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Abstract   

The Solar Wind Anisotropies (SWAN) instrument on the SOlar and Heliospheric Observatory (SOHO) 

satellite has observed 44 long period and new Oort cloud comets and 36 apparitions of 17 short period 

comets since its launch in December 1995. Water production rates have been determined from the over 

3700 images producing a consistent set of activity variations over large parts of each comet's orbit. 

This has enabled the calculation of exponential power-law variations with heliocentric distance of these 

comets both before and after perihelion, as well as the absolute values of the water production rates. 

These various measures of overall water activity including pre- and post-perihelion exponents, absolute 

water production rates at 1 AU, active surface areas and their variations have been compared with a 

number of dynamical quantities for each comet including dynamical class, original semi-major axis, 

nucleus radius (when available), and compositional taxonomic class. Evidence for evolution of 

cometary nuclei is seen in both long-period and short-period comets.   

 

Keywords: Comets, coma; Ices; Ultraviolet observations 

 

1. Introduction 

The Solar Wind ANisotropies (SWAN) instrument on board the SOlar and Heliospheric Observatory 

(SOHO) satellite has been operating in a halo orbit around the Earth-Sun L1 Lagrange point since 

shortly after its launch on 2 December 1995. Its primary science mission has been to provide 

continuous monitoring of the whole sky distribution of hydrogen Lyman-alpha emission resulting from 

interplanetary atomic hydrogen streaming through the solar system and being eaten away by charge 

exchange, electron impact and ionization by the sun and solar wind and being illuminated by the Sun's 

Ly-α emission.  Because of the required sensitivity and the ability to observe the full sky, SWAN has 
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also been an excellent platform from which to observe the hydrogen Ly-α comae of many comets since 

the beginning of 1996. After more than 20 years in operation it is still providing excellent 

measurements of hydrogen in both the interplanetary medium (Bertaux et al., 1995) and comets 

(Bertaux et al. 1998). SWAN has provided important observations of many individual comets. The 

SWAN observations allowed to determine that a total of 2.7 ± 0.4 109 kg of water ice was lost by comet 

67P during one perihelion passage in average (Bertaux et al., 2015). Combined with the estimated area 

of 20 km2, it yields an equivalent thickness of 15 cm of ice sublimated inside the nucleus and lost to 

space in one perihelion passage of this comet. SWAN observations also allowed for important 

coverage of the EPOXI mission target comet 103P/Hartley 2 from previous apparitions (Combi et al. 

2011b) and providing coverage throughout the apparition of the flyby (Combi et al. 2011b). Finally, 

SWAN observations of comet 2012 S1 (ISON) by Combi et al. (2014) allowed for the determination of 

the water lost by the comet before its total disruption and loss at its very close perihelion passage, 

which is consistent with pre-perihelion estimates of the size of the nucleus (Lamy et al., 2014).  

 Most long-term surveys of cometary activity concentrate on composition (Newburn and 

Spinrad, 1989; A'Hearn et al. 1995; Fink and Hicks 1996; Fink 2009; Langland-Shula and Smith 2011; 

Cochran et al. 2012; Dello Russo et al. 2016), although A'Hearn et al. (1995) did examine heliocentric 

distance dependencies of water proxies like OH or even CN. The Nançay radio survey of 18-cm lines 

of OH in comets (Crovisier et al. 2002), on the other hand, covers OH observations and thus mainly 

water production rates. Similarly, this survey covers the water production rates of 61 comets each 

observed over extended periods of time allowing for exponential power-law exponents and production 

rates at 1 AU to be computed for pre- and post-perihelion legs of the comet orbits. Most of the long 

period comets included in this survey were observed after most of the comets included most of the 

published surveys so detailed comparisons with compositional taxonomic classes do not include many 

overlapping comets. One exception is the recent infrared survey of Dello Russo et al. (2016), however 
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their IR taxonomy is rather involved providing depleted, typical and enhanced classification for 10 

different molecular species compared to H2O. Unfortunately even for the IR survey there are not 

enough common comets to make meaningful cross-comparisons. However, Dello Russo et al. looked at 

the literature for the visual observations of the common carbon radicals and list those taxonomic 

classes (depleted or typical) for several comets in the SWAN dataset.  

 

2. Observations and Basic Model Analysis 

The SWAN all-sky camera consists of two systems one for the north heliographic hemisphere and the 

other for the south. Each has a 5x5 array of detectors of one square degree each that are scanned across 

the sky every day yielding a full sky map of hydrogen Ly-α emission. Depending on location in the sky 

with respect to the Sun and the galactic equator, comets brighter than magnitude ~10-12 can be 

detected by SWAN. During the first 10 years of operation, SWAN was at times targeted specifically at 

comets with increased exposure time and spatial double-oversampling the one square degree pixels. 

The detector is actually a broadband far ultraviolet detector, which has sensitivity to either side of Lyα, 

however for comets, nearly 98% of the total far ultraviolet emission is typically in Lyα, and all the 

other emissions, e.g., O, C, S, CO, etc., are concentrated well within the innermost 1-degree pixel 

centered on the nucleus. For our analyses we normally sample the coma out to a radius of 8 degrees. 

The extra total non-Lyα signal is quite small and accounted for in our stated uncertainties. While 

comets are observed at quite a range of geocentric distance within this 8 degree radius aperture, this 

distance is nearly always larger than the effective production scale length of H atoms resulting from 

photodissociation of H2O and OH and nearly always smaller than the decay scale length of the outward 

streaming fast H atoms. Therefore, there should be no systematic error resulting from the sampling size 

of the production rate calculation. Such effects as they relate to typical photometric and 

spectrophotometric observations of the common visible radicals (C2, C3, CN, NH2, NH and OH), were 
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on the other hand shown to be quite sensitive to the choice of model parameters (Fink and Combi, 

2004) and could yield systematic differences in determined abundances and production rates.  

 Over 90% of observed hydrogen atoms in comets are produced by the photodissociation of H2O 

molecules and the subsequent photodissociation of OH with typically 6%±3% coming from all other 

sources (Combi et al., 2005). Nascent H atoms are produced with a range of speeds of 8 - 20 km s-1 

resulting from the excess energy of photodissociation (Keller and Meier, 1976; Combi et al., 2004). 

The combination of photodissociation rate and water production rate, both of which increase as a 

comet's heliocentric distance decreases, determine the fraction of H atoms that collide with the heavy 

molecules, mostly water, in the inner coma. When this happens in sufficient numbers the transfer of 

energy results in the slowing of H atoms and heating of the heavy molecules, which results in a faster 

expanding coma. The shaping of the H atom speed distribution and the resulting physical effect on the 

expansion of the coma have been observed and quantified quite well (Bockelée-Morvan & Crovisier, 

1987; Combi & Smyth, 1988a&b; Combi, 1989; Combi et al., 1998; Combi et al., 2000; Tseng et al., 

2007; Shou et al., 2016).   

 SWAN images of the H Lyα coma are analyzed with a method called the time-resolved model 

(TRM) that was described in the paper by Mäkinen & Combi (2005) and combines aspects of several 

past modeling approaches, namely, the vectorial model (Festou, 1981); the syndyne model (Keller and 

Meier, 1976), and the particle kinetic physics models (Combi & Smyth 1988a&b). Input parameters to 

the model include the comet's orbital elements obtained from the JPL Horizons web site 

(http://ssd.jpl.nasa.gov/horizons.cgi), the SOHO orbit obtained from the SOHO project, and the daily 

solar Lyα flux at the Earth obtained from the LISRD web site at LASP, University of Colorado, 

(http://lasp.colorado.edu/lisird/lya/). The solar Lyα flux at the comet is estimated by taking the nearest 

value at the Earth facing the same part of the Sun correcting for the difference in heliographic longitude 

between the Earth and the comet. The fraction of H atoms thermalized by collisions with the water 



 6 

dominated coma and the resulting velocity distribution of H atoms leaving the inner coma is calculated 

from a parameterized version of the hybrid fluid/kinetic model calculations (Combi & Smyth, 

1988a&b; Combi et al., 2000).  

 As an example Figure 1 shows the portion of the full-sky image of 1 November 2011 centered 

on comet C/2009 P1 (Garradd) from the results of Combi et al. (2013) that is part of the TRM analysis. 

The aperture for summing up the comet Lyα emission is an 8-degree radius circle centered on the 

comet, shown in gray. The outer region of the IPM background with field stars is shown in blue. The 

red areas are the locations of field stars that are masked off so as not to count those in the comet 

brightness for optimizing the model fit. The TRM fits a comet distribution as described above and a 

tilted background for the IPM in first or second order.  Figure 2 shows the profile of brightness that 

corresponds to the cut shown as the red line in Figure 1. The observed comet profile is in white, the 

modeled comet profile in green and the subtracted IPM line shown as the darker straighter green line 

below. The masked star contribution is shown in red and regions outside the comet as part of the IPM 

are shown in blue.  The result of each TRM model analysis is to produce a water production from each 

image.   

 In addition to calculating the average water production rate for each image the TRM, as 

described by Mäkinen and Combi (2005) also employs a method to analyze long sequences of images 

together to deconvolve the daily water production rates at the nucleus. When comets are bright enough 

this method can be used to track secular variations of the initial water production rate at the nucleus 

rather than just the average value responsible for the hydrogen distribution within several degrees of 

the nucleus. Results of this procedure have been published for a number of comets in the past, namely 

comet C/1996 B2 (Hyakutake) by Combi et al. (2005), comets 1999 H1 (Lee), 1999 T1 (McNaught-

Hartley), C/2001 A2 (LINEAR), C/2000 WM1 (LINEAR) and 153P/Ikeya-Zhang by Combi et al. 

(2008) and C/2012 S1 (ISON) by Combi et al. (2014). In such cases we can compare with other 
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observations taken of shorter-lived species and closer to the nucleus and compare shorter-term 

temporal variations such as outbursts. Making such comparisons shows that the normal single image 

production rates delays and averages the water production rate over a time period of about 1 to 3 days 

depending on the distance to the comet.  Therefore, an abrupt outburst is both delayed and smoothed 

out over up to 3 days as seen in the response of a single hydrogen coma image. None of the results 

given in this survey depend on the deconvolution processing.  

 The remainder of this paper describes summary results of 44 new/long-period comets and 39 

apparitions of 17 short period comets observed by SOHO/SWAN since 1996 and analyzed with the 

TRM. Most of the data have already been archived and certified in the Small Bodies Node (SBN) of 

the NASA Planetary Data System (PDS), which can be found at Combi (2017).  The results of 9 newer 

long-period comets observed since 2012 have been recently published by Combi et al. (2018) and will 

be submitted to the PDS in 2018.  Results of the most recent apparitions of 4 short period comets (2P, 

45P and 96P) are included in this summary and will be the subjects of a future paper and will then be 

submitted to the PDS. In all three cases the most recent apparitions of these comets were quite similar 

to the previous ones.  

 When possible pre- and post-perihelion variations in water production rate have been fitted with 

a power-law of the form Q = Q1 rp., where Q1 is the value at a heliocentric distance of 1 AU, r is the 

heliocentric distance in AU and p is the power-law exponent, to which we often refer as "slope," but 

this slope is not directly related directly to slopes in visual light curves. Some comets never reached a 

heliocentric distance of 1 AU and were either always closer or farther away, so the comet never 

actually had a production rate at 1 AU. In these cases the 1 AU extrapolated value is given anyway. In 

a few cases such a fit was not possible for a number of reasons. In some cases observational geometry 

prevented enough measurements to be made either before or after perihelion. In other cases the 

variation was too irregular for a power-law to have any physical meaning. An example of this would be 
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a comet where the seasonal effects dominate the variation over time. In other cases the range of 

heliocentric distance obtained was not large enough for a meaningful power law to be obtained. For 3 

long-period comets we provide a mean value at 1 AU for pre- and/or post-perihelion but not a power-

law for the reasons stated above. These are C/2001 OG108 (LONEOS), C/2002 G3 (SOHO), and 

C/2002 O4 (Hoenig). 

 The error bars for the fitted slopes are given in the appropriate tables. Formal error bars for the 

fitted production rates are all quite small ranging between 1% and 5%. These are comparable to the 

individual uncertainties for each production rate given in the PDS tables of individual images and are 

indicative of internal systematic error resulting from the model fitting, background subtraction 

procedure and stochastic noise in the SWAN brightness.  These are also indicative of the relative 

uncertainties comparing different SWAN water production rates with one another. On the other hand 

absolute values of active areas have uncertainties as large as the uncertainties in our production rates, 

owing to uncertainties in model parameters such as molecular lifetimes, the intensity calibration of 

SWAN, uncertainty in the adopted absolute value of the solar flux from the LASP web site that 

contributes to the Lyman-alpha fluorescence used and the 6±3% uncertainty (Combi et al., 2005) 

coming from other sources of H atoms. Altogether we normally give an approximate absolute 

uncertainty to water production rates as ±30%. This would be indicative of comparisons of our water 

production rates with those determined by other observations, such as ground-based IR observations of 

H2O, ground-based or space-based observations of OH or radio observations of OH.  Because of the 

large ranges of values in the figures, most of the error bars are comparable to or smaller than the sizes 

of the data points.  

 For some short period comets of multiple apparitions it is clear that there is not much overall 

change from apparition to apparition, e.g. 2P, 21P, 45P, 46P and 96P. Data from multiple apparitions 

were taken together for calculating power-law variations with heliocentric distance. In section 4 below 
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these are compared with comets 19P, 55P and 141P that were only observed for one apparition each for 

purposes of correlation analyses.  

 For dynamical classification we have adopted the criteria given in the photometric survey study 

of A’Hearn et al. (1995) that is based on the value of the original semi-major axis (a0) of each comet. 

These values were determined from two sources: the JPL Horizons web site and the Minor Planet 

Center web site. A’Hearn et al. (1995) used values provided by Brian Marsden of the Minor Planet 

Center.  The Minor Planet Center (MPC) provides values of a0 for most of the comets. With the JPL 

Horizons tools one can calculate the osculating orbital elements at any desired date. For this work we 

picked a date of 1950.0 where all the comets in the survey were well past 50 AU on their inbound 

orbits and long before any influence of Neptune. In most cases the numerical values of a0 from the two 

sources were well within 10% of one another. For these we simply give the average of the JPL and 

MPC values. In a few cases a0 was very large, or more appropriately the calculated 1/a0 was very close 

to zero or even slightly negative (hyperbolic). It is expected that most hyperbolic orbits resulted from a 

stellar or planetary perturbations and not indicating original extra-solar comets. However, such comets 

would eventually leave the solar system. In a couple of cases either there was no MPC value so we give 

only the JPL Horizons value. When there was some difference in the numerical value of a0 between the 

two sources, the dynamical class was still the same.  

 The A’Hearn et al. dynamical classes are defined as follows:  

DN - dynamically new: a0 > 20000 AU; 1/ a0 < 50x10-6 

YL - young, long period: 20000 AU > a0 > 500 AU; 50x10-6< 1/a0 < 2000x10-6 

OL – old, long period: a0 < 500 AU; 1/a0 < 2000x10-6 

JF - Jupiter family 2.0< TJ < 3.0  

HF - Halley family TJ > 2.0  
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where a0 is the original semi-major axis for long period comets before entering the planet region of the 

solar system,  𝑇! =  !!
!
+ 2 !

!!
(1− 𝑒!) 𝑐𝑜𝑠 𝑖 , is the Tisserand constant with Jupiter, aJ is the semi-

major axis of Jupiter, a, e and i are the semi-major axis, eccentricity and inclination of the comet orbit, 

respectively. While the dynamically new class is based on a large original semi-major axis, A’Hearn et 

al. (1995) point out that this only means there is a 90% chance of a comet so classified is really on its 

first trip into the inner solar system. By the same token other long period comets, YL or OL, could 

have been only through the outer solar system previously and had their orbits changed to a smaller 

values of a0 but did not have a small enough perihelion distance to receive significant solar processing. 

Therefore, all dynamical classifications are necessarily probabilistic and not an exact indication of past 

thermal evolution.  

 Similarly, it is important to stress that the pre- and post-perihelion power-law results here also 

need to be understood only as ensemble properties of various populations of the comets observed and 

are indicative of a wide variety of physical responsible for cometary activity. For any individual comet, 

the pre- and post-perihelion power-laws could be heavily influenced by peculiar geometrical factors 

such as the angle between the spin axis and the orbital axis yielding seasonal effects owing to solar 

illumination patterns. Comet 17P/Holmes, for example, was only observed in 2007 in the aftermath of 

a huge outburst (Combi et al. 2007) and so a power-law variation with heliocentric distance makes 

little sense. Results from the Rosetta mission to comet 67P/Churyumov-Gerasimenko have shown that 

nucleus activity and its variation with heliocentric distance might very well be influenced by diurnal 

variations as the solar heat wave penetrates to different depths and by moderate scale changes in the 

surface due to refreshing of more icy vertical surfaces after mass wasting falls.  

 De Sanctis et al. (2015) have shown the deposition of surface and/or near surface ice from 

infrared spectra obtained with the Rosetta VIRTIS spectrometer as regions of the comet rotate into 
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darkness but at depth warmer areas continue to sublimate leaving more water closer to the surface. 

When the region returns into sunlight on the next rotation the water signature decreases in an hour 

indicating that the water then sublimates away. Similarly, but on a much larger scale, Fornasier et al. 

(2016) have shown from multicolor imaging of 67P with the Rosetta OSIRIS camera that the nucleus is 

overall "bluer" near perihelion than farther from perihelion indicating that the surface layers are 

enriched with water ice near perihelion when the heat wave penetrates much deeper. This might 

explain why the overall heliocentric distance variation of 67P is so steep, having a slope of -4.5 

(Fougere et al. 2016a and 2016b).  

 Images of the surface of 67P obtained by the Rosetta OSIRIS camera show the continuous 

evolution of a complex surface with evidence of activity on steeper vertical cliffs and the resulting 

material falls at the bottom of the cliffs. Vincent et al. (2016) have suggested that cometary dust jets 

actually result from activity on vertical fractured cliffs as well as in depressions because material can 

fall rather than leaving a covering dust mantle that could insulate those regions on the surface.  Based 

on the increased solar insolation exposure of the southern hemisphere the difference in steep slope 

structures between the northern and southern hemispheres have been quantified by Vincent et al. 

(2017). Even at larger heliocentric distance evidence for similar surface reprocessing in the form of ice 

and rock flow and fall has been very recently reported by Raponi et al. (2018) at the surface of Ceres 

by the Dawn spacecraft. 

 

3. SOHO/SWAN Survey Results – Long Period Comets 

 Table 1 contains the observational circumstances, dynamical classes and water production rate 

power-law results for 42 long-period comets observed by SWAN and analyzed over the past 20 years. 

The dataset is based on over 2600 images. Several comets were observed for a year or more with over 
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100 observations each, e.g. C/1995 O1 (Hale-Bopp), C/2001 Q4 (NEAT), C/2009 P1 (Garradd), 

C/2012 Q2 (Lovejoy), etc. Some others are represented by only a handful of images.  

 Figure 3 shows the pre-perihelion slopes as a function of the inverse original semi-major axes 

for the entire set of long-period comets. Figure 4 shows the post-perihelion slopes as a function of the 

inverse original semi-major axes for the entire set of long-period comets. In both cases comets with 

very large semi-major axis and conversely very small inverse semi-major axis are all plotted just to the 

right of the plot at a0 = 60000 AU, because the uncertainties in inverse semi-major axis are large. 

Figure 3 clearly shows a difference in pre-perihelion power-law slopes as a function of dynamical 

classes. The broadest variation in slopes ranging to values as low as -8 is confined to the OL class and 

being consistent with the most evolution. For those in the DN class slopes typically are in the range of -

3 to -1.  Those in the YL class are generally intermediate in range of slopes between the OL and DN 

classes. The behavior is consistent with a gradual steepening of the water production rate variation 

slope with age.   

 Figure 5 shows a scatter-correlation plot of pre-perihelion slope versus post-perihelion slope. 

There is no obvious correlation between the two. The main difference is that except for comet C/2014 

Q1 (PanSTARRS) with both slopes being very steep at -7.8 and -8.9, the majority of pre-perihelion 

slopes cover a somewhat narrower range than do the post-perihelion slopes. Note that the lower limit of 

the post-perihelion slope does not include comet C/1999 S4 (LINEAR) at -19.6 resulting from its total 

disintegration beginning very near perihelion. It's very flat pre-perihelion slope of -1.2 as well as its 

very large original semi-major axis are consistent with it having been truly dynamically new and on its 

first trip into the inner solar system.  

 

4. SOHO/SWAN Survey Results – Short Period Comets 
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 Table 2 gives the observational and orbital aspects and parameters of each of the short period 

comet apparitions that were observed by the SOHO SWAN instrument since launch in December 1995. 

As can be seen from the value of the Tisserand constant with Jupiter and the classification definition 

given in the previous section of this paper, all of the comets are Jupiter Family with the exceptions of 

55P/Tempel-Tuttle, 8P/Tuttle and 96P/Machholz 1. All these are well-known exceptions with 8P/Tuttle 

and 55P/Tempel-Tuttle being Halley Family comets and 96PMachholz 1 being a possibly captured 

Oort cloud or even extra-solar comet (Schleicher 2008).  Unlike some previous comet survey papers, 

we did not include population histograms of quantities such as inclination, Tisserand constant, or 

perihelion, because the results are not particularly illuminating. 

 Table 3 gives observational results of the individual apparitions of short period comets 

including the power-law fits to pre- and post-perihelion parts of the orbit when available and 

appropriate as well the pre- and post-perihelion active areas from the production rate at 1 AU using the 

method of Cowan and A'Hearn (1979) for a rotating nucleus. Table 4 gives a reduced set of short 

period comet results where the power-law fits for five multiple apparition comets have been taken 

together as well as where nucleus radii have been determined. We did not include comets 41P, 46P, or 

73P, which show considerable variation from apparition to apparition. 

 The trends of pre- or post-perihelion power law slopes with the short period comets' perihelion 

distance are weak. One might expect if increasing slope were a sign of evolution that the comets with 

smaller perihelion distances might tend to have steeper slopes, but the perihelion distance and slope are 

not correlated. In Figure 6 there is no obvious trend of pre-perihelion power-law slope with the 

perihelion distance. In Figure 7 there is a slight downward trend of post-perihelion power-law slope 

with the perihelion distance, but it is difficult to conclude it is significant. The short period comets in 

Figures 6 and 7 include multiple apparition comets (Table 4), which seem consistent over the 

apparitions covered, and single apparition comets, where there was a reasonable power-law fit.  
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 The same cannot be said about the active fraction, however. For the short period comets where 

there are measured values of the radius, it is possible to calculate the active fractional area of the comet 

by using the Cowan and A'Hearn (1979) method for calculation of the active area assuming a rapidly 

rotating nucleus and the power-law fitted production rate at 1 AU, and dividing by 4πrN
2, where rN is 

the radius of the comet, and water-driven sublimation from a dark nucleus. Errors in active fraction are 

driven by uncertainties in water production rates, determined nucleus radii, and the appropriateness of 

the Cowan and A'Hearn (1979) sublimation models used.  Published nucleus radii are determined by 

one or more of several methods (Lamy et al. 2004): photometry of bare nuclei at large heliocentric 

distance, combinations of visual photometry and thermal infrared flux, radar cross sections, and 

spacecraft flyby imaging.  

 Figures 8 and 9 show plots of the active fraction plotted against each comet's perihelion 

distance for the pre-perihelion and post-perihelion power-laws, respectively. For the comets that appear 

in Figures 8 and 9 we include error estimates in the notes to Table 3 that come from the original 

published papers or the mean of several published measured values. Comets 8P and 41P have radar 

cross sections. Radii of comets 19P, 67P and 103P have been determined by several methods but were 

verified in spacecraft flyby images. Radii of comets 2P and 21P were determined by traditional ground-

based methods but have quite small uncertainties of ± 0.3 and 0.05 km, respectively. The radius of 

comet 96P was also determined by traditional ground-based optical methods but Lamy et al. (2004) 

gives three very similar values of 3.5, 2.8 and 3.2 km which yield a mean error of ± 0.2 km. Similarly, 

46P which was the original Rosetta mission target comet has values of 0.62, 0.56, 0.7 and 0.6 km as 

well as some much larger upper limits. The average of 0.6 km has a mean uncertainty of ± 0.04 km. 

The two most uncertain are comet 41P with an optical value of 0.7 km and a lower limit of > 0.45 km 

from radar by Howell et al. (2017). Therefore for most of the comets in Figure 8 and 9 the uncertainties 

in radius are in the range of up to 20% which would yield an additional uncertainty to the active 
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fraction of up to ~40%. Since the range of abscissae in Figures 8 and 9 cover three orders of magnitude 

the apparent trends are quite valid even accounting for all sources of uncertainty. For both pre- and 

post-perihelion cases there are clear and obvious trends of small active fractions for small perihelion 

distances. This could very well be consistent with the increased solar exposure of comets with smaller 

perihelion distances on each orbit gradually decreasing the near surface coverage of sublimating ice 

and thus lowering activity levels per unit surface area.  

 

5.  Compositional Taxonomic Classes 

 Table 5 gives the standard ground-based carbon species taxonomic classifications of the set of 

comet observed by SWAN, namely typical and depleted. For this we have combined classifications 

found in the papers by A'Hearn et al. (1995), Fink and Hicks (1996), Fink (2009), Cochran et al. (2012), 

and a recent reclassification of visual ground based results from various published data by Dello Russo 

et al. (2016). The comprehensive multi-level classification of parent molecules in the infrared by Dello 

Russo et al. (2016) does not have enough comets in common with the SWAN set to make a meaningful 

comparison. Classification for C/2009 R1 (McNaught) was taken from the observations of Korsun et al. 

(2012) and that for C/2014 Q2 (Lovejoy) was taken from the observations of Venkataramani et al. 

(2016). Table 5 shows the SWAN comets for which typical and depleted classifications can be inferred 

by measurements of C2, CN and OH.  

 Table 6 shows pre- and post-perihelion slopes comparing short period, typical and depleted 

comets and long period, typical and depleted comets. Unfortunately, the averages are limited by small 

number statistics. There are some trends, however. First, in each taxonomic class there is no significant 

difference between pre- and post-perihelion populations of each, so in Table 6 we averaged pre- and 

post-perihelion slopes to increase the sampling set. Perhaps surprisingly for long-period comets the 

depleted comets had shallower average power-law slopes than did the typical comets. The depleted 
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short period comets had steeper slopes on the average than the typical short period comets. In additions, 

not surprisingly, the short period comets had steeper average power-law slopes than long period comets 

in general. For the comparison of long and short period comets the same trend was seen in the 

photometric survey of A'Hearn et al. (1995).  

 

6. Summary and Conclusions 

 The photometric composition survey of A'Hearn et al. (1995) provided a comparison of a 

limited number of production rate power-law exponent dependencies for OH, CN C2, C3 and NH, 

where OH can be considered a reasonable proxy for H2O. For OH they found a trend of steeper 

negative slopes going from Dynamically New pre-perihelion, Dynamically New post-perihelion Young 

Long-Period, Old Long-Period, Halley Family, Jupiter Family typical, and Jupiter Family depleted. In 

these cases their power-law exponents were generally only determined from a few points at different 

heliocentric distance. Our results shown in Figures 8 and 9 are consistent with the trend of the median 

values shown by A'Hearn et al. but having many more samples determined from wider and higher 

sampled production rate values shows the details are more complicated. We show a much wider range 

of slopes for long period comets with smaller original semi-major axes that would be classified as Old 

Long Period and a narrow range for those with large original semi-major axes that would be classified 

as Dynamically New or Young Long Period. We do see an average difference between pre- and post-

perihelion dynamically new comets, but having more samples shows there is still a considerable range 

in values about the mean or median.  

 For the short-period comets where nucleus radii have been determined there is a clear and 

consistent trend of larger active fractional area with larger perihelion distance. This would be consistent 

with an evolutionary trend of more processing for the comets with smaller perihelion distance caused 

by the larger orbit-integrated solar insolation.  There is, however, little correlation of power-law slope 
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with perihelion distance. For the long-period comets the main evolution trend is that the Old Long 

Period comets have a much wider range of power-law slopes than to Dynamically New or Young Long 

Period comets.   

 A possible difference in the manifestation of the evolutionary changes between short-period and 

long-period comets could be at what stage the evolution happened. The main effect of solar exposure 

on long-period comets we see likely happens on the comets' first or first couple of passes into the inner 

solar system. This is when the primordial surface layers that have long been at large distances from the 

sun are first sublimated away. In SWAN survey results there is both a small but significant difference 

in the pre- and post-perihelion power-law slopes as well as most clearly a change in the range of 

power-law slopes in progressing from the Dynamically New to Young Long Period and finally to Old 

Long Period.  Because of their short periods most short period comets had their first pass or two in the 

inner solar system at least several passes ago and fell into whatever their slopes are based mostly on 

seasonal effects and distribution of active regions on the surface.  The evolutionary trend of smaller 

active fractional areas with smaller perihelion distances is possibly seen after many more orbits around 

the sun.  The original more primordial surface layers of short period comets coming from the Kuiper 

belt are likely burned off after the first pass through the inner solar system upon capture by Jupiter.  

 Comparisons of power-law slopes with compositional taxonomic classes are complicated by the 

more limited overlap in comets observed by SWAN and those that have been classified by 

compositional surveys especially for the long-period comets. Even though there was difference 

between the distribution of pre- and post-perihelion slopes for the whole long-period comet set, for 

those which have a taxonomic classification there was no significant difference in pre- and post-

perihelion slopes, so both were averaged together for the purpose of comparison here. In this case the 

depleted long-period comets had shallower slopes than the typical long-period comets. This could be 

simply a difference with no evolutionary cause. For the short period comets that have been classified 
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by composition, the comparison was the opposite where the depleted short-period comets had steeper 

slopes than the typical short-period comets. It has been suspected that chemical depletion of volatile 

species may have no consistent evolutionary trend or show a difference between Oort cloud (long 

period) and Kuiper Belt (short period) origin (Mumma and Charnley 2011; Dello Russo et al. 2016).  

There is nothing in the results contained in the SWAN survey that goes against this idea; however there 

do seem to be consistent trends in power-law slopes and active fraction that are related to the evolution 

of the cometary nucleus.  
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Figure 1. Lyman-α brightness distribution around comet C/2009 P1 (Garradd) on 1 November 2011. 
The comet is at the center of the image. The analysis is done on circle of radius 8 degrees shown in 
gray shades. Each small square corresponds to a 1 degree pixel. The blue shades are the sky 
background, namely the interplanetary medium emission of hydrogen Lya and background stars. The 
locations of stars are indicated by red circles. Those stars that would interfere with the comet signal are 
masked and highlighted in red. The red line from upper left to lower right shows the location of the 
brightness profile shown in Figure 2.   
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Figure 2. A brightness profile through the position of comet C/2009 P1 (Garradd). The white line 
indicates the observed brightness distribution. The green peaked profile is the TRM fit to the comet 
distribution and the green line below is the TRM fit to the IPM background. Red lines indicate the 
presence of stars that are excluded from the analysis. The blue line is the observed brightness mainly of 
the background IPM. Brightness is in Rayleighs and distance is in AU.  
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Figure 3. Dependence of the variation of pre-perihelion slopes on long-period comet inverse original 
semi-major axis.  
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Figure 4. Dependence of the variation of post-perihelion slopes on long-period comet inverse original 
semi-major axis. The value of the post-perihelion slope for comet C/1999 S4 (LINEAR) is -19.6 and 
does not appear because it is a special case and for easier direct comparison between Figures 3 and 4.  
  

-9 

-8 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

0 

0.00001 0.0001 0.001 0.01 0.1 1 

1/a 	(AU			)-1



 30 

 

 
Figure 5. Correlation of pre-perihelion slopes with post-perihelion slopes for long-period comets. 
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Figure 6. Correlation of pre-perihelion slopes with perihelion distance for short-period comets. 
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Figure 7. Correlation of post-perihelion slopes with perihelion distance for short-period comets. 
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Figure 8. Correlation of pre-perihelion active fraction with perihelion distance for short-period comets. 
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Figure 9. Correlation of post-perihelion active fraction with perihelion distance for short-period comets. 
 
 



Table	1.	Summary	of	Long-period	Comets	Observations,	Orbital	Aspects,	and	Production	Rates	
	

Comet	 T-Perihelion	 T-Begin	 T-End	 N	 q	 1/a0	 Class	 Q1-pre	 p-pre	 Q1-post	 p-post	
C/1996	B2	(Hyakutake)		 19960501.3948	 -75.60	 66.58	 63	 0.230224	 1.52E-03	 OL	 5.05E+29	 -1.9±0.08	 4.12E+29	 -2.1±0.08	
C/1996	Q1	(Tabur)	 19961103.5291	 -59.535	 11.373	 32	 0.839815	 1.80E-03	 OL	 4.13E+28	 -1.0±0.1	 5.63E+27	 -4.0±2.2	
C/1995	O1	(Hale-Bopp)	 19970331.2270	 -240.124	 178.316	 142	 0.922110	 3.82E-03	 OL	 1.41E+31	 -2.4±0.02	 1.24E+31	 -2.7±0.1	
C/1997	O1	(Tilbrook)	 19970713.4193	 -14.095	 30.458	 16	 1.371803	 1.14E-02	 OL	 7.30E+28	 a	 8.10E+28	 a	
C/1998	U5	(LINEAR)	 19981221.7601	 -31.428	 -4.076	 11	 1.236452	 1.01E-02	 OL	 4.75E+28	 -2.1±0.2	 a	 a	
C/1999	H1	(Lee)		 19990711.1732	 -66.544	 69.933	 50	 0.708073	 1.31E-03	 YL	 2.86E+29	 -2.0±0.2	 2.35E+29	 -3.4±0.1	
C/1999	N2	(Lynn)	 19990723.0505	 -44.041	 65.450	 44	 0.761284	 3.45E-03	 OL	 4.11E+28	 -3.2±0.4	 3.72E+28	 -3.1±0.2	
C/1999	J3	(LINEAR)	 19990920.1662	 -36.386	 61.730	 28	 0.976811	 1.15E-03	 YL	 3.26E+28	 -4.1±0.5	 3.56E+28	 -0.13±0.3	
C/1999	S4		(LINEAR)	 20000726.1685	 -66.239	 19.448	 48	 0.765007	 3.21E-06	 DN	 3.22E+28	 -1.2±0.2	 4.02E+25	 -19.6±5.2	
C/1999	T1	McNaught-Hartley	 20001213.4205	 -40.428	 62.792	 52	 1.173711	 1.15E-03	 YL	 5.76E+29	 -2.4±0.7	 5.28E+29	 -3.3±0.2	
C/2001	A2	(LINEAR)	 20010524.5240	 -61.000	 64.906	 67	 0.778609	 1.07E-03	 YL	 7.35E+28	 -5.3±0.4	 1.44E+29	 -3.7±0.1	
C/2000	WM1	(LINEAR)	 20020122.6773	 -51.696	 46.379	 60	 0.555310	 5.32E-04	 YL	 1.08E+29	 -1.6±0.1	 2.36E+29	 -1.1±0.2	
C/2001	OG108	(LONEOS)	 20020315.0978	 -42.445	 28.197	 11	 0.994847	 7.65E-02	 OL	 2.35E+28	 a	 6.75E+27	 a	
C/2002	C1	IP153)	Ikeya-Zhang	 20020318.9828	 -44.542	 120.498	 63	 0.507934	 1.97E-02	 OL	 1.58E+29	 -2.9±0.2	 2.63E+29	 -2.6±0.1	
C/2002	G3	(SOHO)	 20020416.7000	 -40.270	 -9.068	 15	 0.079400	 1.02E-03	 YL	 2.18E+29	 a	 b	 a	
C/2002	O4	(Hoenig)	 20021001.9400	 -72.876	 17.858	 28	 0.775735	 -7.64E-04	 DN	 1.58E+28	 a	 5.30E+29	 a	
C/2002	X5	(Kudo-Fujikawa)	 20030128.9761	 -41.691	 50.615	 34	 0.190286	 1.07E-03	 YL	 9.19E+28	 -2.1±0.2	 5.53E+28	 -1.8±0.2	
C/2002	V1	(NEAT)		 20030218.2881	 -47.029	 65.061	 38	 0.099256	 2.29E-03	 OL	 8.62E+28	 -2.6±0.1	 1.78E+29	 -1.5±0.2	
C/2002	Y1	(Juels-Holvorcem)	 20030413.2491	 -88.291	 94.668	 62	 0.713667	 4.11E-03	 OL	 9.57E+28	 -3.6±0.1	 1.95E+29	 -2.4±0.1	
C/2002	T7	(LINEAR)	 20040423.0763	 -141.379	 105.474	 68	 0.614585	 2.89E-05	 DN	 1.10E+30	 -1.8±0.1	 3.55E+29	 -2.1±0.1	
C/2001	Q4	(NEAT)	 20040515.9546	 -212.872	 170.986	 147	 0.961886	 6.04E-05	 YL	 7.62E+29	 -2.1±0.1	 3.02E+29	 -1.7±0.1	
C/2003	K4	(LINEAR)	 20041013.7066	 -126.527	 125.092	 72	 1.023580	 2.79E-05	 DN	 4.83E+29	 -1.7±0.2	 5.62E+29	 -1.7±0.1	
C/2004	Q2	(Machholz)	 20050124.9190	 -143.724	 119.311	 78	 1.205709	 4.06E-04	 YL	 5.91E+29	 -2.0±0.1	 6.49E+29	 -3.7±0.1	
C/2006	M4	(SWAN)	 20060928.7285	 -79.025	 89.000	 51	 0.783008	 2.05E-04	 YL	 1.50E+29	 -2.7±0.2	 2.35E+29	 -2.9±0.2	
C/2006	P1	(McNaught)	 20070112.7991	 -35.886	 77.439	 60	 0.170752	 2.98E-05	 DN	 7.40E+29	 -2.1±0.1	 5.20E+29	 -2.5±0.1	
C/2007	F1	(LONEOS)	 20071028.7593	 -43.520	 34.790	 47	 0.402402	 -1.70E-04	 DN	 6.11E+28	 -1.0±0.1	 8.19E+27	 -3.9±0.1	
C/2007	N3	(Lulin)	 20090110.6117	 0.261	 101.321	 63	 1.211769	 3.12E-05	 DN	 b	 b	 1.78E+29	 -1.7±0.1	
C/2009	K5	(McNaught)	 20100430.0228	 -13.775	 27.522	 32	 1.422394	 4.94E-05	 DN	 b	 b	 1.46E+29	 -0.7±0.5	
C/2009	R1	(McNaught)	 20100702.6852	 -56.764	 47.193	 64	 0.405037	 -4.51E-05	 DN	 1.28E+29	 -1.9±0.1	 6.63E+28	 -2.7±0.1	
C/2009	P1	(Garradd)	 20111223.6776	 -129.718	 105.384	 117	 1.550537	 4.20E-04	 YL	 2.76E+29	 -0.5±0.2	 6.77E+29	 -3.2±0.2	



C/2012	E2	(SWAN)	 20120315.0351	 -12.084	 -6.112	 5	 0.007164	 2.36E-04	 YL	 5.11E+26	 -3.3±0.4	 b	 b	
C/2011	L4	(PanSTARRS)	 20130310.1699	 -44.470	 51.389	 50	 0.301545	 2.96E-05	 DN	 1.30E+29	 -1.3±0.1	 5.00E+28	 -2.3±0.3	
C/2012	F6	(Lemmon)	 20130324.5151	 -105.443	 99.409	 109	 0.731248	 2.19E-03	 OL	 3.20E+29	 -3.0±0.1	 4.80E+29	 -2.3±0.1	
C/2012	S1	(ISON)	 20131128.7792	 -34.901	 -5.148	 22	 0.012444	 -7.57E-05	 DN	 1.08E+29	 -3.0±0.1	 b	 b	
C/2013	R1	(Lovejoy)	 20131222.7339	 -69.730	 91.039	 141	 0.811819	 2.75E-03	 OL	 7.61E+28	 -2.2±0.1	 9.09E+28	 -1.6±0.1	
C/2012	K1	(PanSTARRS)	 20140827.6559	 -126.088	 102.044	 138	 1.054531	 2.46E-05	 DN	 2.00E+29	 -0.8±0.2	 1.90E+29	 -2.4±0.3	
C/2013	V5	(Oukaimeden)	 20140928.2249	 -38.435	 10.633	 41	 0.625506	 8.36E-06	 DN	 3.40E+28	 -1.0±0.1	 7.0E+28	 -0.2±0.02	
C/2014	Q2	(Lovejoy)	 20150130.0781	 -61.833	 122.456	 138	 1.290484	 1.99E-03	 YL	 2.30E+30	 -6.6±0.6	 1.90E+30	 -3.4±0.1	
C/2014	Q1	(PanSTARRS)	 20150706.5128	 -46.609	 34.885	 31	 0.314557	 1.20E-03	 YL	 5.30E+27	 -7.8±0.1	 9.10E+26	 -8.9±0.1	
C/2013	US10	(Catalina)	 20151115.7201	 -137.27	 97.077	 119	 0.822956	 5.97E-05	 DN	 2.80E+29	 -1.6±0.1	 1.60E+29	 -1.9±0.1	
C/2014	E2	(Jacques)	 20140702.5164	 -88.844	 110.226	 97	 0.663946	 1.25E-03	 OL	 1.50E+29	 -2.4±0.2	 1.10E+29	 -1.7±0.1	
C/2015	G2	(MASTER)	 20150523.8022	 -45.896	 34.098	 59	 0.779772	 5.45E-05	 YL	 4.10E+28	 -1.8±0.2	 6.65E28	 -0.7±0.3	
C/2013	X1	(PanSTARRS)	 20160420.7226	 -127.769	 102.222	 121	 1.314254	 2.41E-04	 YL	 8.20E+29	 -3.0±0.1	 2.70E+29	 -2.2±0.1	

 
Notes	to	Table	1	
T-Perihelion	-	Date	of	perihelion	yyyymmdd.frac	
T-Begin	-	Start	time	image	in	days	from	perihelion	
T-End	-	End	time	image	in	days	from	perihelion	
N	-	number	of	images	
q(AU)	-	perihelion	distance	in	AU	
a0	(AU)	-	original	semi-major	axis	
Class	-	DN	(dynamically	new),	YL	(young	long	period),	OL	(old	long	period),	following	A'Hearn	et	al.	(1995),	see	text	for	definition	
Q1-pre	-	production	rate	at	1	AU	from	power	law	fitted	to	pre-perihelion	observations	
p-pre	-	power-law	exponent	fitted	to	pre-perihelion	observations	
Q1-post	-	production	rate	at	1	AU	from	power	law	fitted	to	post-perihelion	observations	
p-post	-	power-law	exponent	fitted	to	post-perihelion	observations	
a.	A	power	law	did	not	represent	the	variation	of	Q	with	r.	
b.	No	or	too	little	data	available.	
	



Table	II.	Observational	and	Orbital	Aspects	of	Short	Period	Comets	Observed	by	SOHO	SWAN	
	

Comet	 T-Perihelion	 T-Begin	 T-End	 N	 q	 e	 i	 a		 TJ	
2P/Encke	(1997)	 19970523.5987	 -3.179	 34.408	 15	 0.331396	 0.850014	 11.9294	 2.209513	 3.026452	

2P/Encke	(2000)	 20000909.6611	 -38.75	 34.765	 18	 0.339537	 0.846898	 11.7557	 2.217718	 3.025800	

2P/Encke	(2003)	 20031229.8768	 -28.244	 -2.477	 14	 0.338461	 0.847339	 11.7696	 2.217076	 3.025448	

2P/Encke	(2007)	 20070419.3117	 -30.174	 53.836	 38	 0.339269	 0.847040	 11.7543	 2.218024	 3.025237	

2P/Encke	(2010)	 20100806.5019	 7.242	 38.163	 7	 0.335869	 0.848338	 11.7831	 2.214589	 3.025628	

2P/Encke	(2013)	 20131121.6945	 -45.701	 -4.063	 38	 0.336127	 0.848232	 11.7790	 2.214742	 3.025716	

2P/Encke	(2017)	 20170310.0924	 -42.109	 40.938	 57	 0.335895	 0.848334	 11.7782	 2.214702	 3.025546	

8P/Tuttle	(2008)	 20080127.0256	 -18.759	 21.493	 33	 1.027117	 0.819800	 54.9832	 5.699872	 1.600663	

9P/Tempel	1		(2005)	 20050705.3153	 -0.577	 24.875	 9	 1.506167	 0.517491	 10.5301	 3.121531	 2.970018	

17P/Holmes	(2007)	 20070419.3117	 174.338	 199.001	 23	 0.339269	 0.847040	 19.1132	 2.218024	 3.001528	

19P/Borrelly	(2001)	 20010914.7055	 -72.586	 106.195	 76	 1.358096	 0.623798	 30.3238	 3.610018	 2.565162	

21P/Giacobini-Zinner	(1998)	 19981121.3205	 -1.208	 28.218	 18	 1.033713	 0.706483	 31.8588	 3.521816	 2.466428	

21P/Giacobini-Zinner	(2005)	 20050702.7605	 -54.877	 26.31	 39	 1.037914	 0.705691	 31.8109	 3.526613	 2.466711	

21P/Giacobini-Zinner	(2012)	 20120211.7347	 45.490	 27.158	 37	 1.030489	 0.707045	 31.9106	 3.517568	 2.466276	

24P/Schaumasse	(2001)	 20010502.6917	 9.592	 34.828	 4	 1.205203	 0.704923	 11.7505	 4.084368	 2.504373	

41P/Tuttle-Giacobini-Kresak	(2001)	 20010106.9664	 -47.354	 23.318	 34	 1.052233	 0.659237	 9.2255	 3.087873	 2.828496	

41P/Tuttle-Giacobini-Kresak	(2006)	 20060611.7914	 -40.537	 31.679	 27	 1.047777	 0.660413	 9.2280	 3.085445	 2.827795	

41P/Tuttle-Giacobini-Kresak	(2017)	 20170412.7519	 -12.081	 8.623	 13	 1.045044	 0.661243	 9.2293	 3.084937	 2.826863	

45P/Honda-Mrkos-Pajdusakova	(2001)	 20010329.9268	 -2.952	 50.023	 21	 0.528411	 0.825078	 4.2556	 3.020838	 2.581000	

45P/Honda-Mrkos-Pajdusakova	(2011)	 20110928.7813	 -33.093	 46.142	 46	 0.529641	 0.824626	 4.25233	 3.020066	 2.582336	

45P/Honda-Mrkos-Pajdusakova	(2017)	 20161231.2670	 -15.322	 47.465	 26	 0.532555	 0.823995	 4.24940	 3.025795	 2.581290	

46P/Wirtanen	(1997)	 19970314.1501	 -50.819	 47.957	 44	 1.063764	 0.656748	 11.7225	 3.099076	 2.818571	

46P/Wirtanen	(2002)	 20020826.6791	 -43.643	 64.142	 28	 1.058618	 0.657747	 11.7381	 3.093086	 2.819340	

55P/Tempel-Tuttle	(1998)	 19980228.0975	 -56.783	 59.802	 36	 0.976576	 0.905518	 162.4862	 10.336106	 0.637301	

67P/Churyumov-Gerasimenko	(1996)	 19960117.6564	 5.173	 34.15	 4	 1.300034	 0.630192	 7.1133	 3.515430	 2.746628	

67P/Churyumov-Gerasimenko	(2002)	 20020818.2877	 -2.723	 27.736	 10	 1.290650	 0.631750	 7.1240	 3.504820	 2.747102	

67P/Churyumov-Gerasimenko	(2009)	 20090228.2985	 2.231	 50.378	 28	 1.247284	 0.640337	 7.0418	 3.467924	 2.744986	

73P/Schwassmann-Wachmann	3	(2001)	 20010127.7149	 -24.731	 80.026	 52	 0.937355	 0.693815	 11.4061	 3.061401	 2.782496	

73P/Schwassmann-Wachmann	3-B	(2006)	 20060607.9244	 -65.189	 -9.886	 24	 0.939111	 0.693286	 11.3970	 3.061846	 2.783129	

73P/Schwassmann-Wachmann	3-C	(2006)	 20060606.9570	 -66.264	 53.485	 52	 0.939146	 0.693207	 11.3958	 3.061172	 2.783503	



81P/Wild	2	(1997)	 19970506.6272	 -37.071	 53.649	 33	 1.582622	 0.540221	 3.2426	 3.442136	 2.878274	

96P/Machholz	1		(1996)	 19961015.0696	 -15.728	 26.043	 8	 0.124718	 0.958637	 60.0742	 3.015207	 1.941717	

96P/Machholz	1	(2002)	 20020108.6268	 -14.317	 25.249	 12	 0.124110	 0.958243	 60.1857	 2.972196	 1.965408	

96P/Machholz	1	(2007)	 20070404.6194	 -23.725	 25.39	 24	 0.124618	 0.958684	 59.9553	 3.016216	 1.941834	

96P/Machholz	1	(2012)	 20120714.7852	 10.194	 20.198	 4	 0.123791	 0.959182	 58.2989	 3.032755	 1.942448	

103P/Hartley	2	(1997)	 19971222.0173	 -50.518	 97.534	 50	 1.031722	 0.700375	 13.6189	 3.443378	 2.639661	

103P/Hartley	2	(2010)	 20101028.2570	 -42.853	 45.608	 61	 1.058690	 0.695145	 13.6169	 3.472766	 2.639781	

141P/Machholz	2	(1999)	 19991209.9566	 -41.387	 47.507	 13	 0.748991	 0.751078	 12.8119	 3.008939	 2.708274	
	
Notes	for	Table	2	
T-Perihelion	=	Time	/Date	of	perihelion	yyyymmdd.fraction	
T-Begin	=	first	image	in	days	from	perihelion	
T-End	=	last	image	in	days	from	perihelion	
N	=	number	of	images	
q(AU)	=	perihelion	distance	in	AU	
e	=	eccentricity	of	orbit	
i	=	inclination	of	orbit	in	degrees	
a	=	semi-major	axis	of	orbit	in	AU	
TJ	=	Tisserand	constant	with	Jupiter	
	



Table	3.	Observational	Results	of	Individual	Apparitions	of	Short	Period	Comets	Observed	with	SOHO	SWAN	
	

Comet	 rN	 Q-1AU	 p-pre	 Q-1AU	 p-post	 AApre	 AApost	 AFpre	 AFpost	
2P/Encke	(1997)	 2.40	 b	 b	 2.13E+28	 -1.0±0.3	 -	 1.34	 -	 0.0185	
2P/Encke	(2000)	 2.40	 8.18E+27	 -3.1±0.7	 1.01E+28	 -3.2±0.5	 0.51	 0.63	 0.0071	 0.0088	
2P/Encke	(2003)	 2.40	 9.98E+27	 -1.0±0.2	 b	 b	 0.63	 -	 0.0086	 -	
2P/Encke	(2007)	 2.40	 1.60E+28	 -0.7±0.3	 9.12E+27	 -2.0±0.2	 1.00	 0.57	 0.0139	 0.0079	
2P/Encke	(2010)	 2.40	 b	 b	 5.11E+27	 -2.4±0.5	

	
0.32	

	
0.0044	

2P/Encke	(2013)	 2.40	 4.58E+28	 -2.4±0.1	 b	 b	 2.87	
	

0.0397	
	2P/Encke	(2017)	 2.40	 7.93E+27	 -1.1±0.2	 9.23E+27	 -2.1±0.2	 0.50	 0.58	 0.0069	 0.0080	

8P/Tuttle	(2008)	 2.25	 4.11E28	 -8.9±0.1	 3.42E28	 3.2±0.1	 2.58	 2.15	 0.0405	 0.0337	
9P/Tempel	1		(2005)	 2.72	 a	 a	 a	 a	 -	 -	 -	 -	
17P/Holmes	(2007)	 1.61	 a	 a	 b	 b	 -	 -	 -	 -	
19P/Borrelly	(2001)	 2.40	 2.80E+29	 -5.2±1.1	 3.50E+29	 -6.6±0.6	 17.56	 21.95	 0.2426	 0.3032	
21P/Giacobini-Zinner	(1998)	 1.82	 	b	 b	 4.04E+28	 -9.0±0.9	 -	 2.53	 -	 	0.0609	
21P/Giacobini-Zinner	(2005)	 1.82	 5.88E+29	 -1.7±0.4	 8.10E+28	 -18.5±3.5	 36.87	 5.08	 0.8858	 0.1220	
21P/Giacobini-Zinner	(2012)	 1.82	 2.30E+29	 -11.9±0.2	 2.44E+29	 -11.1±0.1	 14.42	 	15.3	 0.3465	 0.3268	
24P/Schaumasse	(2001)	 b	 b	 b	 b	 b	 -	 -	 -	 -	
41P/Tuttle-Giacobini-Kresak	(2001)	 0.70	 2.53E+28	 --5.9±0.1	 7.09E+29	 -7.9±0.5	 1.59	 44.46	 0.2578	 7.220	
41P/Tuttle-Giacobini-Kresak	(2006)	 0.70	 1.89E+28	 -2.6±0.5	 2.15E+28	 a	 1.19	 1.35	 0.1925	 0.2190	
41P/Tuttle-Giacobini-Kresak	(2017)	 0.70	 1.59E+27	 a	 4.07E+27	 a	 0.10	 0.26	 0.0162	 0.0413	
45P/Honda-Mrkos-Pajdusakova	(2001)	 0.39	 b	 b	 6.52E+27	 -3.6±0.4	 							-	 0.41	 -	 0.2139	
45P/Honda-Mrkos-Pajdusakova	(2011)	 0.39	 6.47E+26	 -6.6±0.1	 1.46E+28	 -2.8±0.1	 0.04	 0.92	 0.0212	 0.4790	
45P/Honda-Mrkos-Pajdusakova	(2017)	 0.39	 2.24E+27	 -4.2±0.2	 1.27E+28	 -2.0±0.1	 0.14	 0.80	 0.0735	 0.4167	
46P/Wirtanen	(1997)	 0.6	 1.78E+28		 -3.6±0.1	 1.84E+28		 	-0.9±0.1	 	1.12	 	1.15	 	0.0617	 	0.0637	
46P/Wirtanen	(2002)	 0.6	 2.13E+28	 a	 4.24E+28		 -3.9±1.4	 	1.34	 	2.66	 	0.0738	 	0.1469	
55P/Tempel-Tuttle	(1998)	 1.80	 4.95E+28	 -6.3±0.4	 4.13E+28	 -1.7±0.3	 3.10	 2.59	 0.0762	 0.0636	
67P/Churyumov-Gerasimenko	(1996)	 2.00	 b	 b	 4.43E+28	 -4.5±2.3	 									-	 2.78	 -	 0.0553	
67P/Churyumov-Gerasimenko	(2002)	 2.00	 b	 b	 a	 -12±11	 									-	 			-	 -	 				-	
67P/Churyumov-Gerasimenko	(2009)	 2.00	 b	 b	 2.32E+28	 -4.3±2.1	 										-	 1.46	 -	 0.0289	
73P/Schwassmann-Wachmann	3	(2001)	 1.26	 7.40E+28	 -0.8±3.0	 8.44E+28	 -2.1±0.3	 4.64	 5.29	 0.2326	 0.2653	
73P/Schwassmann-Wachmann	3-B	(2006)	 b	 1.75E+28	 -1.3±1.0	 b	 b	 1.10	 			-	 -	 						-	
73P/Schwassmann-Wachmann	3-C	(2006)	 b	 1.97E+28	 -2.2±0.4	 1.23E+28	 -6.9±0.9	 1.24	 0.77	 -	 					-	



81P/Wild	2	(1997)	 2.10	 a	 a	 a	 a	
	 	 	 	96P/Machholz	1		(1996)	 3.20	 7.12E+26		 -3.5±0.1	 6.84E+27	 -2.4±1.2	 0.045	 0.429	 0.00035	 0.0033	

96P/Machholz	1	(2002)	 3.20	 	1.74E+27	 	-2.4±0.3	 1.46E+28		 -0.8±0.8	 0.109		 0.916		 0.00085	 0.0071	
96P/Machholz	1	(2007)	 3.20	 2.54E+27		 -2.9±0.5	 	5.04E+27	 -2.3±0.2	 0.159		 0.316		 0.00124	 0.0025	
96P/Machholz	1	(2012)	 3.20	 b		 b	 4.33E+27	 	-2.9±0.4	 							-	 0.272		 -	 0.0021	
103P/Hartley	2	(1997)	 0.54	 3.94E+28	 -6.6±0.1	 3.08E+28	 -3.2±0.1	 2.47	 1.931	 0.6743	 0.5271	
103P/Hartley	2	(2010)	 0.54	 2.31E+28	 -14.0±1.0	 1.35E+28	 -7.2±1.2	 1.45	 0.847	 0.3953	 0.2310	
141P/Machholz	2	(1999)	 		b	 7.45E+27	 -0.4±0.9	 1.79E+27	 -5.3±1.1	 	0.47	 0.139	 		-	 								-	

 
Notes	for	Table	3	
rN	=	nucleus	radius	in	km.	
Q1-	pre	=	power	law	water	production	rate	in	molecules	s	-1	at	1	AU	for	pre-perihelion	observations	
p-pre	=	power	law	exponent	for	pre-perihelion	observations	
Q1-	post	=	power	law	water	production	rate	in	molecules	s	-1	at	1	AU	for	post-perihelion	observations	
p-post	=	power	law	exponent	for	post-perihelion	observations	
AA	pre	=	active	area	in	km2	at	1	AU	for	pre-perihelion	observations	
AA	post	=	active	area	in	km2	at	1	AU	for	post-perihelion	observations	
AF	pre	=	active	fraction	at	1	AU	for	pre-perihelion	observations	
AF	post	=	active	fraction	at	1	AU	for	post-perihelion	observations	
a.	A	power	law	did	not	represent	the	variation	of	Q	with	r.	
b.	No	or	too	little	data	available.	
References	for	nucleus	radii	rN	in	km	
2P/Encke	-	2.4±0.3	Fernandez	et	al.	(2000)	
8P/Tuttle	-	2.25±0.5	Equivalent	single	sphere	from	Harmon	et	al.	(2008);	Harmon	et	al.	(2010)	radar	observation	
9P/Tempel	1	-	Lamy	et	al.	(2007)	verified	by	s/c	flyby	
17P/Holmes	-	Snodgrass,	Lowry	and	Fitzsimmons	(2006)	
19P/Borrelly	-	2.40	Weaver	et	al.	(2003),	verified	by	s/c	flyby	
21P/Giacobini-Zinner	-	Pittichova	et	al.	(2008)	
41P/	Tuttle-Giacobini-Kresak	-	Lamy	et	al	(2004);	Howell	et	al.	(2017)	r>0.45	km	radar	
46P/Wirtanen	--	Lamy	et	al	(2004)	gives	individual	values	of	0.62	0.56,	0.7,	0.6	
45P/HMP	-	Fernandez,	J.	(private	communication);	Lowry	et	al.	(2003)	1.34km;	Tancredi	et	al.	0.33	km;		
67P/Churyumov-Gerasimenko	--	Lamy	et	al.	(2007),	mean	spherical	radius	agrees	with	Rosetta	images.		
46P/Wirtanen	-	Lamy	et	al.	(1998)	
55P/Tempel-Tuttle	-	Lamy	et	al.	(2004)	Comets	II	
73P/SW3	in	2001	-	Boehnhardt	et	al.	(1999)	
81P/Wild	2	-	Fernandez	et	al.	(2013)	
96P/Machholz	2	-	Schleicher	(2008);	Lamy	et	al.	(2004)	quotes	values	of	(3.5,	2.8	and	3.2)	that	gives	3.2	±0.2	
103P/Hartley	2	-	Lisse	et	al.	(2006)	verified	by	s/c	flyby	
	



Table	4.	Average	Results	for	Multiple-Apparitions	of	Short	Period	Comets	Observed	with	SOHO	SWAN	
	

Comet	 rN	 Q1-pre	 p-pre	 Q1-post	 p-post	 AApre	 AApost	 AFpre	 AFpost	
2P/Encke	
(1997,	2000,	2003,	2007,	2010,	2013,	2017)	 2.40	 6.59E+27	 -1.8±0.1	 1.04E+28	 -2.1±0.2	 0.58	 0.65	 0.0080	 0.0090	
21P/Giacobini-Zinner		
(1998,	2005,	2012)	 1.82	 4.79E+28	 -1.2±0.8	 4.54E+28	 -11.7±1.6	 3.00	 2.85	 0.0722	 0.0684	
45P/Honda-Mrkos-Pajdusakova		
(2000,	2011,	2017)	 0.39	 8.55E+26	 -5.9±0.3	 6.26E+27	 -3.7±0.2	 0.05	 0.39	 0.0281	 0.2054	
46P/Wirtanen	
(1997,	2002)	 0.6	 1.68E+28	 -3.6±0.7	 2.89E+28	 -3.4±1.3	 1.82	 1.09	 0.4615	 0.2769	
96P/Machholz	
(1996,	2002,	2007,	2012)	 3.20	 2.52E+27	 -2.5±0.7	 6.77E+27	 -1.9±0.2	 0.16	 0.42	 0.0012	 0.0033	
	
Notes	for	Table	4	
Comet	name	with	perihelion	year	of	apparitions	included	in	the	averages	
rN	=	nucleus	radius	in	km.	
Q1-	pre	=	power	law	water	production	rate	in	molecules	s	-1	at	1	AU	for	pre-perihelion	observations	
p-pre	=	power	law	exponent	for	pre-perihelion	observations	
Q1-	post	=	power	law	water	production	rate	in	molecules	s	-1	at	1	AU	for	post-perihelion	observations	
p-post	=	power	law	exponent	for	post-perihelion	observations	
AA	pre	=	active	area	in	km2	at	1	AU	for	pre-perihelion	observations	
AA	post	=	active	area	in	km2	at	1	AU	for	post-perihelion	observations	
AF	pre	=	active	fraction	at	1	AU	for	pre-perihelion	observations	
AF	post	=	active	fraction	at	1	AU	for	post-perihelion	observations	
	



Table	5.	Taxonomic	Classes	of	SWAN	Comets	
	
Typical	Short	Period:	2P/Encke,	8P/Tuttle,	9P/Tempel	1,	45P/Honda-Mrkos-Pajdusakova,	
46P/Wirtanen,	55P/Tempel-Tuttle,	67P/Churyumov-Gerasimenko,	103P/Hartley	2,	153P/	Ikeya-Zhang,	
141P/Machholz	2	
	
Depleted	Short	Period:	19P/Borrelly,	21P/Giacobini-Zinner,	81P/Wild	2,	96P/Machholz	1	
	
Typical	Long	Period:	C/1996	B2	(Hyakutake),	C/1995	O1	(Hale-Bopp),	C/1999	H1	(Lee),	C/2001	A2	
(LINEAR),	C/2000	WM1	(LINEAR),	C/2004	Q2	(Machholz),	C/2007	N3	(Lulin),	C/2009	R1	(McNaught),	
C/2012	F6	(Lemmon),	C/2012	S1	(ISON),	C/2014	Q2	(Lovejoy)	
	
Depleted	Long	Period:	C/1999	S4	(LINEAR),	C/2012	K1	(PanSTARRS),	C/2013	R1	(Lovejoy)	



 
Table	6.	Comparison	of	Water	Production	Power-law	Exponents	with	Taxonomic	Class	
	

Comet	 Number	of	Comets	 Power-Law	Exponent	
	

Typical	Short	Period	 4	 -3.25	
Depleted	Short	Period	 3	 -4.33	
Typical	Long	Period	 11	 -2.62	
Depleted	Long	Period	 3	 -1.82	
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