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Abstract6

Fracture-scale heterogeneity plays an important role in driving dispersion, mixing and heat transfer in7

fractured rocks. Current approaches to characterize fracture scale flow and transport processes largely8

rely on indirect information based on the interpretation of tracer tests. Geophysical techniques used in9

parallel with tracer tests can offer time-lapse images indicative of the migration of electrically-conductive10

tracers away from the injection location. In this study, we present a methodology to invert time-lapse11

ground penetrating radar reflection monitoring data acquired during a push-pull tracer test to infer12

fracture-scale transport patterns and aperture distribution. We do this by using a probabilistic inversion13

based on a Markov chain Monte Carlo algorithm. After demonstration on a synthetic dataset, we apply14

the new inversion method to field data. Our main findings are that the marginal distribution of local15

fracture apertures is well resolved and that the field site is characterized by strong flow channeling, which16

is consistent with interpretations of heat tracer tests in the same injection fracture.17

Keywords18
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1 Introduction20

Flow and solute transport in fractured rock plays a key role in a range of applications, such as groundwater21

remediation (NRC, 1996; Berkowitz, 2002; Neuman, 2005; Singhal and Gupta, 2010), the design of storage22

facilities for spent nuclear fuel (Tsang et al., 2015) and geothermal energy production (Bödvarsson and23

Tsang, 1982; Geiger and Emmanuel, 2010). Fracture properties such as the distribution of fracture24

length (Bonnet et al., 2001), surface roughness (e.g., Poon et al., 1992; Schmittbuhl et al., 1995; Neuville25

et al., 2010) and fracture aperture (Belfield, 1994; Lanaro, 2000) vary over multiple spatial scales. In26

geological settings where the rock matrix is largely impermeable (Brace, 1984), fluid flow occurs almost27

exclusively within fractures. The resulting flow follows preferential flow paths and it is often characterized28

as channelized, leading to early tracer breakthrough and heavy tailing (e.g., Becker and Shapiro, 2000;29

Kang et al., 2015). Heterogeneous flow velocities at the fracture scale, mainly arising from local aperture30

disparities, represent an important driver of solute dispersion (de Dreuzy et al., 2012; Wang and Cardenas,31

2014; Fiori and Becker, 2015; Kang et al., 2016; Tang et al., 1981; Novakowski et al., 1985; Moreno et al.,32

1990; Nordqvist et al., 1992; Bodin et al., 2003). Along with the presence of aperture variations, the33

frequency and location of contact regions (i.e., regions of zero aperture due to fracture closure or clogging34

due to mineralization) have a critical impact on channeling (e.g., Tsang and Neretnieks, 1998) and fluid35

percolation (Broadbent and Hammersley, 1957). Yet, the spatial distribution of aperture within fracture36

planes (Oron and Berkowitz, 1998) is inherently difficult to measure in situ, especially far away from37

boreholes.38

Geophysics offers techniques for non-invasive detection of fracture geometry and fracture aperture charac-39

terization. A widely used method in this regard is the ground penetrating radar (GPR) method, in which40

a high-frequency radar antenna emits an electromagnetic wave that propagates through the rock matrix41

and is scattered at fracture locations. The recorded scattered field carries information about fracture42

properties, namely the aperture and orientation of the fracture as well as the electrical properties of the43

fracture filling (e.g., Bradford and Deeds, 2006; Tsoflias and Becker, 2008; Shakas and Linde, 2015). In44

low-loss (i.e., electrically-resistive) media, the GPR propagation distances can span several tens of me-45

ters. If the contrast in electrical properties between the fracture filling and the surrounding rock matrix46

is strong, clear reflections can result from fractures with apertures that are several orders of magnitude47

smaller than the dominant GPR wavelength (e.g., Dorn et al., 2012). The GPR method has been used48

for various fracture-related purposes such as evaluating methodologies for storing nuclear fuel (Olsson49

et al., 1992), rock fall hazard (Jeannin et al., 2006), building safety (Leucci et al., 2007; Sambuelli and50

Calzoni, 2010) and aquifer characterization (Dorn et al., 2012). In hydrogeophysical applications, GPR51

complements hydrological tests and helps to better inform the interpretation of classical hydrological52

data (e.g., Rubin and Hubbard, 2005, Ch. 7). During saline tracer tests, for example, GPR can provide53

time-lapse images indicative of tracer migration (Ramirez and Lytle, 1986; Day-Lewis et al., 2003; Tal-54
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ley et al., 2005; Tsoflias and Becker, 2008; Becker and Tsoflias, 2010; Dorn et al., 2011; Shakas et al.,55

2016, 2017). These time-lapse images provide rich information about the dynamics of flow-and-transport56

during the experiment, that in turn can provide constraints on subsurface properties of interest such as57

aperture heterogeneity. While previous studies have focused on fracture geometry and mean aperture,58

they have not investigated so far the possibility to use GPR imaging to infer the aperture distribution59

within a fracture.60

Modeling GPR propagation and scattering from heterogeneous fractures is very challenging when using61

the Finite-Difference Time-Domain (FDTD) formulation (e.g., Warren et al., 2015). With FDTD it is62

computationally extremely demanding to model realistic fractures, for example, mm or sub-mm thin63

fractures in a domain of several tens of meters. Instead, most fracture-related GPR studies have relied64

on an analytical solution, namely the thin-bed approximation, to model EM interaction with fractures65

(Tsoflias and Hoch, 2006; Bradford and Deeds, 2006; Deparis and Garambois, 2008; Sassen and Everett,66

2009; Sambuelli and Calzoni, 2010; Babcock and Bradford, 2015). Shakas and Linde (2015) introduced a67

new methodology (the so-called effective-dipole approach) to model GPR scattering from heterogeneous68

fractures that is inspired by a microscopic treatment of Maxwell’s equations. It is capable of modeling69

reflections arising from fractures with spatially-varying electrical properties and aperture along the frac-70

ture plane. In a later study, Shakas and Linde (2017) demonstrated that the thin-bed approximation is71

only valid for a very limited family of fracture models, namely those with smooth (large Hurst exponents)72

and large-scale (large correlation length) aperture variations. They proposed that explicit consideration73

of aperture heterogeneity is necessary for GPR-based aperture estimation even when targeting a mean74

aperture.75

In this study, we develop a methodology to invert GPR reflection monitoring data from push-pull tracer76

tests to infer fracture-scale aperture variations and flow paths. For this, we combine simulations of flow77

and transport of an electrically-conductive tracer within a single heterogeneous fracture with the associ-78

ated GPR response using the effective-dipole approach by Shakas and Linde (2015). More specifically,79

we use the local cubic law to simulate fluid flow by assigning the local fracture transmissivity based80

on the local aperture, while the GPR-response is determined by a semi-analytical formulation that is81

strongly dependent on aperture, as well as electrical conductivity and permittivity. We incorporate these82

simulation capabilities within a probabilistic inversion framework, using a Markov chain Monte Carlo83

(MCMC) algorithm, to infer a fracture’s geometric properties and aperture distribution. We first apply84

the methodology to a synthetic example, and proceed to inversion of single-hole GPR monitoring data85

from a push-pull tracer test experiment conducted in Ploemeur, France (Shakas et al., 2017). For both86

the synthetic and real data examples, we rely on the electrically-conductive and neutrally-buoyant tracer87

introduced by Shakas et al. (2017). By inferring a heterogenous aperture field, we investigate if aper-88

ture fields exist for which our flow and transport modeling approach (determining where the tracer is89

found at a given time) and the corresponding simulated GPR-response (the GPR response from a tracer90
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distribution and a given aperture field) explain the GPR field data.91
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2 Methodology92

2.1 Local aperture variations93

Aperture variations are generally spatially-correlated along the fracture plane (Brown et al., 1986) and94

similar aperture patterns occurring at different scales are often described using the concept of self-affinity95

(Mandelbrot, 1985, 1989). Mathematically, self-affinity ensures that aperture fields retain statistical96

similarity by an appropriate scaling factor denoted by the Hurst exponent H (Voss, 1998). The exponent97

H can vary between 0 to 1, with H = 0 implying self-similarity (aperture patterns are statistically similar98

at all spatial scales) and H = 1 implying smoothly varying (multivariate normal) fields. Furthermore, H99

is related to the fractal dimension (D), which for 2-dimensional fields is given by D = 3− H.100

Herein, we use the following correlation function (Adler et al., 2012) to impose spatial correlation in

fracture-wall asperity:

Ch(n,m) = σ2
h exp

[

−
{(

n

ln

)2

+

(

m

lm

)2}H]

, (1)

where the characteristic length of the spatial correlation between points separated by distance {n,m} in101

two perpendicular directions is given by ln and lm, and the variance of the covariance function is σ2
h.102

To create an aperture field realization along the fracture plane, we proceed by assigning the variables103

of the correlation function and, using the algorithm described by Laloy et al. (2015), we create two104

independent realizations of fracture-wall asperity. We then overlay these two surfaces, which have the105

same statistical properties, and displace them by a mean fracture aperture. Any negative values that106

are created in this process are assigned an aperture of zero; this allows us to represent closed fracture107

sections in which no flow is allowed. This process does not mimic the mechanics of fracture generation108

but allows us to create a fracture aperture field with the desired statistical properties and with fracture109

closure (zero aperture).110

In all the results that follow we discretize a single fracture of 16 m × 16 m into cells of 20 cm × 20 cm (in111

accordance with modeling recommendations for a 100 MHz antenna, see Shakas and Linde (2015)) leading112

to aperture fields consisting of 6400 cells. We use a dimensionality-reduction algorithm (Laloy et al., 2015;113

Hunziker et al., 2017) that allows us to represent each aperture realization with 100 dimension-reduction114

(DR) variables and 5 global geostatistical variables. An illustration is given in Figure 1.115

2.2 Flow and transport modeling116

To solve flow in a heterogeneous fracture, we use the lubrication approximation (e.g., Zimmerman and117

Yeo, 2013; Brush and Thomson, 2003). Hence, we discretize a heterogeneous fracture into a collection of118
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(a)

-0.5 0 0.5

Fracture-wall asperity (mm)

(b)

-0.5 0 0.5

Fracture-wall asperity (mm)

(c)

0 0.5 1

Aperture (mm)

Figure 1: Fracture aperture heterogeneity is created by subtracting, (a) an independent (16 m

× 16 m) spatial random field describing fracture-wall asperity, from (b) another independent

realization with the same geostatistical properties. These fracture-wall asperity fields are drawn

from a geostatistical model with zero mean, σh = 0.5 mm, H = 0.8, ln = 3 m (horizontal) and

lm = 5 m (vertical). (c) The resulting aperture field realization is obtained after a mean aperture

of 2 mm (this example) has been added after the subtraction and any resulting intersecting

regions have been set to zero aperture.

cells with each cell being treated as an equivalent parallel plate. Even if aperture can vary significantly119

below the cell-scale, we assume that the average aperture of each parallel plate provides an adequate120

description of Darcy flow. Extensions of the parallel plate model that account for more complicated121

geometries have been proposed (Oron and Berkowitz, 1998; Lee et al., 2014; Wang et al., 2015). We122

further assume an incompressible single-phase fluid exhibiting laminar flow.123

2.2.1 Flow in a fracture124

For laminar flow, the Navier-Stokes equations simplify to the Stokes equation. Its exact solution for a pair

of parallel plates, assuming no-flow and no-slip boundary conditions, is described by the fluid velocity u

(m · s−1):

u(z) =
|∇P |
2µ

(

z2 −
(app

2

)2
)

. (2)

In Eq. 2, the plates are oriented along the x̂− ŷ plane, the aperture app varies along the ẑ-direction, and

the pressure gradient ∇P (Pa ·m−1) is constant along the x̂− ŷ direction and zero along the ẑ direction.

Integrating Eq. 2 along the ẑ-direction and multiplying by the width Lpp (m) of the plate gives the
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volumetric flux through the parallel plate,

Q =
−|∇P |Lppa

3
pp

12µ
≡ −kA|∇P |

µ
. (3)

The right side of Eq. 3 is equivalent to the volumetric flux derived from Darcy’s Law. In 1D, Darcy’s

Law states that the flow of a liquid with dynamic viscosity µ (Pa · s) through a porous medium with

permeability k (m2) and cross sectional area A (m2) is directly proportional to the pressure gradient

|∇P |. The applicability of Darcy’s law to the parallel plate model leads to the following analogy between

permeability and aperture:

k =
a2pp
12

. (4)

The product between permeability and area gives the “cubic law” relation, kA =
Lppa

3
pp

12 . We apply the125

cubic law locally along a fracture’s plane, an approach that is commonly termed the “local cubic law”126

(LCL) (e.g., Oron and Berkowitz, 1998; Brush and Thomson, 2003; Konzuk and Kueper, 2004; Qian et al.,127

2011; Lee et al., 2014; Wang et al., 2015). The validity of the LCL depends on the following conditions128

(Oron and Berkowitz, 1998):129

σ
{u,d}
pp

app
<< 1,

(

app
2Lpp

)2

<< 1, and Re ·max

(

σpp

app
,
app
2Lpp

)

<< 1, (5)

with σpp being the standard deviation of the aperture along the extent of a parallel plate. The third130

condition in Eq. 5 includes the Reynolds number, defined as Re ∼= ρUapp

2µ with U (m · s−1) being the131

characteristic velocity of the fluid flowing through the parallel plate. In our simulations we define Lpp =132

20 cm, but we do not directly assign values for σpp and app; instead, we create the aperture field directly,133

and hence all local apertures (app) along the fracture plane, with the algorithm described in sec. 2.1.134

This procedure results in the aperture distribution of app seen in Fig. 6(c). The validity of the second135

inequality can be verified by using the maximum value of the posterior distribution for app, which is 8136

mm (introduced later in Fig. 6). This results in 0.0004<<1. To check the third inequality we need a137

characteristic flow velocity in order to compute the Reynolds number. For this, we consider the 3 mm·s−1
138

average flow velocity estimated by Shakas et al. (2016) for an almost identical experiment. This results139

in Re = 4.29 and the limiting factor is, thus σpp/app << 0.23. We see that the LCL is only valid when140

fracture aperture heterogeneity is negligible below Lpp.141

2.2.2 Solute transport142

Once the fluid velocity u has been determined at each location along the fracture plane, it can be used

to compute the transport of a solute by the advection-diffusion equation:

∂

∂t
(c) +∇ · [cu−Dm∇c] = 0. (6)
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The concentration of the solute in Eq. 6 is denoted by c (kg ·m−3) and Dm is the molecular diffusion143

coefficient for which we use a fixed value of Dm = 2× 10−9 m2 · s−1 (Holz et al., 2000). We ignore Taylor144

dispersion in the following and assume that the impact of numerical dispersion is negligible. Since our145

GPR response is mainly sensitive to regions of high salinity, we expect that dispersion has only a minor146

effect in the present study (see Fig. 4).147

2.2.3 Flow and transport in a rough fracture148

For modeling flow and transport of a tracer in a single heterogeneous fracture, we modified the MaFloT-149

2D code that was developed for porous media by Künze and Lunati (2012). MaFloT-2D is a finite volume150

algorithm that simulates density-driven flow, hydrodynamic dispersion, diffusion and advection in a 2D151

cross section of a porous medium by assigning the porosity and permeability of each cell in the 2D section.152

It solves the mass balance equation for a single incompressible fluid completely saturating a porous matrix153

to obtain the pressure distribution. Using the pressure solution, it computes the Darcy velocity of the154

fluid within the plane and use it to compute the concentration at each time step by discretizing the155

advection-diffusion equation in both time and space.156

Our modifications to MaFloT-2D are the following:157

1. Assign the permeability of each cell using the permeability-aperture relation, k =
a2
pp

12 .158

2. Replace the porosity of each cell by the local aperture app.159

3. Use the minimum value as the interface area between cells, A1,2
min = Lpp × min{a1pp, a2pp} where160

the superscripts 1 and 2 denote two adjacent cells.161

4. Introduce contact cells (zero aperture) as no-flow zones.162

We assume flow and transport to be advection-dominated and assign either Dirichlet (zero-pressure) or163

Neumann (no-flow) boundary conditions at the outer boundaries as shown in Figure 2. More specifically,164

we assign no-flow to the bottom, left and right sides of the main fracture and zero pressure on the top,165

thus forcing the tracer to migrate upwards. To simulate the injection and withdrawal of a tracer during166

a push-pull test, we assign dynamic inflow and outflow boundary conditions at the injection location,167

which we always place at the center-bottom of a fracture (corresponding to the borehole location). This168

was done to obtain a similar flow configuration as the one observed in our field-experimental results that169

demonstrate upward movement of tracer from the injection depth (Shakas et al., 2016, 2017).170
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2.3 Ground penetrating radar modeling171

To model the propagation of the GPR source wavelet in the rock matrix and the subsequent interaction172

with the tracer-filled fracture, we use the effective-dipole methodology introduced by Shakas and Linde173

(2015). We allow for spatial variations in aperture and fracture-filling properties following Shakas and174

Linde (2017) and use the simulated distribution of tracer obtained from the MaFloT-2D simulation to175

compute time-lapse changes in the GPR signal. We do this at each measurement location by computing176

the difference between the later traces (when tracer is already in the fracture) with the background trace177

(before the tracer experiment starts); a visualization of this process is given by Fig. 4 in Dorn et al. (2012).178

We vary the shape of the GPR source spectrum using the four parameters of the generalized Gamma179

distribution. Given that the actual GPR source energy is unknown in field situations, we normalize each180

forward GPR simulation such that the total reflected energy in every GPR simulation matches the total181

reflected energy in the observed data. We compute the total energy by summing the absolute values of182

the complex-valued GPR traces expressed in the frequency-domain; the latter are obtained directly from183

the simulations (the forward model is constructed in the frequency domain) and through a Fast Fourier184

Transform (fft) of the real data. For a single trace, the total energy (TE) is TE =
∑N

1=1 |fft(ti)| =185

∑N
1=1(x

2
i + iy2i )

0.5, where ti is the time-varying (real-valued) amplitude of the electric field for a trace of186

N samples. The total reflected energy is simply the sum of the total energy over all the traces considered187

in a given simulation.188

2.4 Tracer and rock properties189

Throughout this work we assume the tracer to be wethanalt, a neutrally-buoyant and electrically-190

conductive tracer introduced by Shakas et al. (2017). Wethanalt is a mixture of saline tracer and ethanol;191

the latter allows to adjust the buoyancy of the saline tracer to match the ambient formation water, while192

the former ensures a strong electrical conductivity contrast with the ambient water. Further information193

about how to prepare wethanalt and experimental findings from its use are presented in Shakas et al.194

(2017). We define the following fluid properties for each parallel plate:195

• Electrical conductivity σ (S ·m−1), which we link to salt concentration c (g · L−1) using Eq. 9 of196

Sen and Goode (1992).197

• Dynamic viscosity µ (mPa · s) which varies linearly between the value for ambient water (µ = 1) to198

the value for wethanalt (for our experiments the wethanalt solution has µ = 2.8). This approximate199

linear relation between water and ethanol over this range is supported by controlled lab experiments200

presented by Hammond (2016).201

• Relative electrical permittivity εr, vary according to the water/ethanol ratio that is computed202
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from the tracer concentration in each plate. The values range linearly from wethanalt (εr = 53)203

to ambient water (εr = 79) following Sato and Buchner (2004).204

Note that all the parameters introduced above are temperature dependent and are here assumed at their205

value at 20 oC (the ambient water temperature at the field site is 16 oC). Furthermore, we do not consider206

density effects since the density of wethanalt is by design the same as the ambient water. In addition207

to the electrical properties of the fracture filling, also the electrical properties of the rock matrix need208

to be defined. In both the synthetic and real data inversions, we set the same realistic prior ranges for209

these parameters that were obtained from existing studies of the rock properties at the Ploemeur field210

site (Belghoul, 2007) where we conducted the experiments (Shakas et al., 2016, 2017).211

The prior parameter ranges for the parameters of interest are presented in Table 1. All the listed212

parameters have a bounded uniform prior distribution, except for the mean aperture α and standard213

deviation σh for which we used a bounded log-uniform prior to account for the fact that these parameters214

may vary over several orders of magnitude (sec. 2.1). The prior on each DR variable is given by an215

uncorrelated standard normal distribution.216

2.5 Model geometry217

We consider the same model geometry for both the real and synthetic data inversions (Figure 2). Our218

previous experience with the considered field data has shown that the tracer moves upwards after injection219

(Shakas et al., 2016, 2017). Nevertheless, televiewer data indicates that the injection fracture is oriented220

sub-horizontally with a deviation of 15o from the horizontal plane (fracture B1-4 in Le Borgne et al.221

(2007)). These observations suggest that the sub-horizontal fracture, which is not seen in the GPR222

reflection data, is connected to a neighboring sub-vertical fracture. To account for this, we define an223

initial sub-horizontal fracture (dip = 15o) in which we inject the tracer. This fracture folds into a sub-224

vertical fracture, whose dip and azimuth we infer during inversion, together with the folding distance (F )225

from the injection location that can range from 20 cm to 4 m (in steps of 20 cm given the considered cell226

size). The fixed fracture side length and width (both 16 m) allow for enough fracture area to reproduce the227

upward movement (approximately 10 m) of the tracer observed in the experiments. We do not compute228

the GPR reflections arising from the sub-horizontal fracture as they do not present a significant response.229

During inversion, we only accept models with an aperture distribution that is hydraulically connected230

from the injection location to the top of the fracture. We assign fixed borehole trajectories, for both the231

injection and monitoring boreholes, by utilizing previous borehole deviation logging and cross-hole GPR232

tests (Dorn et al., 2012). This allows us to define the position and orientation of the GPR transmitter233

and receiver at each simulation step.234
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" F

Figure 2: Schematic representation of the fracture model used in both the synthetic and real

data examples considered. Injection (green disk) occurs in a sub-horizontal fracture (black) that

intersects the injection borehole (light blue). The sub-horizontal fracture has variable length (F )

that we invert for. The tracer flows into a sub-vertical fracture whose dip (θ) and azimuth (ϕ)

we also invert for. The fracture has no-flow boundaries (yellow) except at the top (dark blue)

where zero-pressure is applied. GPR reflection data are collected in a nearby borehole (red)

located ∼ 6 m from the injection borehole. Precise borehole trajectories inferred from borehole

deviation logging and cross-hole tests are considered in the modeling. This simplified fracture

description allows us to explain the main large-scale behavior.

2.6 Probabilistic inference235

Our primary focus is to infer the geometric properties of the sub-vertically-oriented fracture, namely236

its orientation and aperture distribution, as well as the folding distance F . To do this, we rely on237

the DREAM(ZS) algorithm (Laloy and Vrugt, 2012); a Markov chain Monte Carlo (MCMC) algorithm238

that uses differential evolution updating of the model parameters to efficiently sample their posterior239

probability densities. We use the DREAM(ZS) algorithm in parallel over 24 processors and assign one240

chain for each processor.241

As data, we use the absolute value of the complex-valued coefficients of each frequency component of

the Fourier transformed GPR differences (see section 2.3). The use of absolute values results in smooth

data that are easier to fit, compared with highly oscillating waveforms, but without information about

the phase of the incoming electric field. However, the absolute values are directly affected by the spatial

distribution of tracer in the fracture and are informative of the aperture distribution along the fracture

plane. We assume that each real and imaginary part has normally-distributed noise with zero mean

and standard deviation σn. The resulting likelihood function (L) characterizing the absolute values is

12



  

a product of Gamma distributions (see derivation in Appendix A). The maximum-likelihood fit when

using the gamma distribution results in a model that has an average misfit σn between the observed and

modeled data. In contrast, when using the normal distribution the maximum-likelihood model favors

exact overlap between observed and modeled data (zero-misfit). The likelihood function is:

L =

M
∏

m=1

γ(∆dm, σn) =

M
∏

m=1

∆dm

σ2
n

exp
(

−
(∆dm

σn

)2)

. (7)

where ∆dm is the difference in absolute values between the mth observed (dmo ) and simulated (dms ) data

(in vector notation: do = {d1o, d2o, .., dMo }). Both dms and dmo consist of real and imaginary components,

where dm = xm + iym and |dm| =
√

(xm)2 + (ym)2. When using MCMC, it is numerically beneficial to

evaluate model proposals by using the log-likelihood:

log
(

L
)

=

M
∑

m=1

log
(

γ(∆dm, σn)
)

=

M
∑

m=1

(

− 2log(σn) + log(∆dm)−
(∆dm

σn

)2)

. (8)

2.6.1 Parameters of interest242

To infer the fracture aperture distribution, we invert for the mean aperture α, standard deviation σh,243

two correlation lengths ln and lm and Hurst exponent H, as well as 100 DR variables (sec. 2.1). For the244

fracture geometry, we invert for the dip θ and azimuth ϕ as well as the folding distance F (sec. 2.5). For245

the electric properties of the rock, we invert for both electrical permittivity εr and conductivity σ (sec.246

2.4) and for the four source parameters (Shakas and Linde, 2015). Additionally, we apply a Hierarchical247

Bayes scheme and consider the noise level (σn in Eq. 8) as a hyper-parameter that varies in the range248

σmin ≤ σn ≤ 10 ·σmin. Here, σmin is the minimum level of noise expected in the data; this corresponds to249

the known added noise for the synthetic case and it is computed for the real data by examining regions in250

the GPR difference sections where no changes are expected to occur (i.e., where there are no reflections).251

We assign a low log-likelihood (by replacing ∆dm with ∆dm = 10 · dmo in Eq. 8) to all proposed aperture252

models for which the injection occurs within a zero aperture region, or if there is no percolation from the253

injection cell to the fracture’s open boundary. In the following section we present the inversion results254

obtained for the synthetic and field-based examples.255
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Table 1: Table with results from the synthetic (subscript s) and field (subscript f) data inver-

sions. The prior ranges are the same for both inversions, and the pseudo-posterior mean and

standard deviation are shown for the synthetic and field data. The prior type is either uniform

(u) or log-uniform (l-u). For the synthetic case, the true parameters are also shown. The pa-

rameters that define the fracture geometry consist of the dip θ, azimuth ϕ, mean aperture α,

standard deviation σh, the Hurst exponent H, two characteristic correlation lengths ln and lm,

as well as the folding distance F . Additionally, the electrical permittivity εr and conductivity

σ of the rock matrix are considered unknown. Results for the 100 DR variables are not shown.

Parameter Prior Prior

Type

Trues means sds meanf sdf

θ (o) 75,105 u 90 92.01 1.47 101.45 2.04

ϕ (o) -22.5,22.5 u 0 3.05 8.16 1.26 18.09

α (mm) 0.1,10 l-u 2 1.36 0.55 0.21 0.06

σh (mm) 0.03,3 l-u 0.15 0.16 0.03 0.14 0.07

H (-) 0.5,1 u 0.8 0.93 0.07 0.93 0.09

ln (m) 1,10 u 2 1.40 0.30 3.62 1.35

lm (m) 1,10 u 6 6.30 1.95 3.66 1.09

F (m) 0.2,4 u 2 2.33 0.32 3.04 1.03

εr (-) 5.3,7.4 u 7 5.77 0.23 6.68 0.51

σ (µS ·m−1) 3,300 u 100 221.38 118.81 177.47 113.98
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3 Results256

We begin this section by presenting inversion results from the synthetic test case before proceeding to257

those of the field experiment. In the synthetic example, we chose the experimental parameters, both for258

the hydrologic test and the geophysical monitoring, to match those used in the actual field experiment.259

For the latter we consider the push-pull tracer test (a) from Shakas et al. (2017); further information260

about combined push-pull and GPR experiments at this site can also be found in Shakas et al. (2016).261

We assign a constant pumping rate of 2.7 L ·min−1 during the injection, chasing and withdrawal phases262

and model the push-pull test by injecting wethanalt with electrical conductivity of 35 mS · cm−1, corre-263

sponding to 44 g · kg−1 of salt, into a fracture filled with fresh water of 0.7 mS · cm−1 for 33 min, followed264

by a chasing with formation water for another 33 min before reversing the flow.265

We use GPR data from 43 locations with mid-points that are 50 cm apart along the borehole; the actual266

field acquisition was made at 5 cm intervals but we consider only every 10th trace to gain computational267

time. We choose 6 difference sections from the field dataset that showed strong changes in the GPR268

reflections. The times at which these six sections were measured are {t1: 23 to 26, t2: 29 to 32, t3: 37 to269

40, t4: 44 to 47 t5: 51 to 54 and t6: 59 to 62} minutes, measured from the start of the tracer injection.270

Here we present tracer simulation snapshots and thus refer to three time instants as t2 = 30, t4 = 46271

and t6 = 61, that we consider representative of sections t2, t4 and t6 respectively. In practice, during272

the simulations we compute the GPR traces using the tracer distribution snapshot that corresponds to273

the instant at which the antenna system is present at a given location along the borehole. Nevertheless,274

these tracer distribution snapshots do not vary greatly during the acquisition of a complete GPR section.275

Additionally, from each FFT-transformed trace, we select samples at 80 linearly spaced frequencies in276

the range 0 ≤ f ≤ 190 MHz. The final dataset for both field and synthetic data consists of 20640 (43277

traces, 80 samples, 6 sections) datapoints. For all the simulation results presented herein, the origin of278

the coordinate system (x = 0, y = 0, z = 0) is the tracer injection point. In the field experiment this279

corresponds to a depth of 77.8 m.280

3.1 Inversion results for synthetic data281

For the synthetic test case we create a fracture realization which we refer to as the true model. The282

geometric properties of the true model are presented in Table 1 and its geometry is shown in Fig.283

3(a), while a plane view of the fracture is shown in Fig. 4(a). The parameters were chosen to be284

representative of values measured in the field (see http://hplus.ore.fr/en/ploemeur/publications-ploemeur285

for a comprehensive list of publications).286

The simulated tracer distributions for the three time instances t2, t4 and t6 are shown in Figs. 4(e, i, m).287
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Figure 3: (a) The geometry of the true model and (b, c, d) the three main categories of models

obtained after inversion of the noise-contaminated synthetic data, with (b) the maximum likeli-

hood (ML) model. The aperture variations along the fracture plane are shown and the red line

indicates the orientation of the GPR monitoring borehole. The injection location is defined as

the origin of the coordinate system.

The absolute values of the three simulated and noise-contaminated GPR difference sections corresponding288

to the concentration fields in Figs. 4(e, i, m) are shown in Figs. 5(a, d, g). The upwards movement or289

the tracer is evident in the GPR sections. That is, the reflected energy that is focused at a height of 5290

m (Fig. 5(a)) at the first time instance corresponding to the end of the injection phase (Fig. 4(e)) is291

later seen at a height of 12 m (Fig. 5(g)) which matches well the distribution of the tracer at this time292

instance (Fig. 4(m)). Moreover, as the tracer spreads out over a larger area (compare Fig. 4(e) to Fig.293

4(m)), the maximum energy in the GPR reflection data drops considerably (compare Fig. 5(a) to Fig.294

5(g)).295

In Figs. 3(b)-(d) we present three of the most likely fracture models that are obtained at the end of296

the 24 MCMC chains; the geometric properties of these three models are representative of all other final297

models. Figures 4(b), (c) and (d) show the corresponding planar views of these models while the tracer298

distributions below each fracture aperture field depicts the simulated concentration field at time instants299
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Figure 4: Fracture aperture realizations with corresponding snapshots of tracer distributions.

The first row shows the aperture distribution along the fracture plane for the (a) true model

and the three categories of models (b), (c) and (d) inferred by the inversion, with (b) being the

maximum likelihood model. Below each model, the tracer distribution along the fracture plane

is shown at time instants t2, t4 and t6. The injection location is indicated with a (filled green)

circle and the semi-transparent area indicates the sub-horizontal part of the fracture, from which

no GPR reflections are computed.

t2, t4 and t6, respectively.300

The maximum likelihood (ML) model is the one depicted in Fig. 3(b). However, variations of the three301

model types appear at similar frequency in the final collection of models and their likelihoods are overall302

similar. The tracer simulation corresponding to the ML model is plotted in the second column of Fig. 4303

and the corresponding GPR reflection data in Figs. 5(b, e, h). The difference between the true and the304

ML modeled GPR difference sections is shown in Figs. 5(c, f, i). Additionally, in Fig. 5(j) we plot the305
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Figure 5: Absolute amplitude of the GPR difference sections as a function of frequency and

height from the injection location: (a, d, g) the true noise-contaminated model response, (b,

e, h) the maximum likelihood (ML) response and (c, f, i) their differences at times t2, t4 and

t6, respectively. Each row can be compared to its representative tracer snapshot in Fig. 4.

(j) The evolution of the log-likelihood of the 24 MCMC chains; the dotted lines indicate the

log-likelihood corresponding to the upper and lower data error bounds.

evolution of the log-likelihoods for the 24 chains as a function of the MCMC iteration. The dashed (black)306

lines in this figure show the expected values corresponding to the minimum and maximum bounds on307

the data error. The chains cross the maximum error bound after ∼ 104 iterations, but do not reach the308

minimum error level (corresponding to the actual noise level). Unfortunately, the available computing309

time did not allow for the run time needed to declare a formal convergence of the MCMC chains to310

the posterior distribution. We refer to the final model realization of each of the 24 MCMC runs as the311

pseudo-posterior in what follows.312

In Fig. 6(b) we plot the tracer probability map after inversion. This map is computed as follows: (1) the313

tracer simulation is run for each of the last models of the 24 MCMC chains; (2) we assign a value of 1 to314

each cell of the fracture for which the tracer concentration is above 4.4 g · L−1 (10 % of the injected salt315
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Figure 6: (a) The region of the true model that is occupied by tracer at some point during the

considered simulation period. (b) Corresponding probability map given as an average over the

24 final models of each MCMC chain. (c) The true, prior and pseudo-posterior distributions of

the local fracture aperture (app).

concentration) at any of the considered times, else we assign a value of 0; (3) we calculate the mean over316

the 24 models to obtain the probability that tracer above the threshold arrives at a given location along317

the fracture plane. The corresponding map for the true model is plotted in Fig. 6(a), which in this case318

leads to a binary output.319

In Fig. 6(c) we plot the true, prior and pseudo-posterior probability distribution functions (pdf ) of the320

local apertures. The true pdf is obtained from the histogram of the local apertures in the true model321

of Fig. 4(a). The prior pdf is obtained by randomly sampling 106 fracture fields from the prior and322

computing a kernel-based approximation to the histogram of these realizations. The pseudo-posterior pdf323

is obtained from the histogram of the local apertures in the 24 final MCMC models. In Fig. 7 we present324

the prior and pseudo-posterior pdf’s of the geometrical fracture parameters, along with the values used325

to create the true model. The pseudo-posteriors are more focused than the priors and include the values326

used to create the true model.327

3.2 Inversion results for field data328

We now present the inversion results obtained for the field data. The prior parameter ranges and pseudo-329

posterior statistics are presented in Table 1; as mentioned above, all settings are the same as for the330

synthetic example. Inversion of the field data leads to three model categories that are represented in Fig.331
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Figure 7: Histograms of the pseudo-posteriors for the fracture parameters considered in the

inversion of the synthetic data, namely, (a) mean aperture α, (b) standard deviation of aperture

σh, (c) dip θ and (d) azimuth ϕ, (e) Hurst exponent H, correlation length along the fracture

(f) width ln and (g) length lm, and (h) the fold distance from injection F (see sec. 2.1 for more

details). The true parameter values are shown along the horizontal axis with a (green) dot, the

prior is shown with a solid (red) line and the (blue) pseudo-posterior histograms are obtained

from the final 24 MCMC realizations.

8. A planar view of these models along with the corresponding tracer snapshots at three time instances332

t2, t4 and t6 are shown in Fig. 9. The inferred models favor upwards flow of the tracer with some latency:333

the tracer tends to stay between 8 and 12 m at t2 and t4 (second and third row, Fig. 9) and some mass334

remains at the end of the chasing period. Additionally, the first two types of inferred models show very335

similar structure, but they are mirrored along the azimuth; this results from the inability of classical336

omni-directional borehole GPR antennas to delineate the azimuthal direction of the reflections (Olsson337

et al., 1992). The third model differs from the first two in that it has a smaller correlation length along338

the fracture width (ln), namely 2.7 m instead of roughly 6 m for the other two models, but it still leads339

to a channelized flow path.340

In Figs. 10(a, d, g) we plot the observed GPR difference sections corresponding to time instances t2,341

t4 and t6. The corresponding GPR simulations for the ML model are shown in Figs. 10(b, e, h), and342
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  Figure 8: The model geometry for the three (a, b, c) main types of models obtained after

MCMC inversion of the field data, with (a) being the ML model. The aperture variations along

the fracture plane are shown and the red line indicates the orientation of the GPR monitoring

borehole. The injection location is defined as the origin of the coordinate system.

the absolute differences between the field data and the simulated ML data are shown in Figs. 10(c, f, i).343

The ML model reproduces the main apects of the data (vertical position and spectral content), while the344

details are not that well reproduced as for the synthetic example. In Fig. 10(j) we plot the evolution of345

the likelihoods for the 24 chains during the MCMC inversion, as well as the maximum and minimum error346

lines. Compared to the synthetic inversion, the ML model barely reaches the maximum error bound.347

Also, the log-likelihood is still slowly increasing at the end of the MCMC chains and the final 24 models348

can consequently only be considered as an approximate pseudo-posterior.349

In Fig. 11(a) we plot the tracer probability map computed using the last 24 MCMC model (see expla-350

nation in sec. 3.1). Alongside in Fig. 11(b) we plot the prior and pseudo-posteriors pdf’s of the local351

aperture with the pseudo-posterior being focused towards smaller local aperture values. Figure 12 shows352

the prior and pseudo-posterior histograms of the parameters tabulated in Table 1. As in the synthetic353

inversion, the pseudo-posteriors show more peaked distributions than the priors, suggesting that the data354

are informative in constraining these parameters.355
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Figure 9: (a, b, c) The first row shows the aperture distribution along the fracture plane for

the three types of models obtained by the MCMC inversion with (a) being the ML model. For

each model, its corresponding column shows the simulated tracer distribution along the fracture

plane at time instances t2, t4 and t6. The injection location is indicated with a (filled green)

circle and the semi-transparent area indicates the sub-horizontal part of the fracture, where no

GPR reflections are computed.
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Figure 10: Absolute amplitude of the GPR difference sections as a function of frequency and

height from the injection location: (a, d, g) the field-data, (b, e, h) the maximum likelihood

(ML) response and (c, f, i) their differences at times t2, t4 and t6, respectively. Each row can be

compared to its representative tracer snapshot in Fig. 9. (j) The evolution of the log-likelihood

of the 24 MCMC chains; the dotted lines indicate the log-likelihood corresponding to the upper

and lower data error bounds.
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Figure 11: (a) Probability that a given region in the model is occupied by the tracer at some

point during the considered simulation period as given by an average over the 24 final models

of each MCMC chain. (b) the prior and pseudo-posterior distributions of the local fracture

aperture (app).
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Figure 12: Pseudo-posterior histograms for the inferred fracture generation parameters used in

the inversion of the field data, namely, (a) mean aperture α, (b) standard deviation of aperture

σh, (c) dip θ and (d) azimuth ϕ, (e) Hurst exponent H, correlation length along the fracture

(f) width ln and (g) length lm, and (h) the fold distance from injection F (see sec. 2.1 for more

details). The prior is shown with a solid (red) line and the pseudo-posterior histograms are

created using the last parameter values in each MCMC chain.
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4 Discussion356

The principal aim of this study is to infer the aperture distribution and assessing its impact on tracer357

transport. For instance, does the GPR data allow us to distinguish between an aperture distribution358

for which the tracer spreads radially and remains close to the injection depth and a fracture exhibiting359

channeling in which the tracer quickly migrates upwards? The prior distribution does not allow us to360

distinguish between these two cases.361

In this section we compare the results obtained by the synthetic and field-data inversions. In doing so,362

our aim is to assess the field-data inversion, for which significant modeling and experimental uncertainties363

exist, in light of the synthetic inversion, for which the same forward model is used to both create the364

data and infer the fracture properties, and for which there is no experimental uncertainty except for365

Gaussian noise added on the GPR data. By modeling uncertainties we refer to inadequacies of the366

forward model to capture the real phenomena under study (e.g., simplified fracture geometry, local cubic367

law, ignoring dispersion and matrix diffusion) and by experimental uncertainties we refer to data errors,368

sensor position uncertainties, and in general everything related to the measurement process that can not369

be exactly monitored and reproduced in the simulations.370

A major challenge in this work is the non-linearity of the forward problem. We use the difference between371

two covariance functions to create a fracture aperture distribution. Flow and transport are then solved372

numerically to simulate the tracer distribution in the resulting fracture. Using the tracer distribution373

and the fracture geometrical properties, we then compute GPR reflection data and use these data in a374

MCMC inversion framework to infer the fracture properties. It is evident that this sequence of non-linear375

modeling steps leads to a highly non-linear inference problem with multiple interacting parameters.376

4.1 Synthetic inversion377

For the synthetic example, all inferred fracture models result in tracer that moves upwards in the center378

of the fracture (last row in Fig. 4) which is also the case for the true model. Also, in all models the tracer379

forms a semi-circular ”ring” around the injection location, with parts of the tracer remaining at the same380

height as the injection location even at the end of the chasing period. This form of tracer flow is described381

as radial, that is, the tracer spreads in a radius around the injection location. Radial flow suggests that382

aperture pathways are smoothly distributed around the injection location, and no preferential direction383

exists.384

The good agreement between the true and inferred tracer distributions is also reflected in the GPR385

difference sections (Fig. 5): both the true and ML models show an initial strong reflectivity change386

(Figs. 5(a-b)) that later moves upwards (Figs. 5(d-e)) and strongly diminishes at the last time step387
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(Figs. 5(g-h)). The final GPR images for both the synthetic data and the ML model show reflected388

energy that stays at low altitudes and frequencies (around 7 m and 70 MHz), originating from the tracer389

that remains at similar depths as the injection location. Overall, the radial flow pattern of the tracer is390

seen in the GPR reflection data as a smooth amplitude ellipse that spreads in height and decreases in391

amplitude during the chasing period.392

4.2 Field data inversion393

For the field-data inversion, we observe that the final models (Fig. 8) favor an aperture distribution394

that causes the tracer to be channeled away from the injection point. In Fig. 9 we note that the tracer395

initially (second row) either occupies the lower left or the lower right part of the fracture plane, but is396

subsequently pushed (third row) such that, at the last time instance shown (fourth row), there is not397

much tracer remaining close to the injection location. This is also seen in the GPR reflection images398

presented in Fig. 10, in which the field-data (first column) shows reflections at the end of the tracer399

injection that span a large depth range (from 0 m to roughly 20 m in height) that are later pushed during400

chasing to the upper region (Fig. 10(d)) and finally end up only occupying the upper region (Fig. 10(g)).401

This pattern is also reproduced by the ML model (second column in Fig. 10).402

In order to obtain a model that reproduces the patterns observed in the field-based GPR reflection data403

(Fig. 10), the inversion favors a fracture aperture distribution that allows the complete upwards migration404

of the tracer during the pushing phase of the experiment. This is not the case for the synthetic inversion,405

for which the tracer spreads in a more radial manner (Fig. 4). In the field-data, the GPR reflections406

(Fig. 10, first column) are initially weak (Fig. 10(a)), and strengthen as they move upwards from the407

injection location (Figs. 10(d) and (g)) as the chasing continues. This pattern is reproduced in the ML408

model (Fig. 10(a), second column) as well as in the other model families. In contrast to the radial tracer409

pattern observed for the synthetic data, the observed GPR reflection attributes can only be reproduced410

by a tracer that exhibits channelized upwards flow.411

The ability of the field-data inversion to infer a strong degree of flow channeling in the fracture plane is412

an important finding owing to the role of flow channeling in controlling dispersion and mixing processes413

in fractures. This is consistent with indirect evidence obtained from previous results of heat tracer tests414

at the site, which suggested that heat recovery was characteristic of a highly channeled flow (Klepikova415

et al., 2014, 2016). Flow channeling not only affects the diffusion of heat from the fracture to the matrix,416

but it also has important consequence for solute transport by inducing both fast transfer times through417

preferential flows and very long residence times in the remaining slow-flow areas of the fracture.418
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4.3 Aperture distribution419

Another important parameter that can be constrained from our inversion results is the local aperture420

distribution. In the synthetic inversion, we found that the local aperture distribution is well retrieved421

(Fig. 6(c)). Unlike the prior, the posterior distribution reproduces the peak, variance and skewness of the422

true distribution. The corresponding pseudo-posterior local aperture distribution obtained from the field-423

data inversion (Fig. 11(b)) favors smaller apertures and has a shape that is strikingly different than the424

prior distribution. Specifically, the pseudo-posterior suggests that the local apertures are distributed over425

a much narrower range, and that local apertures above 5 mm are highly unlikely. The tracer probability426

map shown in Fig. 11(a) suggests that the tracer is equally likely to follow a left or right path (but427

not an direct upwards movement from the injection location); this reflects the fact that single-hole GPR428

reflection data is insensitive to the azimuth of the reflection (see Olsson et al. (1992) for more information).429

In addition to the two modes of the posterior distribution indicating an initial sideways motion, we also430

find that the tracer has to move through a bottleneck at roughly 5.5 m above the injection location.431

4.4 Reliability of the pseudo-posterior probability distributions432

The mean and standard deviation of the pseudo-posterior probability distributions are presented in Table433

1. For the synthetic data inversion (see Fig. 7), we note that the pseudo-posteriors overlap with the true434

parameter valuse. Furthermore, the pseudo-posteriors are more peaked, suggesting an information gain435

compared to the priors. For the field-data inversion (Fig. 12), we note that all pseudo-posteriors are436

considerably more narrow than their priors. The pseudo-posteriors suggest that the main fracture has437

a positive dip (Fig. 12(c)), leaning towards the GPR monitoring borehole. This fracture is likely to be438

connected to the sub-horizontal fracture at approximately 3 m away from the injection location. Also,439

the two integral scales (Fig. 12 (f) and (g)) are of similar magnitude. The Hurst exponent (Fig. subfigure440

12(e)) is likely to be larger than ∼ 0.8, suggesting aperture patterns that are more similar to a multi-441

Gaussian distribution. For fracture surfaces, Hurst exponents of this magnitude have been supported442

by experimental evidence (Brown et al., 1986). Unfortunately, computational resources did not allow443

for a formal convergence of the posterior distributions. The best approach to achieve convergence in444

future studies is probably offered by parallel tempering (see Laloy et al. (2016) for a demonstration of the445

significant improvements offered by parallel tempering in data rich environments). Basically, when using446

large data sets (20640 datapoints in this case) with high signal-to-noise-ratios, it becomes highly unlikely447

that a traditional MCMC algorithm accept uphill steps (models with lower likelihood), which implies448

that there is a large risk to remain stuck in local minima. Parallel tempering (Earl and Deem, 2005)449

circumvents this problem by allowing for information exchange with other MCMC chains that move more450

freely through the model space.451

28



  

These posterior estimates are also affected by strong modeling assumptions; the main ones are summarized452

below. In terms of GPR modeling, the main assumption affecting our results is probably that we do not453

account for fracture topography (we account for aperture variations, but assume that the fracture is454

planar). This could be accounted for by using appropriate meshing techniques and including dipole455

coupling in the GPR modeling (Shakas and Linde, 2017). The most important assumption is probably456

related to the fracture geometries considered. The two intersecting fractures are likely to have a much457

more complex intersection than what is assumed here and additional fractures might play an important458

role. Dorn et al. (2013) considered the integration of GPR and hydrological data in the context of459

discrete fracture networks, but doing this was outside the scope of the present work. Furthermore, we460

ignore matrix diffusion, hydrodynamic dispersion, macro dispersion due to unaccounted heterogeneity461

below the discretization scale (20 cm) and we assume that the cubic law is valid locally. We expect that462

the impact of these assumptions are small in the present study compared with the much larger errors463

caused by the simplified fracture geometry model.464
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5 Conclusions465

This study investigates how single-hole GPR reflection monitoring of push-pull tracer tests may provide466

information on fracture scale transport pathways and aperture distribution. Such properties, which can467

generally only be inferred indirectly (and approximately) by tracer test interpretation, play a key role in468

driving solute dispersion and heat transfer in fractured rocks. To target this challenge, we established a469

novel inverse modeling framework combining fluid flow, transport and electromagnetic wave solvers at the470

fracture scale with a Markov chain Monte Carlo algorithm. After demonstrating the performance of this471

framework for a synthetic case study, we apply it to a field experiment that used an electrically-conductive472

and neutrally-buoyant tracer.473

From the synthetic test case we demonstrate that distinctively different aperture distributions can be474

found that are in strong agreement with the data. We also find that the large data volumes considered475

and the strong non-linearity of the involved forward solvers prohibit efficient mixing of the MCMC chains.476

With the available computational budget, we were unable to sample the full posterior distribution; instead,477

we rather sample a pseudo-posterior that provides insights about possible fracture configurations. All478

the final models capture the same main attributes of the tracer migration, which for the synthetic case479

is characterized as radial flow. On the contrary, for the field-data inversion our final models favor a480

channelized tracer migration, which is in agreement with heat-tracer tests performed on the same fracture.481

To the best of our knowledge, this is the first time that geophysical data has been used to infer aperture482

heterogeneity patterns at the fracture scale, and to provide information about their impact on flow and483

transport at this scale. Our main findings are that we are able to infer the marginal distribution of local484

apertures and distinguish between radial and channelized transport at the fracture scale, two regimes that485

have fundamentally different dynamics in terms of dispersion, mixing and contact area between solute486

and rock.487

Our GPR forward model can simulate reflections arising from multiple fractures, while the flow and488

transport simulator used is limited to one fracture. Here, we simulate in a simplified way the interaction489

of two fractures by assigning two dip angles to a single fracture plane. In the future, it would be490

important to couple the GPR forward model with a flow and transport solver that is capable of modeling491

the tracer migration within a fracture network. This would allow for inference of properties characterizing492

fracture networks, and provide further insights to site-specific processes that are relevant, for instance,493

to groundwater remediation and geothermal heat extraction. For future investigations, it would be494

interesting to test the impact of local dispersion, which we neglected in this study. While for the considered495

test we do not expect local dispersion to have a significant impact on the results, for larger tracer transport496

distances it would certainly have an impact.497
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Appendices503

A Likelihood function derivation504

Here, we derive the likelihood function that appears in Eq. 7. To begin, we assume that the real505

and imaginary value pairs for each frequency component are characterized by zero-mean and normally506

distributed uncorrelated noise with standard deviation σn. We denote the respective noise distributions507

with X = N(0, σn) and Y = N(0, σn) for the real and imaginary parts, respectively.508

The absolute value of a complex number z, where z = x+ i y, is |z| =
√

x2 + y2. Since we are interested509

in the error distribution of the absolute values, we need to propagate the errors in X and Y to the error510

of the absolute values Z.511

The chi-squared (χ2) distribution describes the sum of squares of k normally-distributed variables:

χ2(v; k) =
vk/2−1exp−v/2

2k/2Γ(k/2)
, (9)

where Γ(n) ≡ (n− 1)! is the Gamma function and v is a free variable. Replacing k = 2, to compute the

contributions of the squares of X and Y results in:

f(v) = χ2(v; 2) =
exp

− v

2σ2
n

2σ2
n

. (10)

where we have scaled the random variables by their standard deviation, σn. Eq. 10, also known as the512

exponential distribution with scale parameter 1
2σ2

n

is valid for the variable v = X2 +Y2.513

We can transform Eq. 10 to obtain the distribution of the square-root of the addition of two random514

variables, as is done when taking the absolute value of a complex number pair (z) by applying the515

transformation w = |z| = √
v.516

The transformation of the free variable v → w(v) in the probability density function f(v) can be achieved517

by replacing the limits and applying the chain rule:518

∫ b

a

f(v)dv →
∫ w(b)

w(a)

f(v(w))
∣

∣

∣

dv

dw

∣

∣

∣
dw =

∫ w(b)

w(a)

g(w)dw (11)

We apply this relation to Eq. 10 to obtain the transformation v → w(v) by noting that w(v) =
√
v, hence

v = w2 and dv
dw = 2w. Eq. 10 then becomes:

g(w) =
|w|
σ2
n

exp
− w

2

2σ2
n . (12)

Eq. 12 is also called the Gamma distribution. It has the interesting characteristic that its maximum-
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likelihood value (ML), obtained by setting the derivative with respect to w to zero, gives:

∂g(w)

∂w
= 0 → ML(w) = σn (13)

That is, the likelihood function in Eq. 12 favors an average misfit between simulated and observed519

data that is equal to the standard deviation of the noise in both the real and imaginary values of the520

transformed GPR trace.521
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