Analytical and Bioanalytical Chemistry

Electronic Supplementary Material

An assessment of retention behavior for gold nanorods in asymmetrical flow field-flow fractionation

Hind El Hadri, Julien Gigault, Jiaojie Tan, Vincent A. Hackley

Table S1 AuNR dimensions provided by vendors using TEM

Simplified ID	AuNR ID	Diameter (nm)	Length (nm)	Aspect ratio
1	$600-40-\mathrm{NPz}$	40	81	2.0
2	$600-25 \mathrm{a}-\mathrm{NPz}$	25	57	2.3
3	$600-25 \mathrm{~b}-\mathrm{NPz}$	27	62	2.3
4	$660-\mathrm{NC}$	16.9 ± 0.7	40.0 ± 3.6	2.4
5	$780-10-\mathrm{NPz}$	10	38	3.8
6	$840-\mathrm{NC}$	9.2 ± 1.2	40.0 ± 5.9	4.3
7	$850-40-\mathrm{NPz}$	40	160	4.0
8	$750-10-\mathrm{NPz}$	10	35	3.5
9	$808-10-\mathrm{NPz}$	10	41	4.1
10	$830-\mathrm{NC}$	13.1 ± 1.2	54.4 ± 6.9	4.2
11	$850-25 \mathrm{~b}-\mathrm{NPz}$	23	89	3.9
12	$850-25 \mathrm{a}-\mathrm{NPz}$	25	93	3.7
13	$850-10-\mathrm{NPz}$	10	45	4.5
14	$960-\mathrm{NC}$	20.0 ± 1.8	106.1 ± 9.5	5.3
15	$1050-\mathrm{NC}$	13.7 ± 1.0	92.1 ± 11.5	6.7
16	$1400-25-\mathrm{NPz}$	25	256	10.2
17	$2100-10-\mathrm{NPz}$	17.5	175	10

Table S2 Correlations shown in Fig. 2 as a function of the retention time $\left(t_{\mathrm{R}}\right)$

	y-axis	Linear regression equation	Coefficient of determination $\left(\mathbf{R}^{2}\right)$
$t_{\mathrm{R}}<20$ min	Diameter	$\mathrm{y}=1.62 \mathrm{x}-11.8$	0.78
	Length	$\mathrm{y}=6.50 \mathrm{x}-56.0$	0.40
	AR	$\mathrm{y}=0.042 \mathrm{x}+2.8$	0.01
	Diameter	$\mathrm{y}=0.23 \mathrm{x}+17.9$	0.03
	Length	$\mathrm{y}=7.30 \mathrm{x}-96.4$	0.76
	AR	$\mathrm{y}=0.29 \mathrm{x}-3.0$	0.39

Fig. S1 TEM images of the AuNRs

Fig. S2 Relationship between the measured LSPR and the mean calculated AuNR AR based on TEM analysis

Fig. S3 Structure of a gold nanoparticle (blue filled) compared to cylinder (red) and prolate ellipsoid (green) shapes

Circumstance surrounding sample 17

This sample was previously used and characterized by TEM and UV-vis-NIR spectroscopy in Nguyen et al. (2015). The NIR spectrum of the AuNRs showed an absorbance peak at 975 nm , which can correspond to the first population; however due to the limitation of the instrument (it is important to note that the spectrophotometer is not able to go above $1300-1350 \mathrm{~nm}$), it is not possible to measure the LSPR peak for the population with an aspect ratio of 10 . The TEM images from the Nguyen et al. (2015) paper are reported in Fig. S4.

Fig. S4 TEM image of sample 17. Scale bar is 100 nm (left) and 200 nm (right), [1] (previously published material used with permission under MDPI open access policy based on the Creative Common Attribution License (https://creativecommons.org/licenses/by/4.0/legalcode))

In Fig. S5, two length populations are distinguished which may explain why two peaks are observed in the fractogram (see Fig. 1 in the manuscript, sample 17). The determined lengths are $103 \mathrm{~nm}(\mathrm{SD}=66 \mathrm{~nm})$ and $207 \mathrm{~nm}(\mathrm{SD}=60 \mathrm{~nm})$.

Fig. S5 Length distribution of the sample 17 made from Table S1 of Nguyen et al. (2015) paper

Fig. S6 Diameter and length as a function of retention time for aspect ratio ≤ 3 or >3

References

1. Nguyen T, Liu J, Hackley V (2015) Fractionation and Characterization of High Aspect Ratio Gold Nanorods Using Asymmetric-Flow Field Flow Fractionation and Single Particle Inductively Coupled Plasma Mass Spectrometry. Chromatography 2 (3):422
