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Abstract By examining the origin of airmasses that arrive at Utqiaġvik (formerly Barrow), Alaska, soon after
polar sunrise (late January/early February), we identified periods when air arriving at Utqiaġvik had previously
resided primarily at higher latitudes in near total darkness. Upon illumination, these airmasses produced
high concentrations of reactive bromine, which was detected by differential optical absorption spectroscopy
as bromine monoxide (BrO). These observations are consistent with nighttime production of a photolabile
reactive bromine precursor (e.g., Br2 or BrCl). A large polar night source of photolabile reactive bromine
precursors would contribute seed reactive bromine to daytime reactive bromine events and could export
reactive halogens to lower latitudes and the free troposphere.

Plain Language Summary During the spring in the polar regions, unique halogen oxidizers
dominate atmospheric chemistry, altering the fate of pollutants such as mercury. The sources of these
oxidizers are not well understood, particularly during polar sunrise. Here we report the largest concentration
ever detected of one of these species, bromine monoxide (BrO). We find these high concentrations occur
when airmasses come out of the polar night, indicating a nocturnal source. Nocturnal production of reactive
halogens could act as a seed source for subsequent reactive halogen photochemistry and could export
reactive halogens from the polar night all winter.

1. Introduction

Polar springtime reactive halogen events (first reported by Tuckermann et al., 1997) and their impact on ozone
depletion (first reported by Barrie et al., 1988) andmercury deposition (first reported by Schroeder et al., 1998)
have been known for decades. Satellite observations show that reactive bromine is present in both the Arctic
and Antarctic sea ice regions (Chance, 1998; Richter et al., 1998; Wagner & Platt, 1998). However, the mechan-
ism of production and maintenance of high levels of reactive halogens, initiators of these events, and their
environmental controls are still elusive (Abbatt et al., 2012; Simpson et al., 2015). A number of field campaigns
(Frieß et al., 2011; Peterson et al., 2015; Pöhler et al., 2010; Pratt et al., 2013; Simpson et al., 2017) have been
carried out to investigate this phenomenon, but few of those studies covered the full halogen activation sea-
son. The Canadian Polar Sunrise Experiments and the ALERT2000 field campaigns were exceptions, observing
before and after polar sunrise, which is the time when the sun rises above the horizon for the first time since
the prior fall. A key finding from ALERT2000 was that Br2 and BrCl were produced in high concentrations right
at the time of polar sunrise (Foster et al., 2001), potentially pointing to a nocturnal source of photolabile halo-
gen species. More recently, studies using autonomous instrumentation and/or long-term monitoring sites
have expanded our knowledge of reactive halogen events outside of the traditional peak months of March
and April (Burd et al., 2017; Peterson et al., 2015, 2016). Specifically with respect to polar sunrise, Stohl
(2006) showed that wintertime polar airmasses can remain for days to weeks in total darkness before being
exposed to sunlight, which typically occurs by transport to lower latitudes. Therefore, we measured atmo-
spheric BrO in late January/early February from 2013 to 2018 to quantify reactive bromine levels and couple
those measurements with transport modeling to characterize airmass histories prior to sampling.

2. Methods

We calculated 3-day back trajectories using Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT;
Stein et al., 2015) and 1° resolution Global Data Assimilation System meteorology that arrive 50 m above sea
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level at the Barrow Arctic Research Center (BARC) building (71.3°N 156°W) near Utqiaġvik, Alaska, USA, for
every hour in late January/February. At each hourly location along this trajectory, we calculated the local solar
zenith angle that the parcel would have experienced. Because reactive bromine is produced by photolysis of
precursors such as molecular bromine (Br2), we calculated the photolysis rate coefficient for molecular
bromine J (Br2) using a clear-sky parameterization that is a function of solar zenith angle (Madronich, 2017;
Simpson et al., 2002; see supporting information). The product of J (Br2) times the duration of that time step
(hour) is a unitless number describing the average number of photolytic exposures a Br2 molecule would
have experienced. We summed the photolysis over the 3-day duration to give a trajectory-integrated clear-
sky photoexposure for that airmass at the arrival hour.

HYSPLIT calculations were used for routine hourly calculation of photoexposure throughout this period
because they are rapid; however, HYSPLIT does not model the dispersion and mixing of airmasses.
Therefore, we also use the FLEXible PARTicle dispersion model (FLEXPART) version 9.02 (Stohl et al., 1998,
2005; Stohl & Thomson, 1999) to study the potential emission source regions influencing measurements at
Utqiaġvik on specific dates of interest. For this application, FLEXPART is run in backward mode for specific
days of interest with particles released at the surface from Utqiaġvik (0–20 m above ground level) during a
1-hr period at local noon (release from 20:30 to 21:30 UTC, 11:30 to 12:30 AKST). We release 100,000 particles
and follow them back for 10 days to have an airmass history. To drive the FLEXPART model we use the
European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis meteorology on a
0.75° × 0.75° global grid (60 vertical levels) every 6 hr (00:00, 06:00, 12:00, and 18:00 UTC). We use the plume
centroid locations to calculate the photochemical exposure analogous to the HYSPLIT method described
above. We construct total column (0–20 km) and surface (0–200 m) potential emissions sensitivities (PESs)
for 10 days. The total column PES indicates the region the air resided for the 10 days prior to arriving at
Utqiaġvik. The surface (0–200 m) PES indicates where air was in contact with the surface and potentially sen-
sitive to surface emissions.

Bromine monoxide was detected by multiple axis differential optical absorption spectroscopy (MAX-DOAS)
using an instrument on the roof of the BARC building via methods described previously (Frieß et al., 2011;
Peterson et al., 2015; Simpson et al., 2017) Surface ozone was measured at the NOAA Earth Systems
Research Laboratory Global Monitoring Division site near BARC (McClure-Begley et al., 2014).

3. Results

MAX-DOAS detects BrO bymeasuring scattered sunlight, so observations can only begin after polar sunrise at
BARC, which happens around 22 January. Therefore, we looked for the first date of each year after polar
sunrise at BARC when airmasses came southward toward BARC from the region of polar night. As the season
progresses into February, the region of total polar night moves northward, and around the second week of
February, the region of polar night has moved more than 500 km north of Utqiaġvik, which is sufficiently
far that transport from polar night to BARC is unlikely to occur in fewer than 24 hr. Therefore, only in the per-
iod from late January to mid-February is it possible to observe BrO in airmasses with low prior photoexposure.
We identified the first date of arrival of minimum photoexposure (polar night) airmasses for each year from
2013 to 2018, which are shown in Table 1.

We find that on each of these polar night airmass arrival dates, high amounts of BrO were detected in the
atmosphere. The peak BrO differential slant column density (dSCD) detected at 1° elevation viewing angle
compared to the zenith view on that date is listed in Table 1. For comparison, note that five of these six events
exceed the 90th percentile daily maximum BrO 1° dSCD fromMarch–May 2012 to 2016, and the 2017 event is
the largest ever observed at Utqiaġvik. Figure 1 shows DOAS spectral fits for a composite of all daytime spec-
tra observed on that date and shows BrO absorption that matches a laboratory-measured BrO reference
spectrum, conclusively showing high levels of BrO. We additionally used the HeiPro optimal estimation
method (Frieß et al., 2011; Peterson et al., 2015; Simpson et al., 2017) to model BrO lower tropospheric vertical
column density (LT-VCD) and 0- to 200-m mixing ratio (MR), the results of which are shown in Table 1 and in
supporting information Figure S3. The magnitude of these reactive bromine events are high compared to
past observations (Morin et al., 2005; Peterson et al., 2015; Simpson et al., 2007), and 90 pmol/mol is double
the prior highest observed surface MR (Pöhler et al., 2010). Although it has been noted that MAX-DOAS obser-
vations of surface MR can be systematically high during aerosol particle-rich or cloudy conditions (Frieß et al.,
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2011), five of these six dates were low-aerosol cases with typical aerosol optical depth < 0.2 (supporting
information Figure S3).

Figure 2 shows a FLEXPART simulation for particles arriving at BARC on 9 February 2017 and demonstrates
that this airmass transported south from higher latitudes, where it was still polar night, before arriving at
Utqiaġvik. The shaded area shows the location of total polar night at the midpoint during the 10 days of
the FLEXPART run, 4 February 2017. A great deal of the potential emission sensitivity of this simulation lies
within this region of polar night, particularly the Arctic Ocean and adjacent Russian coastal areas, demonstrat-
ing that the air arriving at BARC had large influences from air that spent up to 10 days in polar night.

To examine the relationship between reactive halogen (BrO) events and prior airmass exposure to light,
Figure 3 shows these quantities in the period 1–20 February 2017. The years 2013–2016 and 2018 are shown
as supplemental figures. Top panel in Figure 3 shows that the minimum of the clear-sky photoexposure
occurs on 9 February 2017 (AKST), with the airmass experiencing about 20 photoexposures on the prior part
of the trajectory and that the airmass had been in near total darkness.

Figure 3 lower panel shows that BrO is highly elevated on this date, with a peak 1° dSCD of about
17 × 1014 molecules per square centimeter. Other BrO events occur after this first event, as is common during
springtime, but those airmasses had been exposed to significantly more sun light (photoexposure) before
their arrival at BARC, so they could have had BrO produced by typical springtime photochemistry as is com-
mon in March–May in the Arctic (e.g., Frieß et al., 2011; Hönninger & Platt, 2002; Peterson et al., 2016; Pöhler
et al., 2010). The first event of the season, however, experienced only about 20 calculated clear-sky photoex-
posures before arrival at BARC, so somehow produced large amounts of BrO with relatively little prior photo-
chemistry. Examining the other cases of first arrival of a polar night airmass in the years 2013–2016 and 2018

summarized in Table 1 and shown in supporting information Figures S5–S9,
we see that the first event of the year commonly occurs with very low (<20
clear-sky photoexposures) prior exposure to photolysis and is associated
with high BrO abundance (Table 1). MAX-DOAS analysis also shows that
NO2 is low (within error of 0) on these dates, assuring that we are not sam-
pling local pollution from Utqiaġvik.

Late January/February ozone observations (supporting information
Figure S10) were typically at background levels (30–40 nmol/mol) in the
early part of the month and ozone depletion events (O3 < 20 nmol/mol)
do not typically occur until the last week of February, indicating that photo-
chemistry is weak at the time of these late January/early February large BrO
events. Specifically, the polar night airmass arrival dates (Table 1) showed
non-depleted ozone levels (25–37 nmol/mol) at sunrise (see supporting
information Figure S3) and ozone decay rates between 0 and
~4 nmol·mol�1·hr�1. The largest ozone loss rate occurred on 9 February
2017, the date of highest surface BrO MR. The non-depleted ozone levels
on these dates indicates that the airmasses had not been highly processed
by reactive halogen chemistry prior to arrival at Utqiaġvik and are consis-
tent with the airmasses being in the dark before arrival.

Figure 1. Spectral confirmation of BrO on 9 February 2017 using a composite
of all daytime spectra. The BrO differential slant column density is
1.47 × 1015 molecules per square centimeter. See supporting information
Figure S4 for fits to other gases.

Table 1
Arrival Dates of First Polar Night Airmasses With Peak BrO dSCD, LT-VCD, and MR and Photoexposures Prior to Arrival Day

Date (AKST)
BrO 1° dSCD (molecules
per square centimeter)

BrO LT-VCD (molecules
per square centimeter)

BrO 0- to 200-m MR
(pmol/mol)

Prior
photoexposure

1 Feb 2013 9 × 1014 5 × 1013 48 ~10
7 Feb 2014 7 × 1014 4 × 1013 35 ~5
3 Feb 2015 3 × 1014 3 × 1013 20 ~20
6 Feb 2016 5 × 1014 4 × 1013 32 ~20
9 Feb 2017 17 × 1014 13 × 1013 90 ~20
30 Jan 2018 10 × 1014 N/A 55 ~10

Note. dSCD = differential slant column density; LT-VCD = lower tropospheric vertical column density; MR = mixing ratio.
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To consider the degree to which these airmasses resided in the dark, we used the 10-day FLEXPART simula-
tions to calculate photoexposure on longer timescales, where dispersion of the airmass will become more
important. Figure 2 shows that the plume center remained for 10 days within the region of total polar night
and that a large amount of the surface potential emission sensitivity was also within this circle of darkness. In
the supporting information, Figure S11, we calculated integrated photoexposure for the peak BrO day on
each year. We find that the exposure is between 4 days (2014) and >10 days (2013 and 2017) for <30 inte-
grated Br2 photoexposures. The lack of exposure to sunlight on this timescale is also visible in supporting
information Figures S12 and S13, which show the FLEXPART simulations for each year.

4. Discussion

Reactions of nocturnal nitrogen oxides (e.g., N2O5) with NaBr (sea salt bromide) that produce photolabile bro-
mine precursors (BrNO2) have been studied and their atmospheric importance has been considered
(Finlayson-Pitts et al., 1990). Similar reactions of N2O5 with chloride-containing particles that produce photo-
labile nitryl chloride have been definitively observed in the field through mass spectroscopy (Osthoff et al.,
2008; Thornton et al., 2010), providing further evidence that nitrogen oxides can activate halogens through
dark reactions (reactions not involving photolysis). Our MAX-DOAS observations episodically identified local
NOx pollution (coming from Utqiaġvik, which lies 5 km southwest of BARC) at the >1-nmol/mol level, but
these specific dates of polar night airmass arrival are below NOx detection limits (estimated to be
~200 pmol/mol), consistent with the airmasses arriving from the polar ice cap. However, below detection
levels of NOx, potentially from local pollution or produced by snowpack photochemistry before the airmass
entered polar night (Honrath et al., 2002; Jones et al., 2001) or past exposure of these airmasses to NOx could

Figure 2. Ten-day surface potential emission sensitivity (PES) for particles arriving at Utqiaġvik (BARC, light blue circle) at
12:00 on 9 February 2017 (AKST). The boxed numbers on the map show the position of the plume centroid location in
days before the arrival at Utqiaġvik. Within the shaded region, the sun has not yet risen at the midpoint of this calculation, 4
February 2017 (>74°N).
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have produced photolabile bromine species via this mechanism. Therefore, dark reactions of nitrogen oxides
with sea salt could be a mechanism consistent with our observations of high BrO in airmasses arriving from
the polar night.

Oum et al. (1998) proposed that ozone oxidizes bromide (Br�) on ice surfaces to produce Br2, providing
another potential dark mechanism. Similar chemistry involving ozone oxidation of iodide at the sea water
interface has been demonstrated (Carpenter et al., 2013) and provides analogous support for the mechanism
of ozone oxidation of halides. Hirokawa et al. (1998) also observed that NaBr reacts with O3 in the presence of
water to produce Br2, and Hunt et al. (2004) provided evidence that this reaction may occur via a surface com-
plex. Oum et al. (1998) estimate 0.6-pmol/mol Br2 could be produced in 10 hr at an ozone exposure of
40 nmol/mol. Therefore, airmasses that remain in the dark for 10 days could would produce an estimated
14-pmol/mol Br2, which would photolyse and react with ozone to produce to ~28-pmol/mol BrO, which is
typically less than, but within an order of magnitude of, the observed BrO levels. In addition, polar airmasses
may reside in the dark for longer than 10 days due to the efficiency of the Polar Dome in inhibiting transport
to lower latitudes, (Klonecki et al., 2003; Stohl, 2006) so even very slow dark reactions may be important.
Further laboratory and modeling investigations of dark production mechanisms is clearly necessary, but it
appears that these or other unknown mechanisms could produce photolabile bromine precursors that could
explain the high BrO concentrations observed here.

Mass-spectroscopic field investigations (Foster et al., 2001) have shown evidence for production of photola-
bile bromine species at the time of polar sunrise near Alert, Canada. Foster et al. (2001) observed Br2 MRs of
up to 25 pmol/mol and BrCl of up to 35 pmol/mol. Production of either Br2 or BrCl in the dark could build up a
reservoir of photolabile bromine species over time, which then release reactive bromine upon exposure to
sunlight through reactions 1 and 2.

Figure 3. BrO observations related to prior exposure of airmasses to photolysis. The top panel shows the clear-sky photo-
exposure calculated along a HYSPLIT 3-day back trajectory (red line) and on the day of arrival at BARC (blue dashed line).
The bottom panel shows BrO dSCD as a function of view elevation angle versus time. dSCD = differential slant column
density.
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Br2 þ hv→2Br (1)

2x Brþ O3→BrOþ O2½ � (2)

Photolysis of Br2 and BrCl at levels observed by Foster et al. (2001) followed by reaction of Br radicals with
ozone would lead to 50- and 35-pmol/mol BrO, respectively, in qualitative agreement with the observed
levels in this study (Table 1).

Typical springtime reactive bromine release is believed to proceed through reactions 1 and 2 followed by
reaction of BrO with radicals (e.g., HO2) to reform Br2 in sequence below (Fan & Jacob, 1992; McConnell
et al., 1992):

BrOþ HO2→HOBrþ O2 (3)

HOBrþ HBr on surfacesð Þ→Br2 þ H2O (4)

This bromine explosion (Platt & Janssen, 1995; Wennberg, 1999) sequence only amplifies reactive bromine
during daytime, so it would not be responsible for nocturnal formation. It is possible that nocturnally formed
reactive bromine precursors could be amplified on the day of detection via faster daytime photochemistry
(Nissenson et al., 2014), but Figures 3 and S3 shows that most of these cases do not show an increase in
BrO over the detection day. This traditional mechanism is also likely to be slowed under the low solar eleva-
tion conditions of late January/early February because HO2 is produced photochemically and would be
expected to be at low concentrations, so reaction 3 is likely to be slow. However, it is possible that there is
nocturnal formation of HO2 precursors that could photolyse to HO2 radicals, which are then converted to
reactive bromine radicals via reactions 4 + 1. To the extent that HOBr may be formed by these reactions or
other dark mechanisms, it is likely to be converted to Br2 by reaction 4, which has been shown to be fast
in multiple studies (Fickert et al., 1999; Huff & Abbatt, 2002; Wachsmuth et al., 2002). Recently Nerentorp
Mastromonaco et al. (2016) suggested a dark source of bromine could be responsible for observed mercury
and ozone depletion in the Antarctic wintertime.

Ozone depletion occurs through reaction 2 followed by reactions of BrO that reform Br2, but because the
sun is very low at this time of year, photolysis of Br2 (reaction 1) limits the ozone depletion process. For
example, on 9 February 2017, Br2 experiences approximately 50 photoexposures, causing reaction 2 to
occur 50 times for each BrO present (~90 pmol/mol), depleting 4.5-nmol/mol O3, which is consistent with
the small ozone depletion observed on this date. Other dates have less reactive bromine and lower photo-
exposure, which is consistent with the lower observed ozone loss rates. Overall, these considerations
indicate that these early season BrO events are different from typical ozone depletion events that occur
under higher photoexposure in March–May. For these reasons, it appears that the formation of high BrO
abundances in polar night airmasses is due to a dark mechanism rather than traditional bromine
release chemistry.

5. Conclusions

We observe unprecedented levels of BrO, up to 90 pmol/mol and tropospheric vertical column density of
1.3 × 1014 molecules per square centimeter during February 2017 at Utqiaġvik, Alaska. Four of the other five
maxima also exceeded the 90th percentile of BrO observations fromMarch–May 2012 to 2016, indicating that
late January/early February often has episodes of very high BrO. Back trajectory analysis shows that these
peak BrO measurements occurred in air that received minimum prior photolysis of Br2, indicating a nocturnal
source of reactive bromine.

The observation of a nighttime formation mechanism of photolabile bromine species is important because it
would imply that the wintertime Arctic Ocean could be producing high concentrations of photolabile bro-
mine gases that would then transport southward to sunlight and release reactive bromine species.
Although some of this photolabile bromine reservoir will be trapped under the polar dome, vertical mixing
could loft these photolabile species where they could then inject reactive bromine into the lower-latitude
free troposphere, potentially enhancing the free-tropospheric BrO loading. Nocturnally produced photolabile
bromine would also provide seed reactive bromine for the traditional photochemical bromine release
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mechanism on subsequent days. Direct measurement of Br2 and BrCl in nighttime airmasses and determina-
tion of the production mechanism and its rate are needed.
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