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Abstract We seek corroborative evidence of the geomagnetic spikes detected in the Near East ca.
980 BC and 890 BC in the records of the past production rates of the cosmogenic nuclides 14C and 10Be.
Our forward modeling strategy rests on global, time-dependent, geomagnetic spike field models feeding
state-of-the-art models of cosmogenic nuclide production. We find that spike models with an energy
budget in line with presently inferred large-scale flow at Earth’s core surface fail to produce a visible imprint
in the nuclide record. Spike models able to reproduce the intensity changes reported in the Near East
require an unaccountably high-magnitude core flow, yet their computed impact on cosmogenic isotope
production rates remains ambiguous. No simple and unequivocal agreement is obtained between the
observed and modeled nuclide records at the epochs of interest. This indicates that cosmogenic nuclides
cannot immediately be used to confirm the occurrence of these two geomagnetic spikes.

1. Introduction

The Earth’s dynamo is a fascinating process which operates over a wide range of time scales (see, e.g., Hulot
et al. [2010] and Roberts and King [2013], for recent reviews). Concealment by Earth’s crust and mantle
restricts observation of the variability of the geodynamo to time scales of ∼1 year and larger. The so-called
geomagnetic secular variation (GSV) takes the form of gentle fluctuations occasionally punctuated by
extreme events, which are the subject of a growing interest within the communities of geomagnetism
and paleo/archeomagnetism. These events have been highlighted by different data sets and have
had different names ascribed (noting also that they may have distinct dynamical origins): for example,
“geomagnetic jerks” were initially reported based on evidence seen in the East component of the GSV
recorded in land-based observatories [Courtillot et al., 1978]. They occur on an annual time scale and their
origin remains elusive (consult Mandea et al. [2010], for a review). Along similar lines, Gallet et al. [2003]
termed “archeomagnetic jerks” abrupt changes in the millennial record of geomagnetic directions over
Europe, apparently synchronous with relative intensity maxima. These changes are multidecadal, and they
have been associated with episodes of high eccentricity of the geomagnetic dipole [Gallet et al., 2009]. More
recently, the concept of “geomagnetic spikes” has come to the fore, as a result of the archeomagnetic study
of copper slag residues from the Near East by Ben-Yosef et al. [2009] and Shaar et al. [2011]. Analysis of the
data suggests time rates of change of geomagnetic intensity as large as several μT/yr sustained over a few
decades, to contrast with the present-day maximum rate of ∼ 0.1 μT/yr. Livermore et al. [2014] assessed
the geophysical likelihood of these extreme events, by estimating core-surface flows able to sustain such
dramatic changes. Their conclusion was that, if true, the reported occurrences of extreme intensity changes
in the Near East records required a magnitude of core-surface flow 6–8 times larger than the commonly
accepted value. However, Livermore et al. [2014] also pointed out that an explanation for spikes may lie
beyond our current perception of core dynamics and the geodynamo, and highlighted the need for further
corroborative evidence of such spikes. The goal of this letter is precisely to estimate whether it is possible
to detect the impact of such spikes in other records spanning the past few millennia, namely, those of the
production rates of the cosmogenic radionuclides 14C and 10Be (see, e.g., the review by Beer et al. [2012]). In
the following, we describe in section 2 the methods we apply to estimate this impact, we present our results
in section 3, and we discuss them in section 4.
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2. Methods

We follow a two-step approach. First, we generate global, time-dependent models of the geomagnetic field
B(t) that mimic the spikes reported in the Near East at epochs 980 BC and 890 BC [Ben-Yosef et al., 2009;
Shaar et al., 2011]. Second, we use these field models to compute predictions of cosmogenic isotope 14C and
10Be production rates at these epochs, which are then compared with observational records.

2.1. Geomagnetic Field Models
In our approach, B(t) results from the superposition of a background reference field B0(t) and of two
perturbations, one per spike event. In the following, Bsp

1 (t) (respectively Bsp
2 (t)) will refer to the spike

field perturbation due to the 980 BC (respectively 890 BC) event, and T1 (respectively T2) will refer to
epoch 980 BC (respectively 890 BC). The reference B0(t) is the mean of the ensemble of 1000 A_FM archeo-
magnetic field models published by Licht et al. [2013]. In order to construct Bsp

i (t), we adopt the optimized
core flow methodology of Livermore et al. [2014] and operate at Earth’s core surface: for a given geomag-
netic field configuration, and a given amount of available kinetic energy (specified in terms of an imposed
root-mean-square velocity urms), this approach provides the optimal core flow uopt that generates the fastest
instantaneous rate of change of geomagnetic intensity, dF∕dt, at a given site on Earth’s surface (from now
on the Timna-30 archeological site, with longitude 𝜑 = 34.95∘E and latitude 𝜆 = 29.77∘N). In order to
account for our uncertain knowledge of the geomagnetic field at the core surface and to build reliable statis-
tics, we consider, at each Ti , 1000 different realizations of that field. For each realization, Gauss coefficients
from spherical harmonic degree 𝓁 = 1 to the truncation LB =135 [Livermore et al., 2014] are specified as
follows: coefficients from 𝓁 =1 to 𝓁 = 5 are those of one member of the A_FM ensemble at epoch Ti

(a different member for each realization). Degrees 6 to LB are next populated following the stochastic
method presented by Livermore et al. [2014].

We seek a purely toroidal uopt
i , truncated at spherical harmonic degree Lu = 145 [Livermore et al., 2014] and

consider two values for urms: urms =13 km/yr, as indicated by present-day core flow studies [e.g., Holme,
2007, and references therein], and urms = 65 km/yr. We picked this second value in order to allow dF∕dt to
reach values of the order of 3 μT/yr. Figure 1 illustrates this choice by means of the distribution of intensity
changes obtained for the 1000 different field configurations for the 890 BC spike. With 1000 uopt

i at hand,
we construct the time dependency of Bsp

i (t) in the following way: We assume that each spike event lasts for
50 years, centered about epoch Ti and that during the first 25 years, the extra secular variation (ESV) due
to the spike is governed by a steady uopt

i . The effect of the spike culminates at Ti , and during the next 25
years, the ESV is governed by −uopt

i . This piecewise-constant shape of the ESV allows the core to return to its
normal mode of operation (that described by B0(t)) after 50 years. Although the prescribed time depen-
dency is parameterized and not fully dynamically self-consistent, it should nevertheless suffice to estimate
whether spikes can be detected in radionuclide records. Our geomagnetic models are finally obtained by
taking the average of the 1000 models of B(t) = B0(t) + Bsp

1 (t) + Bsp
2 (t) so constructed. The two values

of urms we use yield two models, hereafter referred to as M13 and M65, corresponding to urms =13 km/yr
and urms = 65 km/yr, respectively. Note that M65 produces spike events a bit less extreme than (but on par
with) those described by Shaar et al. [2011], with dF∕dt of ∼ 3 μT/yr instead of ∼4–5 μT/yr and a duration of
50 years instead of ∼ 30 years.

2.2. Production of Cosmogenic Radionuclides
Cosmogenic radionuclides are produced in the Earth’s atmosphere by cosmic rays which are the main source
of such nuclides in the terrestrial system. The flux of cosmic rays is modulated in the heliosphere by variable
solar activity. In addition, the geomagnetic field shields the Earth from cosmic rays, as often parameterized
in terms of the geomagnetic cutoff rigidity [Cooke et al., 1991]. Accordingly, geomagnetic fluctuations can
potentially lead to observable variations in the production of cosmogenic radionuclides. After production
and redistribution in the terrestrial system, they are stored in independently datable natural archives
(tree trunks, ice cores, marine sediments, etc.). The two most useful nuclides are 14C and 10Be which have
quite different distribution patterns: while 14C takes part in the global carbon cycle and is globally mixed,
10Be deposited in polar ice is only partly mixed [e.g., Beer et al., 2012]. As a consequence, the global produc-
tion of 14C, denoted Q

(
14C

)
henceforth, is predominantly sensitive to changes in the geomagnetic dipole

moment, while the production and deposition of 10Be, hereafter denoted D
(

10Be
)

, is affected by both the
moment and the tilt of the dipole.

FOURNIER ET AL. ©2015. American Geophysical Union. All Rights Reserved. 2760
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Figure 1. Distribution of the 1000 optimized
archeomagnetic intensity changes at the loca-
tion of Timna-30, for the 890 BC spike, assuming
a root-mean-square core velocity urms equal to
65 km/yr. Bins of width 0.2 μT/yr.

We model production/deposition of the two nuclides
as affected by the geomagnetic spikes under
consideration. The production of 14C is computed
using the numerical model of Kovaltsov et al. [2012] in
a way described elsewhere [Usoskin et al., 2014]. The
computed values of Q

(
14C

)
are then compared with

the 14C production rates reconstructed by Roth and
Joos [2013] from the tree-ring-based measurements
of INTCAL-2009 [Reimer et al., 2009]. In order to model
data of 10Be measured in polar ice, the 10Be production
is computed using the model of Kovaltsov and Usoskin
[2010]. Transport and deposition of Beryllium is
modeled according to a parameterization provided by
Heikkilä et al. [2009] which is a full model of large-scale
transport of 10Be in a realistic modern atmosphere.
However, there are empirical indications [Bard et al.,
1997; McCracken, 2004; Usoskin et al., 2006] that a polar
enhancement factor may play a role in the 10Be data in
comparison to predictions based on global transport,
resulting in a higher polar variability of the signal. For
the reference 10Be deposition rate data, we use the GRIP

Figure 2. Properties of the geomagnetic models used in this study. (a) Cylindrical radius of the eccentric dipole as a func-
tion of time for three different archeomagnetic field models: in dashed red the A_FM reference model of Licht et al. [2013],
and in blue and cyan, respectively, the M13 (urms = 13 km/yr) and M65 (urms = 65 km/yr) models developed in this study;
see text for details. (b) Dipole moment and (c) dipole tilt evolution derived from the A_FM, M13 and M65 archeomagnetic
field models (same color code as in Figure 2a). Vertical dashed lines indicate the assumed epochs of occurrence of the
Near East spikes (980 BC and 890 BC). Intensity F of the geomagnetic field at Earth’s surface at epoch 890 BC, for the (d)
reference model, (e) model M13, and (f ) model M65. Contours every 5 μT.

FOURNIER ET AL. ©2015. American Geophysical Union. All Rights Reserved. 2761
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Figure 3. Variability of the 14C production rate. (a) Observed 14C production rates (along with ±1 standard deviation)
from 1100 BC to 700 BC according to Roth and Joos [2013]. (b) Impact of our geomagnetic models on Q

(
14C

)
, assuming a

constant solar modulation potential 𝜙 = 500 MV. Red: reference A_FM model. Blue: M13 model. Cyan: M65 model. Vertical
dashed lines indicate the assumed epochs of occurrence of the Near East spikes (980 BC and 890 BC).

(Greenland Ice Core Project) ice core record obtained from Greenland [Yiou et al., 1997]. We also show the
EDML (Epica Dronning Maud Land) 10Be record obtained from Antarctica [e.g., Ruth et al., 2007; Steinhilber
et al., 2012], even though it presently does not rely on an ice model in contrast with the GRIP record (leading
to 10Be concentration data instead of depositional fluxes). Note that it is beyond the scope of this paper
to comment on the respective reliability of the GRIP and EDML data sets, in particular, that concerning
their dating.

In order to solely focus on the effect of the geomagnetic spikes on Q
(

14C
)

and D
(

10Be
)

, we have assumed
in the calculations constant solar activity at a moderate level, parameterized by a constant heliospheric
modulation potential 𝜙 = 500 MV (see, e.g., Usoskin et al. [2005], for its definition). The geomagnetic cutoff
rigidity was calculated using the first eight Gauss spherical harmonic coefficients of the geomagnetic field
decomposition in the eccentric dipole approximation [Fraser-Smith, 1987; Usoskin et al., 2010].

3. Results

Figure 2 illustrates the geomagnetic field behavior associated with the occurrence of the two spikes.
Figure 2a shows how the eccentricity varies among the two spike models and the reference between
1100 BC and 700 BC. Fluctuations of the cylindrical radius of the center of the eccentric dipole show, in
particular, that model M65 is extreme, as it generates eccentricities of the order of ∼500 km. Model M13,
on the other hand, has a rather limited effect, with fluctuations of a few tens of kilometers. The occurrence
of the two spikes induces two short-lasting increases in the dipole field moment, with different amplitudes
depending on the model (Figure 2b). The effect is clearly minor for model M13. Figure 2c further illustrates
the effect of spikes on the tilt of the dipole. While the reference level between ∼1000 BC and ∼ 850 BC is
∼5∘, the dipole tilt reaches ∼10∘ during the two spikes for model M13, increasing up to ∼25∘ for model
M65. The differences between the two models are further highlighted in Figures 2d–2f, where the geomag-
netic intensity is plotted at the Earth’s surface at epoch 890 BC for the reference model, model M13, and
model M65 (see also Movies S1 and S2 in the supporting information for an animated illustration of the
spike models).

Figure 3 shows the impact of our geomagnetic scenarios on Q
(

14C
)

against the reference data provided by
Roth and Joos [2013] for epochs comprised between 1100 BC and 700 BC. Figure 3a displays the observed

FOURNIER ET AL. ©2015. American Geophysical Union. All Rights Reserved. 2762
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Figure 4. Variability of 10Be in polar ice. (a) 10Be deposition fluxes within the 1100–700 BC time interval obtained from
the GRIP ice core [Yiou et al., 1997]. (b) Modeled deposition of 10Be, assuming a constant solar modulation potential
𝜙 = 500 MV. Same notation as in Figure 3b. (c) 10Be concentration data obtained from the EDML ice core record
[e.g., Steinhilber et al., 2012].

decadal variations in radiocarbon global production rate Q
(

14C
)

, whereas Figure 3b exhibits the expected
changes in Q

(
14C

)
induced by models M13 and M65. Both spikes drive a decrease in 14C production rate,

which is due to the concomitant increase in the dipole field moment (Figure 2b). Model M13 gives a practi-
cally negligible decrease, well within the uncertainties of ±(0.05–0.08) at/cm2/s estimated by Roth and Joos
[2013]. For the M65 model, the spike-related decrease is about 0.1 at/cm2/s (∼ 6%). This is slightly above the
uncertainty level and may account for some of the fluctuations in the observed record during the tenth and
ninth centuries BC, such as the dip occurring ca. 980 BC.

Figure 4 shows the comparison between the variations in D
(

10Be
)

provided by the GRIP record (Figure 4a),
the expected D

(
10Be

)
derived from models M13 and M65 (Figure 4b), and the 10Be concentration data from

the EDML record (Figure 4c). We observe first that within the period of interest, the GRIP and EDML records
exhibit a quite similar pattern of variations, marked by two majors dips (a century apart), delayed by about
35 years in the EDML record with respect to the GRIP record. Concerning the modeled effects (Figure 4b),
model M13 leads to a pair of very minor dips, with a relative decrease ΔD∕D of approximately 1%. Model
M65 induces a stronger signature, with ΔD∕D ∼ 10%, but this remains very close to the overall uncertainty
level of ±10 at/m2/s characterizing the GRIP record (note that uncertainty estimates are not presently
available for the EDML record). Furthermore, our modeled fluctuations in 10Be deposition are clearly of
much smaller amplitude (about 1/3) than that of most fluctuations observed from GRIP. Note, however, that
this discrepancy could be partly connected with the possible polar enhancement of 10Be production not
accounted for in the model (recall section 2.2).

FOURNIER ET AL. ©2015. American Geophysical Union. All Rights Reserved. 2763
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4. Summary and Discussion

We have designed two simple models of the Iron Age geomagnetic spikes reported in the Near East in order
to assess the imprint of these events on the production rates of cosmogenic nuclides 14C and 10Be. The
two models, whose dynamics is admittedly simple, differ in the energy budget they are allocated: M13 is a
conservative model, in line with our current understanding of core flow, but it is as such unable to sustain
the rate of change of intensity dF∕dt that can be inferred from the work of Ben-Yosef et al. [2009] and Shaar
et al. [2011]. Model M65 requires core flows roughly 6–8 times stronger than is commonly accepted but is
able to reproduce the reported dF∕dt.

Both spike models induce a global effect on the production rates of radionuclides, because of the shielding
by the geomagnetic field. This leads to a decrease of the production rate of radionuclides during the spike
period. As an aside, it is worth mentioning that this effect, if not properly accounted for, would lead to a
slight overestimate of the sunspot number reconstructed from cosmogenic radionuclides [see, e.g., Usoskin
et al., 2014]. We find that the modeled impact of M13 is too small to be above the noise level of both the
14C and 10Be records, indicating that its energy budget is too conservative for a successful search of any
corroborative evidence of geomagnetic spikes.

The imprint of M65 is more significant. The impact on Q
(

14C
)

is modeled to be about 6% of the mean
production rate over the period of concern [Roth and Joos, 2013]; the impact is even stronger (about 10%)
on D

(
10Be

)
. In both cases, however, the match between our models and the nuclide records remains

ambiguous. Although it might appear that the 14C record supplies corroborative evidence of the occurrence
of the spike at 980 BC (Figure 3), no such agreement is observed for the 890 BC event. This may therefore
cast some doubt on the occurrence of the 980 BC spike, and as a consequence, this would open to question
the reliability of the high-resolution quasi-continuous archeointensity record reconstructed by Shaar et al.
[2011]. The only apparent way of reconciling the real signal with the modeled one, assuming the existence
of both spike events, is to admit the possibility that the dates T1 and T2 of the two spikes are in fact differ-
ent, either younger by ∼30–35 years (T1 ∼945 BC and T2 ∼860 BC, respectively) or older by for instance
∼90 years than the dates proposed by Shaar et al. [2011] (yielding T1 ∼1070 BC and T2 ∼980 BC, respectively;
but note that this solution is not unique if the spacing between the spikes can change, notwithstanding
the possibility of an imprint of a third geomagnetic spike yet undetected in the 1070–980 BC time inter-
val). Looking at the dating constraints described by these authors, relying on radiocarbon dates (the age
interval for the Timna-30 site is comprised between 1109 BC and 836 BC at the 95% confidence level),
depositional stratigraphy and on a simple age-height model assumed for the investigated slag mounds,
such shifts in time seem possible. In the case of a shift toward younger dates, however, a major difficulty
arises from the fact that the modeled effects would account for only about a half of the observed variability
in the measured 14C content over the studied period (Figure 3; note that this amplitude issue finds
an echo in the 10Be data, see below). This discrepancy would then indicate that the computations we
performed in this study underestimate the effect of geomagnetic changes in cosmogenic data by a factor of
∼2, suggesting that some important physics is missing. Alternative options for reconciling the amplitudes
of variations exist: one could widen the spatial extent of the spike events in our modeling, ascribing their
origin to enhanced fluctuations of the dipole alone. One could also increase urms up to ∼130 km/yr (leading
to the possible occurrence of geomagnetic spikes even more extreme than those suggested in the Near
East). Given our current state of knowledge of core processes and of spikes, neither option appears realistic.

A comparable difficulty also arises when comparing the observed and modeled D
(

10Be
)

time series
(Figures 4a and 4b). We might argue for the possibility of a corroborative evidence of the older spike
ca. 980 BC, whose impact would induce a decadal fluctuation (superimposed on a secular trend) in
D
(

10Be
)

. Regarding the younger spike (ca. 890 BC), though, even if both time series show a dip, the
modeled variability amounts to only a third of the amplitude of the observed fluctuations. Even if this
discrepancy may reflect, as previously mentioned, a missing polar enhancement in 10Be modeling, a
better match of the amplitudes could be obtained by shifting the dates of the two spikes backward, by
∼80–90 years. Likewise, it is probable that the EDML data (Figure 4c) would lead, after suitable rescaling,
to a similar discrepancy regarding the amplitudes of the measured and modeled variations. Furthermore,
correlating the two major dips in EDML with the effect of the pair of spikes considered here would
necessitate shifting T1 and T2 onward by ∼ 35 years (Figures 4a and 4c), as in the case of the Q

(
14C

)
records.

As an interesting aside, a recent attempt to synchronize systematically the IntCal and Greenland ice core
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time scales by Muscheler et al. [2014] indicates that, around 1000 BC, the GRIP data should indeed be shifted
toward younger ages by about 25 years, thereby bringing it in line with the EDML and 14C records. Seeking
a correlation between these 10Be-synchronized records and the possible imprint of the spikes would require
in any case to shift (onward or backward) T1 and T2 (Figure 4).

Owing to the issues reported above, in particular, concerning the amplitude of the modeled impact of
spikes and their exact timing, our study shows that the observed production rates of cosmogenic 14C
and 10Be cannot immediately be used to confirm the occurrence of geomagnetic spikes. Consequently, it
appears that only the acquisition of new high-quality and accurately dated archeointensity data will enable
confirmation of the extreme geomagnetic field intensity variations proposed by Ben-Yosef et al. [2009] and
Shaar et al. [2011]. Finally, geomagnetic spike events, if confirmed by further experimental studies, would
then represent a clear challenge for our understanding of the geodynamo, making it necessary to put
forward a suitable dynamical mechanism in Earth’s core that could explain such rapid changes of
geomagnetic intensity at Earth’s surface.
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Erratum

In the originally published version of this article, figure 4c was missing the scaling factor of 104 on the y axis.
The scaling factor has since been added, and this version may be considered the authoritative version of
record.
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