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Evidence for Quaternary climate change in East Africa has been
derived from outcrops on land, lake cores and from marine dust,
leaf wax and pollen records. These data have previously been
used to evaluate the impact of climate change on hominin evo-
lution, but correlations have proven to be difficult given poor
data continuity and the great distances between marine cores and
terrestrial basins where fossil evidence is located. Here we present
the first continental coring evidence for progressive aridification
since about 575 thousand years ago (ka), based on Lake Magadi
(Kenya) sediments. This long-term drying trend was interrupted
by many wet-dry cycles, with the greatest variability developing
during times of high eccentricity-modulated precession. Intense
aridification apparent in the Magadi record took place between
525–400 ka, with relatively persistent arid conditions after 350 ka
and through to the present. Arid conditions in the Magadi Basin
coincide with the Mid-Brunhes Event and overlap with mammalian
extinctions in the South Kenya Rift between 500–400 ka. The
525–400 ka arid phase developed in the South Kenya Rift between
the period when the last Acheulean tools are reported at about
500 ka and prior to the appearance of Middle Stone Age artefacts
by about 320 ka. Our data suggest that increasing mid-late Pleis-
tocene aridification and environmental variability may have been
drivers in the physical and cultural evolution of H. sapiensin East
Africa.

Quaternary | paleoclimate | paleolimnology | hominins | Lake Mag-
adi

Several hypotheses have attempted to explain human evolu-
tion and its possible relationship with environmental change (1,
2). The savannah hypothesis suggested that bipedalism resulted
from hominins moving from forests to grassy savannas (3). Other
theories emphasized climate as an evolution driver, including
the aridity, turnover pulse, variability selection and accumulated
plasticity hypotheses (4–7). Evaluation of these ideas has been
hindered by a lack of basin-scale records that can provide a
high-resolution environmental context. The Hominin Sites and
PaleolakesDrilling Project (HSPDP) has attempted to fill this gap
by providing continental sedimentary records that can be linked
to nearby hominin fossils and artefacts in Ethiopia and Kenya (8).

Here we present evidence from the southernmost HSPDP
site, at Lake Magadi (Fig. 1), that is relevant to debates about
the climatic context of human evolution, from an area close to
some of the most important records of hominin prehistory. The
Lake Magadi record spans the past one million years (Fig. 2;
see SI Appendix text, Figs. S1–3 and Tables S1–7 for details of
dating methods) and can be compared with a 1.2 million-year
(Ma) sequence at Olorgesailie, 25 km to the northeast (9–11).
The Olorgesailie deposits and archeological record document a
transition from Acheulean to Middle Stone Age (MSA) toolkits
(12–14), with the Magadi core, and cores from the neighboring
Koora Basin drilled by the Olorgesailie Drilling Project (8, 15),
covering the period when H. sapiens emerged in Africa (16). The

Magadi and Olorgesailie records also span a turnover in large
mammals before 320 ka (14), which has also been documented
at Lainyamok between 500–400 ka, 15 km west of Magadi (17).
Thus, LakeMagadi is located in a region containing archeological
and paleontological Middle Pleistocene sites that provide critical
information about the relationships between climate dynamics
and human prehistory.

LakeMagadi is a seasonally flooded saline alkaline pan about
606 m above sea level in the South Kenya Rift (Fig. 1a) sur-
rounded by poorly correlated cherts, silts and evaporites (18–19).
Core HSPDP-MAG14-2A (hereafter MAG14-2A, Fig. 1b) in-
cludes trona, zeolitic mud, chert, tuff, and carbonate grainstone
deposited in a regional tectonic sump that has been occupied
by a lake since eruption of the underlying lavas (1.08 Ma). This
study combines geochemical, mineralogical, diatom and pollen
analyses that indicate a trend towards a more saline, alkaline lake
and a more arid climate from about 575 ka to the present. This
progressive change was interrupted by wetter episodes, but was
directional in overall character towards increasing aridity.

Results
Progressive changes in geochemistry and mineralogy. Loss on
Ignition (LOI) at 1,000°C (Fig. 2a; SI Appendix, Table S7) indi-
cates combustible carbonates (calcite, trona) and organic matter.
High LOI values before 950 ka, or 187 meters below surface
(mbs), reflect shallow water carbonate grainstones. LOI (550°C)
is low (<3%) between 950–800 ka (187–178 mbs) with higher val-

Significance

Previous research hypotheses have related hominin evolution
to climate change. However, most theories lack basin-scale
evidence for a link between environment and hominin evolu-
tion. This study documents continental, core-based, evidence
for a progressive increase in aridity since about 575 ka in the
Magadi Basin with a significant change from the Mid-Brunhes
Event (∼ 430 ka). Intense aridification in the Magadi Basin
corresponds with faunal extinctions and changes in toolkits
in the nearby Olorgesailie Basin. Our data are consistent with
climate variability as an important driver in hominin evolution,
but also suggest that intensifying aridity may have had a
significant influence on the origins of modern H. sapiens and
the onset of the Middle Stone Age.
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Fig. 1. Core location and lithology. a, Location of MAG14-2A and 1A and
geology. b,Sediment log for MAG14-2A; c=clay, m = mud, si = silt, s = sand, e
= evaporites.

ues (5–20%) in younger sediments suggesting greater lake floor
anoxia. Major increases in LOI in sediments <111 ka (65 mbs)
reflect increases in organics and trona, which accumulated in
highly saline alkaline, anoxic waters. Na/Ca ratios increased with
time (Fig. 2a) as a result of a shift from calcium-rich (calcite, Mg-
calcite) to Na- and K-rich (erionite, trona) chemical sediments.
The upward decline in Ca probably reflects early precipitation
of CaCO3 near shorelines where streams entered an alkaline
paleolake and relative increases in groundwater contributions, as
drier conditions developed, which would have favored lower Ca
through subsurface precipitation.

Mineralogical data also document progressive changes (Fig.
2a). Authigenic minerals are dominated by calcite andMg-calcite
in sediments >385 ka (103 mbs), indicating fresh to mildly saline
groundwater. Analcime occurs throughout the core with other
zeolites accumulating since 375 ka, indicating a shift towards
more saline alkaline conditions. The zeolites formed from Na-
Al-Si alkaline spring gels washed into the basin or by alteration
of aluminosilicate minerals or volcanic glass (20). Trona was
deposited after 111 ka (65 mbs) in highly saline, alkaline water.

Diatom and pollen stratigraphy. Diatoms are absent in
MAG14-2A sediments >545 ka (132 mbs), but are present in
basal limestones in a second core, MAG14-1A (Fig. 1a), where
benthic and epiphytic taxa indicate freshwater swamps. A few
cherts contain Anomoeoneis sphaerophora, a moderate to high
salinity taxon present in shallow springs today (21). The oc-
currence of diatoms only in well-cemented chert and limestone
suggests they may have dissolved from unlithified deposits. The
dominant taxa in the diatomaceous interval (about 545–16 ka;
132–38 mbs) include mixed planktonic freshwater (Aulacoseira
granulata,A. agassizi) and saline species (Cyclotella meneghiniana,
Thalassiosira faurii; details in SI Appendix, Fig. S4 and Dataset
S1), suggesting a deep meromictic lake with permanent saline

Fig. 2. Core chronology, geochemistry and mineralogy. a, Geochemistry
and mineralogy. LOI (550/1000) = Loss on Ignition and ignition temperatures
(centigrade). Profile of Na/Ca ratios. Major authigenic minerals (excluding
clays, quartz, feldspar) determined by X-ray diffraction. Minerals ordered
to reflect generally higher salinities to the right. b,Bayesian chronological
model. 1 = Excluded 14C date that fails to follow a monotonic ordering. 2 =
Excluded 40Ar/39Ar date from a single crystal. Two chert dates from samples
later found to contain secondary chalcedony were also excluded from the
model. See SI for details.

waters that were periodically overtopped by fresh fluvial inputs.
The evidence for flooding is supported by intermittent freshwater
benthic taxa (22) such as Cocconeis placentula, Encyonema muel-
leri and Epithemia spp.

Mean transfer functions for all diatoms indicate pH of about
7.4–11.4 and conductivities of 300–40,000 μS cm-1 (Fig. 3). How-
ever, given the evidence for episodic meromixis, there is a need to
recalculate the data separately for surface freshwater and deeper
saline water taxa (Fig. 3), which suggests that the pHof freshwater
inputs ranged between 7.3–8.5 with conductivities of 200–2,000 μS
cm-1. The saline floras document increased pH after about 385 ka
(103 mbs), from 9.2–10 to 9.4–11.5. An absence of diatoms after
about 18 ka suggests that pH and conductivity exceeded tolerance
limits or resulted in dissolution.

Grasses (Poaceae) dominated with a smaller sedge (Cyper-
aceae) component before about 900 ka (184 mbs), with pollen
not preserved between 900–735 ka (184–168 mbs) (Fig. 4; de-
tailed floras in SI Appendix, Figs. S9–S10 and Dataset S2),
possibly due to oxygenated conditions. Cyperaceae increased
relative to Poaceae between about 735–520 ka (168–127 mbs)
and dominated between 605–568 ka (143–136 mbs), with other
minor aquatics (Typha, Potamogeton), suggesting shallow fresh
waters (21). There were also significant increases in Podocarpus
(735–520 ka) and Olea (698–635 ka; 160–147 mbs) with Junipe-
rus appearing after 735 ka. Podocarpus is common in modern
upland forests in Kenya and, where abundant, has been used to
infer expansion of Afromontane forests or changes in fluvially-
transported regional pollen (23, 24). The parallel trends for
Podocarpus, Cyperaceae and the other aquatic indicators imply a
climatic control. Although broadly the wettest interval in the last
million years, climate varied with a drier episode at about 662–625
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Fig. 3. Diatom-based environmental data. Diatoms accumulated in a
meromictic lake so separate conductivity and pH transfer functions are
shown for mixed, saline and fresh water taxa. Habitats indicated separately
for saline and fresh taxa.

Fig. 4. Pollen stratigraphy.Selected taxa shown. Pollen PCA 1 summarizes
all pollen data and shows a long-term reduction in PCA values from ∼575
ka that reflects increased aridity. Poaceae increase upwards with Cyperaceae
and Podocarpusdeclining. Other taxa suggest increasing aridity during the
last half million years.

ka (153–146 mbs) marked by increased Amaranthaceae, with the
wettest conditions at 575 ka (137 mbs) (Fig. 4).

Cyperaceae and Podocarpus declined between about 520–400
ka (127–105 mbs), suggesting greater aridity at a time when
diatoms indicate a meromictic lake and/or alternating saline and
freshwater lakes. A recovery in Podocarpus and Cyperaceae be-
tween 400–275 ka (105–94mbs) suggests a wetter interval that was
followed by a decline in these taxa.During the last 275 ka (94mbs)
a variety of taxa expanded and contracted, reflecting wetter and
drier settings, but with an overall trend towards greater aridity.
Olea, for example, is derived from wet and dry upland evergreen
forests and varies in abundance between about 275–5 ka (94–7
mbs) when it disappears. Commiphora and Acacia increase after
205 ka (87 mbs) suggesting dry semi-deciduous dense bushland,
with drought-related Amaranthaceae and Juniperus, associated
with drier upland forests (25), also common. Increases in Cyper-
aceae along with herbaceous pollen such as Hydrocotyle between
about 12–8 ka (17–12 mbs) suggest fresher waters. Afromontane
and woodland species were replaced by herbaceous pollen and
Poaceae through the last 8 ka with Poaceae forming nearly 100%
of the flora after 4 ka (6 mbs).

Na/Ca ratios, PCA data for all pollen, and grass to aquatic
pollen ratios indicate an overall progressive change during the last
half million years (Fig. 5). Prior to 575 ka the basin had trended
towards wetter conditions, but then there was an overarching shift
towards greater aridity superimposed on multiple wet-dry cycles.
Independent terrestrial and aquatic datasets that varied in unison
indicate that this change was not simply due to lake hydrology
and local tectonics, but was driven by a directional climate shift.
Intermittent positive spikes in diatom PCA data between 350–70
ka reflect increases in shallow, freshwater, diatoms. The strong
contrast in habitat preferences between the dominant mixed
saline and fresh, deep-water planktonic taxa (Thalassiosira spp.,
Aulacoseira granulata and variety valida) and episodic shallow,
freshwater, lake/wetland (A. agassizi, A. granulata v. angustissima)
and benthic floras (Fig. 3) suggest that the latter may have been
transported intermittently by floods from nearby swampy and/or
fluvial settings to the core site (22). Many of the younger spikes
also match pollen evidence for wetter periods (195, 170, 125, 95,
80 ka) and interglacial episodes. The amplitude of the spikes
decrease with time, as does their temporal spacing. A lack of
diatoms after about 16 ka reflects the formation of an ephemeral
hypersaline playa.

Discussion

Climate change. On a global scale a major inflection point in
Pleistocene climate, the Mid-Brunhes Event (MBE), close to the
boundary between Marine Oxygen Isotope stages 12 to 11, took
place about 430 ka. Subsequently, there was increased climate
variability with the development of colder glacial periods and
warmer interglacial episodes (26, 27), although it has been sug-
gested that the MBE is regionally inconsistent. Terrestrial data
from the UK (28), for example, have been used to infer no
significant change across theMBE, whereas continental evidence
from Spain (29) supports a climate transition.

The continental pollen record from equatorial Lake Magadi
provides strong support for a climate transition at the MBE (Fig.
5), suggesting a potential link to global CO2/glacial cyclicity, with
a major change from wetter conditions to greater aridity after
about 430 ka. The overall trend towards dryer conditions was
initiated about 575 ka, with particularly intense aridity developing
between 525–400 ka, which partially overlaps withMarineOxygen
Isotope Stage 11 (424–374 ka), the warmest interglacial of the
last 500 ka (30). Subsequently, many wetter and drier cycles were
superimposed on progressive aridification, with diatomaceous
parts of the core documenting a tendency towards increased flood
inputs of benthic taxa (increased PCA values) during interglacial
episodes (Fig. 5).
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Fig. 5. Temporal environmental change in the Magadi basin and regional comparisons.Major hominin/faunal events in eastern Africa (except where noted) to
left (8). First appearance of H. sapiens in Africafrom Morocco data (16). H. sapiensdispersal: 1 = genetic data (41), 2 = fossil data (39, 40).FAD = First Appearance
Datum; LAD = Last Appearance Datum. Thick dashed line shows the Mid-Brunhes Event (MBE). a,Na/Ca ratios. Decline reflects change from fresh to saline
alkaline lake. b,Pollen PCA 1. Low values reflect increased aridity. c,Poaceae to aquatic pollen ratios (P-A/P+A). High values indicate wetter episodes. d,Diatom
Principal Component Analysis. High values reflect benthic taxa introduced to a meromictic lake by flooding. Note that many of these flood events broadly
correlate (diagonal shading) with interglacial episodes in “g”. e,Insolation (1°S) from AnalySeries 2.0. High variability periods shaded. f,Northwest Indian Ocean
dust record (26). Note long-term increasing aridity through the last 400 ka. g,Change in deuterium in Vostok ice core, East Antarctica (27). Note increased
variability in glacial-interglacial cycles after the MBE. h,Diatom-inferred environmental change, Olorgesailie Basin(47).

This directional increase in aridity since∼575 ka has not pre-
viously been documented in continuous continental cores from
East Africa, although there is support from pedogenic carbonate
carbon isotopes in outcrops (31) and eolian dust records from the
northwest Indian Ocean (7, 26) (Fig. 5), which suggest a similar
pattern of increasing aridity and intermittently wetter intervals
through the last half million years. Limited pedogenic carbonate
carbon isotope data fromOlorgesailie indicate an overall increase
in C4 grasslands during the last 800 ka (14). Oxygen and carbon
isotopes from several sites within a 990 kaOlorgesailie Formation
paleosol, for example, suggest an abundance of wooded grassland
in a cooler and moister environment at that time compared with
the modern grassy semi-arid basin (32).

There are also clear correlations for specific intervals in the
Magadi record with other African regions. For example, the
deposition of trona and intermittent severe reductions in aquatic
pollen between about 110–80 ka indicate a series of very dry
phases that alternated with wetter intervals. The termination of
this drought period lies close to a transition from megadroughts
to wetter conditions at Lake Malawi and more widely across
tropical Africa (33, 34). However, in contrast, the overall drying
trend at Magadi is inconsistent with an inferred shift towards
wetter conditions noted at Lake Malawi (35) indicating regional
African contrasts in vegetation and climate patterns. However,
pollen data (36) show some similarities with high percentages

of Podocarpus between 455–325 ka at Malawi coinciding with
increased Podocarpus at Magadi after 455 Ka.

Climate and hominin evolution. The nearby Olorgesailie
Basin provides detailed information on hominin evolution for the
last million years with evidence for a major transition in stone
technologies (Fig. 5). The Olorgesailie Formation (∼1,200–500
ka) includes Acheulean tools (14) whereas MSA artefacts (12)
are present in the Oltululei Formation (∼320–36 ka) (11), with
the transition between these toolkits taking place during a period
of erosion at Olorgesailie that has been related to faulting and
base-level change (10). New environmental data from Magadi
show increasing aridity during the period of hiatus at Olorgesailie
with intense desiccation between 525–400 ka. This suggests that
erosion at Olorgesailie might partly reflect climatic conditions,
with aridity lowering lake and base levels and changing/reducing
the vegetation cover, which would, in turn, tend to enhance ero-
sion of more exposed land surfaces (37). Magadi pollen data (SI
Appendix, Fig. S5), for example, indicate an expansion of grass-
lands and reduction in aquatic pollen after about 525 ka. The arid
interval also closely overlaps with a major overturn in mammal
faunas with local extinction of large-bodied specialized grazing
mammals reported from both Olorgesailie (14) and Lainyamok
(17).

The 525–400 ka dry phase and environmental variability
would likely have had a significant impact on contemporary ho-
minin populations regionally. It has been hypothesised (14), for
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example, that environmental pressures and variability can lead to
an uneven distribution of resources that could drive hominins to
travel more widely and to interact increasingly with other groups
for both raw materials and information. In turn, this would help
to drive technological change and its dissemination, resulting in
increased foraging success rates and ability to survive.

The Magadi terrestrial pollen record suggests that the inter-
val with greatest climate variability took place between about
650–350 ka with moister periods tending to be linked to high-
amplitude insolation variability and with drier episodes develop-
ing at times of low-amplitude insolation (e.g., 655–620, 560–510,
455–410, <75 ka; Fig. 5). Similarly, changes in toolkits overlap
with the 650–350 ka period, with modest reductions in Olorge-
sailie Acheulean stone tool sizes reported between 615 and 499
ka (14) and with the smaller toolkits of the MSA developing by
about 320 ka (12–14). This increased environmental variability,
and the intense period of aridity, also overlap with a major
turnover in mammal faunas with several large-bodied specialized
grazing mammals becoming locally extinct and being replaced by
related species with smaller body sizes (14, 17). As the earlier
faunawas already arid-adapted, the progressive increase in aridity
was unlikely to have led to any turnover. However, a change in
variability, that very specialized grazers couldn’t adapt to, may
have led to the turnover. It is also possible that increased aridity,
or more variable environmental conditions in the context of
increasing aridity may have impacted hominin populations during
this transitional period by selecting for cognitive abilities to, for
example transport increasingly diversified toolkits over greater
distances, as is evidenced in the nearby Olorgesailie archeological
record (12).

Major steps in Quaternary hominin evolution have also been
linked to eccentricity-modulated high-amplitude insolation cycles
specifically associated with extreme climate variability during
moist intervals, rather than low-amplitude periods when mon-
soons are weakened and climate becomes drier (38). However,
the possible overlap between intense aridity, major changes in
toolkits, and mammal extinctions in the Magadi-Olorgesailie re-
gion argue against this version of a climate-evolution linkage.

The period between 350–50 ka represents the longest episode
of eccentricity-modulated high amplitude insolation variability in
theMiddle to Late Pleistocene (Fig. 5). This coincides with signif-
icant environmental change when MSA tools emerged, symbolic
cultures developed, H. sapiens appeared and the Late Stone Age
commenced (2). Early anatomically modern human fossils from
Asia indicate that they dispersed from Africa between 120–50
ka (39, 40) with genetic data suggesting that ancestral modern
non-African populations originated from Africans that dispersed
between 75–50 ka (41). Gulf of Aden leaf wax isotopes, close to
a possible southern migration route, indicate multiple wet-dry
cycles set against an overall drying trend (42). Our continental
record indicates arid climates that were punctuated by moist
episodes, which may have supported a greener Sahara, opening
the possibility of northern routes.

Recent hominin studies have noted that H. sapiens and
the cultural materials that they produced may have a polycen-
tric African origin with reproductively semi-isolated populations

adapting to local environments alongside genetic drift (43). In
the South Kenya Rift, the 300-ka period of high-amplitude in-
solation variability was characterized by major environmental
and hominin changes, providing support for hypotheses such
as variability selection, which advocates adaptive evolutionary
change during periods of increased environmental variability (4,
38, 44–46). However, it is important to note that this variability
was superimposed on a strongly directional long-term trend to-
wards increased aridity, especially during the critical 525–400 ka
interval of drying documented here, which coincides with major
technological and evolutionary events in the regional human
prehistory. The Magadi record thus suggests that the species and
technological changes in the South Kenya Rift were occurring
against a backdrop of both increased aridity and enhanced vari-
ability, both of which could have acted as strong selective agents
during the transition from the Early to Middle Stone Age and in
the evolution of anatomically modern humans.

Methods
Details of the drilling (June 2014) are presented in the SI Appendix text.
Three holes were drilled at Site 1 with one (MAG14-2A) recovered from Site
2 (Fig. 1a). Core recovery for MAG14-2A was 65% with drilling terminated in
trachyte at ∼194mbs.

The chronology model (Fig. 2b) made use of one radiocarbon date from
humate fractions of bulk organic matter in the upper core, nine replicate
40Ar/39Ar dates from mid core tephra, one 40Ar/39Ar date on a basal trachyte
lava and seven U-series dates from chert. An 40Ar/39Ar date for a single
feldspar grain from ash at 151 mbs was treated as supplementary and not
included in the model, but plots within the 0.95 probability range for this
depth (see SI Appendix for dating techniques). One 14C date did not follow a
monotonic sequence and was excluded from the model, but is shown in Fig.
2b. In addition, the model includes the Brunhes-Matuyama boundary in the
lower core.

Samples for geochemical (n=343) and LOI (n=332) analyses were col-
lected at about 32 cm intervals and where distinctive lithologies were present
(see SI Appendix for techniques). Diatom samples (n=355) were collected
every 32 cm with additional sampling at 10–15 cm intervals for diatomaceous
sections, yielding 113 samples and 62 diatom taxa between 43–132 m (18–472
ka in SI Appendix, Fig. S4; Datasets S1, S2). A minimum of 400 diatoms
were counted per slide, except where diatoms were rare, in which case
all diatoms were included. Environmental reconstructions are based on
the “Combined Salinity Dataset” in the European Diatom Database (EDDI)
(http://craticula.ncl.ac.uk/Eddi/jsp/index.jsp) with taxa matched to the EDDI
classification system. Pollen taxa (n=105) were identified in 354 samples
with common pollen shown in SI Appendix, Figs. S5 and S6 and Datasets
S3 and S4. Pollen and spores were mounted on slides and counted at
400x magnification. Pollen identification was made to the lowest possible
taxonomic level, although some pollen types could only be identified to
family level. The total count per sample generally ranged between 250–500
grains, except in a few samples where preservation was poor.
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Figures
Fig. 1. Core location and lithology. a, Location of MAG14-2A and 1A and geology. b,
Sediment log for MAG14-2A; c=clay, m = mud, si = silt, s = sand, e = evaporites.
Fig. 2. Core chronology, geochemistry and mineralogy. a, Geochemistry and mineralogy.
LOI (550/1000) = Loss on Ignition and ignition temperatures (centigrade). Profile of Na/Ca
ratios. Major authigenic minerals (excluding clays, quartz, feldspar) determined by X-ray
diffraction. Minerals ordered to reflect generally higher salinities to the right. b, Bayesian
chronological model. 1 = Excluded 14C date that fails to follow a monotonic ordering. 2 =
Excluded 40Ar/39Ar date from a single crystal. Two chert dates from samples later found to
contain secondary chalcedony were also excluded from the model. See SI for details.
Fig. 3. Diatom-based environmental data. Diatoms accumulated in a meromictic lake so
separate conductivity and pH transfer functions are shown for mixed, saline and fresh water
taxa. Habitats indicated separately for saline and fresh taxa.
Fig. 4. Pollen stratigraphy. Selected taxa shown. Pollen PCA 1 summarizes all pollen data
and shows a long-term reduction in PCA values from∼575 ka that reflects increased aridity.
Poaceae increase upwards with Cyperaceae and Podocarpus declining. Other taxa suggest
increasing aridity during the last half million years.
Figure 5. Temporal environmental change in the Magadi basin and regional comparisons.
Major hominin/faunal events in eastern Africa (except where noted) to left (8). First
appearance of H. sapiens in Africa from Morocco data (16). H. sapiens dispersal: 1 =
genetic data (41), 2 = fossil data (39, 40). FAD = First Appearance Datum; LAD = Last
Appearance Datum. Thick dashed line shows the Mid-Brunhes Event (MBE). a, Na/Ca
ratios. Decline reflects change from fresh to saline alkaline lake. b, Pollen PCA 1. Low
values reflect increased aridity. c, Poaceae to aquatic pollen ratios (P-A/P+A). High values
indicate wetter episodes. d, Diatom Principal Component Analysis. High values reflect
benthic taxa introduced to ameromictic lake by flooding.Note thatmany of these flood events
broadly correlate (diagonal shading) with interglacial episodes in “g”. e, Insolation (1°S) from
AnalySeries 2.0. High variability periods shaded. f, Northwest Indian Ocean dust record (26).
Note long-term increasing aridity through the last 400 ka. g, Change in deuterium in Vostok
ice core, East Antarctica (27). Note increased variability in glacial-interglacial cycles after the
MBE. h, Diatom-inferred environmental change, Olorgesailie Basin (47).
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