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Abstract Within the standard model extension (SME), we
expand our previous findings on four classes of violations
of Super-Symmetry (SuSy) and Lorentz Symmetry (LoSy),
differing in the handedness of the Charge conjugation-Parity-
Time reversal (CPT) symmetry and in whether considering
the impact of photinos on photon propagation. The viola-
tions, occurring at the early universe high energies, show
visible traces at present in the Dispersion Relations (DRs).
For the CPT-odd classes (Vμ breaking vector) associated
with the Carroll–Field–Jackiw (CFJ) model, the DRs and
the Lagrangian show for the photon an effective mass, gauge
invariant, proportional to |V|. The group velocity exhibits
a classic dependency on the inverse of the frequency squ-
ared. For the CPT-even classes (kF breaking tensor), when
the photino is considered, the DRs display also a mas-
sive behaviour inversely proportional to a coefficient in the
Lagrangian and to a term linearly dependent on kF . All DRs
display an angular dependence and lack LoSy invariance. In
describing our results, we also point out the following prop-
erties: (i) the appearance of complex or simply imaginary
frequencies and super-luminal speeds and (ii) the emergence
of bi-refringence. Finally, we point out the circumstances
for which SuSy and LoSy breakings, possibly in presence of
an external field, lead to the non-conservation of the photon
energy-momentum tensor. We do so for both CPT sectors.
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1 Introduction, motivation and structure of the work

For the most part, we base our understanding of particle
physics on the standard model (SM). The SM proposes the
Lagrangian of particle physics and summarises three inter-
actions among fundamental particles, accounting for electro-
magnetic (EM), weak and strong nuclear forces. The model
has been completed theoretically in the mid seventies, and
has found several experimental confirmations ever since. In
1995, the top quark was found [1]; in 2000, the tau neutrino
was directly measured [2]. Last, but not least, in 2012 the
most elusive particle, the Higgs Boson, was found [3]. The
associated Higgs field induces the spontaneous symmetry
breaking mechanism, responsible for all the masses of the
SM particles. Neutrinos and the photon remain massless, for
they do not have a direct interaction with the Higgs field.
Remarkably, massive neutrinos are not accounted for by the
SM.

All ordinary hadronic and leptonic matter is made of
Fermions, while Bosons are the interaction carriers in the
SM. The force carrier for the electromagnetism is the pho-
ton. Strong nuclear interactions are mediated by eight glu-
ons, massless but not free particles, described by quantum
chromo-dynamics (QCD). Instead, the W+, W− and Z mas-
sive Bosons, are the mediators of the weak interaction. The
charge of the W-mediators has suggested that the EM and
weak nuclear forces can be unified into a single interaction
called electroweak interaction.

We finally notice that the photon is the only massless non-
confined Boson; the reason for this must at least be questioned
by fundamental physics.

SM considers all particles being massless, before the
Higgs field intervenes. Of course, masslessness of particles
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would be in contrast with every day experience. In 1964,
Higgs and others [4–6] came up with a mechanism that,
thanks to the introduction of a new field - the Higgs field - is
able to explain why the elementary particles in the spectrum
of the SM, namely, the charged leptons and quarks, become
massive. But the detected mass of the Higgs Boson is too
light: in 2015 the ATLAS and CMS experiments showed
that the Higgs Boson mass is 125.09 ± 0.32 GeV/c2 [3].
Between the GeV scale of the electroweak interactions and
the Grand Unification Theory (GUT) scale (1016 GeV), it is
widely believed that new physics should appear at the TeV
scale, which is now the experimental limit up to which the
SM was tested [7]. Consequently, we need a fundamental the-
ory that reproduces the phenomenology at the electroweak
scale and, at the same time, accounts for effects beyond the
TeV scale.

An interesting attempt to go beyond the SM is for sure
Super-Symmetry (SuSy); see [8] for a review. This theory
predicts the existence of new particles that are not included
in the SM. The interaction between the Higgs and these new
SuSy particles would cancel out some SM contributions to the
Higgs Boson mass, ensuring its lightness. This is the solution
to the so-called gauge hierarchy problem. The SM is assumed
to be Lorentz1 Symmetry (LoSy) invariant. Anyway, it is
reasonable to expect that this prediction is valid only up to
certain energy scales [9–15], beyond which a LoSy Violation
(LSV) might occur. The LSV would take place following the
condensation of tensor fields in the context of open Bosonic
strings.

The aforementioned facts show that there are valid rea-
sons to undertake an investigation of physics beyond the SM
and also consider LSV. There is a general framework where
we can test the low-energy manifestations of LSV, the so-
called Standard Model Extension (SME) [16–19]. Its effec-
tive Lagrangian is given by the usual SM Lagrangian, modi-
fied by a combination of SM operators of any dimensionality
contracted with Lorentz breaking tensors of suitable rank to
get a scalar expression for the Lagrangian.

For the Charge conjugation-Parity-Time reversal (CPT)
odd classes the breaking factor is the Vμ vector associated
with the Carroll–Field–Jackiw (CFJ) model [20], while for
the CPT-even classes it is the kF tensor.

In this context, LSV has been thoroughly investigated phe-
nomenologically. Studies include electron, photon, muon,
meson, baryon, neutrino and Higgs sectors [21]. Limits on the
parameters associated to the breaking of relativistic covari-
ance are set by quite a few experiments [21–23]. LSV has also
been tested in the context of EM cavities and optical systems

1 Usually, the Lorentz transformations describe rotations in space (J
symmetry) and boosts (K symmetry) connecting uniformly moving
bodies. When they are complemented by translations in space and time
(symmetry P), the transformations include the name of Poincaré.
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Fig. 1 We show the energy scales at which the symmetries are sup-
posed to break, referring to the model described in [55]. At Planck scale,
1019 GeV, all symmetries are exact, unless LoSy breaking occurs. This
latter may intervene at a lower scale of 1017 GeV, but anyway above
GUT. Between 1011 and 1019 GeV, we place the breaking of SuSy. In
our analysis, we assume that the four cases of SuSy breaking occur
only when LoSy has already being violated. Interestingly, at our energy
levels, we can detect the reminiscences of these symmetry breakings

[24–30]. Also Fermionic models in presence of LSV have
been proposed: spinless and/or neutral particles with a non-
minimal coupling to a LSV background, magnetic properties
in relation to Fermionic matter or gauge Bosons [31–42].

More recently, [43,44] present interesting results involv-
ing the electroweak sector of the SME.

Following [45–54], LSV is stemmed from a more funda-
mental physics because it concerns higher energy levels of
those obtained in particle accelerators. In Fig. 1, we show the
energy scales at which the symmetries are supposed to break,
referring to the model described in [55]. At Planck scale, 1019

GeV, all symmetries are exact, unless LoSy breaking occurs.
This latter may intervene at a lower scale of 1017 GeV, but
anyway above GUT. Between 1011 and 1019 GeV, we place
the breaking of SuSy. In our analysis, we assume that the four
cases of SuSy breaking occur only when LoSy has already
being violated. Interestingly, at our energy levels, we can
detect the reminiscences of these symmetry breakings.

Indeed, we adopt the point of view that the LSV back-
ground is part of a SuSy multiplet; see for instance [55].

Since gravitational wave astronomy is at its infancy, EM
wave astronomy remains the main detecting tool for unveil-
ing the universe. Thereby, testing the properties of the pho-
tons is essential to fundamental physics and astrophysics has
just to interpret the universe accordingly.

A legitimate question addresses which mechanism could
provide mass to the photon and thereby how the SM should
be extended to accommodate such a conjecture. We have set
up a possible scenario to reply to these two questions with a
single answer.

123



Eur. Phys. J. C (2018) 78 :811 Page 3 of 20 811

Non-Maxwellian massive photon theories have been pro-
posed over the course of the last century. If the photon is
massive, propagation is affected in terms of group velocity
and polarisation.

This work is structured as follows. In Sect. 2, we sum-
marise, complement and detail the results obtained in our
letter [56], with some reminders to the appendix. Within the
unique SME model, we consider four classes of models that
exhibit LoSy and SuSy violations, varying in CPT handed-
ness and in incorporating - or not - the effect of photino on
the photon propagation. The violation occurs at very high
energies, but we search for traces in the DRs visible at our
energy scales. In the same Section, we confirm that a mas-
sive photon term emerges from the CPT-odd Lagrangian. We
discover that a massive photon emerges also for the CPT-
even sector when the photino is considered. We also point
out when i) complex or simply imaginary frequencies and
super-luminal speeds arise. In Sect. 3, we look for multi-
fringence. In Sect. 4, we wonder if dissipation is conceiv-
able for wave propagation in vacuum and find an affirmative
answer. In Sect. 5, we propose our conclusions, discussion
and perspectives. The appendix gives some auxiliary techni-
cal details.

1.1 Reminders and conventions

We shall encounter real frequencies sub- and luminal veloci-
ties but also imaginary and complex frequencies, and super-
luminal velocities.2

In this work, see the title, we intend photon mass as an
effective mass. The photon is dressed of an effective mass,
that we shall see, depends on the perturbation vector or ten-

2 A velocity v larger than c is associated to the concept of tachyon
[57,58] and implies an imaginary relativistic factor γ . If wishing (rel-
ativistic) energy E and (relativistic) mass m to remain real, rest mass
m0 must be imaginary

E = mc2 = γm0c
2 = m0c2√

1 − v2

c2

. (1)

Similarly, wishing measured frequency f to remain real, frequency f0
must be imaginary in the rest frame

f = f0
γ

= ν0

√
1 − v2

c2 . (2)

Alternatively, letting rest mass and rest frequency real, mass and energy
become imaginary. In the particle view, recalling that E = hν, we
recover both interpretations. An imaginary frequency implies an evanes-
cent wave amplitude, and thereby tachyonic modes are associated to
transitoriness. Complex frequencies present the features above for the
imaginary part, and usual properties for the real part. Finally, few schol-
ars consider causality not necessarily incompatible with tachyons [59–
66].

sor. Nevertheless, we are cautious in differentiating an effec-
tive from a real mass. The Higgs mechanism gives masses
to the charged leptons and quarks, the W and Z bosons,
while the composite hadrons (baryons and mesons), built
up from the massive quarks, have most of their masses from
the mechanism of Chiral Symmetry (Dynamical) Breaking
(CSB). It would be epistemologically legitimate to consider
such mechanisms as producing an effective mass to particles
which, without such dressing mechanisms, would be other-
wise massless. What is then real or effective? The feature of
being frame dependent renders surely the concept of mass
unusual, but still acceptable to our eyes, being the dimension
indeed that of a mass.

We adopt natural units for which c = h̄ = 1/4πε0 =
μ = 1, unless otherwise stated. We adopt the metric signa-
ture as (+,−,−,−). Although more recent literature adopts
kμ
AF and kμνρσ

F for LSV vector and tensor, respectively, we
drop the former in favour of Vμ for simplicity of notation
especially when addressing time or space components and
normalised units.

Finally, we omit to use the adjective angular, when
addressing the angular frequency ω.

1.2 Upper limits on Vμ vector and photon mass mγ

Ground based experiments indicate that |V|, the space com-
ponents, must be smaller than 10−10 eV = 1.6 × 10−29 J
from the bounds given by the energy shifts in the spectrum
of the hydrogen atom [67]; else smaller than 8 × 10−14 eV
= 1, 3 × 10−32 J from measurements of the rotation in the
polarisation of light in resonant cavities [67]. The time com-
ponent of Vμ is smaller than 10−16 eV = 1.6 × 10−35 J [67]
Instead, astrophysical observations lead to |V| < 10−34 eV
= 1.6 × 10−53 J. We cannot refrain to remark that such esti-
mate is equivalent to the Heisenberg limit (ΔmΔt > 1) on
the smallest measurable energy or mass for a given time t,
set equal to the Universe age. The actual Particle Data Group
(PDG) limit on photon mass [68] refers to values obtained in
[69,70] of 10−54 kg or 5.6 × 10−19 eV/c2, to be taken with
some care, as motivated in [71–73].

2 LSV and two classes of SuSy breaking for each CPT
sector

We summarise and complement in this section the results
obtained in [56].

2.1 CPT-odd sector and the Vμ vector: classes 1 and 2

The CFJ proposition [20] introduced LSV by means of a
Chern-Simons (CS) [74] term in the Lagrangian that repre-
sents the EM interaction. It was conceived and developed out-
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side any SuSy scenario. The works [75] and later [55] framed
the CFJ model in a SuSy scenario. The LSV is obtained
through the breaking vector Vμ, the observational limits of
which are considered in the CFJ framework. For the origin,
the microscopic justification was traced in the fundamental
Fermionic condesates present in SuSy [55]. In other words,
the Fermionic fields present in the in SuSy background may
condensate (that is, take a vacuum expectation value), thereby
inducing LSV.

In the following, the implications of the CS term on the
propagation and DR of the photon are presented.

2.1.1 Class 1: CFJ model

The Lagrangian reads

L1 = −1

4
FμνFμν − 1

2
εμνσρVμAνFσρ, (3)

where Fμν = ∂μAν−∂ν Aμ and Fμν = ∂μAν−∂ν Aμ are the
covariant and contravariant forms, respectively, of the EM
tensor; εμνσρ is the contravariant form of the Levi–Civita
pseudo-tensor, and Aμ the potential covariant four-vector.

We observe the coupling between the EM field and the
breaking vector Vμ. The Euler–Lagrange variational princi-
ple applied to Eq. (3) leads to

∇ × B + V0B − V × E = ∂tE, (4)

where the three-vector V represents the space components of
Vμ, and B and E the magnetic and electric fields.

From the Fourier transformation of the curl of the electric
field (∇ ×E) equation, we obtain B̃ in terms of Ẽ, magnetic
and electric field in Fourier domain, respectively

B̃ = k
ω

× Ẽ, (5)

where the four-momentum is kμ = (ω,k) and where k2 =
(ω2 −k2). Inserting Eq. (5) into the Fourier transform of Eq.
(4), we get
(
ω2 − k2

)
Ẽ +

(
k · Ẽ

)
k = i

(
V0k × Ẽ − ωV × Ẽ

)
. (6)

Equation (6) can be arranged in the form

Ri j Ẽ j = 0, (7)

where Ri j is the matrix

Ri j = ik2δi j + iki k j − V0εi jkkk + εi jkωVk . (8)

Imposing det Ri j = 0, we derive the DR, Eq. (3) in [56],
known since the appearance of [20]

(
kμkμ

)2 + (
VμVμ

) (
kνkν

) − (
Vμkμ

)2 = 0. (9)

2.1.2 Class 2: Supersymmetrised CFJ model and SuSy
breaking

We can study the effect of the photino on the photon propaga-
tion. For accounting for the effects of the photino, according
to [55], we have to work with the Lagrangian that follows
below

L2 = −1

4
F + 1

4
εμνρσVμAνFρσ + 1

4
HF + MμνF

μλFν
λ ,

(10)

where F = FμνFμν ; furthermore, H is a scalar defined in

[55], the tensor Mμν = M̂μν+ 1

4
ημνM , and M̂μν depends on

the background Fermionic condensate, originated by SuSy;
M̂μν is traceless, M the trace of Mμν , and ημν the Minkowski
metric. The Lagrangian, Eq. (10), is rewritten as [55]

L2 = −1

4
(1 − H − M) F + 1

4
εμνρσ VμAνFρσ + M̂μνF

μλFν
λ .

(11)

In [76] it is shown that the DR is equivalent to Eq. (9), but
for a rescaling of the breaking vector. The latter is obtained
by integrating out the Fermionic SuSy partner, the photino.
The following DR comes out (Eq. (6) in [56])

(
kμkμ

)2 +
(
VμVμ

)
(kνkν)

(1 − H − M)2 −
(
Vμkμ

)2

(1 − H − M)2 = 0. (12)

The background parameters are very small, being sup-
pressed by powers of the Planck energy; they render the
denominator in Eq. (12) close to unity, implying simi-
lar numerical outcomes for the two dispersion relations of
Classes 1 and 2. Consequently, we shall derive and work
with group velocities and time delays, for Classes 1 and 2 in
a single treatment.

2.1.3 Group velocities and time delays for Classes 1 and 2

Zero time component of the breaking vector.
We pose V0 = 0 and rewrite Eq. (9) as

ω4 − A ω2 + B = 0, (13)

having defined

A = 2|k|2 + |V|2 B = |k|4 + |k|2|V|2 − (V · k)2 .
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The dispersion relation yields

ω2−|k|2 = kμkμ = |V|2
2

+p|V|
( |V|2

4
+ |k|2 cos2 θ

)1/2

,

(14)

where p = ±1 and θ is the angle between V and k.
For p = −1 and cos θ �= 0, we get kμkμ < 0, that is

kμ space-like and tachyonic velocities. Still for p = −1, but
cos θ = 0, that is the wave propagating orthogonally to V,
we obtain ω2 = |k|2 and thus a Maxwellian propagation,
luxonic velocities, in this specific direction.

Instead, p = 1 leads to kμkμ = m2
γ , that is kμ time-like

and bradyonic velocities associated to a massive photon.
Specifically in the massive photon rest frame, k = 0, we

get m2
γ = |V|2. Rearranging Eq. (13,) we get |k| in terms of

ω2

|k|2 − ω2 = −1

2
|V|2 sin2 θ ± |V|

( |V|2
4

+ ω2 cos2 θ

)1/2

.

(15)

Now the plus sign yields ω2 −|k|2 = kμkμ < 0, whereas
the minus sign is compatible with causal propagation. We
rewrite Eq. (15) as

|k|2
ω2 = 1− |V|2

2ω2 sin2 θ+q

( |V|4
4ω4 sin4 θ + |V|2

ω2 cos2 θ

)1/2

,

(16)

with q = ±1. If q = 1, we recover the case associated with
p = −1, while for q = −1 the case associated with p = 1.
Given the anisotropy introduced by |V|, we no longer identify
the group velocity as

vg = ∂ω

∂|k| , (17)

and instead compute the components of vg

vgi = ∂ω

∂ki
, (18)

and thereby have

|vg|2 = vgivgi . (19)

having used summation on the i index. Deriving Eq. (13)
with respect to ki , we get

vgi = ki
ω

+ V · k
2ω2 − 2|k|2 − |V|2

Vi
ω

, (20)

and using Eq. (14), we are finally able to write

vg = k
ω

+ p
|k|
ω

cos θ

(|V|2 + 4|k|2 cos2 θ)1/2 V, (21)

and

|vg| = |k|
ω

[
1 + 2p|V| cos2 θ

(|V|2 + 4|k|2 cos2 θ)1/2

+|V|2 cos2 θ

|V|2 + 4|k|2 cos2 θ

]1/2

. (22)

Through Eq. (16), and recalling the conditions p = 1 or
q = −1 for kμ time-likeness (k2 > 0), Eq. (22) may be cast
as function of ω2. We consider special cases, starting with
cos θ = 0 and have after some computation

|vg| =
[

1 −
( |V|

ω

)2
]1/2

= 1 − 1

2

( |V|
ω

)2

+ O

( |V|
ω

)4

,

(23)

while for a parallel or anti-parallel propagation to the LSV
vector, we get

|vg| = 1 − 1

8

( |V|
ω

)2

+ O

( |V|
ω

)4

. (24)

If we consider experiment based limits on |V|, see
Sect. 2.1.3, they determine that the ratio |V|/ω is around
unity at 1 MHz. Instead, for observation based limits, the
ratio is around 10−24 still at 1 MHz.

Exploring the general DRs Having caught a glimpse of what
might happen, we now look at a more general DR. When
V0 �= 0, for convenience and without loss of generality, we
impose light propagating along the z axis (k1 = k2 = 0)
that is along the line of sight of the source. Incidentally, the
group velocity has only a single component, and thus being
unidimensional, there is no need to determine |vg|. We get
from Eq. (9)

ω4 −
(

2k2
3 + V 2

1 + V 2
2 + V 2

3

)
ω2 + 2V0V3k3ω

+k4
3 +

(
V 2

1 + V 2
2 − V 2

0

)
k2

3 = 0. (25)

There are some interesting combinations of parameters to
consider. The linear term impedes reduction to a quadratic
equation. Hence, the components V0 and V3 will be inspected
closely.
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Non-zero time component of the breaking vector We pose
V0, V1 and V2, different from zero, while V3 = 0. In this
case, we have3

ω̄2 =
2k̄2

3 + 1 ±
√

1 + 4V̄ 2
0 k̄

2
3

2
, (27)

where we have rescaled the quantities as

ω̄ = ω

|V| , V̄0 = V0

|V| , |k̄3| = k3

|V| , (28)

and where

|V| = (V 2
1 + V 2

2 )1/2. (29)

For the plus sign, the right-hand side of Eq. (27) is always
positive, and thus we take the square root of this expression,
derive and obtain the group velocity

vg+ =
k̄3

⎛
⎝1 + V̄ 2

0√
1 + 4V̄ 2

0 k̄
2
3

⎞
⎠

√√√√
k̄2

3 +
1 +

√
1 + 4V̄ 2

0 k̄
2
3

2

, (30)

Under the same positive sign condition on Eq. (27), the
group velocity vg+ is never super-luminal, and frequencies
are always real.

For the minus sign, the group velocity is

vg− =
k̄3

⎛
⎝1 − V̄ 2

0√
1 + 4V̄ 2

0 k̄
2
3

⎞
⎠

√√√√
k̄2

3 +
1 −

√
1 + 4V̄ 2

0 k̄
2
3

2

. (31)

Under the minus sign condition in Eq. (27), care is to be
exerted. For a time-like breaking vector

V 2
0 > |V|2 ⇒ V 2

0

|V|2 = V̄ 2
0 > 1, (32)

imaginary frequencies arise, from Eq. (27), if

k̄2
3 < V̄ 2

0 − 1, (33)

3 If we take V0 = 0 in Eq. (27), the solution reads

ω̄2 = 2k̄2
3 + 1 ± 1

2
. (26)

and real frequencies occur, from Eq. (27), for

k̄2
3 ≥ V̄ 2

0 − 1. (34)

When k̄3 is real, then k̄2
3 is positive; thus, for a space-like

or light-like breaking vector, frequencies stay always real.
Still for the minus sign in Eq. (27), we work out the group

velocity in terms of ω, keeping V3 = 0. Using Eq. (25), we
write

2ω2± = 2k2
3 + |V|2 ± |V|2

√
1 + 4

V 2
0

|V|4 k
2
3 . (35)

However, k3 is small if we are interested in the low fre-

quency regime and
V 2

0

|V|2 � 1 can be assumed for a space-like

Vμ; thus

2ω2± ∼ 2k2
3 + |V|2 ± |V|2

(
1 + 2

V 2
0

|V|4 k
2
3

)
, (36)

and so

ω± =
[
k2

3 + |V|2
2

±
(

|V|2
2

+ V 2
0

|V|2 k
2
3

)] 1
2

=
[(

1 ± V 2
0

|V|2
)
k2

3 + |V|2
2

± |V|2
2

] 1
2

. (37)

Therefore, one root is

ω+ =
(
αk2

3 + |V|2
) 1

2
, α = 1 + V 2

0

|V|2 , (38)

where we have a dispersive behaviour with the parameter |V|
acting once more as the mass of the photon, or else

ω− =
(

1 − V 2
0

|V|2
)1/2

|k3|, (39)

that is a dispersionless behaviour. When setting V0 = 0,
such that the parameter α reduces to unity, we recover the
Maxwellian behaviour.

For the group velocities, from Eq. (38), k3 can be explicitly
written as

k3 = ω+
α1/2

(
1 − |V|2

ω2+

)1/2

, (40)
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thus

vg+ = dω+
dk3

= αk3

ω+
= α

1
2

(
1 − |V|2

ω2+

) 1
2

= α
1
2

(
1 − |V|2

2ω2+

)
+ O

( |V|
ω

)4

. (41)

The other solution yields4

vg− = 1 − V 2
0

|V|2 . (42)

We emphasise the domain of Eqs. (41, 42) cease when high
frequencies and a time-like LSV vector are both considered.

Here we obtain similar solutions to Eqs. (23, 24), differing
by a factor depending on the time component of the CFJ
breaking vector. However, this coefficient is not trivial, and
it offers some quite interesting features.

The group velocity from Eq. (42) is never super-luminal

if Vμ is space-like. However, since α = 1 + V 2
0

|V|2 , there is

such a chance for the group velocity associated with Eq. (41).
It occurs for

√
2ω+ >

|V|2
|V0|

(
1 + V 2

0

|V|2
)1/2

. (43)

This is not surprising since it has been shown that V0 might
be associated to super-luminal modes. Setting V0 = 0, we
enforce luminal or sub-luminal speeds.

Presence of all breaking vector components and Vμ light-
like. When all parameters differ from zero in Eq. (25), it
is obviously the most complex case. Nevertheless, we can
comment specific solutions.

We suppose the vector Vμ being light-like.
Thereby, we have V 2 = 0 ⇒ (

V 0
)2 = |V|2 ⇒ |V 0| =

|V| ⇒ V 0 = ±|V| (we choose V 0 = |V|, without loss
of generality). The DR from Eq. (9) and from Eq. (12) for
H, M → 0 reads

k4 + V 2k2 − (V · k)2 =
(
k2

)2 − (V · k)2 = 0 ⇒ |k2| = |V · k|.
(44)

When considering k2 ≥ 0, thus |k2| = k2, part of the
tachyonic modes are excluded, but others survive, as shown
below. We have

k2 = ω2 − |k|2 = |V · k| = |V 0ω − V · k|. (45)

4 Setting V0 = 0, this result equals that of Eq. (14) for p = −1 and
θ = π/2 that is propagation along the z axis.

Hence, two cases arise, for the positiveness of k2 ≥ 0:

– Case 1: V 0ω − V · k ≥ 0 ⇒ ω2 − |k|2 = V 0ω − V · k,
– Case 2: V 0ω −V ·k ≤ 0 ⇒ ω2 −|k|2 = −V 0ω +V ·k.

For case 1, we have

ω2 − V 0ω −
(
k2 − V · k

)

= ω2 − V 0ω − |k| (|k| − |V| cos θ) = 0, (46)

the solutions of which are

ω1 = V 0

2
±

√(
V 0

2

)2

+ |k| (|k| − |V| cos θ), (47)

and since V 0 = |V|, we finally get

ω1 = |V|
2

±
√( |V|

2

)2

+ |k| (|k| − |V| cos θ). (48)

We consider only a positive radicand and exclude negative
frequencies.

Similarly for case 2, we have the following equation and
solutions

ω2 + V 0ω −
(
k2 + V · k

)

= ω2 + V 0ω − |k| (|k| + |V| cos θ) = 0, (49)

ω2 = −|V|
2

+
√( |V|

2

)2

+ |k| (|k| + |V| cos θ), (50)

having excluded negative frequencies.
We now discuss the current bounds on the value of the

breaking vector in Sect. 1.2 in SI units. In the yet unexplored
low radio frequency spectrum [77], a frequency of 105 Hz

and a wavelength λ of 3×103 m results in |k|h̄c = 2π

λ
h̄c ∼

6.3 × 10−30 J, while in the gamma-ray regime, a wavelength

λ of 3 × 10−11 m results in |k|h̄c = 2π

λ
h̄c ∼ 6.310−16 J.

Spanning the domains of the parameters V and k, we can-
not assure the positiviness of the factor |k| − |V| cos θ in
Eq. (48). Moving toward smaller but somewhat less reliable
astrophysical upper limits, we insure such positiveness. The
non-negligible price to pay is that the photon effective mass
and the perturbation vector decrease and their measurements
could be confronted with the Heisenberg limit, see Sect. 1.2.
This holds especially for low frequencies around and below
105 Hz.

For case 1, for a positive radicand, we have

√(
V
2

)2

+ k2 − V · k =
√(

V
2

− k
)2

=
∣∣∣∣V2 − k

∣∣∣∣ , (51)
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and the allowed solutions for ω1 are

ω1a = |V|
2

−
∣∣∣∣V2 − k

∣∣∣∣ ; ω1b = |V|
2

+
∣∣∣∣V2 − k

∣∣∣∣ . (52)

For case 2 the allowed solutions for ω2 is only

ω2 = −|V|
2

+
∣∣∣∣V2 + k

∣∣∣∣ . (53)

For Case 1 group velocity, by Eq. (46) we get

2ωdω − V 0dω − 2kidki + Vidki = 0 (54)

and thereby

vgi = dω

dki
=

ki − Vi
2

ω − V 0

2

; (55)

vg =
k − V

2

ω − V 0

2

=
k − V

2

ω − |V|
2

. (56)

From the expressions of ω1a,b we write

ω1a,b − |V|
2

= ±
∣∣∣∣V2 − k

∣∣∣∣ , (57)

and evince that the absolute value of the group velocity is
equal to unity. For Case 2 group velocity, by Eq. (49) we get

2ωdω + V 0dω − 2kidki − Vidki = 0 (58)

and thereby

vgi = dω

dki
=

ki + Vi
2

ω + V 0

2

; (59)

vg =
k + V

2

ω + V 0

2

=
k + V

2

ω + |V|
2

. (60)

From the expressions of ω2 we write

ω2 + |V|
2

=
∣∣∣∣V2 + k

∣∣∣∣ , (61)

and evince once more that the absolute value of the group
velocity is equal to unity. We thereby conclude that even
when the frequency differs from |k|, the group velocity is
Maxwellian, for a light-like Vμ.

The most general case represented by Eq. (25) should be
possibly dealt with a numerical treatment.

Time delays. For better displaying the physical conse-
quences of these results, we compute the time delay between
two waves of different frequencies [78]. In SI units, for a
source at distance l (Eq. (16) in [56])

ΔtCF J = l|V|2
2ch̄2

(
1

ω2
1

− 1

ω2
2

)
x . (62)

where h̄ is the reduced Planck constant (also Dirac constant)
and x takes the value 1 for Eq. (23), 1/4 for Eq. (24) or α1/2

for Eq. (41). Obviously, other values of x are possible, when
considering more general cases.

As time delays are inversely proportional to the square of
the frequency, we perceive the existence of a massive pho-
ton, in presence of gauge invariance, emerging from the CFJ
theory. Its mass value is proportional to the breaking param-
eter |V|. The comparison of Eq. (62) with the corresponding
expression for the de Broglie-Proca (dBP) photon [78]

ΔtDBP = l m2
γ c

3

2h2

(
1

ω2
1

− 1

ω2
2

)
, (63)

leads to the identity (Eq. (18) in [56])

mγ = |V|
c2 x . (64)

We recall that Class 2 is just a rescaling of Class 1, where
the correcting factor 1/(1 − H − M)2 is extremely close to
unity.

Finally, given the prominence of the delays of massive
photon dispersion, either of dBP or CFJ type, at low fre-
quencies, a swarm of nano-satellites operating in the sub-
MHz region [77] appears a promising avenue for improving
upper limits through the analysis of plasma dispersion.

2.1.4 A quasi-de Broglie-Proca-like massive term

A quasi-dBP-like term from the CPT-odd Lagrangian has
been extracted [56], but without giving details. Indeed, the
interaction of the photon with the background gives rise to
an effective mass for the photon, depending on the breaking
vector Vμ. As we will show, this can be linked to the results
we obtained from the DR applied to polarised fields.

We cast the CPT-odd Lagrangian, Eq. (3) in terms of the
potentials

L = 1

2

(∇φ + Ȧ
)2 − 1

2
(∇ × A)2 + V0A · (∇ × A)

−φv · (∇ × A) − v · (A × Ȧ
) − (V × A) · ∇φ

= 1

2

(∇φ + Ȧ
)2 − 1

2
(∇ × A)2 + V0A · (∇ × A)

−2∇φ · (V × A) − V · (A × Ȧ
)
. (65)
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The scalar potential φ always appears through its gradient,
implying that ∇φ is the true degree of freedom. Further, in
absence of time derivatives of this field, there isn’t dynamics.
In other words, φ plays the role of an auxiliary field, which
can be eliminated from the Lagrangian. We call

∇φ = S, (66)

and rewrite the CPT-odd Lagrangian as

L = 1

2

(
S + Ȧ − 2V × A

)2 − 2 (V × A)2 + 2Ȧ · (V · A)

−1

2
(∇ × A)2 + V0A · (∇ × A) − V · (A × Ȧ

)
. (67)

Defining χ as

χ = S + Ȧ − 2V × A, (68)

we get

L = 1

2
χ2 − 2 (V × A)2 + V · (A × Ȧ

) − 1

2
(∇ × A)2

+V0A · (∇ × A) . (69)

Passing through the Euler-Lagrange equations, we derive
χ = 0. Therefore χ is cancelled out, and we are left with

L = V · (A × Ȧ
) − 2 (V × A)2 − 1

2
(∇ × A)2 + V0A · (∇ × A) .

(70)

Since the vector potential A does not appear with deriva-
tives, further elaboration leads to

L = V · (A × Ȧ
) − 2Mkn (V) Ak An − 1

2
(∇ × A)2

+V0A · (∇ × A) , (71)

where

Mkn (V) = |V|2δkn − VkVn . (72)

which is a symmetric matrix, thereby diagonalisable

−2Mkn (V) Ak An = −2AT MA = −2AT RT RMRT RA,

(73)

where R ∈ SO (3) diagonalises M and AT being the latter
the transposed potential vector. We label

M̃ = RMRT =
⎛
⎝m1 0 0

0 m2 0
0 0 m3

⎞
⎠ . (74)

and get

det M̃ = 0 ⇒ m1 = 0, (75)

Tr M̃ = m1 + m2 + m3 ⇒ m2 = m3 = |V|2. (76)

Therefore the term

Ãi M̃i j Ã j = |V|2 Ã2
2 + |V|2 Ã2

3, (77)

is a dBP term as we wanted (Eq. 21 in [56]. The role of the
mass is played by the modulus of the vector V. A remarkable
difference lies in the gauge independency of the CFJ massive
term.

2.2 The CPT-even sector and the kF tensor: classes 3 and 4

For the CPT-even sector, in [55] the authors investigate the
kF -term from SME, focusing on how the Fermionic conden-
sates affect the physics of photons and photinos.

In the kF tensor model Lagrangian, the LSV term is

L3 = (kF )μναβ FμνFαβ, (78)

where (kF )μναβ is double traceless. The kF tensor, see
Appendix A, is written in terms of a single Bosonic vector
ξμ which signals LSV

(kF )μναβ = 1

2

(
ημακνβ − ημβκνα + ηνβκμα − ηνακμβ

)
,

(79)

being

καβ = ξαξβ − ηαβ

ξρξρ

4
. (80)

As it is mentioned in Appendix A, in Eqs. (A.1, A.2),
we choose kF to be given according to the non-birefringent
Ansatz, as discussed in [23,79].

2.2.1 Class 3: kF model

Following [55,76], the DR for the photon reads (Eq. (8) in
[56])

ω2 − (1 + ρ + σ)2 |k|2 = 0, (81)

where

ρ = 1

2
K̄ α

α , (82)

σ = 1

2
K̄αβ K̄

αβ − ρ2, (83)

K̄ αβ = tαβ tμν kμkν

|k|2 ., (84)

being tμν a constant symmetric tensor corresponding to the
condensation of the background scalar present in the back-
ground super-multiplet that describes kF -LoSy breaking.

123



811 Page 10 of 20 Eur. Phys. J. C (2018) 78 :811

This tensor is related to the kF term of Eq. (2.2) in a SuSy sce-
nario; its origin is explained in [55]. It is worthwhile recall-
ing that for such a tensor, the absence of the time component
excludes the appearance of tachyons and ghosts. Therefore,
in Eq. (84) we take only the i j components

K̄ i j = t i j tmn kmkn
|k|2 , (85)

Moreover, the tensor t is always symmetric, hence we can
always diagonalise it.

The simplest case occurs when the breaking tensor is a
multiple of the identity. Then, Eq. (85) becomes

K̄ i j = t2δi jδmn kmkn
|k|2 = t2δi j . (86)

This means that both ρ and σ are independent of k or
ω and that the factor in front of k2 in Eq. (81) carries no
functional dependence. Therefore, we have a situation where
the vacuum acts like a medium, whose refraction index is
given by

n = (1 + ρ + σ)−1 . (87)

The most general case occurs when t i j is diagonal and not
traceless. Then, we have

t i j = tiδ
i j , (88)

where we have left aside the Einstein summation rule. Equa-
tion (85) is rewritten as

K̄ i j = tiδ
i j
(
tmδmn kmkn

|k|2
)

, (89)

where the term within the round brackets is

1

|k|2 tr
⎡
⎣
⎛
⎝ t1 0 0

0 t2 0
0 0 t3

⎞
⎠

⎛
⎝ k2

1 k1k2 k1k3

k2k1 k2
2 k2k3

k3k1 k3k2 k2
3

⎞
⎠
⎤
⎦

= t1k2
1

|k|2 + t2k2
2

|k|2 + t3k2
3

|k|2 := P(k) = ti
k2
i

|k|2 . (90)

Now, using Eq. (82), Eq. (83) is transformed into

σ = 1

2
tr
(
K̄ 2

)
−

(
1

2
trK̄

)2

. (91)

Since

1

2
trK̄ = 1

2
P(k) (t1 + t2 + t3) , (92)

and

tr
(
K̄ 2

)
= P2

(
t2
1 + t2

2 + t2
3

)
:= P2(k)F2, (93)

Equation (91) becomes

σ =
[
F2

2
− (t1 + t2 + t3)2

4

]
P2(k). (94)

Discarding the negative frequency solution, from Eq. (81),
we are left with

ω = (1 + ρ + σ) |k|, (95)

which explicitly becomes

ω =
{

1 +
[

1

2
(t1 + t2 + t3) + F2

2
− (t1 + t2 + t3)2

4

]
P

}
|k|

:= (1 + C P) |k|, (96)

where C depends exclusively on the ti parameters. The
dependency on k goes through P , Eq. (90). Considering the
anisotropy represented by the eigenvalues ti of Eq. (88), we
compute the group velocity along the ith space direction

vgi = ∂ω

∂ki
, (97)

and thereby, we find

vgi = ki
|k|

(
1 + 2Cti + Ct j

k2
i

|k|

)
, (98)

where summation does not run over i (i fixed), but over j .
Finally, we get the group velocity

|vg|2 = 1 + 6Cti
k2
i

|k|2 + O(t2), (99)

where summation runs over the index i .
This shows a non-Maxwellian behaviour, |vg| �= 1, when-

ever the second left-hand side term differs from zero. We
observe that there is a frequency dependency, but absence of
mass since, Eq. (96), |k| = 0 implies ω = 0. The frequency
never becomes complex, while super-luminal velocities may
appear if Cti k2

i in Eq. (99) is positive. The parameters t are
suppressed by powers of the Planck energy, so they are very
small. This justifies the truncation in Eq. (99). The value
depends on the constraints of such parameters.

2.2.2 Class 4: kF model and SuSy breaking

As we did for Class 2, we proceed towards an effective pho-
tonic Lagrangian for Class 4, by integrating out the photino
sector. The resulting Lagrangian reads [55]
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L4 = −1

4
FμνF

μν + r

2
χμνF

μ
κ Fνκ + s

2
χμν∂αF

αμ∂βF
βν,

(100)

The χαβ tensor is linearly related to the breaking tensor
kF , as it has been shown in the Appendix B of [55]. Also,
according to the results of Sects. 2, 4 of the same reference,
the - mass−2 - parameter s corresponds to the (scalar) con-
densate of the Fermions present in the background SuSy mul-
tiplet responsible for the LoSy violation, where r is a dimen-
sionless coefficient, estimated as r = −32 [55]. The term
with coefficient s in L4 corresponds to a dimension-6 oper-
ator and, in a context without SuSy, it appears in the photon
sector of the non-minimal SME [21,80]. More recently [81],
an analysis of causality and propagation properties stemming
from the dimension-6 term above was carried out.

The DR reads (Eq. 10 in [56], see Appendix A

sχk4 − (1 − rχ + sχαβkαkβ)k2 + 3rχαβkαkβ = 0, (101)

where χ = χ
μ
μ .

Similarly to Class 2, the tensor χαβ is symmetric and thus
diagonalisable. If the temporal components linked to super-
luminal and ghost solutions are suppressed (χ00 = χ0i = 0),
we get

χ = χ1
1 + χ2

2 + χ3
3 := χ1 + χ2 + χ3 (102)

where again, we disregard Einstein summation rule for the i
index. For

χαβkαkβ = −χ1k
2
1−χ2k

2
2−χ3k

2
3 := D(k), (103)

we get

sχ
(
ω2 − |k|2

)2 − (1 − rχ + sD)
(
ω2 − |k|2

)
+ 3r D = 0.

(104)

Expanding for ω

sχω4 −
(

1 − rχ + 2sχ |k|2 + sD
)

ω2

+sχ |k|4 + (1 − rχ + sD) |k|2 + 3r D = 0. (105)

Rather than solving the fourth order equation, we derive
the group velocity at first order in χi

vgi = ki
ω

− (3r + s|k|2)χi
ki
ω

+ sωχi ki + O(χ2), (106)

where there isn’t summation over the index i . Finally, we get

|vg|2 = |k|2
ω2 + 2(3r + s|k|2)D

ω2 − 2sD + O(χ2), (107)

The behaviour with frequency of the group velocity is also
proportional to the inverse of the frequency squared, as for
the dBP massive photon.

Conversely to Class 3, here the integration of the photino
leads to a massive photon, evinced from ω �= 0 for k = 0,
Eq. (105). This was undetected in our previous work [56].
The photon mass comes out as

mγ =
(

1 − rχ

sχ

)1/2

. (108)

In [80,81], there isn’t any estimate on the s-parameter. In
[21], besides assessing the dimensionless kF as 10−18, the
authors present Table XV of the estimates on the parame-
ters associated to dimension-6 operators. They are based on
observations of astrophysical dispersion and bi-refringence.
Considering our DR of Eq. (101), the PDG [68] photon mass
limit of 5.6×10−19 eV/c2 and the estimate in Appendix B of
[55], for χ = √

kF10−9),
√

1/s is evaluated as 1.8 × 10−24

eV/c2.
Super-luminal velocities may be generated and ω2

becomes complex if, referring to Eq. (106)

(1 − rχ + sD)2 − 12rsχD < 0. (109)

3 Bi-refringence in CPT-odd classes

For CPT-odd classes, the determination of the DRs in terms of
the fields provides a fruitful outcome, since it relates the solu-
tions to the physical polarisations of the fields themselves.
This approach must obviously reproduce compatible results
with those obtained with the potentials. However, the physi-
cal interpretation of said results should be clearer in this new
approach.

We consider the wave propagating along one space com-
ponent of the breaking vector Vμ. Without loss of generality,
we pose V = V ẑ and k = kẑ. The fields (e, b of the photon)
are then written as

e = e0e
i(kz−ωt), (110)

b = b0e
i(kz−ωt), (111)

where e0 and b0 are complex vectors

e0 = e0R + ie0I , (112)

b0 = b0R + ib0I , (113)
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the subscripts R and I standing for the real and imaginary
parts, respectively. The actual fields are the real parts of e
and b

e = e0R cos (kz − ωt) − e0I sin (kz − ωt) , (114)

b = b0R cos (kz − ωt) − b0I sin (kz − ωt) . (115)

From the field equations [20], the following relations
emerge

k · e0R + V · b0I = 0, (116)

k · e0I − V · b0R = 0, (117)

k × e0R = ωb0R, (118)

k × e0I = ωb0I , (119)

k · b0R = k · b0I = 0, (120)

−k × b0R − V0b0I + V × e0I = ωe0R, (121)

−k × b0I + V0b0R − V × e0R = ωe0I .. (122)

From the above relations, recalling that both k and V are
along the ẑ axis, we obtain that e0R and e0I are transverse.
They develop longitudinal components only if V · b0R and
V · b0I are non vanishing.

Dealing with a transverse e0, we consider a circularly
polarised wave

e0R = e0x̂, (123)

e0I = ξe0ŷ, (124)

implying

e0 = e0
(
x̂ + iξ ŷ

)
, (125)

with ξ = ±1 indicating right- (+1) or left-handed (−1)
polarisation. Using Eqs. (118, 119, 121–124), the following
dispersion is written

ω2 + ξVω − k2 − ξV0k = 0, (126)

from which a polarisation dependent group velocity can be
attained

vg = 1

2ω + ξ |V|
√

(2ω + ξ |V|)2 + V 2
0 − |V|2. (127)

Up to Eq, (126), we have not specified the space-time
character of the background vector Vμ. However, Eq. (127)
shows vg > 1, if Vμ is time-like. So, to avoid super-luminal
effects, we restrict Vμ to be a space- or light-like four-vector.
In the former case vg < 1, in the latter vg = 1.

The group velocity dependency on the two value-handed-
ness is known as bi-refringence. Incidentally, the group
velocity from Eq. (127) can be expressed in terms of the
wave number k

vg (k) = (2k + ξV0)
[
(2k + ξV0)

2 − V 2
0 + V 2

]
. (128)

For a situation of linear polarisation (k and V being par-
allel), if we consider Vμ light-like, we have

e0R = e0x̂, (129)

e0I = 0. (130)

In this case, Eqs. (116–122) lead to

b0I = 0, (131)

b0R = k

ω
e0ŷ, (132)

and the group velocity turns out to be

vg = 1, (133)

showing that to the linear polarisation is associated a different
vg .

One might be persuaded, as we initially were, that this
result entails the property of tri-refringence, because with
the same wave vector as in the case of circular polarization,
we get a different vg , namely, vg = 1. And tri-refringence
actually means three distinct refraction indices for the same
wave vector. However, the linear polarisation and the result
vg = 1 correspond to a light-like Vμ, whereas for the circu-
lar polarization and bi-refringence, we have considered Vμ

space-like. We then conclude that, since we are dealing with
different space-time classes of Vμ, triple refraction is not
actually taking place.

4 Wave energy loss

4.1 CPT-odd classes

In the CFJ scenario, we now study an EM excitation of a
photon propagating in a constant external field. The total
field is given by

E = EB + e, (134)

B = BB + b, (135)

where EB (BB) is the external electric (magnetic) field. We
first take the external field as uniform and constant, and thus

∇ · e − V · b = P, (136)

∇ × e = −∂tb, (137)

∇ · b = 0, (138)

∇ × b − V0b + V × e = ∂te + J, (139)

where

P = ρ − V · BB, (140)

being ρ the external charge density, and the other term the
effective charge due to the coupling between background and
external field. Similarly J is the total current given by
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J = j + V0BB − V × EB, (141)

in which j is the external current density and the other terms
are the effective currents due to the field coupling. From these
equations, we get

{
(∇ × e) · b = −∂t

( 1
2b

2
)

(∇ × b) · e − V0e · b = ∂t
( 1

2e
2
) + J · e. (142)

Subtracting the first to the second, we obtain

(∇ × b) · e − (∇ × e) · b − V0e · b
= ∂t

(
1

2
e2 + 1

2
b2

)
+ J · e. (143)

The first two terms can be rewritten as

(∇ × b)·e−(∇ × e)·b = ∇·(b × e) = −∇·(e × b) . (144)

Rewriting e · b as

e · b = −1

2
∂t (a · b) + ∇ ·

(
1

2
a × e − 1

2
φb

)
, (145)

where a (φ) is the magnetic (electric) potential of the excita-
tion, it yields the non-conservation of the energy-momentum
tensor

∇ ·
(
e × b − V0φb + 1

2
V0a × ė

)
+ ∂t

(
1

2
e2 + 1

2
b2 − 1

2
V0a · b

)

= − (j + V0BB − V × EB) · e. (146)

We observe that even when j = 0, there is dissipation,
due to the coupling between the LSV background and the
external field. Thereby, in the CFJ scenario accompanied by
an external field, the propagating wave (e,b) loses energy.

Since in Eq. (146) the background vector Vμ, and the
external field, which is treated non-dynamically, are both
space-time-independent, they are not expected to contribute
to the non-conservation of the energy-momentum tensor, for
they do not introduce any explicit xμ dependence in the CFJ
Lagrangian, Eq. (3). However, there is here a subtlety. The
LSV term, which is of the CS type, depends on the four-
potential, Aμ. By introducing the constant external fields,
EB and BB , and performing the splittings of Eqs. (134, 135),
an explicit dependence on the background potentials, φB and
AB , appear now in the Lagrangian. But, if the background
fields are constant, the background potentials must neces-

sarily display linear dependence on xμ (Aμ
B = 1

2
Fμν
B xν);

the translation invariance of the Lagrangian is thereby lost.
Then the LSV term triggers the appearance of the term
V0BB − V × EB in the right-hand side of Eq. (146).

The above results may also be presented in the covari-
ant formulation. We profit to include a non-constant exter-
nal field in our setting, generalising the results above. On
the other hand, we retain Vμ constant over space-time, to
appreciate whether dissipation emerges with a minimal set
of requirements on the LSV vector. We start off from

∂μF
μν + Vμ

∗Fμν = jν, (147)

where ∗Fμν is the dual EM tensor field. We note the splitting

Fμν = Fμν
B + f μν, (148)

where Fμν
B stands for the background electromagnetic field

tensor and fμν corresponds to the propagating wave (e,b),
both being xμ dependent. We write the energy-momentum
for the photon field ( f μν) as

(
θ f

)μ
ρ

= f μν fνρ + 1

4
δμ
ρ f 2 − 1

2
∗ f μνaνvρ, (149)

where ∗ f μν is the dual EM tensor photon field. The first two
terms of Eq. (149) are Maxwellian, whereas the third orig-
inates from the CFJ model. The photon energy-momentum
tensor continuity equation reads as

∂μ

(
θ f

)μ
ρ

= jμ fμρ − VμF
μν
B fνρ − (

∂μF
μν
B

)
fνρ

− 1

2
∗ f μνaν∂μvρ. (150)

Equation (149) shows that the energy-momentum tensor,
in presence of LSV terms, is no longer symmetric, as it had
been long ago pointed out [17,20]. In this situation, θ00

describes the field energy density; θ i0 represents the com-
ponents of a generalised Poynting vector, while θ0i is the
true field momentum density.

If we denote the energy density by u and the generalised
Poynting vector as S, it follows that

∂t u + ∇ · S = −j · e − V 0EB · e − (∂tEB) · e
+ (∇ × BB) · e − (BB × e) · V. (151)

Besides the external current jμ, external electric and mag-
netic fields (space-time constant or not) are sources for the
exchange of energy with the propagating e− and b− waves.
In the special case the external EB− and BB− fields are con-
stant over space-time, their coupling to the components of
the LSV vector are still responsible for the energy exchange
with the electromagnetic signals.

4.2 CPT-odd and CPT-even classes

Let us consider the field equation with both Vμ and kF space-
time dependent; the Lagrangians Eqs. (3, 78) yield the field
equations
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∂μF
μν + Vμ

∗Fμν +
(
∂μk

μνκλ
F

)
Fκλ + kμνκλ

F ∂μFκλ = jν .

(152)

We perform the same splitting as above

Fμν = (FB)μν + fμν . (153)

We compute the energy-momentum tensor θ
μ
ρ and its con-

servation equation for the propagating signal fμν

θμ
ρ = f μν fνρ + 1

4
δμ
ρ f 2 − 1

2
∗ f μνaνVρ

+ kμνκλ
F fκλ fνρ + 1

4
δμ
ρ k

κλαβ
F fκλ fαβ, (154)

and

∂μθμ
ρ = jν fνρ − (

∂ρF
μν
B

)
fνρ − Vμ

∗Fμν
B fνρ

− 1

2

(
∂μVρ

) ∗ f μνaν + 1

4

(
∂ρk

μνκλ
F

)
fμν fκλ

−
(
∂μk

μνκλ
F

)
FBκλ fνρ − kμνκλ

F

(
∂μFBκλ

)
fνρ.

(155)

The conservation equation of the energy-momentum cor-
responds to taking the θ

μ
0 component of the continuity equa-

tion, Eq. (155).
The background time derivative terms

(
∂t F

μν
B

)
fμν and

kμνκλ
F (∂t FBκλ) fμν may account for a deviation from the

conservation of the energy-momentum tensor of the propa-
gating wave, whenever one of the fields EB , BB is not con-
stant.

4.2.1 Varying breaking vector Vμ and tensor kF without an
external EM field

We deal with both CPT sectors at once. Indeed, we start off
from the Lagrangian

L = −1

4

(
Fμν

)2 + 1

4
εμνκλVμAνFκλ − 1

4
(kF )μνκλF

μνFκλ,

(156)

with Vμ and kF both xμ dependent, and nμ a constant four-
vector. This Lagrangian is a combination of contributions
from the breaking terms Vμ and kF . The resulting field equa-
tion is

∂μF
μν + Vμ

∗Fμν + ∂μ[(kF )κλμνFκλ] = 0. (157)

From Eq. (157), the equation on energy-momentum fol-
lows

θμ
ρ = FμνFνρ + 1

4
δμ
ρ F

2 − 1

2
(∗FμαAαVρ)

+(kF )κλμνFκλFνρ + 1

4
δμ
ρ (kF )κλαβFκλFαβ,

as well as its non-conservation

∂μθμ
ν = −1

2
(∂μVν)

∗Fμρ Aρ + 1

4

(
∂νk

μρκλ
F

)
FμρFκλ. (158)

Equation (158) confirms that, if Vμ and kF are coordi-
nate dependent, there is energy and momentum exchange,
and thereby dissipation even in absence of an external EM
field. The LSV background introduces an explicit space-time
dependency in the Lagrangian so that the energy and momen-
tum of the propagating electromagnetic field are not con-
served.

If we take the energy density θ0
0 := u and the generalised

Poynting vector θ0i = S, we write, from Eq. (158)

∂t u + ∇ · S = −1

2
(∂t V0)E · A − 1

2
(∇V0 · B)Φ

−1

2
(∇V0 × E) · A + 1

4

(
∂t k

μρκλ
F

)
FμρFκλ.

(159)

Therefore, it becomes clear that the CPT-odd term con-
tributes to the breaking of the energy-momentum conserva-
tion through the V0 component; on the other hand, the CPT-
even kF tensor affects the energy continuity equation only if
its components exhibit time dependency. If kμρκλ

F are only
space dependent, then there is no contribution to the right-
hand side of Eq. (159).

Recalling that θμν is no longer symmetric in presence of
a LSV background, if we consider the continuity equation
for the momentum density of the field, described by θ0i ,
it can be readily checked that the space component of Vμ,
V, through its space and time dependencies, and the space
dependency of the kF components will be also responsible
for the non-conservation of the momentum density carried
by the electromagnetic signals.

4.2.2 The most general situation: LSV background and
external field xμ-dependent

In this section, we present the most general case to describe
the energy-momentum continuity equation for the photon
field ( f μν). By starting off from the field equation

∂μF
μν + Vμ

∗Fμν +
(
∂μk

μνκλ
F

)
Fκλ + kμνκλ

F ∂μFκλ = jν,

(160)
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and using

∗ f μρ fρν = −1

4
δμ
ν

∗ f · f = −1

2
δμ
ν ∂ρ

(∗ f ρλaλ

)
,

(161)(
∂μ

∗ f κλ
)
fκλ = ∗ f κλ

(
∂μ fκλ

) = ∂μ∂κ

(∗ f κλaλ

)
, (162)

kμνκλ
F fκλ∂ν fμρ = −∂ρ

(
1

4
kμνκλ
F fμν fκλ

)

+1

4

(
∂ρk

μνκλ
F

)
fμν fκλ , (163)

we present the photon energy-momentum tensor

θμ
ρ = f μν fνρ + 1

4
δμ
ρ f 2 − 1

2
Vρ

∗ f μνaν

+ kμνκλ
F fκλ fνρ + 1

4
δμ
ρ k

κλαβ
F fκλ fαβ, (164)

and its non-conservation

∂μθμ
ρ = jν fνρ − (

∂μF
μν
B

)
fνρ − Vμ

∗Fμν
B fνρ

− 1

2

(
∂μVρ

) ∗ f μνaν + 1

4

(
∂ρk

μνκλ
F

)
fμν fκλ

−
(
∂μk

μνκλ
F

)
FBκλ fνρ − kμνκλ

F

(
∂μFBκλ

)
fνρ.

(165)

The right hand-side of Eq. (165) displays all types of terms
that describe the exchange of energy between the photon, the
LSV background and the external field, taking into account
an xμ-dependence of the LSV background and the external
field.

In Eq. (165), the first two right-hand side terms are purely
Maxwellian. Further, since θ

μ
ν is not symmetric in presence

of LSV terms, when taking its four-divergence with respect to
its second index, namely ∂νθ

μ
ν , contributions of the forms

∂νkFκλνρFκλ f ρμ and ∂νkκλμρ
F Fκλ fρν appear. Thus, even

when kκλμρ
F is only space dependent, though not contributing

to ∂νθ
ν0, it does contribute to ∂νθ

0ν . We observe that the
roles of the perturbation vector and tensor differ, the latter
demanding a space-time dependence of the tensor or of the
external field, conversely to the former.

As final remark, the energy losses would presumably
translate into frequency damping if the excitation were a pho-
ton. Whether such losses could be perceived as ’tired light’
needs an analysis of the wave-particle relation.

5 Conclusions, discussion and perspectives

We have approached the question of non-Maxwellian pho-
tons from a more fundamental perspective, linking their
appearance to the breaking of the Lorentz symmetry. Despite
massive photons have been proposed in several works, few

hypothesis on the mass origin have been published, see for
instance [82], and surely there is no comprehensive discus-
sion taking form of a review on such origin, see for instance
[83]. It is our belief that answering this question is a crucial
task in order to truly understand the nature of the electro-
magnetic interaction carrier and the potential implications in
interpreting signals from the Universe. Given the complexity
of the subject, we intend to carry on our research in future
works.

The chosen approach concerns well established SuSy the-
ories that go beyond the Standard Model. Some models
originated from SuSy:5 see for instance [55,75,86] deter-
mined dispersion relations, but the analysis of the latter was
unachieved. We also derived the dispersion relations for those
cases not present in the literature and also for those we
charged ourselves with the task of studying the consequences
in some detail. We did not intend to cover all physical cases,
and we do not have any pretense of having done so. Never-
theless, we have explored quite a range of both odd and even
CPT sectors.

We stand on the conviction that a fundamental theory
describing nature should include both CPT sectors. The
understanding of the interaction between the two sectors is far
from being unfolded and one major question remains open.
If we are confronted with a non-Maxwellian behaviour for
one sector, or worse for two sectors, how would a two-sector
theory narrate the propagation? Would the two contributions
be simply additive or would there be more interwoven rela-
tions? The answers to these questions would prompt other
stimulating future avenues of research.

Starting from the actions representing odd and even CPT
sector, for both we have analysed whether the photon propa-
gation is impacted by its SuSy partner, the photino. Though
the SuSy partners have not been experimentally detected yet,
it is possible to assess their impact. Indeed, the actions of Eqs.
(10, 100), describe effective photonic models for which the
effects of the photino have been summed up at the classi-
cal level, that is without loop corrections. Thus, the corre-
sponding DRs include SuSy through the background of the
Fermionic sector accompanying theV μ and kF breaking vec-
tor and tensor, respectively. It would be worth to draw from
the constraints on the SME coefficients the estimates of the
background SuSy condensates. The latter when related to the
SuSy breaking scale and thereby to the masses of the SuSy
partners, and specifically the photino. This is a relevant issue
for investigating the connection between the SuSy breaking
scale, associated to the condensates of the Fermionic partners
in the LSV background, and the constraints on the SME.

For the CPT-odd case, we study the super-symmetrised
[55,75] Carroll–Field–Jackiw model [20], where the Lorentz-

5 Other models are outside SuSy. Identical results are found in [84,85].
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Poincaré symmetry violation is determined by the Vμ four-
vector. The resulting dispersion relation is of the fourth order.

For the next conclusions, we do not distinguish between
classes with respect to photino integration.

In short, the major findings can be summarised as follows.
For the effective photon mass:

– Whenever an explicit solution is determined, at least one
solution shows a massive photon behaviour. It is charac-
terised by a frequency dependency of the type ω−2 like
the classic de Broglie-Proca photon.

– The mass is effective and proportional to the absolute
value of the Lorentz symmetry breaking vector. The gro-
und based upper limits [67] are compatible with state of
the art experimental findings on photon mass [68].

– The group velocity is almost always sub-luminal. Super-
luminal speeds may appear if the time component of the
breaking vector differs from zero. They appear beyond a
frequency threshold.

– The photon mass is gauge invariant as drawn by the Carr-
oll–Field–Jackiw model, conversely to the de Broglie-
Proca photon.

– Bi-refringence accompanies the CPT-odd sector.

Other notable features are

– When the time component of the LSV breaking vector
differs from zero, imaginary and complex frequencies
may arise.

– We have determined group velocities in the following
cases: when the time component or the along the line
of sight component of the breaking vector vanishes. The
most general case, all components being present, was
analysed for Vμ light-like.

– The solutions feature anisotropy and lack of Lorentz
invariance, due to the dependency on the angle between
the breaking vector and the propagation direction, or else
on the chosen reference frame.

– Since two group velocities for the CPT-odd handedness
were found except for Vμ light-like, we pursued an anal-
ysis of the dispersion relation in terms of the fields, in well
defined polarisations. We have determined the existence
of bi-refringence.

Having recorded for almost all CPT-odd cases, a massive-
like behaviour, we have explained this phenomenology trac-
ing its origin back to the Carroll–Field–Jackiw Lagrangian.
We have recast it in a non-explicit but still covariant form,
introducing the photon field components. The electric poten-
tial is not a dynamical variable and we eliminated it from the
Lagrangian. In the latter, a term that has the classic structure
of the de Broglie-Proca photon mass arises, where the break-
ing vector playing the role of the mass. This is consistent

with what we had previously seen in the dispersion relations.
It gives us a more fundamental reason for which the mass of
the photon would be linked to the breaking vector.

For the CPT-even sector, we adopt the kF breaking tensor
model [55]. From the dispersion relations, we evince

– Generally, being the propagation of the photon affected
by the action of the breaking tensor, we have a tensorial
anisotropy and thereby a patent lack of Lorentz invari-
ance. The main consequence is that the speed of light
depends on the direction. The correction goes like the
breaking components squared. As the components are
tiny, since they represent the deviation from the Lorentz
invariance, also the correction to c will be limited to small
values.

– Nevertheless, if the breaking tensor is proportional to the
Kroeneker’s delta, the dispersion relation looks as a light
ray propagating through a medium. The vacuum assumes
an effective refraction index due to the interaction of the
photon with the background.

– From the Class 3 Lagrangian, it follows that no mass can
be generated for the photon. Indeed, the dispersion rela-
tion yields ω = 0 whenever k = 0. Instead, for Class
4, there may take place a photon mass generation, due
to the b-term which represents higher derivatives in the
Lagrangian. Thus, the DR includes the possibility of a
non-trivial ω-solution even if we take a trivial wave vec-
tor.

Possibly, the most remarkable result concerns energy dis-
sipation for both odd and even CPT sectors.

– In the odd sector, the coupling of a constant external
field, with a constant breaking vector, determines an
energy loss even in absence of an external current. This
is revealed by the breaking of the continuity equation
(or conservation) of the photon energy-momentum ten-
sor. If the photon is coupled to the LSV background
and/or an EM external field which explicitly depend on
the space-time coordinates, then translational symmetry
is broken and the energy-momentum tensor is no longer
conserved. This means that the system under consider-
ation is exchanging energy (loosing or even receiving)
with the environment.

– Still in the odd sector, in absence of an external field, but
in presence of a space and/or time dependency of the time
component of the breaking vector, energy loss occurs.

– Finally, we have considered odd and even CPT sectors
together. We found if Vμ and kF are coordinate depen-
dent, there is dissipation in absence of an external EM
field.
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The relation between dissipation and complex, or sim-
ply imaginary, frequencies naturally arises. Perspectives in
research stem from the issues below.

Dissipation occurs in both odd and even CPT sectors when
the associated breaking factors are not constant over space-
time (for the following considerations, we neglect any exter-
nal field). However, in the odd sector, even if Vμ is constant,
complex frequencies may arise since the dispersion relation is
quartic in frequency. This is due to the Carroll–Field–Jackiw
model which does not ensure a positive-definite energy, and
thereby we may have unstable configurations. This leads to
complex frequencies. Imaginary frequencies imply damping
which is associated to dissipation, and we don’t feel having
cleared the issue sufficiently.

The CPT-even sector does not get in trouble with the posi-
tiveness of the energy, and thereby complex frequencies asso-
ciated to unstable excitations are absent. So, the CPT-even
sector may yield dissipation, when kF is non-constant, even
if it does not exhibit complex frequencies.

In short, future analysis of dissipation will have to tackle
and possibly set boundaries towards imaginary frequencies
and super-luminal velocities, knowing that dissipation might
very well occur for sub-luminal propagation.

We shall be analysing these and related issues, in con-
nection with the conjectures of tired light in forthcoming
works, also in the frame of a classic non-linear formulation
of electromagnetism. We take note of different but otherwise
possibly converging efforts [87].
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Appendix A: On CPT-even classes

We intend to write the kF tensor in terms of a single Bosonic
vector ξμ which signals LSV. This field is supposed to be part
of a chiral field of which the Fermionic condensates generate
the LSV. For achieving this purpose, we start by neglecting
the fully anti-symmetric part in (kF )μναβ , since it would only
account to a total derivative in the action (we exclude the com-
ponent yielding bi-refringence, in this manner). Exploiting
the Ansatz in [23,79], we write for

καβ = ξαξβ − ηαβ

ξρξρ

4
, (A.1)

we have

(kF )μναβ = − (kF )νμαβ = − (kF )μνβα = (kF )αβμν

= 1

2

(
ημακνβ − ημβκνα + ηνβκμα − ηνακμβ

)
:= Kμναβ, (A.2)

K̄αβ = Kμναβ k̄μk̄ν, (A.3)

k̄μ = kμ

|k| . (A.4)

This, in turn, implies a Lagrangian in the form

L3 = 1

4

(
1

2
ξμξνF

μ
α Fαν + 1

8
ξρξρFμνF

μν

)
. (A.5)

These simplifications are legitimate. In fact, had we taken
into account the full complexity of the kF term, then we
would have had to deal with a higher spin super-field. Its
appearance is instead avoided thanks to transferring the
effects to the ξμ vector.

The Lagrangian in Eq. (100) is obtained carrying out the
super-symmetrisation of Eq. (A.5) taking into account that
ξμ defines the SuSy breaking field.

We are interested in obtaining an effective photonic
Lagrangian by integrating out the photino sector (and all
others SuSy sectors as well). The resulting Lagrangian reads
[55] as Eq. (100). Since the DR for this theory is not present
in literature, we proceed to its derivation. The steps are as
usual the following: (i) write the Lagrangian in terms of the
fields; (ii) get the Euler–Lagrange equations; (iii) perform
the Fourier transform.

The Lagrangian in terms of the potential is [55]

L4 = 1

2
Aμ

[(
� − rχαβ∂α∂β

)
ημν − (

∂ν − rχνα∂α
)
∂μ

+rχμα∂α∂ν + χμν�(−r + s�) − s(χ α
ν ∂μ + χ α

μ ∂ν)�∂α

+sχαβ∂α∂β∂μ∂ν

]
Aν . (A.6)

Varying with respect to Aμ and performing the Fourier
transform, we obtain[

k2δν
μ − rχαβkαkβ + rχμαk

αkν − χν
μk

2(r + sk2)

+sχ α
μ k2kαk

μ
]
Ãμ = 0. (A.7)

having chosen the Lorenz gauge

kν Ã
ν = 0. (A.8)

This shows that we have a matricial equation in the form

Mμν Ã
ν = 0, (A.9)
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which has non-trivial solutions only if

detMμν = 0. (A.10)

By rearranging the terms, we see that

Mν
μ = k2

[
δν
μ − r

(
χαβ kαkβ

k2 δν
μ − χμα

kαkν

k2

)

−χν
μ(r + sk2) + sχ α

μ kαk
ν

]
(A.11)

has the structure of the identity plus something small, since
the parameters r and s are dependent upon the symmetries
violating terms which are extremely small. Therefore

detMν
μ = det (I + X) = etr

[
ln(I+X)

]
, (A.12)

with X small. Expanding the logarithm,

det (I + X) ∼ e
tr
[
X− X2

2

]

= etrX− 1
2 trX2

∼ 1 + trX − 1

2
trX2 + 1

2
(trX)2 + O

(
X3

)
.

(A.13)

Using Eq. (A.11) we finally obtain, at first order

sχk4 − (
1 − rχ + sχαβkαkβ

)
k2 + 3rχαβkαkβ = 0,

(A.14)

where χ = χ
μ

μ = χ0
0 + χ i

i . If we consider χ00 = χ0i = 0,
then χ = χ1

1 +χ2
2 +χ3

3 = χ1 +χ2 +χ3. We point out here
that Eq. (A.14), taken with r = 0, s = 2η2 and Xμν = Dμν

reproduces the DR given in Eq. (29) of [81], once the latter
is linearised in the tensor Dμν and taken with θ = 0.
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