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A B S T R A C T

After the well-reported record loss of Arctic stratospheric ozone of up to 38% in the winter

2010–2011, further large depletion of 27% occurred in the winter 2015–2016. Record low

winter polar vortex temperatures, below the threshold for ice polar stratospheric cloud

(PSC) formation, persisted for one month in January 2016. This is the first observation of

such an event and resulted in unprecedented dehydration/denitrification of the polar

vortex. Although chemistry–climate models (CCMs) generally predict further cooling of

the lower stratosphere with the increasing atmospheric concentrations of greenhouse

gases (GHGs), significant differences are found between model results indicating relatively

large uncertainties in the predictions. The link between stratospheric temperature and

ozone loss is well understood and the observed relationship is well captured by chemical

transport models (CTMs). However, the strong dynamical variability in the Arctic means

that large ozone depletion events like those of 2010–2011 and 2015–2016 may still occur

until the concentrations of ozone-depleting substances return to their 1960 values. It is

thus likely that the stratospheric ozone recovery, currently anticipated for the mid-2030s,

might be significantly delayed. Most important in order to predict the future evolution of

Arctic ozone and to reduce the uncertainty of the timing for its recovery is to ensure

continuation of high-quality ground-based and satellite ozone observations with special

focus on monitoring the annual ozone loss during the Arctic winter.
�C 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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1. Introduction

A record 38% ozone depletion of about 160 DU,
comparable in magnitude to that of the Antarctic, occurred
in the Arctic winter 2011 (Adams et al., 2012; Arnone et al.,
2012; Griffin et al., 2018; Lindenmaier et al., 2012; Manney
et al., 2011; Pommereau et al., 2013; Sinnhuber et al.,
2011). It was attributed to an unusually persistent polar
vortex that lasted until the end of March. More recently, a
27% (120 DU) depletion, the third largest in magnitude
since the beginning of SAOZ (‘‘Système d’Analyse par
Observation Zénithale’’, Pommereau and Goutail, 1988)
ozone column observations in 1990, occurred in the winter
2015–2016. In that year, the strongest and coldest polar
vortex of the last 68 years was observed during a period of
reduced @planetary wave (PW) amplitude (Matthias et al.,
2016; Rex et al., 2016). As shown by the Aura Microwave
Limb Sounder (MLS), such record low temperatures
resulted in exceptional vortex-wide dehydration between
the 410 K and 520 K potential temperature levels,
somethingnever observed before in the Arctic. The
observed denitrification was also exceptional, and exten-
sive chlorine activation and chemical ozone loss began
earlier than in the recent high loss winters. However, the
magnitude of chemical ozone depletion was limited by an
early major final warming at the start of March (Manney
and Lawrence, 2016).

The question is therefore to understand whether the
frequency of the anomalously cold and strong vortex
conditions will increase in the future and thus persistently
create conditions for large chemical ozone loss. The future
frequency of these episodes will be influenced by the
continuous cooling of the stratosphere through increasing
concentrations of greenhouse gases (GHGs), as predicted in
chemistry–climate models (CCMs). These processes can
delay the Arctic ozone recovery currently predicted by
CCMs for the mid-2030s (Dhomse et al., 2018; WMO,
2014). Using the ECHAM/MESSy Atmospheric Chemistry
(EMAC) CCM, Langematz et al. (2014) suggested that the
future Arctic stratosphere would cool significantly in early
winter. Using the Met Office Unified Model–United
Kingdom Chemistry and Aerosol (UMUKCA) CCM, Bednarz
et al. (2016) confirmed to some extent the predicted
cooling of the middle and upper stratosphere, but also
underlined the low confidence in the projected tempera-
ture trends in the lower stratosphere. In addition, like
Langematz et al. (2014), they confirmed the possible
occurrence of significant episodic large ozone column
reductions because of the large interannual dynamical
variability of the Arctic atmosphere.

The objective of this paper is to investigate whether
there are indications that Arctic ozone recovery, currently
predicted for 2030–2040 (Dhomse et al., 2018; WMO,
2014), might be delayed and whether large episodic
depletions might still occur following the cooling of the
lower stratosphere predicted by the climate models.
Section 2 provides an update of recent ozone loss and
denoxification events observed by the SAOZ network in
2015–2016 and 2016–2017. The temperatures recorded
in the Arctic vortex during these years are described in

cooling of the stratosphere on ozone is then discussed in
Section 4, and our conclusions are summarized in Section 5.

2. Ozone loss in 2015–2016 and 2016–2017

The ozone loss is derived from SAOZ column observa-
tions at eight stations in the Arctic (Table 1), where
measurements are performed twice daily at solar zenith
angles (SZAs) between 86 and 918. Thus our observations
extend up to the polar circle at the winter solstice. Table 1
shows the latitude and year of the first observations at each
station.

The ozone loss and the amplitude of the NO2 diurnal
variation reported during the winters of 2015–2016 and
2016–2017 are shown in Fig. 1. The ozone loss at each
station is calculated by a passive method where measured
columns are compared to those provided by chemical
transport models (CTMs) that ignore chemistry, as de-
scribed by Goutail et al. (1999). Griffin et al. (2018) recently
showed that this method provides smaller uncertainties in
ozone loss calculations than other approaches. Also
displayed in Fig. 1 is the nitrogen dioxide (NO2) diurnal
variation, an indicator of chlorine activation. Indeed, since
NOx is transformed into ClONO2 in the presence of activated
chlorine, the absence of NO2 during night time is an
indicator of chlorine activation (Pommereau et al., 2013).
During the winter 2015–2016, the afternoon NO2 levels
remained low until the end of February, when the chlorine
activation stopped and the ozone column depletion reached
a total of 27 � 3% on March 20, at a mean rate of 0.5%/day. In
contrast in the winter 2016–2017, the chlorine-activated
period was shorter and ended in late January, the loss rate was
smaller at 0.2%/day, and the total ozone depletion amplitude
reached only 16 � 3%.

The long-term history of the ozone loss since the
beginning of SAOZ network measurements in 1990 and the
results of the CTMs REPROBUS (Lefevre et al., 1994) and
SLIMCAT (Chipperfield, 1999) are shown in Fig. 2. Although
stopped by the major stratospheric final warming in early
March, the 2015–2016 ozone depletion is the third largest
after the peak of 1995–1996 and the record loss of 2010–
2011. Remarkably, cases of small ozone depletion, which
were frequent between 1998 and 2005 due to early
warmings in late December or early January, are no longer
observed after 2005. As shown by the EMAC model
simulations, this is consistent with the early winter
cooling of the stratosphere below the threshold tempera-
ture of nitric acid trihydrate (NAT) PSC formation (TNAT)
observed every winter after 2005, resulting in a minimum
ozone depletion of at least 12–15% each year.

Table 1

SAOZ Arctic stations, latitude, longitude and year of first observations.

Eureka, Nunavut 808 N, 868 W 2006

Ny-Alesund, Svalbard 788 N, 128 E 1991

Thule, Greenland 768 N, 698 W 1991

Scoresbysund, Greenland 718 N, 228 W 1991

Sodankyla, Finland 678 N, 278 E 1990

Salekhard, Russia 678 N, 678 E 1998

Zhigansk, Russia 678 N, 1238 E 1992
Harestua, Norway 608 N, 118 E 1994

Section 3. The possible impact of the further predicted
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Regarding the CTM simulations with interactive chem-
y, the depletion amplitudes of 27 � 3% in 2015–2016

 16 � 3% in 2016–2017 are well captured by the models
h, respectively, 24.3 � 1.9% and 13 � 2% in REPROBUS, and

 2% and 11 � 2% in SLIMCAT. An exception to the good
eement over the recent SAOZ record is in 2012–2013,
en both models significantly underestimate the observed
ne loss.
Fig. 3 shows the relationship between SAOZ ozone loss
plitude and NAT polar PSC illuminated (sunlit) volume.

 NAT PSC sunlit volume is calculated in the lower
tosphere between 400 and 675 K potential tempera-

e surfaces (Pommereau et al., 2013). The 2015–2016
 2016–2017 episodes are fully consistent with the
er winters, confirming the linear relationship between
ne loss and NAT PSC sunlit volume, indicative of
orine activation (Chipperfield et al., 2005; Pommereau
l., 2013; Rex et al., 2004).

tratospheric temperatures in the winter Arctic

Fig. 4 shows the minimum ECMWF ERA-Interim
peratures at the 475 K isentropic level (approximately

18 km), reported each winter since 1990 north of 608 N.
The bold blue line is for winter 1996, when the second
largest ozone loss so far observed occurred. The bold black
line is for the record loss of 2010–2011, the red line for
2015–2016, and the green line for the relatively warm
2016–2017 winter. Also shown are TNAT and the ice PSC
formation temperature (TICE).

As already noted, the early stratospheric warming in
December and January observed frequently before
2005 did not occur after 2005, which is consistent with
the model study of Langematz et al. (2014). The tempera-
ture is often below TNAT for several weeks. However, apart
from short-duration ice PSC episodes associated with
mountain-wave events, like those observed by the
ALOMAR lidar in northern Norway in January 1996 (e.g.,
Hansen and Hoppe, 1997), a long duration period with
T < TICE happened recently only (Fig. 4). The first significant
T < TICE episode, which lasted two weeks after mid-
February in the winter 2010–2011, resulted in the record
ozone loss event. A T < TICE event like the most recent,
which lasted for one month in January 2016, had never
been observed before in the Arctic. This January 2016 event
resulted in the fast sedimentation of ice particles leading to

1. Time series of observed ozone loss (%) inside the vortex (top panels) and the amplitude of the NO2 diurnal variation (bottom panels), above each SAOZ

ion in winter 2015–2016 (left) and in winter 2016–2017 (right).
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the unprecedented dehydration and denitrification of the
stratosphere (Manney and Lawrence, 2016) and the
complete denoxification until late February, as observed
by SAOZ (Fig. 1).

4. Discussion

The winters 1995–1996, 2010–2011, and 2015–2016
have been the coldest so far since the beginning of SAOZ

Fig. 2. Ozone column loss magnitude (%) reported by the SAOZ network each year since 1990 and calculated by the two chemical transport models

REPROBUS and SLIMCAT.
Fig. 3. Magnitude of SAOZ ozone loss (%) versus nitric acid trihydrate (NAT) PSC sunlit volume (VPSC) between the 400–675 K levels.
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ervations, and they resulted in the largest observed
ne losses. Although Arctic stratospheric ozone recovery
predicted to occur in the mid 2030s, there is no
ication yet of reduced ozone loss at northern polar
tudes, in contrast to the Antarctic (Solomon et al.,
6). Arctic ozone depletion typically amounts to 12–15%
–50 DU) each year, reaching 25% (60 DU) during
derately cold winters, can be as large as 38% (160 DU) in
reme cases. Since there is a clear relationship between
tospheric temperature and ozone loss while strato-
eric chlorine and bromine loadings remain elevated, if

 cooling of the stratosphere continues, there is a serious
 of experiencing further extreme loss events before

 concentrations of ozone-depleting substances (ODSs)
rn to their pre-depletion values. The question is thus to
erstand how the temperature of the Arctic lower
tosphere will evolve in the future.

Using Chemistry–Climate Model Initiative (CCMI)
AC simulations, Langematz et al. (2014) concluded
t the lower stratosphere minimum temperature (Tmin)
th of 408 N is decreasing in the early winter
vember–December) at a mean rate of �0.18 � 0.05 K/
ade since 1960, but at a slightly slower rate
.11 � 0.05 K/decade) in January–February. According to
ir predictions, the cooling will continue until 2100. Using

WF ERA-Interim and NASA MERRA meteorological
nalysis datasets, Bohlinger et al. (2014) also studied
g-term stratospheric temperature changes. They found
t the Arctic lower stratosphere at 50 hPa between 60–908
as been cooling, faster than predicted by the EMAC model,

 rate of �0.41 � 0.11 K/decade over the last 32 years. Like
gematz et al., Bohlinger et al. also suggested a further
ling of the Arctic stratosphere over the coming decades

 to radiative cooling largely controlled by the changes in

GHGs, but at slower rate of �0.15 � 0.06 K/decade for EMAC
and �0.10 � 0.02 K/decade for the Climate Validation
(CCMVal2) project. Finally, from the seven-member ensem-
ble simulations of the UMUKCA, Bednarz et al. (2016) also
concluded that there would be a statistically significant long-
term cooling throughout most of the polar stratosphere in
early winter, in agreement with Langematz et al. (2014). The
results also indicate a strengthening of the deep branch of the
Brewer–Dobson circulation in boreal winter (Hardiman et al.,
2014), implying an increase in downwelling over the Arctic
from December to February of 0.015 � 0.007 mm/s/decade.
Regarding ozone, the ensemble model simulations lead to
the conclusion that although the total column in March is
expected to increase at a rate of 11.5 DU/decade in the 21st
century, the springtime Arctic ozone can episodically drop
by 50–100 DU, meaning that individual years with spring-
time ozone depletion as severe as that of 2011 will remain
possible in the future. Furthermore, Sun et al. (2014), using
the Whole Atmosphere Community Climate Model
(WACCM), have shown that the predicted sea ice loss in
the Arctic could lead to a decrease of the upward wave
propagation, a strengthening of the polar vortex, an
additional cooling of the stratosphere, and then a polar cap
stratospheric ozone decrease by 13 DU (34 DU at the North
Pole) in spring. Using CCMI results, Morgenstern et al. (2017)
examined the degree of consistency in column ozone
predictions between seven models and found considerable
disagreement, which they attribute to inter-model differen-
ces in lower stratospheric transport and dynamical respon-
ses. They concluded that there is a lot of uncertainty in the
future evolution of temperature. Finally, from the more
recent 155 simulations performed by 20 models in the in
the frame of CCMI, Dhomse et al. (2018) concluded that the
return dates of ozone to the 1980 level, will be later by

 4. ERA-Interim minimum temperature north of 608 N at the 475 K level between December and April for winters from 1989–1990 to 2016–2017.
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approximately 5–17 years than those presented in the
2014 Ozone Assessment. However, like Morgenstern et al.,
they also found a significant uncertainty in the predictions.

5. Conclusions

In conclusion, all model predictions agree with a further
cooling of the Arctic lower stratosphere due to increasing
GHG concentrations. However, significant differences in
the model skill are found, e.g., prediction of the cooling
episodes limited to the early winter or extending through
the whole winter, cooling limited to the middle and upper
stratosphere or extending to all levels, related to the
strengthening or weakening of the Brewer–Dobson circu-
lation, or additional stratospheric cooling after sea ice
melting, etc. Generally speaking, model predictions are
consistent with the observed cooling of the lower
stratosphere during the winter, consistent, for example,
with the recent low temperature record of 2015–2016.
CCMI simulations also agree with the relationship between
temperature and ozone loss, for which observations are
well captured by chemical transport models. The high
variability of Arctic meteorology implies that large
chemical ozone depletion events like those of 2010–
2011 and 2015–2016 might still occur until the ODS
concentrations return to their 1960 values. The Arctic
stratospheric ozone recovery predicted for the mid 2030s
might be thus significantly delayed.

Most important in order to predict the future Arctic
ozone evolution and reduce the uncertainty of the timing
for ozone recovery is to ensure continuation of high-
quality ozone observations in the Arctic with adequate
instruments, UV-Vis ground-based (Pommereau et al.,
2013), radiosondes (Rex et al., 2004), Microwave MLS
(Waters et al., 2006) and IR IASI (Boynard et al., 2018),
performing at high latitude in winter.
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