beyond Nref � 103, and bet-
ter results are found with 2-D or 3-D MPI parallelization, which maintain high efficiency up to Nref � 104 in
some cases.

To further quantify this effect, we define the parallelization limit, the number of processor cores Nref where
� falls to 0.6 in strong scaling. Figure 6 shows this limit for all 15 codes. Most of the 1-D decomposition
codes without OpenMP fall below our efficiency threshold around 26 5 64 processor cores in this test. The
ETH code keeps good scaling up to 512 processor cores, which is the parallelization limit of the ETH code in
the present strong scaling test. The parallelization limit increases for some spherical harmonic codes with
OpenMP, but this is still far below from what is needed for the next generation dynamo code. More encour-
agingly, the codes with multidimensional domain decomposition plus OpenMP fare better, remaining
within the parallelization limit using 213 5 8192 processor cores and for three codes (Rayleigh, LSD, and
Calypso), using the largest allowance of Stampede: 214 5 16,384 processor cores.

Figure 5. Parallel efficiency � as a function of the number of processor cores in the strong scaling. The efficiency is referred by the result
using 16 processor cores (1 node). Results for codes using spherical harmonic-Chebyshev and local methods are plotted in Figure 5a, and
results for spherical harmonic-FDM and spherical harmonic-CFDM are plotted in Figure 5b. Codes with 1-D parallelization are plotted in
blue, codes with 2-D parallelization are plotted in red, and the 3-D-parallelized model is plotted in green. A solid line is used for codes with
hybrid parallelization (MPI and OpenMP), and a dotted line is used for the other codes. �5 1 is the ideal scaling.
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Another question addressed by
this test is whether hybrid (MPI
and OpenMP) parallelization is
faster than full MPI paralleliza-
tion. We tested Calypso with
hybrid parallelization and full
MPI parallelization and found
that the elapsed times for both
are comparable (see Table B5
and Figure B2).

Besides the scaling capability,
our performance tests also show
large differences in raw perform-
ance between codes at a given
core count. Indeed, from the fast-
est to the slowest, a factor of 20
to 100 is observed (see Figures

B1 and B2). The fastest code in the SH-FDM category is, by far XSHELLS, while in the SH-CHY category MagIC
and Rayleigh are very close. We also note that the ETH, LSD, and TITECH codes use corrector iterations on the
nonlinear terms, doubling the work per step over the majority of codes using Adams-Bashforth methods.

Local methods are more suitable for a massively parallel computational environment because they only
require data communications for overlapping areas among subdomains. However, the insulating magnetic
boundary condition cannot be described locally, hence is only applied in few models (Matsui and Okuda
[2005] by finite element method (FEM); Chan et al. [2007] by FEM; Wicht et al. [2009] by finite volume
method (FVM), and SFEMaNS by FEM in meridional plane and Fourier transform in zonal direction Ribeiro
et al. [2015]). If an iterative linear solver is used, several communication steps are required to satisfy the
insulating boundary condition for the magnetic field and the solenoidal boundary condition for the velocity
field. Consequently, the linear solver becomes the most time consuming part for the local methods.

3. Conclusions

We performed performance and accuracy benchmark tests for geodynamo simulations using 15 codes with
up to 16,384 processor cores on TACC Stampede. The results of the performance benchmark show that
codes using 2-D or 3-D parallelization models have the capability to run efficiently with up to 16,384 proces-
sor cores. The parallelization limit for these codes using 2-D or 3-D parallelization is estimated to be 107

processor cores, and elapsed time for these codes is expected to be approximately 1 s/step by using 106

processor cores. In the weak-scaling test, growth of the elapsed time for SFEMaNS (a local method) is the
smallest with increasing the parallelization. The elapsed times for Calypso and Rayleigh, which use spherical
harmonic expansion, grow with less than the ideal scaling for the Legendre transform. The elapsed times
for SFEMaNS and Rayleigh are projected to converge at approximately 1 3 107 processor cores for prob-
lems with comparable DOFs. However, the accuracy benchmark tests show that finite difference methods
require three times more DOFs in the radial direction compared to Chebyshev expansion method. Similar
refinement would be required for local methods in other directions. Consequently, local methods will need
longer elapsed times than spectral methods to achieve the same accuracy with the same number of pro-
cessors. According to our results, spherical harmonic expansion methods with 2-D parallelization offer the
best assurance of efficiency for geodynamo simulations that employ 106 to 107 processor cores.

We also observed that hybrid parallelization (MPI 1 OpenMP) increases the parallelization level. However, one
test using MPI and hybrid parallelization in the same code produced comparable results when the number of
processor cores was the same. Radial parallelization is the fastest with less than 1000 processor cores for the
problem sizes tested here, but this approach imposes severe restrictions on the radial grid when the number
of MPI parallelizations greatly exceeds the desired number of radial levels. In addition, run time for the codes
with a 1-D, radial parallelization increases rapidly due to the waiting time in the linear solver for band matrices,
except for XSHELLS which reasonably mitigates the waiting time in the linear solver.

Figure 6. Maximum number of processor cores for the strong scaling to keep parallel effi-
ciency � > 0:60 in the strong scaling test. Symbol type denotes the number of directions
of MPI parallelization and OpenMP parallelization.
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The next generation of geodynamo simulations with more realistic parameters will be performed on a
petascale computer. To realize the capabilities of a petascale computer, 2-D or 3-D MPI parallelization or
MPI-OpenMP hybrid parallelization will be necessary. Based on the accuracy and performance benchmark
tests in our study, the spherical harmonic expansion with 2-D parallelization method offers the best discreti-
zation for the dynamo simulations in a rotating spherical shell.

There are some questions that remain unresolved. First, the rate of convergence of the solution with
increasing resolution in the radial direction is unknown. In order to determine this convergence rate, it
would be necessary to compare solutions from each code using different resolutions in the radial as well as
in the horizontal directions, a task that is beyond the scope of this study. Second, many codes include vari-
able time stepping, but we fixed the length of the time step in order to simplify comparisons of the codes.
It also remains an open question as to which methods of variable time stepping are most efficient and most
accurate. A third unanswered question is whether the present accuracy benchmark results with laminar
flows will carry over to solutions with more turbulent motions expected in the Earth’s outer core. To deter-
mine code accuracy under these turbulent conditions, it will be necessary to define new benchmark prob-
lems, featuring more turbulent and time dependent flows.

Appendix A: Models

A1. Benchmark Definitions
A1.1. Governing Equations
The present benchmark is a magnetohydrodynamics (MHD) simulation in a rotating spherical shell modeled
on the Earth’s outer core. We consider a spherical shell from the inner core boundary (ICB) r 5 ri to the core
mantle boundary (CMB) r 5 ro in a rotating frame which rotates at a constant angular velocity X5Xẑ . The
shell is filled with a Boussinesq fluid with constant diffusivities (kinematic viscosity m, magnetic diffusivity g,
and thermal diffusivity j) and thermal expansion coefficient a. The inner core (0< r< ri) is corotating with
the mantle, and assumed to be an electrical insulator or pseudo-insulating (-vacuum). The region
outside the core is also assumed to be an electrical insulator or pseudo-insulating.

The nondimensional governing equations of the MHD dynamo problem are the following:

E
@u
@t

1 u � rð Þu
� �

52rP1Er2u22 ẑ3uð Þ

1RaT
r
ro

1
1

Pm
r3Bð Þ3B;

(A1)

@T
@t

1 u � rð ÞT5
1
Pr
r2T ; (A2)

@B
@t

5
1

Pm
r2B1r3 u3Bð Þ; (A3)

and

r � u5r � B50; (A4)

where u, P, B, and T are the velocity, pressure, magnetic field, and temperature, respectively. To obtain
the nondimensional equations, as given above, the shell width of L5ro2ri and a viscous diffusion time
of L2/m are selected as the length and time scales, respectively. The ratio of the inner core radius to
the outer core radius is set to ri/ro 5 0.35. Thus, inner core radius and outer core radius are ri 5 7/13
and ro 5 20/13, respectively. The magnetic field is nondimensionalized by the factor B2

05ql0gX, where
q and l0 are the density of the fluid and the magnetic permeability, respectively. The temperature is
normalized by the temperature difference between the inner and outer boundary of the shell DT.
Gravity in equation (A1) is radially inward and varies linearly with radius according to g5gor=ro, where
go is amplitude of the gravity at the CMB.
A1.2. Spherical Harmonic Expansion
Although various time integration schemes and radial discretization methods are applied in numerical
dynamo models for a rotating spherical shell (see section A4), most dynamo models use the spherical
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harmonic expansion for the horizontal discretization for good accuracy and easy treatment of magnetic
boundary condition. In spherical harmonic expansion, u, P, B, and T are expanded by a series of spherical
harmonics. By using the triangular truncation, the temperature Tðr; h;/; tÞ and Pðr; h;/; tÞ are expanded by
using the spherical harmonics Y m

l ðh;/Þ with truncation level ‘max as

Tðr; h;/; tÞ5
X‘max

l50

Xl

m52l

T m
l ðr; tÞYm

l ðh;/Þ; and (A5)

Pðr; h;/; tÞ5
X‘max

l50

Xl

m52l

Pm
l ðr; tÞYm

l ðh;/Þ; (A6)

where T m
l ðr; tÞ and Pm

l ðr; tÞ are the spherical harmonic coefficients of the temperature and pressure, respec-
tively. Velocity and magnetic fields are expanded into the poloidal and toroidal components as

Bðr; h;/; tÞ5
X‘max

l51

Xl

m52l

r3r3 B m
Sl ðr; tÞYm

l ðh;/Þ̂r
� �

1r3 B m
Tl ðr; tÞYm

l ðh;/Þ̂r
� �� �

; and (A7)

uðr; h;/; tÞ5
X‘max

l51

Xl

m52l

r3r3 U m
Sl ðr; tÞYm

l ðh;/Þ̂r
� �

1r3 U m
Tl ðr; tÞYm

l ðh;/Þ̂r
� �� �

; (A8)

where r̂ is the unit radial vector. The scalar coefficients of the poloidal and toroidal components are denoted
by suffix S and T, respectively. The scalar coefficients T m

l ðr; tÞ; Pm
l ðr; tÞ; B m

Sl ðr; tÞ; B m
Tl ðr; tÞ; U m

Sl ðr; tÞ, and U m
Tl ðr; tÞ

are also discretized in the radial direction by Chebyshev expansion, finite difference method (FDM), or compact
FDM and evolved by a time integration scheme. Following Orszag and Patterson [1972], fields are transformed
into physical space to obtain the nonlinear terms (advection terms, Lorentz force, and magnetic induction),
and nonlinear terms are transformed into scalar coefficients by spherical harmonic transform. Finally, the spher-
ical harmonic coefficients of the fields are evolved by the linear terms and nonlinear terms.
A1.3. Control Parameters
The dimensionless numbers in the governing equations (A1)–(A4) are the Ekman number E5m=XL2; the
modified Rayleigh number Ra5agoDTL=Xm; the Prandtl number Pr5m=j; and the magnetic Prandtl number
Pm5m=g. The following parameter values are used in the benchmarks:

E51:031023;

Ra5100;

Pr51:0;

Pm55:0:

(A9)

A1.4. Boundary Conditions for Velocity and Temperature
The boundary conditions exert a significant influence on the motion of the fluid and the overall dynamo
process. Nonslip conditions for the velocity field and constant temperature values are imposed at both
boundaries of the fluid shell for both cases as

u50 at r5ri and ro; (A10)

T51 at r5ri; (A11)

T50 at r5ro: (A12)

A1.5. Magnetic Boundary Conditions
We consider the two benchmark cases with different magnetic boundary conditions in the present study.
One is the insulating boundary case and another is the pseudo-insulating boundary case.
A1.6. Insulating Boundaries Case
In the insulating boundary case, the regions outside the fluid shell are assumed to be electrical insulators.
This boundary condition is closer to the actual magnetic boundary conditions for the Earth’s core. In the
electric insulator, current density vanishes,

Jext50; (A13)

where the suffix ‘‘ext’’ indicates fields outside the fluid shell. At the boundaries of the fluid shell, the mag-
netic field Bfluid , current density Jfluid , and electric field Efluid in the conductive fluid satisfy:
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Bfluid2Bextð Þ50; (A14)

Jfluid2Jextð Þ � r̂50; (A15)

and
Efluid2Eextð Þ3r̂50: : (A16)

Consequently, radial current density J vanishes at the boundary as

J � r̂50 at r5ri ; ro: (A17)

In an electrical insulator, the magnetic field can be described as a potential field

Bext52rWext; (A18)

where Wext is the magnetic potential. The boundary conditions can be satisfied by connecting the magnetic
field in the fluid shell at boundaries to the potential fields. By using the spherical harmonic expansion, the
boundary condition can be expressed for each spherical harmonic coefficient by

l11
r

B m
Sl ðrÞ2

@B m
Sl

@r
5B m

Tl ðrÞ50 at r5ri ; and (A19)

l
r

B m
Sl ðrÞ1

@B m
Sl

@r
5B m

Tl ðrÞ50 at r5ro: (A20)

A1.7. Pseudo-Insulating Case
Under the pseudo-insulating boundary condition, the magnetic field has only a radial component at the
boundaries [e.g., Harder and Hansen, 2005]. This boundary condition can be applied easily to models using
local methods since the boundary conditions can be defined at each grid point. Given the conservation of
the magnetic field (A4), the magnetic boundary condition is

@

@r
r2Br
� �

5Bh5B/50 at r5ri; ro: (A21)

By using the spherical harmonic expansion, the boundary condition can be expressed for each spherical
harmonic coefficient by

@B m
Sl

@r
5B m

Tl ðrÞ50 at r5ri; ro: (A22)

A2. Initial Conditions
A2.1. Initial Conditions for Velocity and Temperature
The initial velocity and temperature fields are defined by Christensen et al. [2001, 2009] for both the insulat-
ing and the pseudo-insulating benchmarks. Initially, there is no flow:

u50: (A23)

Thermal convection is initiated by the following temperature perturbation:

T5
rori

r
2ri1

21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17920p
p 123x213x42x6

� �
sin 4hcos 4/; (A24)

where x52r2ri2ro.
A2.2. Initial Magnetic Field for Insulating Boundaries Case
Initial values are important for these benchmark tests. In particular, simulations must be started with a
strong magnetic field to sustain the magnetic field in this parameter regime.

The initial magnetic field for the insulating magnetic boundaries case is defined in Christensen et al. [2001,
2009] as

Br5
5
8

8ro26r22
r4

i

r3

	 

cos h; (A25)

Bh52
5
8

8ro29r1
r4

i

r3

	 

sin h; (A26)

and

B/55sin p r2rið Þð Þsin 2h: (A27)
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A2.3. Initial Magnetic Field for Pseudo-Insulating Boundaries Case
The initial magnetic field for the pseudo-insulating benchmark is defined by Jackson et al. [2014] as

Br5
5
8

248riro1 4ro1ri 413roð Þð Þ6r2 16112 ri1roð Þð Þr219r3

r
cos h; (A28)

Bh52
15
4

r2rið Þ r2roð Þ 3r24ð Þ
r

sin h; (A29)

and

B/5
15
8

sin p r2rið Þð Þsin 2h: (A30)

A3. Diagnostics and Data Outputs
Six data values are requested once a given dynamo simulation has reached a quasi steady state. These are

1. The kinetic energy averaged over the fluid shell Ekin defined by

Ekin5
1
V

ð
1
2

u2dV; (A31)

where V is the volume of the fluid shell.

2. The magnetic energy averaged over the fluid shell Emag defined by

Emag5
1
V

1
EPm

ð
1
2

B2dV : (A32)

3. Angular drift velocity of the field patterns in the zonal direction, x.
4. Local temperature T.
5. Local zonal velocity u/.
6. Local h-component of the magnetic field Bh.

The local values (4)–(6) should be measured at a specific point though the solution propagates in the longi-
tudinal direction. The local values are measured at middepth of the fluid shell (r5 ro1rið Þ/2) in the equatorial
plane (h5p=2), with a /-coordinate given by the conditions ur 5 0 and @ur=@/ > 0.

A4. Participating Models
MagIC (Ver. 3 and 5). MagIC uses the pseudo-spectral method. Spectral representations use Chebyshev poly-
nomials in radius and spherical harmonics. Following Glatzmaier [1984], a second-order Adams-Bashforth
scheme for the nonlinear terms and the Coriolis force and a Crank-Nicolson scheme for the remaining linear
terms are used [Christensen and Wicht, 2007]. MagIC3 is parallelized in the radial direction only using
OpenMP. MagIC5 is parallelized by MPI for spherical harmonic modes for linear operations and decomposed
in the radial direction for nonlinear operations. MagIC is available at https://magic-sph.github.io/as a free
software that can be used, modified, and redistributed under the terms of the GNU GPL v3 license.

Rayleigh. Spherical harmonics and Chebyshev polynomials are used to expand the variables in the horizontal
and radial directions, respectively. Semiimplicit time integration is used (Crank-Nicolson for linear terms and
Adams-Bashforth for the other terms). MPI parallelization is done in two dimensions. The linear operation is par-
allelized in spherical harmonic modes, the Legendre transform is parallelized in radial and harmonic degree m,
and the Fourier transform and nonlinear calculations are parallelized in radial and meridional directions.

SPmodel. Spherical harmonics and Chebyshev polynomials are used to expand the variables in the horizon-
tal and radial directions, respectively. The nonlinear terms and the Coriolis terms are evaluated in physical
space and converted back to spectral space (so-called transform method). Diffusion terms are integrated by
Crank-Nicolson scheme and the other terms are integrated by Adams-Bashforth scheme [Sasaki et al., 2012].

Simitev-Busse-Silva (SBS) code. Pseudo-spectral numerical code for the solution of the governing equations
using a poloidal-toroidal representation for the velocity and magnetic fields. Unknown scalar fields are
expanded in spherical harmonics in the angular variables and Chebyshev polynomials in radius. Time
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stepping is implemented by a combination of an implicit Crank-Nicolson scheme for the diffusion terms
and an explicit Adams-Bashforth scheme for the Coriolis and the nonlinear terms. Early versions of the code
are described in Tilgner and Busse [1997] and Tilgner [1999]. The code has been extensively modified since
and used for number of years after Simitev and Busse [2005].

UCSC code. Spherical harmonics and Chebyshev polynomials to expand the variables in the horizontal and
radial directions, respectively. Semiimplicit time integration is used (Crank-Nicolson for linear terms and
Adams-Bashforth for the other terms). MPI parallelization is done for the spherical harmonic modes for the
linear operation, and done in the radial direction for the nonlinear operation. The code has been modified
for years after Glatzmaier [1984].

Calypso. Calypso uses the spherical harmonic expansion on the sphere and second-order finite difference
method (FDM) in the radial direction. For time integration, Crank-Nicolson Scheme is used for the diffusion
terms, and second-order Adams-Bashforth scheme is used for the other terms. Vorticity equation and Pois-
son equation for the toroidal vorticity are used for the time integration of the fluid motion. The directions of
MPI parallelization are changed among the linear calculations, Legendre transform, and Fourier transform
including nonlinear calculations. OpenMP parallelization is also used for intranode parallelization [Matsui
et al., 2014]. We use the latest development version in the present benchmark. Ver. 1.1 is available at
https://geodynamics.org/cig/software/calypso/under the GNU GPL v3 license.

ETH code. ETH code is a simulation code using the spherical harmonics for the angular component and finite
differences in radius. The position of the radial grid points is chosen to be the Chebyshev roots, their interval
increases toward the boundaries. A seven point stencil was used for the radial finite differences. The incom-
pressibility condition is guaranteed by the use of a toroidal/poloidal decomposition of the vector fields. A
second-order predictor-corrector scheme is used for the time integration. Diffusion terms are treated implic-
itly, the rest is explicit. The time step is controlled both by the corrector size which is kept to be lower than a
chosen level of error and by the CFL condition [see Marti, 2012; Sheyko, 2014]. The code was developed by
Ashley Willis [Willis et al., 2007] and the current parallelization was written by Philippe Marti.

H2000. Vectors are decomposed into poloidal and toroidal components and expanded into spherical har-
monics in a sphere. Finite difference is used in the radial discretization. For time integration, Crank-Nicolson
scheme is used for the diffusion terms, and Adams-Bashforth scheme is used for the other terms. This code
is not parallelized [Hollerbach, 2000].

Leeds Spherical Dynamo (LSD). Leeds code solves the Boussinesq dynamo equations by representing velocity,
and magnetic field, as poloidal and toroidal scalars. It is pseudo-spectral; the variations in a sphere are expanded
in spherical harmonics, and radial variations by finite differences with nonequidistant grid using Chebyshev
zeros as grid points. The nonlinear terms are evaluated by the transform method. Time stepping is by a
predictor-corrector method and the time step is controlled using a CFL condition and error information from the
corrector step. The LSD code is parallelized using MPI in both radial and in h directions [Davies et al., 2011].

PARODY. The code uses a spherical harmonic expansion in lateral directions, and finite differences in the radial
direction [Dormy et al., 1998]. The radial mesh interval decreases in geometrical progression toward the boun-
daries. A three-point stencil is used for second-order derivatives and a five-point stencil for biharmonic opera-
tors (second-order accurate). Time integration involves a Crank-Nicolson scheme for diffusion terms and a
second-order Adams-Bashforth scheme for other terms. To ensure numerical stability the time step is chosen
as the minimum of the characteristic time of advection and the time of Alfven wave propagation in one grid.

XSHELLS. XSHELLS uses finite differences in radius and spherical harmonic expansion in the horizontal direc-
tions. The diffusion terms are treated using the Crank-Nicolson scheme, while the other terms are treated by
the second-order Adams-Bashforth scheme. Nonlinear terms are computed in physical space using the SHTns
spherical harmonic transform library [Schaeffer, 2013]. The parallelization strategy uses MPI in the radial direc-
tion with only point-to-point communications. OpenMP can be used in the radial or the angular directions for
an added level of parallelism. XSHELLS is available as free software at https://bitbucket.org/nschaeff/xshells.

TITECH code. The code uses spherical harmonic expansion in the angular directions and a combined com-
pact finite difference method in the radial direction. A poloidal/toroidal representation is used for the mag-
netic and velocity fields. Time stepping is implemented by a combination of a semiimplicit Crank-Nicolson
scheme for the diffusion terms and an Adams-type third order predictor-corrector scheme for the other
terms. Details of the code are described in Takahashi [2012].
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SpF-MoSST. In the model, the velocity and the magnetic field are described by the poloidal and toroidal sca-
lars. On the spherical surfaces, spherical harmonic expansions are used. In the radial direction, both com-
pact finite difference algorithms and the Chebyshev collocation method are employed. For the momentum
equation, the radial component of the velocity, the radial component of the vorticity, and the modified
pressure are solved simultaneously. For the induction equation, the radial components of the magnetic field
and current are solved simultaneously [Kuang and Bloxham, 1999; Jiang and Kuang, 2008].

GeoFEM. A finite element method (FEM) with trilinear hexahedral elements is used for spatial discretization
in the Cartesian coordinate. For time integration, the Crank-Nicolson scheme is used for the diffusion terms,
and the other terms are solved by the Adams-Bashforth scheme. Pressure and electric potential are solved
to satisfy mass conservation and Coulomb gauge for magnetic vector potential, and the Fractional step
scheme is used to satisfy the divergence-free condition for velocity and magnetic vector potential [Matsui
and Okuda, 2004a].

SFEMaNS (Ver. 2.2). Finite elements (triangle elements) and Fourier approximation are used in meridian sec-
tion and azimuth direction, respectively. For MPI parallelization, the FEM mesh for the meridional section is
decomposed into subdomains. The Fourier transform is also parallelized by MPI [Guermond et al., 2007,
2009; Ribeiro et al., 2015].

Appendix B: Performance Benchmark Data

Here we list the elapsed time for the performance benchmark results. The spatial resolution and elapsed
time for each time step in the weak-scaling test are listed in Tables B1–B3, and the elapsed time is plotted
as a function of the number of processor cores in Figure B1.

Spatial resolutions for the strong scaling test and elapsed time are also listed in Tables B4–B7, and the
elapsed time is plotted as a function of number of processor cores in Figure B2.

Table B1. Elapsed Time (Second/Time Step) for Weak Scaling by Codes Using Spherical Harmonic Expansion With Chebyshev Expansion

NCore Nr ‘max MagIC5 Rayleigh SBS UCSC NCore Nr ‘max SPmodel

1 16 31 0.0269936 0.102745 0.124692 0.095051 2 16 42 0.16998
8 32 63 0.0714999 0.103732 0.185473 0.098328 16 32 85 0.71648
64 64 127 0.109334 0.108528 0.138958 0.18348 128 64 170 8.27447
512 128 255 0.317476 0.131845
4096 256 511 0.245212

Table B2. Elapsed Time (Second/Time Step) for Weak Scaling by Codes Using Spherical Harmonic Expansion With Radial FDM

NCore Nr ‘max Calypso ETH Code LSD Code PARODY XSHELLS

1 64 31 0.256851 0.352721 0.248616 0.035781
8 128 63 0.465385 0.531854 0.547296 0.125999 0.051641
64 256 127 0.75803 1.71907 1.05789 0.236955 0.12273
512 512 255 0.82891 2.78505 2.13269 0.619173 0.17119
4096 1024 511 1.09464 4.00913 4.71198 0.28869

Table B3. Elapsed Time (Second/Time Step) for Weak Scaling by Codes Using Spherical Harmonic Expansion With Radial Compact FDM and Using Local Methods

NCore Nr ‘max

SpF-MoSST TITECH Code
GeoFEM SFEMaNS

Elapsed Time Elapsed Time
ffiffiffiffiffiffiffiffiffi
Nsph

p
Nr Time

ffiffiffiffiffiffiffiffiffiffi
Nmed
p

N/ Time

8 64 63 0.536304 0.361867 44.11 17 1.27525
64 128 127 1.61485 0.72987 88.19 33 3.29256 87.29 128 0.767666
512 256 255 1.04298 176.37 65 6.31781 175.12 256 0.865461
4096 352.73 129 16.8076 345.82 512 1.07231
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Appendix C: Accuracy Benchmark Results

Accuracy tests were performed in the participants’ own computer environment. We measured accuracy in terms
of deviation from suggested solutions to each benchmark problem. The accuracy benchmark solutions for the
insulating boundary case using SH-CHY, SH-CFDM, SH-FDM, and local methods are listed in Tables C1–C3 and

Table B4. Elapsed Time (Second/Time Step) for Strong Scaling by Codes Using Spherical Harmonic Expansion With Chebyshev
Expansiona

MagIC5 Rayleigh SBS UCSC SPmodel
‘max 255 255 256 255 170
ðNr ;Nh;N/Þ (192, 384, 768) (192, 384, 768) (193, 385, 769) (257, 384, 768) (96, 256, 512)
NCore Elapsed Time

8 9.21265 11.3106
16 6.93438 34.8506 7.8559 9.19364
32 3.65146 3.89052 18.8855 4.4581 8.79569
64 1.94200 1.80874 11.5250 3.4032 8.66073
128 1.09250 0.907353 20.3100 1.0696 8.25554
256 0.713037 0.53342 8.5006
512 0.597079 0.255983
1024 0.133309
2048 0.110573
4096 0.0442248
8192 0.0354416

a‘max: truncation of the spherical harmonics; ðNr ;Nh;N/Þ: number of grids in ðr; h;/Þ direction.

Table B5. Elapsed Time (Second/Time Step) for Strong Scaling by Codes Using Spherical Harmonic Expansion With Radial FDMa

Calypso (HB) Calypso (MPI) ETH Code LSD Code PARODY XSHELLS
‘max 255
ðNr ;Nh;N/Þ (512, 384, 768)
NCore Elapsed Time

16 12.5429 4.0731
32 6.36380 2.07441
64 20.3963 15.1231 3.20937 1.0741
128 3.73266 10.4146 7.77790 1.68538 0.56204
256 1.71351 1.81378 5.49180 4.08026 0.951109 0.30811
512 0.828911 0.84722 2.78505 2.13269 0.619173 0.17119
1024 0.443448 0.40504 1.34670 0.564325 0.085412
2048 0.220731 0.24759 0.852113 0.575268 0.054671
4096 0.113289 0.11534 0.374556 0.039696
8192 0.060780 0.05254 0.608120
16,384 0.034834 0.04252 0.623616

a‘max: truncation of the spherical harmonics; ðNr ;Nh;N/Þ: number of grids in ðr; h;/Þ direction; (HB): hybrid parallelization
(MPI 1 OpenMP); (MPI): MPI parallelization only.

Table B6. Elapsed Time (Second/Time Step) for Strong
Scaling by Codes Using Spherical Harmonic Expansion With
Radial Compact FDMa

SpF-MoSST TITECH Code
‘max 63 255
ðNr ;Nh;N/Þ (124, 96, 192) (256, 384, 768)
NCore Elapsed Time

4 4.49747
8 2.23190
16 1.38402
32 0.765525
64 0.500593 6.40703
125 0.320104
128 3.54131
256 1.71351 1.86101
512 0.828911 1.04298

a‘max: truncation of the spherical harmonics; ðNr ;Nh;N/Þ:
number of grids in ðr; h;/Þ direction.

Table B7. Elapsed Time (Second/Time Step) for Strong Scaling by
Codes Using Local Methodsa

GeoFEM ðNr ;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsphere

p
Þ

5ð65; 176:4Þ
SFEMaNS ð

ffiffiffiffiffiffiffiffiffiffi
Nmed
p

;N/Þ
5ð256:1; 128Þ

NCore Elapsed Time

64 140.32
125 61.0636
128 26.2981
256 12.0594
512 6.31781 4.55822
1024 3.61803 2.30393
2048 2.24999 1.40748
4096 0.954898
8192 0.70413
16,384 0.876519

aNsphere: number of node on a sphere; Nmed: number of node on a
meridional plane.
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Figure B2. Elapsed time for each time step in the strong scaling as a function of the number of processor cores. The ideal scaling
(telaps / N21

Core) for SFEMaNS, Rayleigh, LSD code, XSHELLS, and SpF-MoSST is plotted by dotted lines. Results of Calypso using hybrid (MPI
and OpenMP) parallelization and MPI parallelization are plotted by open and solid circles, respectively.
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Figure B1. Elapsed time for each time step in the weak-scaling test up to 4096 processor cores. Results for H2000 are excluded because H2000 is not parallelized. Codes with 1-D paralle-
lization are plotted in blue, codes with 2-D parallelization are plotted in red, and 3-D-parallelized models are plotted in green. A solid line is used for codes with hybrid parallelization
(MPI and OpenMP), and a dotted line is used for the other codes.
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C4, respectively. The suggested solutions are also listed in the top row of Tables C1–C4. Only 8 groups
reported results for the pseudo-insulating boundary case, while 15 groups reported results for the insulat-
ing boundary case. The solutions for the pseudo-insulating boundary case by all the groups are listed in
Table C5.

Relative errors, defined as differences from the suggested solution, depend on several factors, but
are particularly sensitive to the spatial resolution. Because of this sensitivity, we organize the results
of this test in terms of cube root of the degrees of freedom (DOFs) for one of the scalar fields, as
done in Christensen et al. [2001, 2009]. For example, DOFs for a scalar field for the spherical trans-
form method with triangular truncation is DOFs5Nrð‘max11Þ2, where Nr is the number of radial
grids.

The errors relative to the suggested solution as a function of the (DOFs)1=3 for the electrically insu-
lating boundary case and pseudo-insulating boundary case are shown in Figures C1 and C2, respec-
tively. In relative terms, we find that the spherical harmonic expansion is a more accurate
technique than the local methods, as previously reported by Matsui and Okuda [2005] and Jackson
et al. [2014].

The more accurate the method, the less spatial resolution (DOFs) is required to obtain the same error. To
compare the accuracy of the models, Figure C3 shows (DOFs)1=3 for the six solutions that have less than 1%
error from the suggested solutions. This result shows that spherical harmonic expansion methods need
much less DOFs in one dimension, compared to local methods. Among the codes using spherical harmon-
ics, the difference in accuracy results is less significant.

Table C1. Accuracy Benchmark Results for the Insulating Boundary Case (Spherical Harmonic Expansion With Chebyshev Expansion)

Code Nr ‘max mmax Ekin Emag T u/ Bh x

Solutiona 30.773 626.41 0.37338 27.625 24.9289 23.1017
MAGIC 31 21 21 30.989 660.895 0.364179 26.92434 25.13508 22.91776
MAGIC 31 32 32 30.7225 626.574 0.364957 27.3101 25.04949 22.92483
MAGIC 31 42 42 30.7697 626.409 0.373843 27.64128 24.93392 23.10116
MAGIC 31 64 64 30.7743 626.409 0.373416 27.62614 24.92877 23.10157
MAGIC 31 85 85 30.7743 626.41 0.37339 27.6253 24.92892 23.10167
MAGIC 15 64 64 30.4416 620.688 0.373061 27.64412 24.8762 23.07104
MAGIC 23 64 64 30.7752 626.415 0.373417 27.62643 24.92879 23.10182
MAGIC 31 64 64 30.7743 626.409 0.373416 27.62614 24.92877 23.10157
MAGIC 39 64 64 30.7741 626.404 0.373416 27.62614 24.92874 23.10154
Rayleigh 15 63 63 30.8305 626.983 0.37178 27.6935 24.88434 23.11914
Rayleigh 21 63 63 30.778 626.332 0.37233 27.6557 24.89865 23.10265
Rayleigh 31 63 63 30.774 626.410 0.37271 27.6453 24.90781 23.10183
Rayleigh 42 63 63 30.774 626.364 0.37284 27.6429 24.91065 23.10173
Rayleigh 63 63 63 30.774 626.386 0.37294 27.6403 24.91327 23.10214
Rayleigh 85 63 63 30.774 626.394 0.37297 27.6394 24.91417 23.10182
SBS 33 64 64 30.7246 625.702 0.3727 27.6724 24.8971 23.1046
SPmodel 21 42 42 30.7681 626.356 0.373785 27.63999 24.93412 23.10066
UCSC 25 63 31 30.684 626.002 0.37366 27.6155 24.8871 23.0857

aSuggested solution by Christensen et al. [2001, 2009].

Table C2. Accuracy Benchmark Results for the Insulating Boundary Case (Spherical Harmonic Expansion With Compact FDM)

Code Nr ‘max mmax Ekin Emag T u/ Bh x

Solutiona 30.773 626.41 0.37338 27.625 24.9289 23.1017
SpF-MoSST 34 42 32 30.739 626.26 0.359 27.636 24.911 23.113
TITECH code 40 31 31 30.616 622.49 0.37404 27.6175 24.8646 23.0875
TITECH code 80 31 31 30.669 624.88 0.37392 27.5855 24.8742 23.0844
TITECH code 120 31 31 30.675 625.06 0.37391 27.5848 24.8748 23.0847
TITECH code 30 47 47 30.534 620.5 0.37347 27.6508 24.9105 23.099
TITECH code 40 47 47 30.679 624.05 0.37328 27.6269 24.9247 23.0985
TITECH code 60 47 47 30.751 625.78 0.3732 27.6178 24.9323 23.1005
TITECH code 80 47 47 30.765 626.15 0.37319 27.6162 24.9339 23.1012

aSuggested solution by Christensen et al. [2001, 2009].
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Table C4. Accuracy Benchmark Results for the Insulating Boundary Case (Local Methods)a

Code Nr Nsphere Ekin Emag T u/ Bh x

Solutionb 30.773 626.41 0.37338 27.625 24.9289 23.1017
GeoFEM 64 7778 31.238 635.5 0.371288 27.38088 24.99522 22.97504
GeoFEM 64 31106 31.404 632.98 0.373514 27.58122 24.99065 23.12018

Code Nmed N/ Ekin Emag T u/ Bh x

SFEMaNS 13257 64 30.629 627.729 0.37362 27.5915 24.89809

aNr: number of points in radial direction; Nsphere: number of node on a sphere; Nmed: number of node on a meridional plane; N/ : num-
ber of points in / direction.

bSuggested solution by Christensen et al. [2001, 2009].

Table C5. Accuracy Benchmark Results for the Pseudo-Insulating Boundary Casea

Code Nr ‘max mmax Ekin Emag T u/ Bh X

Solutionb 40.678 219.39 0.42589 211.636 1.4043 0.74990
SPmodel 24 31 31 40.753 218.769 0.425931 211.6256 1.39489 0.752479
UCSC 25 53 26 40.649 219.57 0.42534 211.636 1.4082 0.7488
SpF-MoSST 34 42 32 40.646 219.59 0.402 211.486 1.403 0.7483
TITECH code 40 41 41 40.099 223.21 0.4253 211.615 1.4414 0.799
TITECH code 60 47 47 40.302 222.35 0.4256 211.645 1.4304 0.7639
TITECH code 90 47 47 40.476 220.99 0.4257 211.641 1.4177 0.7543
Calypso 145 31 31 40.8683 218.965 0.426041 211.6148 1.39693 0.743255
ETH code 80 42 42 40.6809 219.405 0.4259 211.6334 1.40446 0.7502
ETH code 96 48 48 40.6798 219.405 0.4259 211.6341 1.40502 0.74978
ETH code 96 60 60 40.6806 219.401 0.426 211.6359 1.40417 0.7498
ETH code 128 64 64 40.6798 219.395 0.4259 211.6357 1.40431 0.74978
ETH code 200 100 100 40.6787 219.395 0.4259 211.6357 1.40431 0.74976
H2000 120 48 48 40.678 219.39 0.42593 211.635 1.4039 0.74975
H2000 150 60 60 40.679 219.39 0.42595 211.636 1.4042 0.74978
SFEMaNS ðNmed ;N/Þ5ð13257; 64Þ 40.542 220.78 0.42553 211.6559 1.4164

aNmed: number of node on a meridional plane; N/ : number of points in / direction.
bSuggested solution by Jackson et al. [2014].

Table C3. Accuracy Benchmark Results for the Insulating Boundary Case (Spherical Harmonic Expansion With FDM)

Code Nr ‘max mmax Ekin Emag T u/ Bh x

Solutiona 30.773 626.41 0.37338 27.625 24.9289 23.1017
Calypso 65 31 31 30.9842 632.585 0.373956 27.63109 24.92019 23.12568
Calypso 72 36 31 31.0018 632.67 0.375909 27.72544 24.93608 23.12835
Calypso 96 47 47 30.9394 630.91 0.373348 27.62113 24.95774 23.12064
Calypso 144 47 47 30.8475 628.31 0.373289 27.61863 24.94572 23.1098
H2000 120 48 48 30.774 626.41 0.37308 27.6178 24.9313 23.1015
H2000 150 60 60 30.774 626.42 0.37343 27.6267 24.9283 23.1017
LSD code 31 32 8 30.6999 624.616 0.3708 27.6484 24.834 23.089
LSD code 31 64 16 30.8476 627.568 0.3732 27.6274 24.9291 23.107
LSD code 47 64 16 30.7729 626.188 0.3732 27.6407 24.916 23.1011
LSD code 63 64 16 30.763 625.987 0.3726 27.6741 24.892 23.0997
LSD code 79 64 16 30.7606 625.939 0.3729 27.6599 24.9025 23.1012
LSD code 95 64 16 30.7595 625.912 0.3725 27.6609 24.8961 23.1008
LSD code 95 96 24 30.7649 626.19 0.3732 27.6332 24.9206 23.1013
PARODY 48 44 44 30.596 616.28 0.3733 27.769 24.88 23.101
PARODY 90 44 44 30.748 624.25 0.3731 27.652 24.925 23.104
PARODY 150 44 44 30.767 625.71 0.3731 27.626 24.933 23.103
PARODY 200 44 44 30.77 626.02 0.373 27.62 24.934 23.102
XSHELLS 64 36 36 30.9012 624.308 0.37504 27.7793 24.8884 23.10368
XSHELLS 48 47 47 30.8064 612.907 0.37405 28.037 24.7836 23.08182
XSHELLS 96 47 47 30.8613 626.538 0.37344 27.6719 24.9254 23.10863
XSHELLS 160 53 53 30.812 626.659 0.37334 27.6373 24.9272 23.1052
XSHELLS 240 63 63 30.7928 626.568 0.37344 27.6333 24.9279 23.10354
XSHELLS 384 74 74 30.782 626.483 0.3734 27.6279 24.9289 23.10254
XSHELLS 512 85 85 30.7786 626.452 0.3734 27.6267 24.9289 23.10222

aSuggested solution by Christensen et al. [2001, 2009].
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To compare differences in the radial accuracy tolerance, we plot in Figure C4 the minimum radial reso-
lution Nr that satisfies the 1% tolerance for the codes using spherical harmonic expansion. We find sig-
nificant differences among Chebyshev expansion, compact FDM, and FDM methods in terms of
accuracy defined this way. Specifically, the Chebyshev expansion method only needs one third of the
radial points to match the FDM accuracy, whereas the compact FDM methods require a similar radial
resolution to the Chebyshev expansion. These results are consistent with results previously reported by
Christensen et al. [2001, 2009]. Differences in code accuracy in Figure C1 are more systematic in global
functionals (i.e., Ekin, Emag, and x) than in local functionals, because two steps are needed to obtain
the local field data; locating the measurement point and evaluating the solution at that point. Each of
these introduces error.

One question that remains unanswered is how the solution converges with increasing resolution. In the
present study, we performed the benchmark with ‘max< 100 and Nr 5 200 to obtain 1% error tolerance. To

Figure C1. Relative errors of the accuracy benchmark with insulating magnetic boundary condition, as a function of the cube root
of DOFs. Results with the same value as the suggested solutions are plotted at the bottom of the plot which is shown as ‘‘0.0’’ in
the left axis. SFEMaNS and GeoFEM solutions are not fully converged because these simulations are stopped before achieving the
quasi steady state.
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investigate the convergence of the solution, we need to obtain the solution with larger resolution (e.g.,
‘max 5 2048 and Nr 5 1024), and compare results with varying radial resolution while keeping the truncation
of the spherical harmonics.

In summary, the Chebyshev expansion method and compact FDM also require approximately 3 times
less DOFs than that for FDM in the radial direction. For the other direction, the spherical harmonic
expansion method requires fewer DOFs in one direction than that for local methods to obtain the
same accuracy.

It is noted that GeoFEM and SFEMaNS use unstructured grids, but we used simple grid pattern in our tests
of these codes. It is possible that a more highly optimized FEM mesh based on the scale of the local flow
and magnetic field patterns might allow these codes to obtain better accuracy with fewer DOFs than that in
the present study.

Figure C2. Relative errors of the accuracy benchmark with the pseudo-insulating magnetic boundary as a function of the cube
root of DOFs. SFEMaNS solutions are not fully converged because these simulations are stopped before achieving the quasi steady
state.
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