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S U M M A R Y
Archaeomagnetic observations are key to recovering the behaviour of the geomagnetic field
over the past few millennia. The corresponding data set presents a highly heterogeneous dis-
tribution in both space and time. Furthermore, the data are affected by substantial age and
experimental uncertainties. In order to mitigate these detrimental properties, time-dependent
global archaeomagnetic field models are usually constructed under spatial and temporal reg-
ularization constraints, with the use of bootstrap techniques to account for data uncertainties.
The models so obtained are the product of an adjustable trade-off between goodness-of-fit
and model complexity. The spatial complexity is penalized by means of a norm reflecting
the minimization of Ohmic dissipation within the core. We propose in this study to resort to
alternative spatial constraints relying on the statistics of a numerical dynamo simulation with
Earth-like features. To that end, we introduce a dynamo norm in an ensemble least-squares iter-
ative framework, the goal of which is to produce single-epoch models of the archaeomagnetic
field. We first validate this approach using synthetic data. We next construct a redistributed
archaeomagnetic data set between 1200 BC and 2000 AD by binning the data in windows of
40-yr width. Since the dynamo norm is not adjustable, we can legitimately calculate a resolu-
tion matrix to quantify the resolving power of the available archaeomagnetic data set. Gauss
coefficients are resolved up to spherical harmonic degree 3 for the first thousand years of the
interval, to degree 4 for the next thousand years and to degree 5 during the last millennium.
These conclusions are based on the distribution and uncertainties that characterize the data set,
and do not take into account the possible presence of outliers. Comparison between our model,
called AmR, and previously published archaeomagnetic field models confirms the archaeo-
magnetic resolution analysis: it highlights the dichotomy between data-driven coefficients for
which model predictions coincide (within their respective uncertainties), and prior-driven co-
efficients. This study opens the way to physics-based models of the archaeomagnetic field;
future work will be devoted to integrating the framework here introduced into a time-dependent
ensemble assimilation scheme.

Key words: Inverse theory; Archaeomagnetism; Dynamo: theories and simulations.

1 I N T RO D U C T I O N

The main source of the Earth’s magnetic field is located in the
Earth’s core. Composed mainly of iron, the core is in liquid phase
in its external part and solid in its interior. The temperature gradient
between the inner and outer boundaries, together with the release of
lighter buoyant elements from the crystallization of the inner core,
induces convection within the outer core. Such convective motions
of the highly conductive iron flow enable electromagnetic induction,
generating a magnetic field via a dynamo process. This process, af-
fected by the Coriolis force due to the Earth’s rotation, produces
a mainly dipolar structure of the global magnetic field, roughly

aligned with the rotation axis. There are, however, important de-
partures from dipolarity, like the presently observed South Atlantic
Magnetic Anomaly. The westward drift and spread of this anomaly,
as well as the intensity decrease of the axial dipole throughout
the past hundred years, are important aspects of the latest secular
variation (SV) of the Earth’s magnetic field (Jackson et al. 2000;
Hartmann & Pacca 2009; Finlay et al. 2010).

Although current direct measurements of the magnetic field offer
global coverage in terms of very precise satellite, magnetic obser-
vatory and survey data, the magnetic field and its SV beyond the
past few centuries remain far less constrained. The key to unravel
it relies on the indirect magnetic field information provided by the
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remanent magnetization acquired by geological deposits (mainly
lava flows) and archaeological artefacts at the time of their for-
mation, emplacement, fabrication or use. These observations are
known as archaeomagnetic data, which are compiled in global
databases, such as GEOMAGIA (Donadini et al. 2006; Brown et al.
2015), for directional and intensity data covering the past 50 mil-
lennia, and ArcheoInt (Genevey et al. 2008) for intensity data over
the past 10 millennia. Unfortunately, these data sets are clustered
around some specific areas of the globe, like Europe and west-
ern Asia, leaving the South Hemisphere practically undocumented.
They are also sparse before the last two thousand years. However,
it is important to note that a significant effort has been made by the
archaeomagnetism community into improving the databases, not
only by extending the data catalogue, but also by recalibrating age
uncertainty estimates. For instance, new data from South Amer-
ica, Africa and Oceania were recently incorporated into the third
and newer version of GEOMAGIA (Brown et al. 2015), slightly de-
creasing the biasing of observations towards the North Hemisphere.
Still, despite their challenging character, archaeomagnetic compi-
lations have allowed the development of several inverse models of
the global magnetic field spanning the past few millennia (Hongre
et al. 1998; Korte & Constable 2005; Korte et al. 2011; Licht et al.
2013; Nilsson et al. 2014; Pavón-Carrasco et al. 2014).

Inverse magnetic field models are the result of a minimization of
the misfit between data and model, generally regularized in space
and time by a certain norm of the model to restrict the solution of
such an ill-posed inverse problem (Gubbins & Bloxham 1985). The
regularization is based on prior information built on the hypothesis
that the core magnetic field varies smoothly in time and that the dis-
sipation of magnetic energy at the core–mantle boundary (CMB) is
minimum (Gubbins 1975; Bloxham & Jackson 1992). The shorter
temporal and spatial scales of inverse geomagnetic field models
are consequently damped, thereby concealing a possibly more com-
plex behaviour of the geomagnetic field. As an alternative, different
constraints can be sought in numerical simulations of the Earth’s
dynamo, which make it possible to understand the main dependen-
cies between the field variables of the dynamo system and also to
construct, for instance, the statistics describing the variability of the
magnetic field at the CMB. Such statistics can be used to define a
‘dynamo norm’ to constrain the archaeomagnetic inverse problem,
in place of the canonical regularizations discussed above. We shall
explore this possibility in this study.

Different kinds of dynamo models can be built depending on
the control parameters and coupling mechanisms within the dif-
ferent regions of the deep Earth. Some standard dynamo models,
considering thermochemical convection as the driving mechanism
of the system, succeed in displaying an Earth-like morphology of
the magnetic field relative to reference inverse models (Christensen
et al. 2010), but fail to present an Earth-like SV pattern (see for in-
stance the standard model of Aubert et al. 2013). However, another
model designed by Aubert et al. (2013) is able to reproduce the
localized westward drift of low latitude magnetic anomalies, like
the South Atlantic Anomaly. The model, coined ‘Coupled Earth’,
considers gravitational coupling mechanisms and heterogeneous
crystallization of the inner core to produce an Earth-like SV. Given
its Earth-likeness, the statistical information from Coupled Earth
can be used as prior information in the problem of estimating the
magnetic field at the CMB (e.g. Aubert 2014).

Estimating the state of a system given a set of noisy observations
together with a prior model state is a filtering problem (Jazwinski
1970), for which Kalman filter-based algorithms are largely used.
However, while errors are usually prescribed for observations, un-

certainties affecting the prior information are difficult to assess. An
option is to work with an ensemble of numerical simulations, a
strategy at the heart of the Ensemble Kalman filter (EnKF; Evensen
2003). In this case, the prior estimate is given by the mean of an en-
semble of model states derived from the numerical integration of the
system in question, while prior uncertainties are represented by the
sample ensemble covariance. Assuming the ensemble covariance is
a good proxy for model error, the EnKF will update the prior infor-
mation in light of the observations and produce a posterior estimate
(also called the analysis), characterized by its mean and covariance.

The EnKF is one example of the many techniques used in the data
assimilation framework, the backbone of which relies on a dynam-
ical model describing the physics of a system to be updated with
information from its observations. Although data assimilation has
been widely used in meteorology and oceanography (Kalnay 2003),
it has begun to be explored in geophysics only recently. In particular,
an introduction to data assimilation applied to the specific problem-
atic of the Earth’s magnetic field can be found in Fournier et al.
(2010). So far, the ongoing work on geomagnetic data assimilation
has focused on updating a numerical model of the geodynamo with
Gauss coefficients of the magnetic field as input data (e.g. Fournier
et al. 2013; Li et al. 2014; Tangborn & Kuang 2015). Although the
results are promising, in terms of propagation of information from
the CMB throughout the core (see also Kuang et al. 2009; Aubert
& Fournier 2011, for earlier attempts), in an ideal data assimilation
scenario raw pointwise observations of the magnetic field should be
assimilated in place of field model coefficients.

We present in this paper a preliminary attempt at assimilating
such pointwise observations, whose goal is to model the archaeo-
magnetic field at a given time, under the spatial constraint specified
by the Coupled Earth dynamo norm. For simplicity, we ignore at
this stage the possibility of performing a temporal sequence of anal-
yses (as permitted by a full EnKF setup), and focus instead on the
impact of the dynamo norm on single-epoch field models. In order
to ease comparison of our temporally unregularized approach with
previously published archaeomagnetic field models for the period
1200 BC to 2000 AD, we resort to the Geomagia50.V2 database of
Donadini et al. (2006, 2009) that was used to produce these models
(in place of the more recent update of GEOMAGIA by Brown et al.
2015).

This paper can be summarized as follows. We begin by presenting
the estimation method and the dynamo model in Section 2, including
details of the archaeomagnetic observation operators, the ensemble
approach and a synthetic validation test. Next, in Section 3 we ap-
ply the methodology to an archaeomagnetic context, focusing on
the resolving power of archaeomagnetic data. Section 4 describes a
dynamo-based archaeomagnetic field model relying on a archaeo-
magnetic data set redistributed over time to take into account age
uncertainties, which we compare with previously published models.
A summary and some perspectives are finally given in Section 5.

2 M E T H O D A N D M O D E L

2.1 Generalized least-squares iterative framework

At any given epoch, we wish to minimize a functional J of the
form

J (x) = [y − H(x)]T R−1 [y − H(x)] + (x − xb)T Pb−1
(x − xb)

(1)
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in which the observations y, whose error covariance matrix is de-
noted by R, are nonlinearly connected with the system state x, by
means of a nonlinear observation operator H. The initial guess on
the state, xb, also called the background, is characterized by the
background error covariance matrix Pb. Unless otherwise noted, all
vectors are column vectors, and superscript T denotes transposition.

The solution to this problem is sought iteratively, by constructing
a sequence of xk such that (Tarantola & Valette 1982, eq. 23)

xk+1 = xb + PbHk T
(HkPbHk T + R)−1

× [
y − H

(
xk

) + Hk
(
xk − xb

)]
(2)

or, equivalently (Tarantola & Valette 1982, eq. 25),

xk+1 = xk + (Hk T
R−1Hk + Pb−1

)−1

×
{

Hk T
R−1

[
y − H

(
xk

)] − Pb−1 (
xk − xb

)}
, (3)

starting in both cases with the initial guess x0 = xb. In these equa-
tions, Hk refers to the observation operator linearized about the
current estimate,

Hk = ∂H
∂x

∣∣∣∣
x=xk

. (4)

These two formulations of the iterative algorithm assume that
data and background errors are independent. They are equivalent
mathematically, but their effective cost differs, depending on the
respective size of the data and state vectors, ny and nx, respectively.
eq. (3) should be preferred in situations where ny � nx, as is the
case for standard geomagnetic inverse problems where the model is
truncated to low dimensions (e.g. Jackson et al. 2000; Korte et al.
2009). Eq. (2) is, however, more expedient if ny � nx. As will
be clear in Sections 2.3 and 3.1, the state and observation vectors
dimension considered here correspond to the latter situation. We
therefore choose the algorithm defined by eq. (2), for which, once
convergence is reached, the uncertainty affecting the final estimate
x̂ is given by the posterior covariance matrix

P̂ = [I − PbĤT (ĤPbĤT + R)−1Ĥ]Pb, (5)

where I is the identity matrix, and we understand that Ĥ denotes
the observation operator linearized about the final estimate of the
state, x̂. The resolution matrix Ŝ, which relates to how well the final
estimate x̂ resolves the true model state xt given the observations,
is defined as

Ŝ = PbĤT (ĤPbĤT + R)−1Ĥ. (6)

In this nonlinear context, the interpretation of Ŝ is subject to caution,
as high-order derivatives of H are neglected in the analysis, in the
hope that the final estimate is close to the true state. We will check
on the validity of this assumption when dealing with synthetic data,
in Section 2.6 below.

In standard geomagnetic field modelling, the prior information
can be used to motivate regularization constraints on the sought
solution, by setting

Pb = λ−1C, (7)

where λ is an adjustable ‘damping’ parameter and C a suitably
chosen matrix, see for example, Bloxham et al. (1989), eqs (3.8)–
(3.11). The novelty of our approach stands in the prior information
we supply, which rests on the statistics of a numerical dynamo
simulation, a dynamo norm, and in the ensemble approach that we
adopt in order to assess the uncertainties of our estimate of the
archaeomagnetic field. We dedicate the next paragraphs to these

aspects. We begin by the description of the numerical simulation,
the choice of which in turn dictates the nature of the state vector x.

2.2 A geodynamo model as source of prior information

The essential physics of the dynamo can be explained by the in-
teraction between the fluid flow, magnetic field, temperature and
composition within the core. Such interactions are governed by the
magnetohydrodynamic (MHD) equations, which for the case of the
Earth’s core are often considered in the Boussinesq approximation
due to the weak density stratification of the outer core (e.g. Bragin-
sky & Roberts 1995). Given the complexity of the dynamo system,
the MHD dynamo equations are solved by a numerical approxima-
tion in a rotating spherical shell (consult Christensen & Wicht 2015,
for a recent review on numerical dynamo simulations). The param-
eter space reached by numerical simulations is, however, restricted
by computational feasibility, resting still far away from Earth-like
values (Glatzmaier 2002; Christensen & Wicht 2015). This distance
in parameters together with uncertainties regarding boundary condi-
tions stresses the imperfect character of the dynamo simulations in
representing the geodynamo. Despite this likely misrepresentation,
many numerical simulations have been claimed to be Earth-like. To
address the issue of semblance between simulations and the mag-
netic field of the Earth, Christensen et al. (2010) defined several
morphological criteria to characterize the Earth-likeness of the out-
put of numerical dynamo simulations. However, such criteria aim
at describing only the static, morphological semblance with the re-
cent configurations of the Earth’s magnetic field, leaving aside its
dynamical aspect.

2.2.1 The Coupled Earth dynamo model

Although archaeomagnetic field features have been shown to drift
both to the west and the east at high latitudes, a systematic west-
ward drift is observed around the equator, especially in the Atlantic
hemisphere, most notably in historical data (Finlay & Jackson 2003;
Dumberry & Finlay 2007). Such geographical concentration of the
SV strongly suggests a persistent heterogeneous control from the up-
per and/or lower boundaries of the core. Furthermore, the evidence
for seismic anisotropy at the top of the inner core (e.g. Souriau &
Calvet 2015, for a review) may indicate a hemispherical dichotomy
in terms of inner core growth and therefore of buoyancy release at
the inner core boundary (ICB; Alboussière et al. 2010; Monnereau
et al. 2010). In light of these studies, Aubert et al. (2013) proposed
a bottom-up control of the dynamo by the inner core. Their ‘Cou-
pled Earth’ model considers a heterogeneous buoyancy control at
the ICB, which when combined with the heterogeneous heat-flux
control at the CMB is responsible for a higher SV underneath the
Atlantic hemisphere. Moreover, the model also includes the gravita-
tional interaction of the lower mantle mass anomalies with the inner
core, which results in large scale westward flow (and concurrent
advection of field structures) beneath the CMB at low latitudes. The
‘Coupled-Earth’ model is referred to as CE henceforth.

In this study, we aim at investigating the influence of the sta-
tistical properties of a dynamo simulation, the CE model, on the
estimation of the magnetic field at the CMB. To that end, we need
to find the correspondence between the magnetic field strength and
its time scales from the numerical simulation (which operates in
a non-dimensional world) and those observed. As in Aubert et al.
(2013), dimensional rescaling of time in the CE dynamo is per-
formed by calculating the model non-dimensional secular variation
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Figure 1. Mean and spread of the radial magnetic field at the CMB of the Coupled Earth (CE) dynamo model. (a) and (b) are respectively the mean and spread
truncated at spherical harmonic degree L = 5, with contours every 50 µT; (c) and (d) are the mean and spread at the native model truncation, L = 133, with
contours every 10 µT. All values in µT.

time-scale τm and normalizing it to the Earth’s SV estimate for the
last decade based on satellite data, τ⊕ ≈ 415 yr (Lhuillier et al.
2011). The rescaling ratio τ⊕/τm is found to be 56113 yr. The
magnetic field, on the other hand, is calibrated here by adjusting
the non-dimensional root-mean-squared axial dipole over a 3000 yr
interval of the CE simulation, Bm, to that of the 3000 yr root-mean-
squared archaeomagnetic model A_FM-0 of Licht et al. (2013),
B⊕, giving a magnetic field rescaling ratio B⊕/Bm of 850.6 µT. It is
important to note that once the calibration is so defined, it leaves no
room for an additional adjustable parameter factorizing the dynamo
norm Pb entering the estimation problem (eq. 1).

2.2.2 Statistical properties of the Coupled Earth dynamo model

After rescaling the CE dynamo simulation, we define two basic sta-
tistical characteristics of the numerical simulation, namely the mean
and spread (covariance) of the radial magnetic field Br at the CMB.
Instead of considering the whole simulation interval, we define an
ensemble of 820 states of the radial magnetic field at the CMB
by randomly picking snapshots on a long sequence of the dynamo
simulation, over an interval of about 100 000 yr (the value of 820 en-
sures statistical convergence of the model state variables). The mean
and spread of this ensemble projected in physical space are shown
in Fig. 1 for two spherical harmonic (SH) truncations (5 and 133,
the latter being that of the native CE model). The average CE model
shows an eccentric axial dipole, concentrated underneath northern
Asia. Such a feature corresponds to the heterogeneous forcing from
the inner boundary (Olson & Deguen 2012) and is in agreement
with recent configurations of the magnetic field. However, as Olson
& Deguen (2012) pointed out, the eccentric dipole registered from
archaeo/palaeomagnetic field models for the last 10 000 yr (Korte
& Constable 2011; Korte et al. 2011) shows a tendency towards
the western hemisphere, while models for older periods show the
opposite trend (Johnson & Constable 1997). It is important to bear
in mind that although strong hypothesis on the driving mechanism

for the dipole eccentricity have been proposed (Olson & Deguen
2012), the resolution of archaeo/palaeomagnetic field models is
limited given the sparse data set, possibly compromising a robust
assessment of the long term eccentric dipole characteristics (Finlay
2012).

The eccentric dipole from CE discussed above is shown not to be
sensitive to the truncation level, as seen by the similarity between
Figs 1(a) and (c) despite the different truncations. In contrast, the
spread varies with the truncation, in morphology and intensity. As
shown by Figs 1(b) and (d), it is mostly concentrated underneath
the Earth’s northeast quadrant for the larger scales, and around low
latitudes between 90◦W and 90◦E for the smaller scales. The biased
distribution of the spread illustrates the effect of the combination
of heterogeneous thermal-chemical couplings at the ICB and CMB.
These two pieces of information, the mean and covariance of the
radial magnetic field at the CMB, define the prior information that
fuels the iterative procedure outlined in Section 2.1.

2.3 The state vector x

Due to its solenoidal nature, the magnetic field vector B can be
described in terms of its poloidal and toroidal components BP and
BT ,

B(r, θ, φ) = BP (r, θ, φ) + BT (r, θ, φ)

= ∇ × ∇ × [P(r, θ, φ)r] + ∇ × [T (r, θ, φ)r] , (8)

where P and T are the poloidal and toroidal scalars and r is the
radius vector (e.g. Dormy 1997). This decomposition is used in the
CE model, in which the poloidal and toroidal scalars are further pro-
jected onto an SH basis to account for their horizontal dependency.
The poloidal scalar at a given radius r is expressed as

P(r, θ, φ) =
L∑

�=1

�∑
m=−�

Pm
� (r )Y m

� (θ, φ), (9)
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where Y m
� = eimφ Pm

� (cos θ ) is a complex-valued, fully normalized
SH of degree � and order m, and L is the truncation of the expansion.
As the toroidal field does not have a radial component, it is confined
within the core (under the assumption that the mantle is an electrical
insulator). For that reason, the only observable part of the core field
at the Earth’s surface is the poloidal field. We consequently define
the (column) state vector of our system by

x ≡ [
. . . ,Pm

� (rc), . . .
]T

, (10)

that is, the poloidal scalar in spectral space at the CMB (radius
rc = 3485 km), which is a native component of the state vector
characterizing the full CE simulation, for all admissible values of
degree � and order m below the truncation of degree and order L
= 133 (nx = 9045). We use the full CE truncation bearing in mind
the future application of the present methodology to sequential
archaeomagnetic assimilation, a situation in which the full set of
dynamo state variables define the model state vector.

As stated above, our state vector rests on a fully normalized,
complex-valued SH basis. Consequently, in order to connect its
components with the standard Gauss coefficients g and h (whose
definition rests on the use of real-valued SHs subject to the Schmidt
convention for normalization), one must resort to the following
relationships

gm
� =

(
rc

ra

)�+2
�
√

2� + 1

rc
Re

[
Pm

� (rc)
]
, (11)

hm
� = −

(
rc

ra

)�+2
�
√

2� + 1

rc
Im

[
Pm

� (rc)
]
, (12)

in which Re[] and Im[] denote the real and imaginary parts, and ra

is the mean radius of the Earth (ra = 6371.2 km). If g represents
the vector of Gauss coefficients, one can introduce a matrix Q to
represent the above formula

g = Qx. (13)

2.4 The observation operator H
As introduced above, the observation operator H connects the state
x we just defined mathematically with the observations of the mag-
netic field, y.

The full magnetic field vector observed at the surface of the
Earth is described today by its X (north), Y (east) and Z (down-
ward) components. Under the assumption of an insulating mantle,
each component can be expressed as a linear functional of the mag-
netic field Br at the CMB, by means of a convolution with the
adequate Green function for the exterior Laplace problem (Gubbins
& Roberts 1983). For example, a measurement of Z at a location
(r0, θ0, φ0) at Earth’s surface writes

Z (r0, θ0, φ0) =
∫

S
G Z (r0, θ0, φ0|rc, θ, φ)Br (rc, θ, φ)dS, (14)

where GZ is the Green function (or data kernel) for a Z datum (e.g.
Bloxham et al. 1989; Constable et al. 1993) and S is the core surface
of radius rc. Using SHs, Br at the core surface is expressed as

Br (rc, θ, φ) =
L∑

�=1

�∑
m=−�

Br
m
� (rc)Y m

� (θ, φ), (15)

noting that we have already truncated the expansion according to
the native resolution of the CE dynamo model. We can now connect

each coefficient of this expansion with the poloidal scalar introduced
above

Br
m
� (rc) = �(� + 1)

rc
Pm

� (rc), (16)

which then allows us to write formally the link between P and the
prediction for the datum Z,

Z (r0, θ0, φ0)= 1

2rc

L∑
�=1

�∑
m=0

�(� + 1)
[
Pm

� (rc)GZ
m
�
†+Pm

�
†(rc)GZ

m
�

]
,

(17)

where we have now restricted the sum to positive values of m only,
and consequently introduced the † for conjugation (Z is real-valued).
In this expression, GZ

m
� is the coefficient of degree � and order m of

the SH expansion of GZ(r0, θ 0, φ0|rc, θ , φ). The linear observation
operator for a Z measurement, HZ, can then be defined as

HZ = 1

2rc

[
. . . , �(� + 1)GZ

m
�
†
, . . . , �(� + 1)GZ

m
� , . . .

]
, (18)

which is applied to the expanded state vector x =
[. . . ,Pm

� , . . . ,Pm†
� , . . .]T , where m can only take positive values.

The same formalism can be applied in order to define the operators
HX and HY for the North and East measurements of the magnetic
field, respectively.

A considerable amount of data from the past magnetic field con-
sists of indirect and often incomplete information about the mag-
netic field vector. Such information is given in terms of the di-
rections, declination D and inclination I of the vector, or intensity
F. The directions and intensity are nonlinear combinations of the
magnetic field vector components (X, Y, Z),

D = arctan
Y

X
, (19)

I = arctan
Z√

X 2 + Y 2
, (20)

F =
√

X 2 + Y 2 + Z 2. (21)

To calculate the linearized observation operator given by eq. (4),
we have to bear in mind that in practice, this operator achieves a
mapping from the complex-valued x to a real-valued measurement.
The details of the derivation of the linearized observation operators
for D, I and F data are given in Appendix.

2.5 An ensemble approach

We finish this methodological preamble by explaining how we define
in practice the background state xb and the background error covari-
ance matrix Pb which must be supplied to the iterative algorithm.
We resort to an ensemble of Ne state vectors xe taken randomly from
a 100 000-yr long integration of the coupled Earth dynamo model.
Our estimator is the ensemble mean, and the background state is
therefore the average of these Ne states,

xb = 1

Ne

Ne∑
e=1

xe. (22)

As already stated above, we take Ne = 820 such states in order to get
statistical convergence. Let us recall that xb is a complex-valued field
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Figure 2. Covariance matrices and spatial correlations implied by the prior information between the radial magnetic induction at different core surface points.
Top row: covariance between the different Gauss coefficients up to degree 5 from (a) the ‘dissipation’ norm and (b) the CE dynamo simulation. Both covariance
matrices are shown in logarithmic scale and in µT2. Middle row: spatial correlations underneath Paris (shown with the star) and any point on the core surface for
(c) prior information supplied by the dissipation norm and for (d) prior information supplied by the CE dynamo. Bottom row: same, save that the correlations
are expressed with respect to a point underneath São Paulo for (e) the dissipation norm prior and (f) the CE dynamo norm prior.

containing the SH representation of the poloidal scalar at the core
surface. We therefore define the background covariance matrix as

Pb = 1

Ne − 1

Ne∑
e=1

(
xe − xb

) (
xe − xb

)†T
, (23)

noting that Pb is a complex-valued, Hermitian matrix.
Implicit is the assumption that these two moments suffice to

characterize the prior information. This is only true, however, when
dealing with Gaussian statistics. Previous studies indicate that the
large-scale magnetic field produced by a buoyancy-driven dynamo
is indeed close to possess Gaussian statistics (Fournier et al. 2011,
their fig. 4).

In order to gain insight into the type of prior information supplied
by Pb and compare it with the prior based on the Ohmic dissipation
approximation C of Bloxham et al. (1989), recall eq. (7) above, we
show in the first row of Fig. 2 the covariance matrices corresponding
to both cases. We can see in Fig. 2(a) that C is diagonal, and depends
only on the SH order �. On the contrary, Pb in Fig. 2(b) displays a
high amount of correlation between the different model variables,
depending also on the SH order m. We further introduce the linear
operator M which maps x to a vector vB containing the values of Br

on a grid approximating the core surface,

vB = Mx. (24)
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In this way, we can project the information from the covariance
matrices contained in spectral space into physical space, by means
of a matrix W ≡ MPbM

†T. We can then express the correlation
ρ ij between Br at the i-th grid point and Br at the jth grid point as
follows

ρi j = Wi j√
Wii W j j

. (25)

Figs 2(d) and (f) show mappings of the correlations given by ρ be-
tween core surface grid-points at specific locations (Paris and São
Paulo) and every grid-point of the CMB based on Pb. For com-
parison, Figs 2(c) and (e) also show these correlations when the
dynamo-based Pb is replaced by the minimum dissipation matrix
C. The prior information supplied by the CE dynamo favours anti-
symmetry with respect to the equator, whereas the dissipation norm
implies correlations whose geometry reflects that of an inclined
dipole piercing through Paris or São Paulo. The different prior cor-
relations will impact the way information from the observations
are propagated among the model variables when constructing the
global models (eq. 1).

The posterior covariance is calculated by solving the iterative
algorithm for each member of the ensemble, as would be required
in a sequential data assimilation framework based on the EnKF
(e.g. Evensen 2003). If x̂e denotes the estimate for each ensemble
member e, then one can get P̂ by computing

P̂ = 1

Ne − 1

Ne∑
e=1

(x̂e − x̂) (x̂e − x̂)†T
, (26)

where x̂ is the estimator (the mean). For that expression to give a P̂
equal to the one provided by eq. (5), the iterative algorithm to apply
to each initial xe must write

xk+1
e = xe + PbHk †T

(
HkPbHk †T + R

)−1

× [
y + εe − H

(
xk

) + Hk
(
xk − xe

)]
, (27)

where xk is the ensemble mean at the k-th step of the algorithm,
and Hk is the observation operator linearized about this ensemble
mean. Note that for each ensemble member, the data are noised by
an amount εe drawn from a normal distribution of zero mean and
covariance R (Burgers et al. 1998).

Finally, let us note that instead of opting for a linearized approach,
one could simply compute each state estimate x̂e using the nonlinear
observation operator, according to

x̂e = xe + (
HPb

)†T (
HPbH†T + R

)−1
[y + εe − H (xe)] , (28)

with

HPb = 1

Ne − 1

Ne∑
e=1

[
H(xe) − H

(
xb

)] [
xe − xb

]†T
, and (29)

HPbH†T = 1

Ne − 1

Ne∑
e=1

[
H (xe) − H

(
xb

)] [
H (xe) − H(xb)

]T

(30)

computed based on the ensemble of states. This strategy has the
advantage of expediency, since it only requires one iteration. In the
context of archaeomagnetism, it appears to be slightly less accurate
than the iterative one (see Section 2.6 below).

2.6 Validation

With archaeomagnetic applications in mind, we proceed with a sim-
ple test considering the retrieval of the large scales of the magnetic
field at the CMB from synthetic data. The synthetic data set con-
sists of magnetic data at 35 locations spread in a close-to-uniform
fashion at Earth’s surface, a nearly ideal (and admittedly unrealis-
tic) scenario for the distribution of archaeomagnetic data, shown in
Fig. 3(a). The number of data locations corresponds to the amount
of full vector observations necessary to recover the magnetic field
up to SH degree L = 5 (35 Gauss coefficients). A reference model
state xt is used to produce synthetic vector observations at the given
locations, to which a 1 µT value is introduced for the data uncer-
tainty. The (X, Y, Z) observations are transformed into (D, I, F) and
the uncertainties are propagated and noised with a random compo-
nent drawn from a normal distribution (whose standard deviation is
obtained from the uncertainty propagation). The observation error
covariance matrix R is diagonal, with each diagonal element equal
to the variance of each synthetic observation.

In order to quantify the efficacy of the scheme we use three
diagnostics for the estimates: the normalized data misfit

M(x) =
√

1

ny
[y − H(x)]T R−1 [y − H(x)], (31)

the normalized spread (i.e. the standard deviation) of the ensemble

S (xe) =
√√√√ 1

nx

1

Ne − 1

Ne∑
e=1

(xe − 〈xe〉)†T Pb
d
−1

(xe − 〈xe〉), (32)

and the normalized error with respect to the known true state xt

E(x) =
√

1

nx
(x − xt )†T Pb

d
−1

(x − xt ), (33)

where Pb
d is the diagonal matrix assembled from the diagonal el-

ements of Pb. It is important to note that the spread and error are
evaluated throughout this paper up to SH degree 5, that is, over
that part of the state vector which is effectively constrained by ob-
servations (as will be clear in Section 3.3). The evolution of these
quantities with iteration count can be seen in Fig. 4, which shows
that the algorithm converges after three iterations. The misfit M de-
creases from 5 to around 0.8 with the iterative scheme and 0.95 with
the nonlinear one described at the end of Section 2.5, which points
to the better fit to the data set of the iterative solution. The iterative
solution is also slightly superior in terms of spread S and error E,
which represent the uncertainty level of the model and its distance
with respect to the truth, respectively. It is interesting to note the
agreement of 20 per cent for the final estimates of S and E, suggest-
ing that the ensemble spread is a good proxy for the posterior model
error. Additionally, the fast convergence of the iterative scheme in-
dicates the weak nonlinear character of the problem at hand, which
gives us confidence in the ability of the algorithm to deal with the
true archaeomagnetic data set and validates the interpretation of the
resolution matrix defined in eq. (6).

The resolution matrix for the data set displayed in Fig. 3(a) is
close to identity, implying that the data resolve very well the model
coefficients due mainly to their good spatial distribution. In the case
of a biased spatial distribution of the data, the matrix also com-
prises non-diagonal elements, which hints to the non-uniqueness
of the problem. Still, the diagonal elements are sufficient to assess
the resolution. For simplicity, we will discuss throughout this paper
the information contained in the resolution matrix in terms of its
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Figure 3. Synthetic directional and intensity data set, its resolution in model and physical space. (a) Distribution of synthetic observations at Earth’s surface;
(b) resolution of Gauss coefficients up to degree 5. (c) Magnetic field at the CMB characterizing the reference or ‘true’ state and (d) the final estimate of the
magnetic field at the CMB given the close-to-uniform distribution of surface data (units in µT). See the text for details.

Figure 4. Convergence of the iterative solutions for the validation test in terms of normalized (a) misfit, (b) spread of the ensemble and (c) error of the mean
estimate. The black curve shows the iterative estimates by means of the linearized observation operator approach, while the red diamond corresponds to the
nonlinear observation operator-based analysis. See the text for details.

diagonal elements only. Since the resolution matrix of eq. (6) repre-
sents the ratio between the covariances in the background model and
data (Ŝi ≈ σ b

i
2
/(σ b

i
2 + σy

2) for a model state variable i), we anal-
yse our results in terms of its square-root Ŝ1/2, thereby dealing with
standard deviations instead of variances. Projecting the diagonal
elements of the square-root of the resolution matrix into Gauss co-
efficients through the Q operator introduced in Section 2.3, we can
introduce a resolution vector ŝ constructed from the diagonal ele-
ments of QŜ1/2Q†T . We show this resolution vector up to degree 5 in
Fig. 3(b). Also plotted is the resolution vector at the first iteration s1,
which closely resembles the resolution vector of the final estimate,
ŝ. The resolution vector coefficients are of order unity up to degree
3, meaning that the data constrain the corresponding Gauss coeffi-

cients almost to 100 per cent. Degree 4 and 5 are constrained up to
97 per cent and 90 per cent, respectively. The relative lack of resolu-
tion of the m = 0 zonal coefficients (such as g0

4 and g0
5), reflects the

small amount of data underneath polar regions, precisely where as-
sociated Legendre functions of order 0 reach their maximum ampli-
tudes. Since the resolution vector is seen not to change considerably
from the first to the last iteration, we will consider the resolution
vector at the first iteration, s = s1, as representative of the model
resolution throughout this paper. The interest in this choice is that s1

depends only on the data and prior information, allowing us to anal-
yse the resolution before performing the iterative estimation per se.

The sum of the elements of the vector ŝ, corresponding to the
trace of the square-root of the resolution matrix, is 33. This figure
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corresponds to the number of resolved degrees of freedom of the
model given the data set in question, comparable to SH degree 5.
This result can be confirmed by the comparison between the refer-
ence state (from which the synthetic observations were generated)
shown in Fig. 3(c), and the estimate retrieved by means of the ob-
servations shown in Fig. 3(d) truncated to SH degree 5.

Note that an independent validation of the results discussed in
this paragraph was carried out by a brute force calculation of the
tangent observation operators, for a state vector made directly of
Gauss coefficients. The weakly nonlinear character of the problem
at hand, as well as the satisfactory behaviour of the scheme in this
simple test prompt us to exercise it further in the more realistic and
challenging context of archaeomagnetic observations.

3 A RC H A E O M A G N E T I C R E S O LU T I O N
A NA LY S I S

3.1 Archaeomagnetic database

The archaeomagnetic data set used in this proof-of-concept paper
relies on the Geomagia50.V2 database (Donadini et al. 2009) for
the period from 1200 BC to 2000 AD. Geomagia50.V2 consists of
directional and intensity data spanning the past 50 millennia that
derive from the analysis of the remanent magnetization carried by
volcanic deposits and archaeological artefacts, like bricks, pottery,
ovens, etc. This version of the database is not the newest one, but
is sufficiently mature to help illustrate the fundamental aspects of
the method we designed. Using it allows us to compare our findings
with models previously published relying on practically the same
data set.

The data set clearly shows that the available archaeomagnetic
data present a very uneven temporal and geographical distribution.
Spatially, most of the data are located in Western Eurasia. In fact, al-
most all observations are located in the Northern Hemisphere, with
just 2.5 per cent of the data in the Southern Hemisphere (Donadini
et al. 2009; Licht et al. 2013). At any given epoch, we therefore rely
on the prior information supplied by the dynamo to recover the field
behaviour in the Southern hemisphere, based on the spatial corre-
lations of the prior (recall Figs 2a and c). Regarding the data, we
follow a hybrid strategy based on Korte et al. (2009) and Licht et al.
(2013) in order to better compare the different models, attributing
lower bounds for the data uncertainties and asserting uncertainties
to data without such information. We arbitrarily choose a lower
bound of 2 µT for intensity data uncertainties and 3.4◦ for the α95

parameter uncertainties, following the modelling errors assigned by
Licht et al. (2013) as a consequence of the degree 5 truncation of
their modelling strategy. This implies a lower bound for the standard
deviation of σ I = (81/140) × 3.4◦ for the inclination I and σ D =
(81/140cos I) × 3.4◦ for the declination D. Data with no uncertainty
information are assigned an uncertainty of 8.25 µT for intensity and
4.5◦ for α95, which amounts to 150 per cent of the average of known
uncertainties, following Licht et al. (2013).

With regard to ages, results are dated either by radiogenic tech-
niques, often the case for volcanic data, or by means of archaeo-
logical constraints, in the case of archaeological artefacts. These
different dating techniques result in different probability density
functions (pdf) for the age, Gaussian for radiogenic dating or uni-
form for archaeological dating (e.g. Ramsey 2009). Age uncertain-
ties have been treated in different ways in archaeomagnetic field
modelling. The most recent global models of Korte & Constable

Figure 5. Histograms of the archaeomagnetic data sets used in this study. (a) The native (N) data set constructed from Geomagia50.V2 (Donadini et al. 2009);
(b) redistribution of the N data set given the re-weighting based on the probability density function of the age of each datum, counted by their weights; (c) the
redistributed (R) data set, which assumes that the redistributed data are independent, with a recalibrated measurement uncertainty. See the text for details.
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(2011), Licht et al. (2013) and Pavón-Carrasco et al. (2014) use
different flavours of bootstrap sampling to account for errors in age
estimations (jointly with measurement errors), while, in a regional
context, Hellio et al. (2014) resort to a Monte Carlo Markov Chain
to sample the space of possible ages of a regional data set.

In the single-epoch approach outlined in this study, we do not treat
the archaeomagnetic field model temporal dependency. Instead, we
group the data within bins of 40-yr width, assuming that the field
is constant over that period. The width of 40 yr is a compromise
between the shortest time possible (for the assumption of steadiness
to hold) and the longest one, which will favour a larger number
of data (and should therefore improve the accuracy of the model).
Over 40 yr, one can expect that the harmonic components of the
field of degree � ≤ 5 will not undergo significant changes, since
their typical time scales τ � are thought to vary like τ⊕/�, with a
master SV coefficient τ⊕ of order 400 yr (Lhuillier et al. 2011).

3.2 Data redistribution based on age uncertainties

A first data set can be constructed by taking the mean age of each
datum, ignoring the age uncertainties, and rejecting these data for
which the age uncertainty is either not provided or is strictly larger
than ±100 yr (total 200 yr). 1633 data were rejected within this
criterion, corresponding to 16 per cent of the original data set. Such
selected and reworked Geomagia50.V2 data set is labelled here as
the N (native) data set. Fig. 5(a) shows the histogram of the N
data set comprising 2528 declination, 3757 inclination and 2230
intensity data distributed within the 40-yr bins through the time
interval from 1200 BC to 2000 AD, with thus a total of 8515 data.

Within our snapshot framework, a possibility to deal with age
uncertainties would be to draw an ensemble of data sets based on
the age pdf of each datum, and to apply our framework to each draw.
The final archaeomagnetic field model (for each time bin) would
then consist of a weighted average of the ensemble of models, fol-
lowing the procedure detailed by Lanos (2004) for the construction
of regional archaeomagnetic curves. Although we are planning to
use that strategy in the future, we opt here for a more expedient (and
less accurate) strategy of redistribution, whereby each datum is dis-
tributed in the bins where its age pdf is not zero, with a weight given
by the pdf integrated over each bin. For a given datum, the reworked
uncertainty inside the jth bin bj, defined by the time window [ti(bj),
tf(bj)], is described by

σb j = σo × w
−1/2
b j

, (34)

where σ o is the original uncertainty of the data and the weight wb j

is defined by

wb j =
∫ t f (b j )

ti (b j )
f (σt , to, t)dt, (35)

where f(σ t, to, t) is a function representing the pdf associated with the
datum’s age uncertainty σ t (Gaussian or boxcar), to is the expected
age and t is time. If the redistributed data are counted with respect to
their new weights in each bin, the result is a smoother distribution of
the N data set, as can be seen in Fig. 5(b). The data redistribution and
uncertainty re-weighting of the native N data set leads to a new data
group, called R (for redistributed) henceforth. If each redistributed
datum in each bin is considered as a discrete independent datum,
the R data set comprises 7432 declination, 10 055 inclination and
6904 intensity data, for a total of 24 391 data, whose histogram is
shown in Fig. 5(c).

Although the present archaeomagnetic field estimation method
does not include a regularization of the model in time, it is important
to remark that the grouping of data in 40-yr bins, the assignment of
lower bounds to the uncertainties and the further redistribution of
the data set (meaning the transformation of N into R), act effectively
as a temporal regularization.

3.3 Resolution of the archaeomagnetic data set

Before applying our iterative scheme to the N and R archaeomag-
netic data sets, let us analyse the impact of the data under consid-
eration on our knowledge of the magnetic field at the core surface.
The issue of archaeomagnetic data resolution has been addressed,
among other authors, by Korte & Constable (2008) and Licht et al.
(2013). The authors suggested, by means of comparing the power
spectra from archaeomagnetic, historical and satellite data-based
models, that archaeomagnetic field models are resolved approxi-
mately up to SH degree 4. However, a careful quantification of the
archaeomagnetic resolution and its variability in time has not yet
been performed, mostly due to the difficulty in calculating the res-
olution matrix for continuous models. We have seen in Section 2.1
that the resolution matrix given by eq. (6) quantifies the influence
of the properties of the data set on the model. For simplicity, we
present the resolution vector s after the first iteration (recall the end
of Section 2.6) to synthesize the information contained in the matrix
and to represent the resolving power of the archaeomagnetic data
set in each 40-yr interval from 1200 BC to 2000 AD.

The resulting sequence of resolution vectors, which we will call
the archaeomagnetic resolution matrix throughout, represents the
evolution of the archaeomagnetic resolution in time, and is shown
in Fig. 6 for both the N and R data sets. The similarity between
both matrices in Figs 6(a) and (b) in terms of amplitude and be-
haviour shows that the increase of the uncertainties by the data re-
weighting of data set R is mitigated by the increase in the number
of data. The smoother character of the R-based resolution matrix is
a consequence of the better distribution of the data given their age
uncertainties information, and therefore, of its effective temporal
regularization.

The key aspect of Fig. 6 is that it demonstrates the inability of the
archaeomagnetic data set here considered to resolve the magnetic
field at the core surface for spatial scales beyond SH degree 5. Due
to the smoother character of the R data-set-based archaeomagnetic
resolution matrix, the following description will focus on Fig. 6(b).
For the whole 3000 yr interval, only the dipole and quadrupole are
continuously well resolved. The axial dipole g0

1 is the best con-
strained coefficient, resolved around 90 per cent from 1200 BC to
0 AD and up to almost 100 per cent from 0 AD to 2000 AD. The
other components of the dipole, together with the quadrupole terms,
evolve from roughly 70 per cent up to 85 per cent after 0 AD. The
octupole (� = 3) shows a resolution of 50 per cent before 0 AD,
while after 0 AD the resolution increases up to around 75 per cent at
present-day. The degree 4 starts presenting resolution lows, mean-
ing that at times the resolution of some coefficients is lower than
an arbitrary value of 30 per cent. The period after 0 AD presents a
reasonable resolution of 50 per cent for degree 4 and after 1000 AD
a resolution around 40 per cent for degree 5. Beyond degree 5 the
model variables display little to no sensitivity to the data sets. For all
coefficients of degree higher than the quadrupole, the general rule
is that the zonal modes (m = 0), are not well constrained within the
corresponding degree, due to the lack of observations in polar re-
gions. In contrast, sectoral modes (m = �) are best resolved within a
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Figure 6. Archaeomagnetic resolution matrices, given the Coupled Earth dynamo prior and (a) the N or (b) the R data set. The colour scale represents the
normalized resolving power of the data on the model state variables, cast here in terms of Gauss coefficients, up to spherical harmonic degree 6.

given harmonic degree family, due to their better sampling of lower
latitudes, which coincides with the data spatial distribution.

In synthesis, we observe a good resolution of the archaeomagnetic
field up to degree 3 for the period between 1200 BC and 0 AD, degree
4 from 0 AD to 1000 AD, and degree 5 from 1000 AD onwards.
The trend corresponding to the increase in resolving power in time
contained in both matrices is related mainly to the increase of data

availability in the interval, as can be seen by comparing Figs 5(a)
and 6(a) and Figs 5(c) and 6(b). Attention must be drawn to the
fact that the N and S resolution matrices are based on an outdated
version of the GEOMAGIA database. The upgrades from the newest
version of the GEOMAGIA compilation, which do not significantly
alter our observations mentioned above, are discussed in Section 5.
It is also important to note that the archaeomagnetic resolution
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Figure 7. Diagnostics of the twin experiments in terms of (a) the normalized misfit M of the final estimation for the synthetic N data set, (b) normalized misfit
M of the final estimate for the synthetic R data set, (c) normalized total spread S for both estimates and (d) the normalized total error E of the background and
final estimate for the synthetic N and R data sets. Note that S and E are calculated considering a degree 5 truncation.

matrices shown in Fig. 6 represent an idealization of the model
resolution by the data, in the sense that they do not depend on data
values themselves, and therefore, do not consider the existence and
impact of incoherent data, which are likely to be present in the real
archaeomagnetic data set (e.g. Licht et al. 2013). In order to test
the robustness of the conclusions drawn from the analysis of the
archaeomagnetic resolution matrices and to prepare the application
of the scheme to real data sets, we next design archaeomagnetic
twin experiments, whereby we can directly assess error on the state
estimates based on synthetic analogues of the N and R data sets.

3.4 Twin experiments

In this twin experiment, like in the validation test of Section 2.6,
synthetic data are generated from a reference model simulation,
the ‘true’ state, which can be directly compared with the estimates
of the iterative scheme. The true state evolves in time, since it is
the product of the integration of the coupled Earth dynamo, and
for each 40-yr interval it is calculated as the average over 40 yr of

this integration. In this case, the two archaeomagnetic data sets N
and R are tested to assess the validity of the data regularization by
the redistribution and re-weighting based on the ages uncertainties.
The synthetic observations are based on the original mean age,
geographical distribution and age and data uncertainties from the
two real data sets. The observations are further noised based on
a random draw from the data uncertainty distribution. The noisy
synthetic observations are then used to estimate the true state given
the background model.

We proceed with the iterative estimation by applying an outlier
rejection scheme, whereby data with misfits larger than 3 stan-
dard deviations after the first estimation are discarded. A second
estimation is then produced with the remaining data set. Following
this strategy, 22 data were excluded from the N data set (12 declina-
tion, 4 inclination and 6 intensity data) while 12 data were rejected
from the R one (8 declinations and 4 inclinations).

The quality assessment of our estimates is made by using the
three diagnostics introduced in Section 2.6, namely the normalized
data misfit M, the normalized spread of the ensemble S and the
normalized error E. Those are shown in Fig. 7. Fig. 7(a) reveals a
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Figure 8. Normalized misfit M for (a) the N and (b) the R data set analysis.

mean misfit of 0.9 for the N-based estimate. Considering that the
background mean misfit is close to 3 (based on the average field of
Fig. 1a), the decrease amounts to 70 per cent. Further inspection of
Fig. 7(a) indicates a stronger variability of the misfit during the first
millennium BC than that prevailing since 0 AD. The R-based misfit
shown in Fig. 7(b) reveals a mean of 0.6, which, compared to the
background mean misfit of 1.75, reflects a decrease of 63 per cent.
The smaller misfit values, and weaker variability of the R-based
estimates compared with the N-based ones result from the increase
in data uncertainties implied by the redistribution scheme.

The normalized spread S is shown in Fig. 7(c). The spread level is
similar for both N and R-based estimates, around 85 per cent at the
beginning of the interval, with an almost linear decrease down to
65 per cent at 2000 AD. This decreasing trend reflects the increase
in data quantity with time (recall the histograms of Figs 5a and c).
The spread of the R-based estimate displays a smoother variability
than the N-based one.

Variations of the normalized error E are shown in Fig. 7(d). The
background error Eb fluctuates since the true state dynamically
evolves over the time interval, while the background state remains
the same in our single-epoch analysis approach. Eb exhibits long-
term millennial scale fluctuations, between 0.8 and 1.2. Although
the normalized error for both N and R based estimations (EN and
ER) presents an irregular behaviour through the interval, the mean
error value decreases from 1 for Eb to approximately the same value
of 0.8 for the N and R based estimations (interestingly, these values
correspond to the mean values of the normalized spread we just
discussed). The detailed temporal behaviour reflects the combina-
tion of the time-dependency of the true state on the one hand and of
the varying distribution and quality of the data on the other hand.
Sometimes, the initial guess (the background) is rather close to the
truth, and the data does not strongly correct the estimate. In contrast,
like at 0 AD and at 1800 AD, the initial guess is at times far from
being optimal, and a substantial benefit is then drawn from the data.

4 S TA N DA R D V E R S U S DY NA M O - B A S E D
A RC H A E O M A G N E T I C F I E L D M O D E L S

We now move to the application of our iterative approach to the
real N and R archaeomagnetic data sets. Using the 3σ -rejection

scheme discussed above, we discard 634 data from the N data set
(114 declinations, 302 inclinations and 218 intensities) and 826
data from the R data set (136 declinations, 369 inclinations and
321 intensities). Fig. 8 shows the normalized misfit M for the final
estimations based on the N and R data sets. We see in Fig. 8(a) that
the N misfit does not differ substantially from that computed for
the twin experiments, showing again a larger degree of variability
during the first millennium BC (especially during its first half).
The decrease from background to final estimation in misfit is of
57 per cent in this case, lower than that of the twin experiment.
This lower performance in the misfit decrease indicates that the real
archaeomagnetic data set is penalized by a number of data whose
‘real’ values lie outside their error bars. The R data set normalized
misfit in Fig. 8(b) shows an almost constant value over the whole
interval, as seen in the corresponding twin experiment in Fig. 7(b),
albeit at an higher level (close to 0.9, to contrast with 0.6), and
a decrease of 44 per cent in misfit. In summary, the differences
between Figs 8 and 7 point to the presence of a certain amount of
outliers in the archaeomagnetic data set (see also Licht et al. 2013).

As the error of the models cannot be directly assessed, we choose
the estimate based on the smoother R data set as our reference
model in order to compare it with inverse models built using a
similar database (Geomagia50.V2). For convenience, we use the
tag AmR to refer to our archaeomagnetic model based on the data
set R and the CE dynamo background, and the tag Bm to refer
to our background model. Figs 9 and 10 present groups of Gauss
coefficients from AmR compared to models ARCH3k.1 from Korte
et al. (2009) and A_FM-0 and A_FM from Licht et al. (2013). A
brief description of the models is provided in the following:

ARCH3k.1: The ARCH3k.1 model consists of an inverse model
built under adjustable temporal and spatial regularization truncated
to degree 10 using lower bounds for data uncertainties (i.e. σ = 5 µT
for intensities and α95 = 4.3◦ for directions) and an outlier rejec-
tion scheme. The model is derived from an inversion beginning at
2000 BC, the product of which is not considered between 2000 BC
and 1000 BC in order to avoid spurious spline-end effects. The op-
posite end of the model is drawn towards the gufm1 model (Jackson
et al. 2000) after 1650 AD for all non-axial dipole coefficients
and after 1840 AD for the axial dipole coefficient. Since gufm1 is
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Figure 9. Gauss coefficients of the dipole and quadrupole magnetic field at the CMB. The background model Bm (yellow) is shown together with model AmR
(blue). Both estimations are shown in terms of their mean and standard deviation calculated from the ensemble spread. Also shown are the AFM-0 model (red
dashed curve), AFM-M model (red curve and shading) of Licht et al. (2013) and ARCH3k.1 model (black curve and shading) of Korte et al. (2009).

based on historical, observatory and satellite data, the last 500 yr of
ARCH3k.1 result in a more precise estimate in comparison to the
rest of the time interval. The model rests on a bootstrap to account
for the different data set errors in order to provide a posteriori errors.

A_FM: The A_FM models are inverse models under the same
general regularization approach as in ARCH3k.1. Acknowledging

the fact that the available database does not allow to resolve field
characteristics beyond degree 5, the field models are truncated to
degree 5. Instead of applying lower bounds to data errors (which
implies penalizing data of good quality), modelling errors due to the
lower degree truncation are introduced in the data errors. Following
a philosophy of using all information provided by the data, the
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Figure 10. Continuation of Fig. 9 for higher order Gauss coefficients.

model applies an outlier re-weighting instead of a rejection scheme.
While A_FM-0 is a direct inversion of the A_dat data set (restricted
to volcanic and archaeological data), the A_FM model consists of
an ensemble of models generated by a similar bootstrap technique
as in Korte et al. (2009).

AmR: The AmR model is the result of an inverse scheme reg-
ularized by a non-adjustable spatial dynamo norm provided by the
CE dynamo, using the full truncation of the latter. With respect
to ARCH3k.1 and A_FM, it considers a hybrid approach to the
handling of lower bounds/modelling errors relative to the data un-
certainties (see Subsection 3.1). The redistributed R data set, from
which the model is derived, is described in Section 3.2.

The differences between ARCH3k.1, A_FM and AmR are illus-
trated in Fig. 9 for the dipole and quadrupole terms and Fig. 10
for coefficients of degree 3 and above. AmR exhibits frequencies
higher than those displayed by ARCH3k.1, A_FM, and A_FM-0,
pointing to a weaker effective temporal regularization. As can be
seen in Fig. 9(a), the four models concur on the intensity decrease
of the axial dipole g0

1 over the past millennium. The axial dipole

shows a considerable decrease in the standard deviation from the
background model Bm to the posterior model AmR, which could
be expected from the archaeomagnetic resolution matrix (recall the
first line in Fig. 6b). The general agreement of all models for g0

1

reflects its control by the data set. Such a statement can also be
made for the equatorial dipole coefficients, g1

1 and h1
1 in Figs 9(b)

and (c). The uncertainty levels of the (g0
1, g1

1, h1
1) triplet of the AmR

model are in line with those predicted by A_FM and ARCH3k.1,
except over 1600 AD–2000 AD when the latter is constrained by
gufm1. Again, this agreement highlights the robust characterization
of model uncertainties, strongly controlled by the characteristics
of the common data set. The quadrupole coefficients (shown in
Figs 9d–h) present more variability between models, in particular
during the first millennium BC. In this case, the disagreement un-
derlines the larger influence of the prior information supplied to the
inversion scheme.

Higher order coefficients are exhibited in Fig. 10. They essen-
tially show that before 0 AD, AmR is not properly updated from
the background model Bm, both in terms of its mean value and
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Figure 11. Projection of the ARCH3k.1 (black line with grey shadings), A_FM-M (red line with shadings), AFM-0 (red dashed line), AmR (blue line with
shading) and Bm (yellow line with shading) models in Paris and São Paulo, and comparison with the available archaeomagnetic data. (a) Declination, (c)
inclination and (e) intensity at Paris (location 48.85◦N 2.35◦E) for which data were collected over a disk of radius 300 km centred on Paris. (b) Declination,
(d) inclination and (f) intensity at São Paulo (location 23.54◦S 46.63◦W) for which data were collected over a disk of radius 300 km centred on São Paulo.

respective uncertainty level. This indicates a poor sensitivity of
the model to the data; see for instance the zonal coefficient g0

4 in
Fig. 10(c). Here, as in many other instances in Fig. 10, the estimate
is strongly driven by the CE dynamo model. Periods of model-
driven versus data-driven coefficient estimates are easy to assess,
and they follow the information conveyed by the archaeomagnetic
resolution matrix (recall Fig. 6b). In contrast, such distinction is less
straightforward to make for ARCH3k.1 and A_FM. For instance,
they do not show any significant increase of uncertainty estimates
at times of paucity of data (see for instance the first 1000 yr of g0

4

in Fig. 10c). Since these models prioritize fitting the data, they are
prone to displaying a variability relatively higher than that of our
estimate, which on the contrary favours geomagnetic quiescence
(within the background uncertainty) at periods poorly documented
by observations.

In order to further discuss the accuracy of the models in light of
the available data, we show in Fig. 11 model predictions at Paris

and São Paulo. In Fig. 11, left column, we report the direction and
intensity data lying inside a circular region of 300 km radius around
Paris. All models display a rather good agreement with the data,
and a similar behaviour after 0 AD. The most significant difference
among models is observed for intensity during the first millen-
nium BC. This reflects a period poorly constrained by data, which
puts consequently more weight to the prior chosen to construct
any given model. Posterior model uncertainties vary considerably
among models, regardless of the epoch. As stressed above, this is
a consequence of different strategies to handle posterior model un-
certainties: while the error on AmR is estimated from the standard
deviation of the ensemble spread, ARCH3k.1 provides the error by
propagating the coefficient uncertainties, and A_FM directly adds
modelling errors to the ensemble standard deviation.

A different situation is found in Fig. 11, right column, where
we show the model projections at São Paulo. Each model pro-
vides different evolutions, clearly in relation with the lack of data
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Figure 12. Different models of the magnetic field at the CMB for the time interval between 1680 AD and 1719 AD and its differences and uncertainties. (a),
(c) and (e) show the average field for the 40-yr interval from the inverse models ARCH3k.1, AFM-M and our AmR model, respectively, with contours every
50 µT; (b) shows the absolute difference ||ARCH3k.1−AmR|| while (d) shows the absolute difference ||AFM-M−AmR||, with contours every 25 µT; (f) the
standard deviation associated with the ensemble spread of AmR, with contours every 10 µT, overlapped by the R data set showing redistributed data, with high
uncertainties, (in white) and non-redistributed data, with small uncertainties (in black). All values in µT.

in the Southern hemisphere. This is particularly evident for the
declination: both ARCH3k.1 and A_FM give large amplitude fluc-
tuations on centennial to millennial time scales, while AmR pre-
dictions favour geomagnetic quiescence, namely weak fluctuations
around the background state, within the prior uncertainties. This
contrasting behaviour must arise from the regional propagation of
information by means of the prior correlations previously discussed
in Section 2.5 and shown in Fig. 2. The impact of the spatial cor-
relations arising from both the dynamo and the dissipation norms
should be analysed with care. For instance, although the core field
is indeed thought to display a certain degree of equatorial antisym-
metry, the extent of it is unknown. In the archaeomagnetic case,
in which observations are mostly located over the North Hemi-
sphere, an excess in antisymmetric correlations could imply the
masking of reversed flux patches over the South Hemisphere like
the ones observed in the contemporary magnetic field (Jackson et al.
2000). However, this problem is a common drawback of archaeo-
magnetic inverse modelling and it can only be mitigated in light of
new data.

Finally, a comparison of the radial induction Br mapped at the
CMB averaged over a time window of width 40 yr centred on

1700 AD between A_FM, ARCH3k.1 and AmR is shown in Fig. 12.
We use that specific time interval in order to compare the situation
in which one of the models, ARCH3k.1 (Fig. 12a), is partially reg-
ularized by gufm1, while A_FM and AmR are built exclusively
with archaeomagnetic data. The three models show northern high
latitude flux lobes underneath North America and Asia. Yet, the in-
tensity and the location of the lobes predicted by AmR differ from
those given by the other two models. In particular, the eastward
offset of the American flux lobe in AmR might be interpreted as the
influence of an eastward pull by the prior (see Fig. 1a), for which an
intense flux patch is localized underneath North-East Asia. While
the intensity of AmR seems reduced in comparison with the oth-
ers, the general morphology of the field remains the same in all
models. Still, the main differences between A_FM and ARCH3k.1
on the one hand, and AmR on the other hand occur mostly in
the Southern hemisphere, as shown in Figs 12(b) and (d). Dif-
ferences with ARCH3k.1 are more pronounced around Southern-
most America and the South Pacific (but also on the Northernmost
and central west Pacific), while the largest differences with A_FM
occur in South Africa and the southern Indian ocean. The mag-
nitude of these regional discordances are within the characteristic
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posterior uncertainties of the AmR model, whose standard deviation
is mapped in Fig. 12(f).

5 S U M M A RY A N D P E R S P E C T I V E S

The main objective of this study is to present a framework for
modelling the archaeomagnetic field at single epochs in which a
set of directional and intensity data is complemented by the prior
information from a geodynamo simulation. Here, the background
information is represented by the mean and covariance of an en-
semble of magnetic field states extracted from the long integra-
tion of a dynamo model, in this instance the CE model (Aubert
et al. 2013). These statistics are used to define a spatial norm that
enters the inverse archaeomagnetic problem. The dynamo norm
considered in this work contrasts with the regularization norm
based on minimum Ohmic used in standard inverse archaeomag-
netic models. As shown in Figs 2(d) and (f), the dynamo norm
places strong antisymmetrical constraints on the sought solution,
as a consequence of the dominant axial dipolarity of the geody-
namo. On the contrary, standard regularization norms lead to the
spatial correlations implied by a dipole whose axis passes through
the observation site. Once the simulation outputs are rescaled, the
physics-based dynamo norm needs no further adjustment of the
trade-off between goodness-of-fit and model complexity.

One of the most important aspects of using a dynamo norm in
the single-epoch inverse archaeomagnetic problem is that it en-
ables a straightforward computation of the resolution matrix asso-
ciated with archaeomagnetic data. In this study, we use the Geoma-
gia50.V2 database (Donadini et al. 2009) to ease comparison with
previously published archaeomagnetic field models. Since these
field models are constructed using some form of temporal regular-
ization, we perform a redistribution of the archaeomagnetic data
set in a discretized time interval from 1200 BC to 2000 AD, based
on age uncertainties, thereby creating the R data set. The resulting
archaeomagnetic resolution matrix, shown in Fig. 6, allows us to
distinguish, for each coefficient, data-driven from prior-driven peri-
ods. The dipole, quadrupole, and to some extent the octupole, appear
well resolved over the whole period. From 0 AD to 2000 AD, the
degree 4 is resolved as well, whereas from 1000 AD onward, resolu-
tion is achieved up to degree 5. In both cases, an enhanced resolution
is observed for sectoral coefficients. Beyond degree 5, the archaeo-
magnetic data set has almost no influence on coefficient estimates.

It is important to note that there has been new updates to the
archaeomagnetic database used in this work, composing the Ge-
omagia50.V3 database (Brown et al. 2015). We have performed
exploratory tests within the new database, which incorporates valu-
able data on the Southern Hemisphere. Although we observe a slight
increase in the overall resolution, the conclusions stated above based
on the older database still hold. Despite the small improvement, we
would like to acknowledge that this gain is incremental, and efforts
in expanding the archaeomagnetic database are key to increasing
the resolution of the core magnetic field through the past millennia.

We choose the R data set to build up a preliminary model, re-
ferred to as AmR. Comparison of Gauss coefficients predicted by
AmR and ARCH3k.1 (Korte et al. 2009), AFM and AFM-0 (Licht
et al. 2013) is in line with what is to be expected from the archaeo-
magnetic resolution matrix, despite the presence of outliers in the
data set. In general, when coefficients are resolvable from the data,
similar estimates are obtained, regardless of the model and method-
ology. Most differences are observed for those coefficients which
are prior-driven. In the same way, pointwise predictions are in rough

agreement in those regions where data are abundant, whereas stark
differences are found in poorly documented areas.

In this study, attention was drawn to a sequence of independent
snapshot analyses of the magnetic field through the last 3000 yr,
assuming a constant background state. The next step will be to con-
sider the temporal aspect of this scheme, and therefore the estima-
tion of the state via a sequence of analysis cycles. More specifically,
in a data assimilation framework such as the EnKF, an ensemble
of states will be forecasted using the underlying numerical model,
and this ensemble of forecasts will be used in conjunction with data
(whenever they are available) to produce an ensemble of analyses,
whose mean will hopefully be closer to the true state of Earth’s core.
In parallel, this novel approach will be strengthened by our ability
to mitigate the impact of the strongly heterogeneous properties of
the catalogue of data at our disposal.
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A P P E N D I X : L I N E A R I Z E D
O B S E RVAT I O N O P E R AT O R S F O R
D I R E C T I O NA L A N D I N T E N S I T Y DATA

Real functions of complex variables are not holomorphic, and their
gradients cannot be consequently defined in standard complex anal-
ysis (Hjorungnes & Gesbert 2007). However, a real-valued function
f of a complex variable z can be written in terms of z and its complex
conjugate z†, in order to get rid of a possible imaginary part of f. If
we take z and z† to represent independent variables, the differential
of a functional f(z, z†) is given by the Wirtinger derivatives

d f = ∂ f

∂z
dz + ∂ f

∂z†
dz†, (A1)

where ∂f/∂z (∂f/∂z†) is the derivative of f with respect to a reference
point for a fixed z† (z).

Rewriting the expression for the declination in eq. (19), we have
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where
∑

�, m is a simplified notation for the previous double summa-
tion over � and m. Differentiating the previous equation with respect
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where δ is the Kronecker symbol and X0, Y0 and Z0 are the
magnetic vector components obtained from the reference state

x0 = [
. . . ,Pm

�,0, . . . ,Pm
�,0

†, . . .
]T

. Upon simplification, we see that

∂ D

∂Pm
�

= 1

H 2
0

�(� + 1)

2rc

(
X0GY

m
�
† − Y0GX

m
�
†
)

, (A4)

in which H0 =
√

X 2
0 + Y 2

0 . Differentiating now with respect toPm′†
�′

∂ D

∂Pm†
�

= 1

H 2
0

�(� + 1)

2rc

(
X0GY

m
� − Y0GX

m
�

)
. (A5)

The linearization of the nonlinear declination operator, HD(x)
around x0, following eq. (4), which we define formally as

∂HD

∂x

∣∣∣∣
x=x0

≡ HD,0,

can be written in terms of its Wirtinger derivatives as

HD,0 = 1

2rc H 2
0

[
. . . , �(� + 1)

(
X0GY

m
�
† − Y0GX

m
�
†
)

,

. . . , �(� + 1)
(
X0GY

m
� − Y0GX

m
�

)
, . . .

]
. (A6)

In the course of the iterative scheme (eq. 2), this operator is to be
applied to a generic incremental state vector of the form

dx =
[
. . . , dPm

� , . . . , dPm†
� , . . .

]T
.

Using the same reasoning, we find the following expressions for
the linearized inclination and intensity operators, HI,0 and HF,0:

HI,0 = 1

2rc F2
0

[
. . . , �(� + 1)

(
H0GZ

m
�
†+ Z0

H0
(X0GX

m
�
†+Y0GY

m
�
†)

)
,

. . . , �(� + 1)

(
H0GZ

m
� + Z0

H0
(X0GX

m
� + Y0GY

m
� )

)
, . . .

]
,

(A7)

HF,0 = 1

2rc F0

[
. . . , �(� + 1)

(
X0GX

m
�
† + Y0GY

m
�
† + Z0GZ

m
�
†
)

,

. . . , �(� + 1)
(
X0GX

m
� + Y0GY

m
� + Z0GZ

m
�

)
, . . .

]
.

(A8)

It is important to note that the use of the extended state vec-
tor and the Wirtinger derivatives to cope with the real-to-complex
transformations could be avoided by using the real SH expansion
given by eqs (11) and (12). However, since our main objective
is to introduce the formalism which considers the prior informa-
tion from the CE numerical model, we have preferred to maintain
the complex-valued variables of the simulation as the model state
vector.
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