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Convection is a fundamental physical process in the fluid cores of planets be-
cause it is the primary transport mechanism for heat and chemical species and the
primary energy source for planetary magnetic fields. Key properties of convection,
such as the characteristic flow velocity and lengthscale, are poorly quantified in
planetary cores due to their strong dependence on planetary rotation, buoyancy
driving and magnetic fields, which are all difficult to model under realistic con-
ditions. In the absence of strong magnetic fields, the core convective flows are
expected to be in a regime of rapidly-rotating turbulence,1 which remains largely
unexplored to date. Here we use a combination of numerical models designed
to explore this low-viscosity regime to show that the convective lengthscale be-
comes independent of the viscosity and is entirely determined by the flow velocity
and planetary rotation. For the Earth’s core, we find that the characteristic con-
vective lengthscale is approximately 30km and below this scale, motions are very
weak. The 30-km cut-off scale rules out small-scale dynamo action and supports
large-eddy simulations of core dynamics. Furthermore, it implies that our under-
standing of magnetic reversals from numerical geodynamo models does not relate
to the Earth, because they require too intense flows.2,3 Our results also indicate
that the liquid core of the Moon might still be in an active convective state despite
the absence of a present-day dynamo.4

Core convection is strongly affected by the rapid planetary rotation through the Proudman-
Taylor constraint,5 which obliges the fluid to move in columns with little variation along the
rotation axis compared with the orthogonal directions. The very low fluid viscosity in liquid
cores implies that the convective flows are turbulent, but this turbulence differs from both 3D
turbulence due to the anisotropy imposed by the rotation and 2D turbulence due to the pres-
ence of Rossby waves.6 Conditions in planetary cores correspond to small Ekman numbers
(Ek = ν/ΩR2 with viscosity ν, rotation rate Ω and core radius R), large Reynolds numbers
(Re = UR/ν with flow speed U), and small Rossby numbers (Ro = U/ΩR = ReEk), with, for
instance, Ek ≈ 10−15, Re ≈ 109 and Ro ≈ 10−6 in the Earth’s core.7 Numerical models of plan-
etary cores must employ a fluid viscosity that is orders of magnitude larger than realistic values
to keep the range of time and length scales involved in the dynamics manageable, with typically
Ek ≥ 10−7 and Re ≤ 104.8 Unfortunately this has the undesirable effect that convection proper-
ties are still controlled by the viscosity.9,10 To go beyond this range of parameters and into the
rapidly-rotating turbulent convection regime, in which the fluid viscosity plays a sub-dominant
role, we use a combination of a state-of-the-art 3D model11 down to Ek = 10−8 supplemented by
a simplified model of rotating convection12 down to Ek = 10−11 using a quasi-geostrophic (QG)
approximation. Here the QG approximation means that the axial vorticity is invariant along
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Figure 1: Meridional and equatorial cross-sections of a snapshot of the axial vorticity in the 3D
model for Ek = 10−8, Ra = 2 × 1010, and Pr = 10−2. Streamlines have been superimposed in
the equatorial plane. The kinetic energy of the velocity projected on a quasi-geostrophic state
(〈us〉 , 〈uφ〉 , zβ 〈us〉) (where the angle brackets denote an axial average) is within 0.2% of the
total kinetic energy.

the rotation axis in accordance with the Proudman-Taylor constraint. This approximation is
well supported by the results of the 3D model shown in Figure 1.

For the low Ekman numbers studied here, convection is always in a turbulent state, even
near onset,11,13 and Re ≥ 103. The convection takes the form of vortical plumes that are
radially elongated on scales much shorter than the outer radius (Figure 2). At large radius,
the steepening of boundary slope leads to rapid changes in the column height, which inhibit
convection.7 The dynamics there mainly consists of Rossby waves, which appear as elongated
vortices with a prograde tilt (Figure 2e). Their radial velocity is relatively small so conduc-
tion dominates the heat transport in the outer part of the equatorial plane.14 Hereafter we
solely consider the dynamics of the inner convective region, which grows wider with increasing
Rayleigh number (Ra, which measures the strength of the buoyancy driving with respect to
dissipative effects). The azimuthal lengthscale of the convective flows decreases notably with
radius (Figures 2f-g) to minimise the changes in the column height. At lower Ek , the scale of
the convective flow is visibly smaller. We find that the convective lengthscale is controlled by
the Rossby number, rather than by any viscous effect. The flows shown in Figures 1 and 2
are snapshots taken once the system has reached a statistically steady state, and are entirely
unlike the linear viscous mode at the convection onset, which consists of drifting columns with
a narrow azimuthal lengthscale that scales as Ek1/3.15,16 The convective lengthscale increases
with the buoyancy driving as seen on the power spectra of the total and radial kinetic energies
in Figure 3. The peak of the radial kinetic energy moves to smaller wavenumber for increasing
Ra, as can be observed for the two different Rayleigh numbers shown at Ek = 10−10, and is
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Figure 2: Snapshots of the radial velocity in a quarter of the equatorial plane during the
statistically steady phase for a) Ek = 10−8, Ra = 2.5 × 1010 (3D model), b) Ek = 10−9,
Ra = 2.7× 1011 (QG model), c) Ek = 10−10, Ra = 6.3× 1012 (QG model) and d) Ek = 10−11,
Ra = 5.25 × 1013 (QG model). Close-ups of the equatorial plane are shown in e-g for the
same parameters as in d; e shows the outer conduction-dominated region where the dynamics is
dominated by Rossby waves, and f-g the inner convective region. The Prandtl number is 10−2

in all cases. The colorbars give the radial velocity normalised by the viscous velocity scale (i.e.
corresponding to a Reynolds number).
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Figure 3: Power spectra of the total kinetic energy (thin line) and radial kinetic energy (thick
line) at s = 0.5 as a function of the azimuthal wavenumber m at s = 0.5 for simulations with
different Ekman and Rayleigh numbers for Pr = 10−2 performed with the 3D and QG models.
The kinetic energy is averaged in time and normalised by ρ(ΩR)2/2.

located at significantly smaller wavenumber (m = 133 and 106 for the smaller and larger Ra)
than the wavenumber of the marginal linear viscous mode at onset (mc = 258). Remarkably, the
spectra at different Ek and Ra superpose well at wavenumbers larger than the peak, and follow
a steep slope m−5.17 There is therefore a well-defined characteristic convective lengthscale that
carries most of the radial kinetic energy, and below this scale, the velocity amplitude drops
very rapidly. This characteristic lengthscale is thus a limit below which only weak convective
motions occur, thereby restricting viscous dissipation in the bulk. At wavenumbers smaller than
the peak, the velocity becomes anisotropic with a dominant azimuthal component. The kinetic
energy is transferred to larger scales, where the dynamics is dominated by propagating Rossby
waves, and viscous dissipation can occur in the boundary layers.

In the rapidly-rotating turbulent regime, the increase of the convective lengthscale with the
buoyancy driving is expected from scaling arguments,18–20 which assume that the production of
axial vorticity is governed by a triple balance between the vorticity advection, vortex stretch-
ing and vorticity generation by buoyancy, and is thus independent of viscosity. The scaling
gives a convective lengthscale that depends on the flow velocity as L ∼ (Ro/|β|)1/2, where β
is a geometrical parameter related to the boundary slope (see Methods). This lengthscale is
consistent with the −5 slope observed on the power spectra of the kinetic energy. Assuming
that the transport in the fluid bulk controls the heat transfer,21 the scaling uses a balance
between the nonlinear advection of temperature and the transport of the mean temperature
background to obtain Re ∼ RaEk/Pr , or simply Ro ∼ Bu with the viscosity-free buoyancy
parameter Bu = RaEk2/Pr . The theoretical scaling law is tested in figure 4 against results
obtained with the 3D and QG models and published results obtained with a hybrid model that
uses the QG approximation coupled to the 3D temperature.14 The characteristic convective
lengthscale corresponds to the peak of the radial kinetic energy spectra. Points obtained at
different Ek collapse well into a single curve, especially for Ek < 10−9, showing that the depen-
dence of the results on the viscosity becomes negligible when core conditions are approached.
Importantly, the good agreement obtained between the different numerical models where the
parameters overlap supports the use of the QG approximation for modelling rapidly-rotating
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Figure 4: a) Rossby number as a function of the buoyancy parameter and b) characteristic
convective lengthscale as a function of the Rossby number in simulations performed with the
3D model (green points) for Ek ∈ [10−8, 10−6], the QG model (blue) for Ek ∈ [10−11, 10−6], and
the hybrid model (red) for Ek ∈ [10−8, 10−7]. Marker colours correspond to Ekman numbers
(values given in the legend) and marker shapes to Prandtl numbers (circles: Pr = 10−2 and
squares: Pr = 10−1). In b, the convective scale is averaged in radius between s = 0.1 and
0.6 and the vertical bars give the standard deviation in this interval. The horizontal lines give
the lengthscale corresponding to the marginal viscous linear mode at onset at s = 0.5 for the
Ekman number indicated on the right and Pr = 10−2. The insets show the data compensated
by the theoretical scaling as a function of a) Bu and b) Ro.
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convection. The data of the velocity and lengthscale compensated by their respective theoretical
scaling laws align on a plateau at small Ek , and thus indicate that the agreement between the
simulations and the theoretical scaling improves progressively as Ek decreases. The dependence
on the Prandtl number can be assessed to a small extent as Pr is varied by one decade at
most: the lengthscale does not show a significant dependence on Pr , but for the velocity, the
points all follow a similar slope but cases with larger Pr tend to have a smaller prefactor. To
avoid the “shingling” effect that occurs when using diffusion-free parameters,22 the scaling of
the Reynolds number is shown in Extended Data Figure 1 and confirms the overlap of the data
for Ek ≤ 10−9 and the good agreement with the exponent predicted by the theoretical scaling.
While the lengthscale measurement corresponds to an azimuthal size, we confirm that the radial
lengthscale obtained from radial correlations is in good agreement with this azimuthal scale in
Extended Data Figure 2. The radial dependence of the lengthscale observed on the equatorial
maps of Figure 2 is also in agreement with the theoretical dependence of the lengthscale on
|β|−1/2 as shown in the Extended Data Figure 3.

While current 3D models cannot compute values of Ek below 10−8, our simplified numerical
model allows us to reach Ek = 10−11, which is approximately the value for the core of the
Moon.23 The lack of a present-day lunar dynamo places an upper limit on the flow speed in the
liquid core of the Moon. Assuming that the minimum magnetic Reynolds number (Rm = UR/η
with η the magnetic diffusivity) required for dynamo action driven by convection is 10,24 the
upper bound for Ro in the Moon core is 10−4. According to our results, the convective structures
are thus expected to be smaller than 0.1R ≈ 10km. From the scaling of the flow speed with the
input parameters (see Extended Data Figure 1), we can also deduce that the Rayleigh number
must be smaller than about 1016 in the Moon core (using Pr = 10−2). This is approximately a
hundred times larger than the critical value at the linear convection onset, so vigorous convection
is possible in the Moon liquid core, although not sufficiently vigorous to produce a magnetic
field.

The simple dependence of the convective lengthscale on Ro places new constrains on the
flows within the Earth’s core. Characteristic flow speeds at the core-mantle boundary inferred
from observations of the secular variation of the geomagnetic field have Ro ≈ 10−6.25 This value
corresponds to a characteristic convective lengthscale of approximately 0.01R ≈ 30km, at which
the local magnetic Reynolds number is approximately 10.26 This result has three important
implications for our understanding of the geodynamo. First, the local Rossby number associated
with this scale, Ro` = RoR/L ≈ 10−4, is considerably smaller than the value Ro` = 0.1 required
for polarity reversals of the magnetic field in viscously-controlled geodynamo simulations.2,3

This discrepancy highlights the need for further geodynamo simulations in the rapidly-rotating
turbulent regime to model Earth-like polarity reversals. Second, while information about core
flows is spatially limited due to the 1000-km resolution limit of geomagnetic flux patches at the
core-mantle boundary, the 30-km convective lengthscale is a lower limit for the energy-carrying
lengthscales. This lower limit provides a useful estimate for the viscous dissipation in the core.27

The viscous dissipation in the bulk for L ≈ 30 km is of the order of 1 kW, much lower than the
1 MW dissipated within the laminar Ekman layers. Third, in the presence of magnetic fields,
the convective lengthscale is expected to increase,28,29 so the 30-km scale will likely remain a
lower limit. The steepness of the kinetic energy spectrum beyond this scale implies that no
small-scale dynamo can operate for such rapidly-rotating turbulent convection. Finally, this
relatively large convective lengthscale (i.e. much larger than the viscous scale) supports the use
of small-scale parameterisation such as those adopted in recent simulations.11,30
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Method

We model Boussinesq convection driven by homogeneous internal heating in a full sphere ge-
ometry. This problem is relevant for planetary cores without a solid inner core, and thus,
for most of the Earth’s history.31 The sphere rotates at the rate Ω around the axis directed
along êz. The acceleration due to gravity is radial and increases linearly, g = −g0rêr. The
governing equations are written in dimensionless form, obtained by scaling lengths with the
outer radius R, times with R2/ν where ν is the fluid kinematic viscosity, and temperature with
νSR2/(6ρCpκ

2), where S is the internal volumetric heating, κ the thermal diffusivity, ρ the
density, and Cp the heat capacity at constant pressure. The dimensionless numbers are: the
Ekman number, Ek = ν/(ΩR2), the Rayleigh number, Ra = αg0SR

6/(6ρCpνκ
2), where α is

the thermal expansion coefficient, and the Prandtl number, Pr = ν/κ. This study focuses on
Prandtl numbers smaller that unity, which are relevant for thermal convection of liquid metal
cores.32 The system of dimensionless equations is:

∂u

∂t
+ (u ·∇) u +

2

Ek
êz × u = −∇p+ ∇2u + RaΘr, (1)

∇ · u = 0, (2)

∂Θ

∂t
+ u · ∇Θ− 2

Pr
rur =

1

Pr
∇2Θ, (3)

where u is the velocity field, p the pressure, and Θ the temperature perturbation relative to the
static temperature Ts = (1−r2)/Pr . We use no-slip boundary conditions and fixed temperature
at the outer boundary.

For the 3D simulations, we use the code XSHELLS,11 which solves Equations (1)-(3) using
finite differences in the radial direction and spherical harmonic expansion.33 The input param-
eters and numerical resolutions used for the 3D simulations are given in the Extended Data
Table 2. In the 3D simulations, the Prandtl number is fixed to Pr = 10−2 and the Ekman
number is varied between 10−6 and 10−8. To speed-up these 3D simulations, we increase the
viscosity of the smallest scales in the last 10% of the spectrum11 (see Extended Data Table 2).

For simulations at smaller Ekman numbers, we assume that the rotational constraint is
such that the variations of the velocity along the axial direction are small compared with the
variations along the orthogonal directions. We use the quasi-geostrophic (QG) approximation for
rapidly-rotating spherical convection developed from the Busse34 annulus model12,35 and widely
used in the context of planetary core convection.36–40 The dynamics is assumed to be dominated
by the geostrophic balance, i.e. the Coriolis force balances the pressure gradient at leading order.
The leading-order velocity u⊥ is invariant along z and u⊥ = (us, uφ, 0) in cylindrical polar
coordinates. Quasi-geostrophic convection is driven by the cylindrical component of gravity,
−g0s. By taking the axial average of the z-component of the curl of the Navier-Stokes equation,
we obtain the equation for the leading-order axial vorticity, ζ,

∂ζ

∂t
+ (u⊥ ·∇⊥) ζ −

(
2

Ek
+ ζ

)〈
∂uz
∂z

〉
= ∇2

⊥ζ − Ra

〈
∂Θ

∂φ

〉
, (4)

where ∇⊥f ≡ (∂sf, ∂φf/s, 0), ∇2
⊥f ≡ ∂2sf + s−1∂sf + s−2∂2φf , and the angle brackets denote

an axial average between ±H with H =
√

1− s2 the height of the spherical boundary from the
equatorial plane.

The velocity is described by a streamfunction ψ that models the non-axisymmetric (i.e.
φ-dependent) components with the addition of an axisymmetric azimuthal flow, uφ, where the
overbar denotes an azimuthal average,

u⊥ =
1

H
∇× (Hψêz) + uφeφ. (5)
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This choice of the streamfunction accounts for mass conservation at the outer boundary.41 We
assume that the axial velocity uz is linear in z and has two contributions: the main contribution
comes from mass conservation at the outer boundary and is proportional to β = H ′/H; the
second contribution is due to Ekman pumping, which is produced by the viscous boundary
layer and scales as Ek1/2. The Ekman pumping is parametrised by the formula obtained by
asymptotic methods in the limit of small Ek for a linear Ekman layer.42

The streamfunction ψ only describes the non-axisymmetric motions, so the axisymmetric az-
imuthal velocity, uφ, is obtained by taking the azimuthal and axial averages of the φ-component
of the Navier-Stokes equation to give

∂uφ
∂t

+ us
∂uφ
∂s

+
usuφ
s

= ∇2uφ −
uφ
s2
− 1

Ek1/2H3/2
uφ, (6)

where the last term on the right-hand side corresponds to the Coriolis term simplified using
mass conservation.36

The equation for the temperature perturbation Θ in the quasi-geostrophic model is obtained
by taking the axial average of the temperature equation and assuming that Θ is invariant along
z to obtain

∂Θ

∂t
+ u ·∇⊥Θ− 4

3Pr
sus =

1

Pr
∇2
⊥Θ. (7)

Note that here we use the gradient of the z-averaged static temperature profile, 〈Ts〉′ = −4s/(3Pr),
rather than the gradient of the z-invariant static temperature profile, (T 2d

s )′ = −3s/Pr , to allow
for a direct comparison of the Rayleigh numbers used in the different models. The assumption
that Θ is invariant along z is not rigorously justified and is used for numerical convenience
because it permits us to treat the numerical problem in two dimensions, thereby considerably
reducing the computational load. The evolution equation for the streamfunction, axisymmetric
velocity and temperature are solved on a 2D grid in the equatorial plane. The QG code uses
a pseudo-spectral code with a Fourier decomposition in the azimuthal direction and a second-
order finite-difference scheme in radius with irregular spacing. The input parameters and the
numerical resolutions used for the QG simulations are given in the Extended Data Table 1.
The Prandtl number is varied between Pr = 10−1 and 10−2 and the Ekman number is varied
between 10−6 and 10−11, allowing an overlap with the 3D simulations over 2 decades in Ek .

The influence of the assumption of z-invariance of Θ on the QG results is tested by com-
paring the QG results with published results obtained with a hybrid QG-3D model14 at Ek ∈
[10−8, 10−7]. In the hybrid model, the temperature is solved in 3D and coupled to the QG
implementation for the velocity. Figure 4 shows good agreement obtained between the QG and
hybrid results for overlapping parameters, demonstrating that, while this assumption is not
mathematically justified, it does not significantly influence QG convection.

The output parameters are given in Extended Data Tables 1 and 2. The characteristic
velocity U used to calculate the Rossby and Reynolds numbers is based on the r.m.s. radial
velocity averaged in volume and time over at least 10 convective turnover timescales. The
convective lengthscale is calculated as L(s) = πs/mp(s), where mp is the wavenumber at the
peak of the radial kinetic energy spectrum. The peak is determined by smoothing the radial
kinetic energy spectra with a polynomial of degree 14.

The radial lengthscale of the convective flow Lr(s) is calculated using the auto-correlation
function f of the radial component of the velocity field. For a given radius s, we calculate

f(ds) = us(s, φ, t)us(s+ ds, φ, t), (8)

where the overbar denotes an azimuthal average. Snapshots covering at least 2 dynamical
timescales are used to compute the temporal average. Lr(s) is the full width at half maximum
of f .
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We estimate the bulk viscous dissipation at the lengthscale ` as Dvisc = ρνU2V/`2 and the
dissipation in the laminar Ekman layers as DEk = ρ(νΩ)1/2U2A, where V is the volume of the
core, A the surface area at the core-mantle boundary and U ≈ 20 km/yr a typical velocity of
the core flow.25

Data availability

Synthetic data is provided in the Extended Data Tables. Any additional data supporting the
findings of this study are available from the corresponding author on request. The 3D numerical
code XSHELLS is freely available at https://bitbucket.org/nschaeff/xshells.
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Extended Data Figure 1: Scaling of the Reynolds number
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Figure 1: Reynolds number as a function of RaEk/Pr in simulations performed with the 3D
model (green points) for Ek ∈ [10−8, 10−6], the QG model (blue) for Ek ∈ [10−11, 10−6], and
the hybrid model (red) for Ek ∈ [10−8, 10−7]. Marker colours correspond to Ekman numbers
(values given in the legend) and marker shapes to Prandtl numbers (circles: Pr = 10−2 and
squares: Pr = 10−1). The inset shows the data compensated by the theoretical scaling as a
function of RaEk/Pr .
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Extended Data Figure 2: Radial lengthscale determined by radial
correlation
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Figure 2: Radial scale of the convective flows Lr(s) as a function of the azimuthal lengthscale
L(s) obtained with the QG model at different radii. Marker colours correspond to Ekman
numbers (with Pr = 10−2) and marker shapes to different radii. The radial scale is calculated
from auto-correlation functions of the radial velocity. The convective lengthscale corresponds
to an azimuthal scale calculated from the peak of the power spectra of the radial kinetic energy
at the radius s.
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Extended Data Figure 3: Variation of the convective lengthscale
with radius
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Figure 3: Convective lengthscale L(s) as a function of Ro(s)/|β| obtained with the QG model
at different radii. Marker colours correspond to Ekman numbers (with Pr = 10−1 or 10−2) and
marker shapes to different radii. The inset shows the lengthscale compensated by the theoretical
scaling as function of Ro(s)/|β|. The convective lengthscale corresponds to an azimuthal scale
calculated from the peak of the power spectra of the radial kinetic energy at the radius s.
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Extended Data Table 1: Details of the QG numerical simulations

Ek Pr Ra Re L Lr(s = 0.5) (Ns,M)

10−6 10−2 6.000× 107 1352± 171 0.21298± 0.01937 0.22627± 0.10272 (600, 96)
10−6 10−2 7.500× 107 1778± 186 0.21450± 0.02458 0.23513± 0.07598 (600, 96)
10−6 10−2 1.050× 108 2407± 215 0.22954± 0.02506 0.21932± 0.08423 (600, 96)
10−6 10−2 1.650× 108 3239± 276 0.23947± 0.02915 0.24426± 0.10119 (600, 128)
10−6 10−2 2.850× 108 4406± 334 0.25416± 0.03188 0.23071± 0.08192 (600, 128)

10−7 10−2 8.100× 108 2588± 363 0.08521± 0.02132 0.12136± 0.03892 (1000, 128)
10−7 10−2 9.000× 108 3015± 208 0.08748± 0.02315 0.12486± 0.03539 (1000, 128)
10−7 10−2 9.900× 108 3459± 253 0.08721± 0.02358 0.12366± 0.03594 (1000, 128)
10−7 10−2 1.050× 109 3569± 260 0.09150± 0.02588 0.12645± 0.03666 (1000, 128)
10−7 10−2 1.170× 109 4204± 244 0.11126± 0.01482 0.12652± 0.03993 (1000, 128)
10−7 10−2 1.350× 109 4459± 143 0.09127± 0.02666 0.13376± 0.05529 (1000, 256)
10−7 10−2 1.440× 109 4989± 361 0.11824± 0.01319 0.13311± 0.04089 (1000, 256)
10−7 10−2 1.500× 109 5278± 510 0.09784± 0.03400 0.14291± 0.03899 (1000, 256)
10−7 10−2 1.725× 109 5689± 298 0.11576± 0.01000 0.14365± 0.04867 (1200, 384)
10−7 10−2 2.070× 109 6588± 274 0.12681± 0.01505 0.14959± 0.08607 (1200, 384)
10−7 10−2 2.490× 109 7411± 424 0.13164± 0.01194 0.16849± 0.08160 (1200, 384)
10−7 10−2 3.000× 109 8659± 559 0.14461± 0.01330 0.18763± 0.08680 (1200, 384)
10−7 10−2 3.600× 109 9214± 456 0.14711± 0.01796 0.19540± 0.07277 (1200, 384)

10−8 10−2 1.050× 1010 4678± 223 0.04566± 0.00430 0.04990± 0.00832 (1600, 150)
10−8 10−2 1.275× 1010 6359± 321 0.04981± 0.00512 0.05569± 0.01003 (1600, 150)
10−8 10−2 1.500× 1010 7826± 390 0.05236± 0.00553 0.05996± 0.00974 (1600, 256)
10−8 10−2 1.950× 1010 11030± 454 0.05919± 0.00911 0.06486± 0.00704 (1600, 384)
10−8 10−2 2.250× 1010 12561± 352 0.06338± 0.01165 0.06635± 0.00832 (1600, 384)

10−8 10−1 7.500× 1010 2279± 53 0.03073± 0.00480 (2000, 400)
10−8 10−1 1.200× 1011 3709± 68 0.03746± 0.00502 (2000, 400)
10−8 10−1 3.000× 1011 8485± 187 0.05506± 0.00807 (2000, 500)
10−8 10−1 4.500× 1011 12953± 287 0.06837± 0.01340 (2000, 700)
10−8 10−1 7.500× 1011 21623± 421 0.08380± 0.02534 (2000, 1024)

10−9 10−2 1.500× 1011 7458± 271 0.02350± 0.00389 0.02104± 0.00307 (2000, 384)
10−9 10−2 1.875× 1011 10026± 238 0.02624± 0.00423 0.02344± 0.00306 (2000, 384)
10−9 10−2 2.250× 1011 12346± 511 0.02809± 0.00387 0.02528± 0.00458 (2000, 384)
10−9 10−2 2.700× 1011 15300± 428 0.03056± 0.00432 0.02775± 0.00312 (2000, 384)
10−9 10−2 4.500× 1011 32274± 487 0.04013± 0.00661 0.03805± 0.00443 (2000, 500)
10−9 10−2 9.000× 1011 56251± 610 0.04994± 0.01229 0.04513± 0.00446 (2000, 500)
10−9 10−2 1.200× 1012 74423± 2222 0.05674± 0.01101 0.05007± 0.00645 (2000, 512)

Table 1: List of the input and output parameters for the simulations performed with the QG
model. The azimuthal lengthscale L is averaged in radius between s = 0.1 and 0.6. The radial
lengthscale Lr is given at radius s = 0.5. The last column gives the numerical resolution with
Ns the number of grid points in radius and M the truncation order of the Fourier decomposition
in azimuth.
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Ek Pr Ra Re L Lr(s = 0.5) (Ns,M)

10−9.5 10−2 4.575× 1011 6716± 165 0.01465± 0.00236 0.01164± 0.00108 (2000, 512)
10−9.5 10−2 4.725× 1011 7259± 205 0.01492± 0.00247 0.01218± 0.00123 (2000, 512)
10−9.5 10−2 4.950× 1011 7949± 204 0.01531± 0.00263 0.01298± 0.00110 (2000, 512)
10−9.5 10−2 5.445× 1011 9220± 205 0.01606± 0.00284 0.01385± 0.00129 (2000, 512)
10−9.5 10−2 6.000× 1011 10379± 221 0.01683± 0.00303 0.01464± 0.00168 (2000, 512)
10−9.5 10−2 6.600× 1011 11621± 265 0.01774± 0.00329 0.01498± 0.00128 (2000, 600)
10−9.5 10−2 7.350× 1011 13016± 235 0.01870± 0.00363 0.01594± 0.00156 (2000, 600)
10−9.5 10−2 8.100× 1011 14528± 288 0.01949± 0.00368 0.01664± 0.00150 (2000, 600)
10−9.5 10−2 9.000× 1011 16382± 285 0.02036± 0.00359 0.01725± 0.00203 (2000, 650)
10−9.5 10−2 9.900× 1011 18144± 341 0.02165± 0.00450 0.01778± 0.00153 (2000, 650)
10−9.5 10−2 1.350× 1012 26383± 745 0.02480± 0.00442 0.02068± 0.00283 (2000, 650)

10−10 10−2 1.725× 1012 8481± 129 0.00992± 0.00181 0.00771± 0.00062 (1600, 512)
10−10 10−2 1.800× 1012 9592± 152 0.01023± 0.00197 0.00841± 0.00075 (1600, 512)
10−10 10−2 1.950× 1012 11156± 168 0.01073± 0.00214 0.00906± 0.00075 (1600, 512)
10−10 10−2 2.100× 1012 12421± 136 0.01117± 0.00226 0.00944± 0.00072 (1600, 512)
10−10 10−2 2.400× 1012 14459± 182 0.01189± 0.00243 0.00999± 0.00097 (1600, 512)
10−10 10−2 2.700× 1012 15906± 173 0.01261± 0.00269 0.01052± 0.00075 (2000, 512)
10−10 10−2 3.150× 1012 18587± 214 0.01343± 0.00285 0.01103± 0.00126 (2000, 512)
10−10 10−2 3.900× 1012 22573± 279 0.01488± 0.00326 0.01209± 0.00105 (3000, 700)
10−10 10−2 4.200× 1012 24263± 324 0.01534± 0.00332 0.01235± 0.00147 (3000, 700)
10−10 10−2 4.500× 1012 26152± 289 0.01581± 0.00330 0.01259± 0.00142 (3000, 700)
10−10 10−2 5.250× 1012 31018± 316 0.01729± 0.00395 0.01358± 0.00119 (3000, 900)
10−10 10−2 5.700× 1012 34032± 534 0.01781± 0.00377 0.01374± 0.00106 (3000, 900)
10−10 10−2 6.300× 1012 38381± 672 0.01897± 0.00447 0.01460± 0.00163 (3000, 1024)

10−10.5 10−2 7.200× 1012 12779± 84 0.00709± 0.00161 0.00596± 0.00043 (3500, 1024)
10−10.5 10−2 7.500× 1012 13723± 113 0.00726± 0.00167 0.00621± 0.00077 (3500, 1024)
10−10.5 10−2 9.000× 1012 17621± 142 0.00810± 0.00192 0.00671± 0.00044 (3500, 1024)
10−10.5 10−2 1.050× 1013 20540± 145 0.00871± 0.00211 0.00717± 0.00045 (3500, 1024)
10−10.5 10−2 1.200× 1013 23086± 163 0.00924± 0.00228 0.00740± 0.00050 (3500, 1024)
10−10.5 10−2 1.350× 1013 25577± 202 0.00976± 0.00240 0.00779± 0.00055 (3500, 1024)
10−10.5 10−2 1.500× 1013 28174± 256 0.01026± 0.00251 0.00795± 0.00057 (3500, 1024)
10−10.5 10−2 2.250× 1013 41907± 290 0.01221± 0.00285 0.00945± 0.00094 (3500, 1024)

10−11 10−2 2.700× 1013 15800± 83 0.00462± 0.00112 0.00403± 0.00022 (2400, 950)
10−11 10−2 2.850× 1013 17897± 91 0.00482± 0.00120 0.00427± 0.00018 (2400, 1024)
10−11 10−2 3.300× 1013 21754± 99 0.00536± 0.00137 0.00455± 0.00027 (4000, 1100)
10−11 10−2 3.750× 1013 25243± 127 0.00579± 0.00149 0.00485± 0.00016 (4000, 1536)
10−11 10−2 4.200× 1013 28140± 108 0.00622± 0.00166 0.00496± 0.00026 (4000, 2048)
10−11 10−2 4.500× 1013 29846± 85 0.00639± 0.00168 0.00514± 0.00019 (4000, 2048)
10−11 10−2 5.250× 1013 33657± 211 0.00682± 0.00189 0.00537± 0.00025 (4000, 2048)

Table 1: Continued.
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Extended Data Table 2: Details of the 3D numerical simulations

Ek Pr Ra Re L (Nr, L,M)

10−6 10−2 6.02× 107 1160 0.26800± 0.02910 (560, 150, 127)
10−6 10−2 1.00× 108 2050 0.31500± 0.03700 (560, 150, 127)
10−6 10−2 2.00× 108 3370 0.37600± 0.04820 (560, 150, 127)

10−7 10−2 7.00× 108 1470 0.09430± 0.01360 (1152, 199, 159)
10−7 10−2 1.10× 109 3340 0.11500± 0.00894 (1152, 199, 159)
10−7 10−2 1.25× 109 3800 0.11900± 0.00788 (1152, 199, 159)

3× 10−8 10−2 3.00× 109 2897 0.06480± 0.00346 (1568, 277, 255)
3× 10−8 10−2 4.00× 109 3967 0.07190± 0.00362 (1568, 277, 255)
3× 10−8 10−2 5.10× 109 4600 0.07540± 0.00510 (1568, 277, 255)

10−8 10−2 1.50× 1010 4780 0.04920± 0.00563 (2016, 351, 319)
10−8 10−2 2.00× 1010 5550 0.05250± 0.00607 (2016, 351, 319)
10−8 10−2 2.50× 1010 6100 0.05600± 0.00788 (2016, 351, 319)

Table 2: List of the input and output parameters for the simulations performed with the 3D
model. The azimuthal lengthscale L is averaged in radius between s = 0.1 and 0.6. The last
column gives the numerical resolution with Nr the number of grid points in radius, L and M
the truncation degree and order of the spherical harmonics. Hyperviscosity was used in all these
3D runs, with viscosity depending on spherical harmonic degree `, but only for ` > 0.9L. We
use ν(`) = ν0 for ` < `c = 0.9L and ν(`) = ν0q

`−`c for ` ≥ `c. We set q = (νmax/ν0)
1/(L−`c) and

νmax ≤ 100.
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