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Abstract 

Understanding the pre-collisional paleogeography in the NE Tibetan plateau provides 

insights into the growth mechanisms of the northern portion of the plateau in the Cenozoic. We 

conducted sandstone petrography analysis and determined U-Pb ages for detrital zircons from 

Cretaceous sandstone from the Yumen Basin and the northern Qilian Shan. Cretaceous strata in 

the northern Yumen Basin yield a unimodal age population at 290-240 Ma that indicates primary 

derivation from Bei Shan. Cretaceous strata in the westernmost Yumen Basin contain zircons of 

2.6-2.2 Ga, 2.1-1.7 Ga, 1.4-0.7 Ga, 440-380 Ma and 300-230 Ma, suggesting source derivation 

from both the Qilian Shan and Bei Shan. Within the northern Qilian Shan, Cretaceous strata 

yield age populations of 2.8-2.3 Ga, 2.1-1.2 Ga, 480-380 Ma and ca. 270 Ma, indicating 

derivation from the Qilian Shan. Sandstone composition results show that a sample from the 

northern Qilian Shan contains more lithic fragments and plots in the recycled orogen field of the 

quartz-feldspar-lithics (QFL) diagram, while samples from Yumen Basin are more quartz-rich 

and plot close to the continental block field of the QFL diagram. This compositional difference 

corresponds to source variation, consistent with the detrital zircon record. Combined with 

existing sedimentology and low-temperature thermochronology datasets, we suggest the 

presence of Cretaceous topographic relief in the Bei Shan and Qilian Shan prior to India-Asia 

collision. Considering >300 km post-Cretaceous left-lateral offset along the Altyn Tagh Fault 

(ATF) and the consistently similar detrital zircon ages spectra of the samples from the 

Cretaceous to late Oligocene strata in the Yumen Basin, we infer the palaeogeography in the NE 

Tibetan plateau has been similar from the late Cretaceous to the late Oligocene with ATF 

termination in the western Yumen Basin instead of having been linked to strike-slip faults in the 

Alxa or other regions to the east since its initiation.  
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1 Introduction 

It is widely acknowledged that the India-Asia collision in the early Cenozoic and the 

ongoing post-collisional convergence have driven the outward growth of the Tibetan plateau  

(Decelles et al., 2002; Dewey et al., 1988; England and Searle, 1986; Kapp et al., 2007b; Molnar 

and Tapponnier, 1975; Tapponnier et al., 2001; Yin and Harrison, 2000). As the pre-Himalayan 

orogenesis played a significant role in the topographic evolution of the modern Tibetan plateau, 

it is crucial to determine the pre-collisional paleogeography in the Tibetan plateau prior to the 

India-Asia collision.  

In recent years, a growing body of evidence has suggested that the southern, southeastern, 

northern and eastern margins of Tibet (Fig.1), developed elevated topography prior to the 

collision (Cheng et al., 2016a; Cheng et al., 2015a; Ding et al., 2014; England and Searle, 1986; 

Enkelmann et al., 2006; Jolivet et al., 2001; Kapp et al., 2007a; Kapp et al., 2007b; Kapp et al., 

2005; Leier et al., 2007; Li et al., 2017; Lippert et al., 2014; Murphy et al., 1997; Pullen et al., 

2008; Roger et al., 2011; Tian et al., 2016a; Wu et al., 2016; Yang et al., 2017; Zhang et al., 2017) 

(Fig. 1). However, the late Mesozoic – early Cenozoic pre-collisional paleogeography of the 

northeastern Tibetan plateau is still poorly constrained, which may be attributed in part to the 

lack of detailed geologic information over the remote and often inaccessible Qilian Shan region 

(Fig. 1). Given that the present topography might be partly inherited from the Mesozoic 

geodynamic evolution, it is significant to determine the pre-collisional tectonics or 

paleogeography in the northeastern Tibetan plateau. Though few groups have conducted field 

investigations in the Yumen Basin and further inferred that the Qilian Shan to the south and Bei 
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Shan to the north might be the two major source areas of the late Mesozoic – early Cenozoic 

strata in the Yumen Basin (Peng, 2013; Wang et al., 2016c; Yang et al., 2011)(Fig. 1), the 

contribution of each source area as well as its variation through time have not been quantitatively 

estimated yet. Combined with existing datasets (including sedimentology, low-temperature 

thermochronology, etc.), a quantitative estimate of contribution of each source area contributes 

to a better understanding of the late Mesozoic – early Cenozoic paleogeography and growth of 

the northeastern Tibetan plateau.  

 

Figure 1. (a) Digital topographic map of the Tibetan plateau. The timing of the pre-collisional 

deformation throughout the Tibetan plateau is based on previous studies (Cheng et al., 2016a; 

Cheng et al., 2015a; England and Searle, 1986; Enkelmann et al., 2006; George et al., 2001; 

Jolivet et al., 2001; Kapp et al., 2007a; Kapp et al., 2007b; Kapp et al., 2005; Leier et al., 2007; 

Li et al., 2017; Liu et al., 2013; Murphy et al., 1997; Pan et al., 2013; Pullen et al., 2008; Staisch 

et al., 2014; Tian et al., 2016a; Volkmer et al., 2007; Wang et al., 2017b; Yang et al., 2017; 

Zhang et al., 2017).  

 

The modern left-lateral displacement along the Altyn Tagh Fault (ATF) marks the northern 

edge of the Tibetan plateau (Figs. 1  and 2a) and is considered to have accommodated about 300-

500 km of intracontinental deformation in response to India-Asia collision and subsequent post-

collisional convergence (Cheng et al., 2015a; Cheng et al., 2015b; Cheng et al., 2016b; Cowgill 

et al., 2003; Searle et al., 2011; Yin and Harrison, 2000; Yin et al., 2002; Zhang et al., 2014). 

However, the question of where the ATF terminated at its eastern tip during the Cenozoic (since 

its initiation) remains highly debated. Some workers suggest that the ATF terminated in the 
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Qilian Shan region since its Eocene or Miocene initiation (Burchfiel et al., 1989; Cheng et al., 

2015b; Cowgill et al., 2003; Dupont-Nivet et al., 2004; Jolivet et al., 2001; Métivier et al., 1998; 

Wang et al., 2006; Wittlinger et al., 1998; Yin and Harrison, 2000; Yin et al., 2002) (Fig.1a). On 

the other hand, based on field investigation in the Yumen Basin, remote sensing image 

interpretation for the structures in the Hexi Corridor and Alxa block as well as the correlation 

between tectonic units and sutures in Bei Shan and the Inner Mongolia orogens, some studies 

argue that the ATF extended beyond the Qilian Shan since its initiation, linking with strike-slip 

faults in the Alxa block (East Mongolia), or even as far as the subduction system in the Sea of 

Okhotsk (Darby et al., 2005; Yue and Liou, 1999). If the Paleogene deformation along the ATF 

terminated in Qilian Shan, we would expect that the large amounts of sinistral displacement 

along the ATF since the India-Asia collision were largely transferred into Qilian Shan region and 

were accommodated by oblique slipping along the faults in the mountain ranges; otherwise such 

a large amount of deformation would be accommodated through left-lateral strike-slip 

displacement along the ATF and would be transferred to the region further to the east, out of 

Tibetan plateau. Given that these two different geometries proposed for the ATF at its eastern 

termination result in diverse understandings of the timing and mechanisms of crustal deformation 

in the northern Tibetan plateau, it is of primary importance to distinguish which geometry is 

accurate. 

Detrital zircon geochronology has been developed as a valuable tool for unraveling source to 

sink relationships within a given area through time  (Fedo et al., 2003; Thomas, 2011). In 

addition, great progress has been made in quantitative methods of unmixing detrital 

geochronology age distributions (Licht et al., 2016; Sundell and Saylor, 2017). In this study, we 

sampled five Cretaceous sandstone samples exposed in the Yumen Basin and northern Qilian 
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Shan (Figs. 2a and 3; Shan means “mountain” in Chinese), and determined the U-Pb ages of 

detrital zircons in these sandstones using laser-ablation inductively-coupled plasma mass 

spectrometry (LA-ICP-MS). To quantitatively determine mixing proportions of potential source 

contributions, a newly published software program DZmix (Sundell and Saylor, 2017) is used in 

this study. These results are interpreted in the context of sandstone petrologic results, previously 

published detrital zircon geochronology, published paleocurrent data in the Yumen Basin, as 

well as existing low-temperature thermochronology data in the NE Tibetan plateau for a better 

understanding of the Cretaceous-Cenozoic paleogeography of the NE Tibetan plateau. Moreover, 

detrital zircon geochronology is also a powerful means of resolving the displacement history of 

potentially displaced terranes (Cheng et al., 2016b; Gehrels, 2014). Outcropped near the highly 

debated eastern end of the ATF, the Cretaceous to Cenozoic strata in the Yumen Basin provide a 

good proxy for examining the source variation through time due to the potential sinistral slip 

motion of the ATF since its Eocene or Miocene initiation. In the context of the abovementioned 

published datasets, we compare age distributions of detrital zircon from the Cretaceous to 

Cenozoic strata in the Yumen Basin to estimate the potential source variation and further define 

the geometry of the eastern termination of the ATF. 

 

Figure 2. (a) Geological map of the northeastern Tibetan plateau and locations of the detrital 

zircons samples from the Yumen Basin and the Qilian Shan. Four modern fluvial sand samples 

(BS2, BS3, QL1 and QL2) are from our previous work (Wang et al., 2016c). The ages presented 

are from previous geochronology studies (Bovet et al., 2009; Chen et al., 2014b; Chen et al., 

2012; Duan et al., 2015; Gehrels et al., 2003b; Gong et al., 2017; Lu et al., 2008; Song et al., 

2013; Song et al., 2009; Tseng et al., 2007; Tung et al., 2007; Tung et al., 2016; Wang et al., 
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2017a; Wang et al., 2016a; Wei and Song, 2008; Xia and Song, 2010; Xu et al., 2015; Yang et 

al., 2009; Yu et al., 2015; Zeng et al., 2016; Zhang et al., 2007a; Zheng et al., 2017b). (b) and (c) 

are two cross-sections through the Yumen Basin, showing the distribution of the Cretaceous and 

Cenozoic strata in this region, modified from Dai et al. (2005).  NQF, North Qilian Fault; NKF, 

northern marginal fault of the Kuantan Shan-Longshou Shan; SKF, southern marginal fault of 

the Kuantan Shan. 

 

Figure 3. Geological map of the Yumen Basin and northern Qilian Shan. The black dash line 

refers to the extent of the northern Qilian Shan, adapted from previous studies (Bovet et al., 2009; 

Gehrels et al., 2003b). 

  

2 Regional geology 

2.1 Qilian Shan, Yumen Basin and Altyn Tagh Fault 

The Qilian Shan marks the northeastern margin of the Tibetan plateau, occupying a 

transition zone between the high elevation plateau and the adjacent low-elevation cratons (Lease, 

2014; Meyer et al., 1998; Tapponnier et al., 1990) (Fig. 1). The Qilian Shan contains massive 

NW-SE striking ranges that grow on folds, thrusts or strike-slip faults accommodating the 

northward motion of the Tibetan plateau (Allen et al., 2017; Meyer et al., 1998; Yin and 

Harrison, 2000; Zuza et al., 2016). Based on field investigation in the Qaidam Basin and Yumen 

Basin, low temperature thermochronology from the basement rocks in the northern Qilian Shan 

or from the Cenozoic sedimentary rocks in the Yumen Basin, and provenance analysis of the 

Cenozoic strata in the Yumen Basin and northern Qilian Shan, some studies have argued that 
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crustal shortening and surface uplift began in the southern Qilian Shan during the Paleogene 

(Wang et al., 2017c; Yin et al., 2008; Zhuang et al., 2011) and later propagated northward into 

the central and northern Qilian Shan (Bovet et al., 2009; Lease, 2014; Métivier et al., 1998; 

Meyer et al., 1998; Wang et al., 2016b; Zheng et al., 2010; Zhuang et al., 2011). However, the 

overall data coverage of dataset is still sparse, which is partly attributed to the lack of detailed 

geologic information over the remote and often inaccessible mountain ranges in the Qilian Shan. 

In this study, we follow the previous definition of the northern Qilian Shan (Bovet et al., 2009; 

Gehrels et al., 2003b). The extent of the northern Qilian Shan is labelled in Figure 3. The Qilian 

Shan is bordered by the Hexi Corridor to the north and truncated by the lithosphere-scale, 

sinistral strike-slip ATF to the west (Figs. 1 and 2). Left-lateral displacement along the ATF has 

accommodated hundreds of kilometers of the post-collisional convergence between the India and 

Asia, but the estimates of its total offset generally vary between ca. 300 km to ca. 500 km (Chen 

et al., 2002; Cheng et al., 2015a; Cheng et al., 2015b; Cheng et al., 2016b; Cowgill et al., 2003; 

Ritts and Biffi, 2000; Searle et al., 2011; Yin et al., 2002).  

A series of transpressional faults developed in the Hexi Corridor in response to the 

northward propagation of the Qilian Shan,  separating several sub-basins (Wang et al., 2016b). 

The Yumen Basin, in the transition zone between the northern Qilian Shan and the Bei Shan, is 

the westernmost sub-basin of the Hexi Corridor (Fig. 2a). The middle Eocene to Quaternary 

strata (including the Huoshaogou, Baiyanghe, Sulehe, Yumen, and Jiuquan formations, from the 

oldest to the youngest) of the Yumen Basin are well-exposed (Peng, 2013; Wang et al., 2016b), 

composed of alluvial to marginal lacustrine deposits (Dai et al., 2005; Wang et al., 2016c; Wang 

et al., 2016d; Yang et al., 2011) (Figs. 2-4).  Those Cenozoic strata unconformably overlie 

Lower Cretaceous strata (Figs. 4 and 5) that are widespread along the northern Qilian Shan and 
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in the Yumen Basin (Figs. 2a and 3). In the northern Qilian Shan, the Lower Cretaceous strata 

mainly consist of thick beds of massive red conglomerate and coarse sandstone associated with 

high energy proximal fluvial and alluvial fan depositional settings (Peng, 2013) (Fig. 4). In the 

Yumen Basin, especially in its central and northern parts, the Lower Cretaceous strata are mainly 

composed of thin beds of greenish grey claystone and siltstone intercalated with thin to thick 

beds of brownish grey massive sandstone and conglomerate, corresponding to lacustrine facies 

deposits (Peng, 2013). 

 

Figure 4. Lithostratigraphy of the five studied sections. (a) Caogou section (Wang et al., 2016b), 

(b) Huoshaogou section (Dai et al., 2005), (c) northern Qilian Shan section, (d) Jingtieshan 

section and (e) Hongliuxia section (Peng, 2013). D, S, F, M, C, and G represent claystone, 

siltstone, fine-grained sandstone, medium-grained sandstone, coarse-grained sandstone, and 

conglomerate, respectively. Magnetostratigraphy of the Caogou and Huoshaogou sections and 

their correlation with GPTS12 (Hilgen et al., 2012) are from Dai et al. (2005); Wang et al. 

(2016b), respectively. These five sections are measured from both this study and previous work 

(Dai et al., 2005; Peng, 2013; Wang et al., 2016b). The paleocurrent measurements are from 

previous work (Dai et al., 2005; Peng, 2013; Wang et al., 2016c). FZ1-FZ5, and FZ7 are 

Cenozoic detrital zircon samples from our previous work (Wang et al., 2016c). 

 

Figure 5. Photographs of the Lower Cretaceous strata in the Yumen Basin and Qilian Shan. (a) 

shows a Cretaceous NNE-SSW striking normal fault in the northern Qilian Shan. Note that the 

Lower Cretaceous strata becomes coarser towards the normal fault, corresponding with 

syntectonic deposition. (b) shows the unconformity between the Lower Cretaceous strata and the 
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overlying Eocene Huoshangou Fm., Huoshaogou section (c) represents a grey white tabular 

sandstone interbedded with thin purple and greenish claystone beds in the Lower Cretaceous 

strata, Huoshaogou section, corresponding to distal lacustrine facies deposits. (d) shows the 

angular unconformity between the Lower Cretaceous strata and the overlying Oligocene 

Baiyanghe Fm., Caogou section. (e) represents Lower Cretaceous strata of the Caoguo section, 

showing thickly bedded sandstone intercalated with thin lenses of small pebbles, corresponding 

to braided river deposits. (f) represents the unconformity between Lower Cretaceous strata and 

the overlying Oligocene Baiyanghe Fm., Hongliuxia section. (g) displays early Cretaceous basalt 

(ca. 116-106 Ma, determined by Yang et al. (2001) and Peng (2013)), (h) represents purple-red 

thickly bedded conglomerate, within northern Qilian Shan section, pertaining to proximal 

deposits. (i) shows a purple massive sandstone intercalation in a thick bedded Lower Cretaceous 

conglomerate, northern Qilian Shan section. (j) represents a thickly bedded conglomerate 

intercalated with thinly bedded sandstone in the Lower Cretaceous strata, Jingtieshan section, 

pertaining to proximal deposits.  

 

2.2 Early Cretaceous tectonics in the Yumen Basin, Bei Shan and northern Qilian 

Shan 

Based on the field investigations, previous studies have determined the depositional 

environment of Lower Cretaceous strata outcropped in the western Yumen Basin and have 

inferred an extensional tectonic setting during the early Cretaceous (Peng, 2013; Yang et al., 

2011). Field geological surveys, combined with 
40

Ar/
39

Ar thermochronology and zircon U-Pb 

geochronology dating, have identified a series of ca. 116-106 Ma mafic volcanic rocks in the 
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western Yumen Basin that has been interpreted as a consequence of extensional tectonics during 

the early Cretaceous (Peng, 2013; Yang et al., 2001). In addition, seismic reflection surveys in 

the Yumen Basin shows early Cretaceous growth strata deposited in the hanging wall of a series 

of NNE-SSW striking normal faults, again indicating an extensional setting during the early 

Cretaceous (Chen et al., 2014a). Evidenced from the low-temperature thermochronology, the 

basement rocks of Bei Shan experienced an episode of relatively rapid cooling during the early 

Cretaceous, indicative of rapid basement exhumation (Gillespie et al., 2017; Tian et al., 2016b). 

This early Cretaceous tectonic reactivation might either correspond to the Lhasa/Eurasia 

collision and subsequent slab break-off, or link with the collision along Mongol-Okhosk 

Orogeny and subsequent collapse (Gillespie et al., 2017; Jolivet et al., 2013b; Jolivet et al., 2010). 

Due to the lack of the geological information in the remote Qilian Shan region, the early 

Cretaceous tectonic setting in the Qilian Shan is not well constrained. Based on apatite fission 

track analysis, previous work has demonstrated Cretaceous cooling and exhumation of the 

northern Qilian Shan (George et al., 2001; Jolivet et al., 2001; Pan et al., 2013). Our field 

investigation observed a NNE-SSW trending normal fault in the northern Qilian Shan (Fig. 5a), 

likely indicative of an extensional setting in the northern Qilian Shan during the early Cretaceous. 

Further effort should be made to unravel the tectonic setting in the Bei Shan and Qilian Shan 

regions. 

 

2.3 Stratigraphy and sediment characteristics of the studied sections  

Three of our studied sections are located in the Yumen Basin, namely the Caogou, 

Huoshaogou and Hongliuxia sections (Figs. 2-4). The Jingtieshan and northern Qilian Shan 

sections are located in the northern Qilian Shan (Figs. 2-4). In the Caogou and Huoshaogou 
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sections, the Lower Cretaceous strata underlie unconformably the late Eocene to Oligocene 

Huoshaogou Fm. (Fig. 5b, 5d). The Lower Cretaceous strata mainly consist of thinly bedded of 

greenish grey laminated claystone and siltstone interbedded with thin to medium tabular beds of 

grey massive sandstone, corresponding to distal lacustrine facies deposits (Peng, 2013) (Fig. 5c, 

5e). Paleocurrent measurements indicate south-directed unidirectional paleoflows (Dai et al., 

2005). In the Hongliuxia section, the Lower Cretaceous strata were unconformably overlain by 

the Oligocene Baiyanghe Fm. strata (Fig. 5f). The Lower Cretaceous deposits are mainly 

composed of thin beds of greenish grey claystone and sandy claystone interbedded with greenish 

grey sandstone, sandy claystone and thick beds of sandstone, corresponding to a distal alluvial 

plain to proximal lacustrine environments (Peng, 2013)(Fig. 5f-5g). Clast imbrications in this 

section suggest multiple paleocurrent directions (e.g. NNW-directed and south-directed) (Peng, 

2013). In the Northern Qilian Shan and Jingtieshan sections, the Lower Cretaceous strata 

unconformably underlie the Oligocene Baiyanghe Fm., and unconformably overlie the basement 

rocks of the northern Qilian Shan. The Cretaceous strata are mainly composed of thick beds of 

purple to red conglomerate intercalated with thin to medium bedded tabular sandstone (Fig. 5h-j). 

The poorly-rounded and poorly-sorted conglomerates indicate that material has not been 

transported very far, pertaining to proximal deposits (Fig. 5h-5j). Detailed sedimentological 

descriptions of the sampled Cretaceous sections can also be found in Peng (2013).  

 

Figure 6. (a)-(e) Cross-polarized light photomicrograph of five Cretaceous samples. (f)-(g) are 

ternary diagrams (Qt-F-L plot and Qm-F-Lt plot) displaying the relative abundance of 

framework grains in sandstone from the Cretaceous strata in the Yumen Basin and northern 

Qilian Shan. The provenance fields follow the method of Dickinson et al. (1983). Sample NQL-

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

K, from the northern Qilian Shan, has highest content of lithic rock fragment and plots in the 

“recycled orogen” field in both the QtFL and QmFLt diagrams. Sample HLX-K, from the 

southwestern Yumen Basin has second-highest content of lithic rock fragment and plots in the 

“recycled orogen” field in both the QtFL and QmFLt diagrams. Samples CG-K and HSG-K, 

from the northern Yumen Basin, have lowest content of lithic fragments and plot near the 

boundary between the “continental block” and “recycled orogen” fields in both the QtFL and 

QmFLt diagrams. We interpret that the sources for the strata in the Yumen Basin and Qilian 

Shan are different during the Cretaceous. Qt: total quartz, Qm: monocrystalline quartz, F, 

feldspar, L: lithic rock fragments, Lt: total lithics (lithic rock fragments + polycrystalline quartz).  

 

3 Approach and Methods 

3.1 Sandstone petrography  

Five Cretaceous sandstone samples, namely CG-K, HSG-K, HLX-K, NQL-K and JST-K, 

were collected from the Yumen Basin and northern Qilian Shan for petrographic analysis. We 

prepared standard thin sections and stained the thin sections to identify potassium feldspar. We 

used cross-polarization microscope to observe the petrographic features, including mineral 

composition, grain size, sorting and roundness. Cross-polarized light photomicrographs of these 

five samples are shown in Fig. 6a-6e. Modal compositions were then determined by utilizing the 

modified Gazzi-Dickinson point-counting method (Ingersoll et al., 1984). According to the 

method of Dickinson and Suczek (1979), sample JTS-K containing more than 25% 

of matrix or cement has been excluded from consideration (Fig. 6e). A minimum of 400 points 

were counted per sample. Raw point-counting data are summarized in the supplementary 
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material. Samples were classified and plotted on the ternary diagrams (Fig. 6f-6g) using the 

scheme outlined in (Dickinson et al., 1983). We follow the mineral abbreviation of Dickinson 

and Suczek (1979) to better describe our results: Qt for total quartz, Qm for monocrystalline 

quartz, F for feldspar, L for lithic rock fragments, and Lt for total lithic grains including 

polycrystalline quartz. 

3.2 Detrital zircon geochronology 

Combined with sedimentology and low-temperature thermochronology datasets, detrital 

zircon U-Pb geochronology has been widely used to understand the paleogeography of a region 

by reconstructing the source of sediment in ancient sedimentary systems (Gehrels, 2014; Gehrels 

and Pecha, 2014). In this study, we collected five sandstone samples (about 5kg each) from 

Cretaceous outcrops and extracted zircon grains following the standard procedures outlined in Li 

et al. (2004). This work was carried out at the Chengxin Geology Service Co. Ltd., Langfang, 

China. In order to avoid sampling bias, zircon crystals (generally >200 grains) were mounted in 

epoxy resin without handpicking, together with fragments or loose grains of Sri Lanka, FC-1, 

and R33 zircon crystals for use as standards. Zircon crystals were then polished to obtain a 

smooth internal surface.  

Zircon U-Pb dating was conducted using laser ablation inductively coupled plasma mass 

spectrometry (LA-ICPMS) at the Arizona LaserChron Center (Gehrels and Pecha, 2014; Gehrels 

et al., 2006; Gehrels et al., 2008). All five samples were ablated using a 30 μm laser beam 

diameter. Detailed methods for analysis on the laser-coupled Thermo Element 2 single-collector 

ICP-MS were previously described by Pullen et al. (2014). 

Common Pb corrections were performed based on the measured 
206

Pb/
204

Pb and the assumed 

composition of common Pb from Stacey and Kramers (1975). Sri Lanka and FC-1 zircon 
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standards were used to correct for isotope fractionation, and the R33 zircon standard was treated 

as an unknown and used to monitor the fractionation correction. Reported uncertainties include 

measurement errors at the 1σ level. Analyses with >10% uncertainty (1σ) in 
206

Pb/
238

U age are 

not included. Analyses with >10% uncertainty (1σ) in 
206

Pb/
207

Pb age are not included, unless 

206
Pb/

238
U age is <400 Ma. Best age was determined from 

206
Pb/

238
U age for analyses with 

206
Pb/

238
U age younger than 900 Ma and from 

206
Pb/

207
Pb age for analyses with 

206
Pb/

238
U age 

older than 900 Ma. U concentration and U/Th ratio were calibrated relative to Sri Lanka zircon 

standard and are accurate to ~20%. Using the routines in Isoplot 3.7 relative age-probability 

diagrams (Ludwig, 2008). Isotopic ages with errors and related raw data are presented in the 

supplementary material.  

In order to extract mixing proportions of source rocks contributions, a newly published 

MATLAB-based inverse Monte Carlo method was used (Sundell and Saylor, 2017). By 

randomly constructing known source age distribution for comparison to individual mixed 

samples, this new technique can be used to constrain forward optimization routines to find a best 

model fit. We then determine mixing proportions of source rock contributions for each tested 

mixed sample. The details about this inverse Monte Carlo method are available in Sundell and 

Saylor (2017). 

4 Results 

4.1 Sandstone petrographic results 

Samples CG-K and HSG-K were collected in the Caogou and Huoshaogou sections, 

respectively (Figs. 2 and 3), from fine- to medium-grained sandstones. Both samples are well to 

moderately sorted and characterized by subangular to subrounded grains (Fig. 6a-6b). The modal 
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compositions of sample HSG-K are Qt: F: L= 68:22:10, plotting near the boundary between 

“transitional continental” field and “recycled orogen” field (Fig. 6f) in the QtFL diagram and Qm: 

F: Lt=59:22:19, plotting near the boundary between “transitional continental” field and 

“quartzose recycled” field in the QmFLt diagram (Fig. 6g). Modal compositions for sample 

HSG-K are Qt: F: L= 58:35:7, plotting near the boundary between “transitional continental” field 

and “recycled orogen” field in the QtFL diagram (Fig. 6f) and Qm: F: Lt=47:35:18, plotting near 

the boundary between the “transitional continental” field and “mixed” field in the QmFLt 

diagram (Fig. 6g). 

Sample HLX-K was collected in the Hongliuxia section (Figs. 2 and 3), from fine- to 

medium-grained sandstone. Sample HLX-K is characterized by moderately sorted and 

subangular to subrounded grains (Fig. 6c). Modal compositions for sample HLX-K are Qt: F: L= 

62:14:24 and Qm: F: Lt=39:14:48, plotting in the “recycled orogen” field in the QtFL diagram 

(Fig. 5f) and “quartzose recycled” field in the QmFLt diagram, respectively (Fig. 6g). 

Samples NQL-K and JTS-K were collected in the northern Qilian Shan (Figs. 2 and 3), from 

coarse- to medium-grained sandstones. Both samples are characterized by very poorly to poorly 

sorted and characterized by very angular to angular grains (Fig. 6d-6e). Modal compositions for 

sample NQL-K are Qt: F: L= 47:17:36 and Qm: F: Lt=30:17:53, plotting in the “recycled orogen” 

field in the QtFL diagram (Fig. 6f) and near the boundary between “quartzose recycled” field and 

“mixed” field in the QmFLt diagram (Fig. 6g), respectively. 

4.2 Detrital zircon geochronology results 

U-Pb concordia diagrams for zircon grains of each sample are shown in Figure 7a-7e.  

Previous studies have suggested that the zircon grains of magmatic origin normally have high 
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Th/U radios (>0.1), while the zircon grains of metamorphic origin have low Th/U radios 

(<0.1)(Belousova et al., 2002; Hoskin and Black, 2000). Analyzed zircon age vs. Th/U ratios are 

shown in Figure 7f, indicating the predominant magmatic origin of all the analyzed zircons. 

Zircon U-Pb age cumulative probability distribution for each sample are shown in Figure 8. 

Following our previous criteria (Cheng et al., 2016a), age peaks are considered major when 

including at least 20% of the total number of data spread over less than 250 Ma, whereas a minor 

peak refers to populations representing less than 20% of the total number of data distributed over 

more than 300 Ma. 

 

Figure 7. (a)-(e) U-Pb concordia diagrams for zircon grains of each sample. The diagrams were 

constructed from the software provided by the Arizona LaserChron Center Web site 

(http://www.laserchron.org). (f) Age of analyzed zircons vs. Th/U ratios. 

 

The zircon grains in sample CG-K are large (80-200 μm) with euhedral to abraded shapes. 

The Th/U ratios vary from 0.10 to 1.67, with four exceptions of 0.02 (412 Ma), 0.03 (424 Ma), 

0.08 (258 Ma) and 0.09 (431 Ma), confirming the predominant magmatic origin of the zircons 

(Belousova et al., 2002; Hoskin and Black, 2000). Among the 110 analyzed zircons, 106 U-Pb 

ages with discordance degree <10% were obtained. The U-Pb ages range from 1957 Ma to 221 

Ma with a single peak at 278-240 Ma (Fig. 8i). The zircon crystals in sample HSG-K show 

euhedral to abraded shapes, with an average size ranging between 25 μm and 150 μm. The Th/U 

ratios vary from 0.15 to 1.71, with only one exception of 0.05 (247 Ma), confirming a magmatic 

source. Among the 110 analyzed crystals, 109 effective ages were obtained. The U-Pb ages vary 

from 1924 Ma to 229 Ma, with a unimodal age peak at 288-242 Ma (Fig. 8j). 
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Figure 8. (a)-(s) Zircon U-Pb age cumulative probability distribution for each sample 

constructed with the program from the Arizona LaserChron Center Web site 

(http://www.laserchron.org). BS2 and BS3 are modern river samples from Bei Shan, from our 

previous work (Wang et al., 2016c). QL1 and QL2 are modern river samples from Qilian Shan, 

from our previous work (Wang et al., 2016c). Zircon U-Pb age cumulative probability 

distributions of these modern river samples are used to characterize the age of granitoid plutons 

in the Qilian Shan and Bei Shan (Wang et al., 2016c). FZ1, FZ2 and FZ4-FZ7 are Cenozoic 

samples obtained from the Caogou section, from our previous work (Wang et al., 2016c). CG-K, 

HSG-K, HLX-K, NQL-K and JTS-K are new samples collected from the Cretaceous strata in the 

Caogou, Huoshangou, Hongliuxia, Northern Qilian Shan, and Jingtieshan sections, respectively. 

Locations of these samples are shown in Figs. 2 and 3. Note the consistent age-distribution from 

Cretaceous to early Miocene samples (g-j). The color change from green to orange in the vertical 

shaded areas represents source variation. (t) Multidimensional scaling map (Vermeesch, 2013), 

showing the distinct signature of Bei Shan and Qilian Shan source regions. The multi-

dimensional scaling (MDS) map uses the Kolmogorov–Smirnov (KS) statistic for detrital zircon 

U–Pb datasets (Stevens et al., 2013; Vermeesch, 2013). Axes are in dimensionless “K–S units” 

(0 < KS < 1), showing distance between samples. Solid lines and dashed lines connect samples 

with their “closest” and “second closest” neighbors, respectively. Blue solid circles represent 

detrital zircon data from the Cretaceous samples in this study. Pink solid circles represent detrital 

zircon data from the Cenozoic samples from Wang et al. (2016c). Green solid circles represent 

detrital zircon data from modern river samples in Bei Shan, while yellow solid circles represent 

detrital zircon data from modern river samples in the Qilian Shan. These four modern rivers 
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detrital zircon data are from Wang et al. (2016c). Note that zircon age distributions from samples 

FZ1, FZ2, HSG-K and CG-K are statistically similar with those of modern river samples from 

the Bei Shan region (samples BS2 and BS3), whereas zircon age distributions from samples FZ4, 

FZ5, FZ6, FZ7, NQL-K, JTS-K and HLX-K are statistically similar with those of modern river 

samples sourced from the Qilian Shan region (samples QL1 and QL2). 

 

In sample HLX-K, the zircon grains show euhedral to abraded shapes and an average size of 

50 μm to 250 μm. The Th/U ratios vary from 0.11 to 2.91, with two exceptions of 0.03 (360 Ma) 

and 0.04 (1034 Ma), indicative of a largely magmatic origin (Belousova et al., 2002; Hoskin and 

Black, 2000). Among the 110 analyzed zircons, 101 ages were obtained with discordance degree 

<10%. Five major age populations dominate with peaks at ca. 2580-2200 Ma, 2058-1710 Ma, 

1380-780 Ma, 440-380 Ma, 280-230 Ma (Fig. 8o). 

The zircon grains from sample NQL-K show euhedral to abraded shapes, with an average 

size ranging between 25 μm to 250 μm. The Th/U ratios range from 0.10 to 1.59, with one 

exception of 0.03 (388 Ma), confirming a magmatic source (Belousova et al., 2002; Hoskin and 

Black, 2000). One-hundred and ten crystals were analyzed, and 100 ages have discordance 

degree <10%. The U-Pb ages range from 2899 Ma to 231 Ma, and can be divided into three 

populations with one major peak at ca. 440 Ma and two minor peaks at 1920-1600 Ma and ca. 

275 Ma, respectively (Fig. 8p). 

In sample JTS-K, the zircon crystals are smaller (20-100 μm) compared with the grains in 

the previous samples and again show euhedral to abraded shapes. The Th/U ratios range from 

0.10 to 5.84, with six exceptions of 1.9*10
-5 

(1331 Ma), 0.02 (2705 Ma), 0.03 (233 Ma), 0.06 

(392 Ma), 0.09 (991 Ma) and 0.09 (1921 Ma), suggesting the predominant magmatic origin of 
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the zircons (Belousova et al., 2002; Hoskin and Black, 2000). In total, 110 crystals were 

analyzed, and 97 ages have discordance degree <10%. The U-Pb ages range from 2912 Ma to 

155 Ma with four distinct peaks at ca. 2740-2280 Ma, 2050-1180 Ma, 435 Ma and 278 Ma (Fig. 

8q). 

5 Discussion 

5.1 Provenance analysis 

By systemically comparing the detrital zircon dataset obtained from the Cretaceous samples 

in the Yumen Basin and northern Qilian Shan with known ages of the potential source terranes, 

we can determine the source to sink relationship between the Yumen Basin and the surrounding 

mountain belts. Based on the detrital zircon analysis of modern fluvial sand samples together 

with the U–Pb geochronology of basement rocks, previous studies have revealed the distinct U-

Pb age signature of the northern Qilian Shan and Bei Shan regions (Bovet et al., 2009; Chen et 

al., 2014b; Chen et al., 2012; Cheng et al., 2017; Duan et al., 2015; Gehrels et al., 2003b; Gong 

et al., 2017; Lu et al., 2008; Song et al., 2013; Song et al., 2009; Tseng et al., 2007; Tung et al., 

2007; Tung et al., 2016; Wang et al., 2017a; Wang et al., 2016a; Wei and Song, 2008; Xia and 

Song, 2010; Xu et al., 2015; Yang et al., 2009; Yu et al., 2015; Zeng et al., 2016; Zhang et al., 

2007a; Zheng et al., 2017b)
 
(Fig. 8a-8b, 8k-8n, 8r-8s). The northern Qilian Shan basement 

mainly consists of Archean-middle Proterozoic orthogeisses/granitoid plutons with zircon U-Pb 

ages spanning from 2.6 Ga to 1.0 Ga, late Proterozoic intrusions with zircon U-Pb ages between 

1.0 Ga and 700 Ma, early Paleozoic granitoid plutons with zircon U-Pb ages ranging from 550 

Ma to 420 Ma and a few Permian to Triassic igneous rocks with zircon U-Pb ages ranging 

between 280 Ma and 200 Ma (Fig. 8a-8b, 8r-8s). Some work suggests that the Precambrian 
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zircons in the northern Qilian Shan might have been recycled from the underthrust basement of 

the Alxa block (Gehrels et al., 2003a, b). With regards to the basement rocks of the Bei Shan, 

late Paleozoic and early Mesozoic granite plutons widely crop out, with zircon U-Pb ages 

ranging from 310 Ma to 230 Ma (Fig. 8k-8n). 

 To understand the similarities/dissimilarities between individual samples and basement of 

Bei Shan and Qilian Shan regions, we adapt the multidimensional scaling (MDS) map that was 

developed to create a spatial visualization to determine the misfit between age distributions using 

the Kolmogorov–Smirnov (KS) test as the dissimilarity measure (Vermeesch, 2013). As shown 

in Figure 8t, zircon age distributions of Lower Cretaceous samples from the northern Yumen 

Basin (HSG-K and CG-K) are statistically different from those of Lower Cretaceous samples 

from the Qilian Shan (NQL-K and JTS-K) and southern Yumen Basin (HLX-K). Two groups of 

similarly sourced samples were then identified using the abovementioned metrics: (1) Samples 

HSG-K and CG-K, which are dominated by a single late Paleozoic-early Mesozoic population, 

(2) Samples NQL-K, JTS-K and HLX-K, which contain a cosmopolitan assemblage of all major 

detrital zircon populations. 

Zircons from samples CG-K and HSG-K are dominated by age peaks at 290-230 Ma, 

which accounts for approximately 80% of the total dated grains (Fig. 8i-8j). The predominant 

late Paleozoic and early Mesozoic population and the absence of early Paleozoic and 

Precambrian ages suggest that the Bei Shan served as the source region for the clastic material 

deposited in the northern Yumen Basin (represented by the Caogou and Huoshaogou sections). 

This interpretation is consistent with the SSE-directed paleoflow reported from the Caogou and 

Huoshaogou section (Dai et al., 2005; Wang et al., 2016c). The detrital zircon ages distribution 

of sample HLX-K is complex, dispersed between ca. 3201 Ma and ca. 231 Ma, with a major age 
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peak of ca. 420 Ma (Fig. 8o). The early Paleozoic and Precambrian zircons account for ca. 90% 

of the total analyzed grains, indicative of a predominant Qilian Shan source during the early 

Cretaceous. However, in the Hongliuxia section, clast-supported conglomerate shows pebble-

imbrication mainly trending towards the south and northwest (Peng, 2013). These multiple 

paleocurrent directions suggest that both the northern Qilian Shan and the Bei Shan shed 

materials into the Yumen Basin during that period. The zircon ages spectrum of sample NQL-K 

is characterized by a single peak at ca. 439 Ma and two potential sub-peaks at 1921-1600 Ma and 

ca. 270 Ma, respectively. This sample was collected from a thin sandstone lens within a thickly 

bedded massive conglomerate. The angular cobbles and boulders in the conglomerate are poorly 

sorted suggesting deposition from a proximal source (Fig. 5h-5i). Finally, the detrital zircon ages 

distribution in sample JTS-K is characterized by a Permian age peak, a Silurian age peak, and 

two age populations of 2.8-2.1 Ga and 2.1-1.0 Ga, similar to the age distribution of the modern 

samples collected from two parallel rivers draining the Qilian Shan (samples QL1 and QL2, Figs. 

2, 3 and 8). Moreover, this Cretaceous sandstone sample was collected from a thin sandstone 

lens that developed in a massive conglomerate bed in the northern Qilian Shan (Figs. 2 and 3). 

The sandstone is poorly sorted with angular grains, suggesting that the particles have not been 

transported very far (Figs. 5i and 6e). This implies that the northern Qilian Shan served as a 

source for the sediments in the northern flank of northern Qilian Shan during the early 

Cretaceous. 

Our detrital zircon geochronology study, together with previous paleocurrent analysis in this 

region, suggest that both the Bei Shan and the northern Qilian Shan served as two significant 

sources, shedding sediments into the Yumen Basin during the early Cretaceous. This is 

consistent with the thermochronometry data that suggest rapid initial basement cooling in both 
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regions during Cretaceous time (George et al., 2001; Gillespie et al., 2017; Jolivet et al., 2001; Li 

et al., 2013; Pan et al., 2013; Sobel et al., 2001). However, detrital zircons with early Paleozoic 

and Precambrian ages, which are distinctive indicators of the northern Qilian Shan source, were 

only found in Lower Cretaceous samples collected in the northern Qilian Shan (sample JTS-K) 

and the northern flank of the Qilian Shan (samples NQL-K and HLX-K). On the other hand, the 

U-Pb zircon age spectra of Lower Cretaceous samples (samples CG-K and HSG-K) from the 

Yumen Basin (Caogou and Huoshaogou sections) show a unimodal late Paleozoic age 

population, suggesting a unique source situated in the Bei Shan region. The south-directed 

drainage systems derived from the Bei Shan shed detritus in the Yumen Basin, whereas the 

materials eroded from the northern Qilian Shan appear to have been transported across the 

northern Qilian Shan, but deposited no further than the southern margin of the Yumen Basin. 

The abovementioned provenance interpretation is consistent with our sandstone 

petrolography analysis (Fig. 6f and 6g). Our sandstone petrographic results show that the Lower 

Cretaceous strata in the northern Qilian Shan (sample NQL-K) were sourced from a recycled 

orogen provenance setting. In contrast, the Lower Cretaceous strata in the Yumen Basin 

(samples CG-K, HSG-K and HLX-K) contain more feldspathic and quartzose compositions, 

showing a shift towards a continental block source (Fig. 6f and 6g). It is likely that the Qilian 

Shan (recycled orogen provenance) served as the predominant source for the sediments the 

northern Qilian Shan and southern Yumen Basin while the clastic materials in the northern 

Yumen Basin are mainly derived from Bei Shan (continental block provenance). According to 

the QFL ternary diagrams, the feldspar- and quartz-rich sandstones from the Yumen Basin may 

indicate a deep basement exposure of their source region (i.e. Bei Shan) during the early 

Cretaceous (Dickinson et al., 1983), rather than a shallow basement exposure that relates to a 
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thin-skinned fold-thrust system. Geologic survey also shows that the Paleozoic metasedimentary 

rocks, which are well-exposed within the Qilian Shan and on the north side of Bei Shan, are not 

exposed on the south side of Bei Shan, suggestive of a deeper basement exposure in the southern 

Bei Shan (Fig. 2; See Fig. 2 in He et al. (2018))(He et al., 2018; Li et al., 2012; Xiao et al., 

2010). The evidence from deep basement exposure of southern Bei Shan as well as the evidence 

of the extensional features within the Yumen Basin during the early Cretaceous (Chen et al., 

2014a; Peng, 2013; Yang et al., 2001; Yang et al., 2011) are consistent with recent observations 

of extensional tectonics. However, further effort should be made to unravel the early Cretaceous 

tectonic setting in the Bei Shan and Qilian Shan regions. 

Although some studies have identified the facies and depositional environments of the 

Lower Cretaceous strata in the Yumen Basin (Peng, 2013; Yang et al., 2011), few studies have 

investigated the Lower Cretaceous strata within the Qilian Shan yet. In this study, the Lower 

Cretaceous proximal deposits in the northern Qilian Shan (Figs. 5h-5i, 6e) and the significant 

Qilian Shan source detrital zircon signature for the Lower Cretaceous strata samples (see 

samples NQL-K and JTS-K in Fig. 7t) from the northern Qilian Shan call for pre-existing 

topographic relief in the northeast margin of the Tibetan plateau prior to the India-Asia collision.  

5.2 Quantitatively determined mixing proportions between the Qilian Shan and Bei 

Shan sources: implication for multiple stages of growth of the NE Tibetan plateau 

The detrital zircon ages distribution of the two Cretaceous samples (samples CG-K and 

HSG-K), characterized by a unimodal late Paleozoic to Mesozoic age peak, are very similar to 

that of the late Oligocene – early Miocene samples (samples FZ1 and FZ2, see (Wang et al., 

2016c)) collected in the Caogou section (Wang et al., 2016c)
 
(Fig. 4). Previous provenance 

analysis determined that those late Oligocene - early Miocene strata were mainly derived from 
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Bei Shan region (Wang et al., 2016b). In the northeastern edge of the Tibetan plateau, the base of 

the middle Eocene to Oligocene strata unconformably overlies the Cretaceous strata (Dai et al., 

2005; Wang et al., 2016b) (Figs. 4, 5b, 5d and 5f), and the absence of Paleocene and early 

Eocene strata in this region make it difficult to constrain the paleotopography during the early 

Paleogene. Nonetheless, the similar detrital zircon ages distribution between the Lower 

Cretaceous and Oligocene samples as well as the consistent paleocurrent patterns over that 

period of time indicate that the source of the material deposited in the Yumen Basin (Caogou and 

Huoshaogou sections) was stable. Bovet et al. (2009) argued that the paucity of Paleocene and 

Eocene deposits in the northern Qilian Shan and in the Yumen Basin may reflect that structures 

in both northern Qilian Shan and Yumen Basin became inactive, and non-sedimentation (or weak 

erosion) dominated in these areas, possibly a result of sustained high topography. Alternatively, 

compressive deformation within the both northern Qilian Shan and Yumen Basin would 

potentially lead to continuous erosion that formed the unconformity between Cretaceous and 

Eocene strata. This uncertainty highlights the need for further effort on determining the growth 

history of the NE Tibetan plateau from the late Cretaceous to early Eocene. 

 While simply comparing the detrital zircon age spectra of each sample could reveal general 

source variation, quantitative analysis helps to elucidate the exact contribution of Qilian Shan 

and Bei Shan sources through time. This information, combined with the existing sedimentology 

and low-temperature thermochronology datasets, contributes to a better understating of the 

distribution of relief in the Qilian Shan and the NE Tibetan plateau. To quantitatively determine 

mixing proportions between the Qilian Shan and Bei Shan sources, we use the newly developed 

MATLAB-based DZmix Inverse Monte Carlo method (Sundell and Saylor, 2017). This program 

yields a single best-fit (highest cross-correlation coefficient R
2
) inverse Monte Carlo model result 
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for each tested sample (see the pink solid lines in Figure 9) and estimates the respective 

contributions of the known Qilian Shan and Bei Shan sources for each sample. The Qilian Shan 

source input is represented by two modern river sand samples QL1 and QL2, and the Bei Shan 

source input is represented by two modern river sand samples BS2 and BS3. Inverse Monte 

Carlo model results for each tested sample are presented in Figure 9. Results shows that in the 

northern Yumen Basin, 100% of the material was derived from basement rocks of the Bei Shan 

during the Cretaceous (sample HSG-K and CG-K; Fig. 9b, 9d). During the late Oligocene (23.8 

Ma, sample FZ1, Fig. 9f), 98% of materials in the northern Yumen Basin are derived from 

basement rocks of the Bei Shan with only 2% of Qilian Shan sourced debris. However, the 

contribution of the Qilian Shan source to the northern Yumen Basin increased to 30-48% during 

the early Miocene (20.6-16.3 Ma, samples FZ2 and FZ3, Fig. 9h and 9j) and dramatically 

increased to 87-91% during the middle Miocene (15.8-13.1 Ma, samples FZ4 and FZ5, Fig. 9l 

and 9n). During the late Miocene (7.8 Ma, sample FZ7, Fig. 9p), 82% of the clastic material is 

derived from basement rocks of the Qilian Shan with 18% from the Bei Shan source. The best-fit 

inverse Monte Carlo model results further reinforce the conclusion that the Bei Shan was the 

predominant source of the clastic material deposited in the northern Yumen Basin from the early 

Cretaceous to the late Oligocene. The contribution of the Qilian Shan basement rocks to the 

sediments in the Yumen Basin significantly increased during the Miocene, especially during the 

middle Miocene, which we interpret as the growth of the Qilian Shan. (Fig. 9). Moreover, by 

simply comparing the detrital zircon spectra of each Cenozoic sample, Wang et al. (2016c) have 

revealed that a change in source area occurred at ~16.7 Ma in the Yumen Basin. Our quantitative 

analysis shows the contribution of the Qilian Shan source to the northern Yumen Basin 

significantly increased from 2% to 30% at ~20.8 Ma. We interpret this early Miocene initial 
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source change as the onset of growth of the Qilian Shan. 

In addition, various lines of investigation, including evidence from (1) thermochronology 

studies on the Cenozoic strata in the Yumen Basin (He et al., 2017; Wang et al., 2016b; Zheng et 

al., 2017a) and on the basement rocks in the northern Qilian Shan (Pan et al., 2013; Zheng et al., 

2010), (2) magnetostratigraphic studies of sediment accumulation rates in the Yumen Basin 

(Wang et al., 2016b), (3) stratigraphy and provenance analysis (Bovet et al., 2009; Lease et al., 

2012; Wang et al., 2016c), and (4) sediment color and grain-size studies from sediments 

preserved in the Yumen Basin (Wang et al., 2016d), have suggested a middle Miocene rapid 

growth of northern Qilian Shan. We thus infer that the palaeogeography in this region largely 

stable from the late Cretaceous to late Oligocene time and was then modified since the early 

Miocene in response to the reactivation of the Qilian Shan region (Bovet et al., 2009; Wang et al., 

2016b; Wang et al., 2016c; Wang et al., 2016d; Yue et al., 2004a; Zheng et al., 2010) (Fig. 10). 

Given the growing evidence for Oligocene-early Miocene reactivation of deformation in 

Xianshuihe fault system, Kunlun Shan, Tian Shan, and even the Sayan ranges and Baikal rift 

system in Siberia to the north (Clark et al., 2010; Hendrix, 2000; Jolivet et al., 2013a; Jolivet et 

al., 2009; Xu and Kamp, 2000), it is likely that stress has been transferred to the margins of the 

Tibetan plateau, and even beyond the plateau to the north since India -Asian collision. 

Considering the pre-existing Cretaceous positive topography of the Qilian Shan with the 

Miocene rapid growth of the central-northern Qilian Shan and late Miocene growth of the 

northern Qilian Shan, we suggest multiple stages of range growth in the Qilian Shan during the 

Mesozoic and Cenozoic (Fig. 10), similar to that already documented in other parts of  northern 

Tibet (Cheng et al., 2016a; He et al., 2017; Lease et al., 2012; Wang et al., 2013; Wang et al., 

2017d; Yuan et al., 2013). 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

 

Figure 9. Unmixing detrital geochronology age distribution. (a), (c), (e), (g), (I), (k), (m) and (o) 

Cumulative distribution plot (CDF) of each sample, together with CDFs of modern river sample 

from Bei Shan (BS2 and BS3) and Qilian Shan (QL1 and QL2). Light green and dark green solid 

lines refer to sample BS2 and BS3, respectively. Light blue and dark blue solid lines refer to the 

sample BS2 and BS3, respectively. The black solid line refers to each tested sample (FZ1-FZ5, 

FZ7, CG-K and HSG-K). (b), (d), (f), (h), (j), (l), (n) and (p) Inverse Monte Carlo results using 

cross-correlation coefficient R
2
 as probability density plot (PDP). The black line refers to the 

PDP of each tested sample (FZ1-FZ5, FZ7, CG-K and HSG-K). The pink solid line refers to 

PDP of the best optimized model result of each sample after running the Inverse Monte Carlo 

program. The Inverse Monte Carlo software package, DZmix (Sundell and Saylor, 2017), is used 

to quantify source mixing proportions. The pie charts show the contribution of the Bei Shan 

source and Qilian Shan source. Note that the Qilian Shan source dramatically increases from 2% 

to 48% during the Miocene, which we interpret as the growth of the Qilian Shan. The age of the 

strata is based on previous sedimentary and magnetostratigraphy studies (Peng, 2013; Wang et 

al., 2016b). 

 

5.3 Implication for the eastern termination of the Altyn Tagh Fault 

Provenance results also imply that the Cenozoic ATF likely died out within the Yumen 

Basin and have not extended further eastward since its Eocene or Miocene initiation. For 

instance, previous studies have revealed an >300 km post-Cretaceous offset along the ATF 

(Cheng et al., 2015a; Cheng et al., 2016b; Ritts and Biffi, 2000; Yin and Harrison, 2000; Yin et 

al., 2002). If the ATF extended beyond the Yumen Basin and linked with the strike-slip faults of 
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the Alxa or regions further to the east (Darby et al., 2005; Yue and Liou, 1999), hundreds of 

kilometers of sinistral strike-slip motion along the ATF during the Cenozoic would not have 

been transferred to the oblique thrusting in the Qilian Shan. In other words, the Yumen Basin 

would have been approximately located near the present-day position of the Suganhu Basin 

during the Cretaceous after restoring the >300 km sinistral post-Cretaceous offset along the ATF  

(Fig. 2a). In this case, the Yumen Basin would have received materials eroded from the 

Dunhuang terrane to the northwest (Fig. 2a). Apatite and zircon fission track data suggest that 

the Dunhuang terrane has been exhumed no later than the late Triassic-early Jurassic (Jolivet et 

al., 2001). Given that the basement of the Dunhuang terrane is characterized by a predominant 

proportion of Archean and Proterozoic rocks (He et al., 2018; Long et al., 2014; Zhao et al., 

2015), the detrital zircon ages spectra of the Cretaceous samples from the Yumen Basin should 

contain a significant amount of Archean and Proterozoic zircon ages. In addition, the proportions 

of those Precambrian ages populations would vary from Cretaceous to late Oligocene time due to 

the left-lateral displacement along the ATF (Cheng et al., 2016b; Yue et al., 2004b). The absence 

of Precambrian zircons in the Cretaceous samples (samples CG-K and HLX-K, Figs. 8 and 9), as 

well as the consistently similar detrital zircon ages spectra of the samples from the lower 

Cretaceous to the early Miocene strata in the Yumen Basin require that the ATF terminated in 

the western Yumen Basin and has not been linked to strike-slip faults in the Alxa or regions 

further to the east since its Eocene or Miocene initiation. This conclusion is in agreement with 

independent, albeit indirect evidence suggesting that the ATF died out within the Yumen Basin 

since its initiation, including: (1) the limited (<50 km) offset of the Jurassic and Cretaceous strata 

in the western Yumen Basin (Fig. 2); (2) the high resistivity crust of the Huahai-Jinta Basin 

(Xiao et al., 2015) which prevents the ATF from passing through (Fig. 10a); and (3) the dramatic 
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eastward decrease in the left-lateral slip rate along the eastern end of the ATF (Burchfiel et al., 

1989; Mériaux et al., 2005; Meyer et al., 1998; Xu et al., 2005; Zhang et al., 2007b; Zheng et al., 

2013b) (Fig. 10a). 

 

Figure 10. (a) Geological map showing slip rates on faults in the Yumen Basin and northern 

Qilian Shan, modified from (Zheng et al., 2013a). The slip rate on each fault is from previous 

work (Chen, 2003; Hetzel et al., 2002; Min et al., 2002; Xu et al., 2005; Zheng, 2009; Zheng et 

al., 2013a; Zheng et al., 2013b). Note that the horizontal slip rate on faults generally decrease 

eastwards. H: Horizontal slip rate; V: Vertical slip rate; S: Shortening rate across fault. (b) 

Schematic models illustrating the topographic variation of the Yumen Basin and northern Qilian 

Shan, during the Miocene and Cretaceous. 

 

6. Conclusion 

Our provenance analysis reveals that both the northern Qilian Shan and the Bei Shan 

served as the two most straightforward source regions for the clastic material deposited in the 

Yumen Basin during the early Cretaceous. South-directed drainage systems derived from the Bei 

Shan largely shed detritus into the Yumen Basin, whereas the materials eroded from the northern 

Qilian Shan were transported across the northern Qilian Shan reaching as far as the southern 

margin of the Yumen Basin. Combined with existing sedimentology and low-temperature 

thermochronology datasets, our field investigation and sandstone petrography analysis as well as 

detrital zircon geochronology results, indicate Cretaceous topography in the northeast margin of 

the Tibetan plateau prior to the India-Asia collision.  
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After extracting mixing proportions of source regions, our quantitative estimates show 

that 98-80% of materials in the northern Yumen Basin are derived from basement rocks of the 

Bei Shan from Cretaceous to late Oligocene time, whereas the contribution of the Qilian Shan 

source to the northern Yumen Basin increased to 30-48% during the early Miocene. The 

consistently similar detrital zircon ages distribution in the Cretaceous to late Oligocene samples 

suggests that the palaeogeography in the northeastern edge of the plateau has been largely stable 

from Cretaceous to late Oligocene times, and was modified during the early Miocene in response 

to the uplift of the northern Qilian Shan. Our results highlight the multiple-phase tectonic history 

of the northeastern Tibetan plateau. We further conclude that the Altyn Tagh Fault terminated 

within the western Yumen Basin and has not been linked to strike-slip faults in the Alxa or 

regions further to the east since its initiation. 
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Highlights 

 Lower Cretaceous strata in the Yumen Basin derived from northern Qilian Shan and Bei 

Shan  

 Contribution of the Qilian Shan source to the Yumen Basin largely increased during the 

Miocene 

 The east segment of Altyn Tagh Fault terminates in the Yumen basin  

 Our results highlight multiple stages of growth of the NE Tibetan plateau 
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