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ABSTRACT
Sundaland is the currently partially drowned continental land-

mass that encompasses Borneo, Sumatra, Java, and the Malay Penin-
sula. It has episodically been reclaimed by the sea during successive 
Quaternary glaciations, and is commonly thought to be vertically 
stable. Combining geomorphological observations with numerical 
simulations of coral reef growth and shallow seismic stratigraphy, 
we show that the Sunda shelf is subsiding, and that the intermittent 
regime of transgressions only prevailed over the past 400,000 yr. Prior 
to that time, Sundaland was permanently exposed. We relate these 
drowning events to transient dynamic topography in the Indo-Austra-
lian subduction zone. Because the Sunda shelf is very shallow, these 
new data provide important insights into Pleistocene paleogeography, 
with implications on the interactions between the solid Earth and 
climate, oceanography, and dispersal of species, including hominids.

LARGE-SCALE DEFORMATION PATTERN IN SOUTHEAST 
ASIA

Cenozoic Sundaland (the area that encompasses Borneo, Sumatra, Java, 
the Malay Peninsula, and the Java Sea) paleogeographies are available 
up to the Early Pliocene (e.g., Hall, 2009) but its more recent paleoge-
ography remains largely unknown. The core of Sundaland is nearly tec-
tonically quiescent (Fig. 1A), and flooding of its shallow areas (<100 m 
depth) is regarded as only contingent on eustatic sea-level changes (Voris, 
2001); the Sunda shelf being fully exposed during Quaternary glacial 
periods, and partly drowned during interglacials, as it is today. However, 
the shelf’s location above the quickly evolving Indo-Australian subduc-
tion zone, where mantle convection efficiently modifies the physiography 
(Zahirovic et al., 2016), challenges the default assumption of stability 
for the shelf. That assumption, which has implications for the Neogene 
biogeography of Southeast Asia (e.g., Richardson et al., 2013), has not 
yet been properly tested.

Wallacea (Eastern Indonesia, mostly) actively deforms in response 
to the collision with Australia (e.g., Pownall et al., 2016). Flights of 
uplifted marine terraces are widespread and attest to an overall Pleisto-
cene uplift of Wallacea (e.g., Pedoja et al., 2018; Table DR1 in the GSA 
Data Repository1). Conversely, wide alluvial plains stretch over most 
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Figure 1. Quaternary coastal morphotectonics in Southeast Asia. A: 
Earthquakes (M >4 ; U.S. Geological Survey catalog, 1960–2010; https://
earthquake.usgs.gov/earthquakes/search/) outline the low-seismic-
activity area within Sundaland. Inset: Location of dated mid-Holocene 
reef on Belitung island (red circles). Modern coral reefs are ubiquitous 
(A) whereas Pleistocene reefs (B) are only found in Wallacea. B: Alluvial 
plains and mangroves prevail in the Sunda and Sahul shelves, and 
Pleistocene reefs in Wallacea. Vertical land motion (Table DR1 [see 
footnote 1]) reveal uplift in Wallacea and subsidence in Sunda and 
Sahul (white arrows; current study in red). Sundaland encompasses 
the Sunda shelf, Malay Peninsula, Borneo, Java, and Sumatra. Sahul 
is the shallow north Australian platform, while the deeper Wallacea 
lies between Sahul and Sundaland.
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coastal regions of Sahul and Sunda, and extend hundreds of kilometers 
inland (Fig. 1B). Onshore marine sediments, and reefs older than Holo-
cene age, are never exposed even though reefs bloomed in the region 
during the late Cenozoic (Wilson and Rosen, 2008) and currently thrive 
in Southeast Asia, including Sunda and Sahul (Fig. 1A). Such contrast-
ing morphologies between Wallacea and surrounding shelves are the 
consequence of different uplift and subsidence histories (Evans et al., 
1936). Late Quaternary subsidence rates for the Sunda shelf are only 
reported on the northern margin (0.13–0.27 mm yr–1,Wong et al., 2003; 
0.25 mm yr–1, Hanebuth et al., 2011) or in the Singapore strait (0.06–0.10 
mm yr–1, Bird et al., 2006) but are absent from the core of the shelf (Fig. 
1B). Sahul subsides at 0.12–0.45 mm yr–1 (Table DR1) and, based on 
its morphological similarity with Sunda (Fig. 1B), we hypothesize that 
rather than being vertically stable, the Sunda shelf may be experiencing 
similar long-wavelength subsidence. While the shelf is currently drowned 
at 30 m below sea level (bsl), the absence of marine sediments onshore 
and the thin layer of alluvia that overlays laterites and substratum (Ben-
Avraham and Emery, 1973) attest to continental Cenozoic erosion and 
recent inundation (Hall and Morley, 2004).

Here we use morphological indicators (coastal landforms such as 
modern and fossil reefs, mangroves, and alluvial plains; Fig. 1B) and 
shallow stratigraphy to capture the pattern of Pleistocene vertical land 
motion in Southeast Asia. We focus on the Tin Belt islands, in the inner 
Sunda shelf, and combine numerical modeling of reef growth with 14C 
dating of mid-Holocene reefs to constrain subsidence rates in this region 
where almost no data exist, ultimately demonstrating the uniformity of 
subsidence in the Sunda shelf.

SUNDA SHELF SUBSIDENCE
In order to quantify subsidence rates, we use sequences of coral reefs 

that fingerprint sea-level oscillations, and ubiquitously stack in flights of 
marine terraces in the intertropical zone (Pedoja et al., 2014). Those reef 
sequences are indirect sensors of a variety of parameters, including uplift 
or subsidence rates that numerical models can invert for (Toomey et al., 
2013). We develop an original probabilistic approach, based on a numeri-
cal model that reproduces the inferred architecture of coral reef sequences 
calibrated by field measurements, to probe Quaternary subsidence rates 
for the Sunda shelf (Husson et al., 2018; see the Data Repository). Model 
predictions depend on parameterized reef growth, wave erosion, sedimen-
tation, and relative sea level that follow glacial cycles and vertical land 
motion. This method brackets the parameter space —including subsidence 
rates—that accurately reproduces observations.

Our case study is Belitung Island (Fig. 1A, inset), which stands in the 
shallowest part of the Sunda shelf. This area has negligible seismic activity 
and is distant from the orogenic or sedimentary loads that develop on the 
edge of the Sunda shelf (e.g., Pubellier and Morley, 2014). Narrow (up to 

~1500 m), flourishing fringing reefs surround Belitung and are immune 
from terrigenous fluxes that could hamper their development. They are 
developing seaward of prograding alluvial plains and mangroves (Fig. 2A; 
Fig. DR2), over shallow-dipping basement (<2.5% slope). Only the mid-
Holocene sea-level highstand left a marine fingerprint on the island: scores 
of mid-Holocene micro-atolls lie immediately below the modern shore 
(Meltzner et al., 2017). We obtained 14C ages from a fossil reef that is 
recurrently found at ~2 m bsl, up to 3 km onshore (as collected from tin 
mine pits) at 6.5 kyr B.P., and on a micro-atoll (6.7 kyr B.P.) (see the 
Data Repository; Fig. 1A, inset). Offshore, sonar measurements (see the 
Data Repository) and underwater observations reveal the existence of a 
single reef body down to 10–15 m bsl (Fig. 2A). An additional reef body 
from the Last Interglacial Maximum (ca. 125 kyr B.P.) could potentially 
be buried under several meters of sediments at ~30 m bsl, as interpreted 
from a seismic profile offshore Karimata island (Aleva et al., 1973).

Our model (Fig. 2B) reveals that such a condensed reef sequence 
can only develop within a narrow range of subsidence rates and slopes. 
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Figure 2. Reef morphologies and subsidence rates in the Sunda shelf, 
Indonesia. A: Belitung island has a 1200-m-wide modern reef that 
progrades seaward above the granitic basement, as inferred from 
radiocarbon-dated mid-Holocene micro-atolls (1) from the intertidal 
zone, and mid-Holocene coral reefs (2) up to 3 km onshore. SL—sea 
level. B: Modeled architectures of reef sequences (right) with subsid-
ence rates of 0.2–0.45 mm yr–1 (left) successfully reproduce observed 
reef morphologies (1–2-km-wide modern reef, 1–2 reef bodies). Dated 
Holocene samples bracket subsidence rates between 0.2 mm yr–1 and 
0.3 mm yr–1 (red lines) T—number of reef bodies. C: In the absence of 
subsidence (dashed horizontal line, present paradigm), the shelf is 
only exposed during glacials, when sea level was lower than the deep-
est parts of the Sunda shelf (~100 m below sea level [bsl]). Instead, 
subsidence implies that the entire shelf was permanently exposed 
prior to 400 ka (where the green domain and black sea-level curve 
intersect), and is reliant on sea-level oscillations afterward. The ~35-
m-deep Karimata Strait, near Belitung Island, was first flooded during 
Marine Isotope Stage (MIS) 5e (red domain). D: Shallow seismic profile 
across the Sunda shelf showing incised layers of sediments over the 
Cretaceous–Eocene basement (raw seismic data are provided in Fig. 
DR1C [see footnote 1]). TWT—two-way traveltime.
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Reefs narrower than 10 km only appear when subsidence rates exceed 
0.2 mm yr–1, and fossil reefs stack in sequences at rates greater than 
0.45 mm yr–1, whereas extremely wide, single-body reef flats develop at 
subsidence rates lower than 0.2 mm yr–1 (Fig. 2B). The width of the reef 
decreases with increasing slope, while the potential growth rate neither 
sets the number of terraces nor the width of the modern reef (Fig. DR3). 
The observed reef architecture of Belitung, which includes one or two 
terraces with a 1500-m-wide flat modern reef, is reproduced by our model 
for mean subsidence rates ranging from 0.2 to 0.45 mm yr–1, with a slope 
of 1.5%–2.5% (Fig. 2B).

Additional constraints come from the mid-Holocene coral (Porites 
gn., 14C dated; Fig. 2A) buried 3 km onshore at ~2 m bsl., that attest 
to seaward reef progradation, and from the mid-Holocene micro-atolls 
that stud the current shoreline (Meltzner et al., 2017): (1) progradation 
suggests that subsidence is slower than late-Holocene sea-level fall, and 
(2) sclerochronology on micro-atolls limits sea-level fall since the mid-
Holocene highstand to ~1.5 ± 0.3 m (Meltzner et al., 2017). Taken together, 
these constraints further limit subsidence rates to a maximum of 0.3 mm 
yr–1 (Fig. 2C). The other small islands of the central Sunda shelf (Karimata, 
Tudjuh, Bangka, and Natuna; Fig. DR2) all display reef morphologies and 
Quaternary sediment sequences similar to Belitung Island under identical 
environmental conditions.

Our echosounder survey in the center of the Sunda shelf shows few 
thin layers of sediments that are (1) discordant on the basement, (2) unde-
formed and/or uneroded, and (3) only incised by an intermittent drainage 
of the shelf (Fig. 2D; Fig. DR1). North of Belitung, a single incised layer 
is found underneath a second layer, while up to five layers are found at 
greater depths (e.g., Darmadi et al., 2007; Alqahtani et al., 2015). These 
successive layers likely only mark Marine Isotope Stage 5 (MIS5) and 
Holocene transgressions in the center of the shelf, and MIS11 to Holocene 
transgressions in deeper regions (ca. 400 ka), which is consistent with 
subsidence rates of 0.2–0.3 mm yr–1 throughout (Fig. 2C).

DISCUSSION
The similarity of reef morphologies of the Tin Belt Islands (Fig. DR2), 

together with insights from seismic stratigraphy and comparable Pleisto-
cene subsidence rates from the north of the Sunda shelf (Wong et al., 2003; 
Hanebuth et al., 2011) and Singapore strait (Bird et al., 2006), allow us 
to deem subsidence rates from Belitung as representative of Pleistocene 
rates of the entire Sunda shelf; at 0.2–0.3 mm yr–1 (Fig. 2C). It follows 
that land connections permanently operated in Sundaland during the early 
Pleistocene, and started to vanish periodically during sea-level highstands 
only after MIS11 (ca. 400 ka, Late Pleistocene) in the deepest parts of 
the shelf; the shallow Karimata strait being only inundated during MIS5e.

Active tectonics in the central part of the Sunda shelf is currently 
almost null (Fig. 1A), making transient dynamic topography, triggered by 
the underlying mantle flow, the likely cause of subsidence. Slow paleo-
geographic changes in Southeast Asia have been attributed to changing 
dynamic topography (e.g., Zahirovic et al. 2016), and also for Sahul, where 
subsidence mirrors the northward dynamic subsidence of the Australian 
continent (Czarnota et al., 2012). Here we suggest that current short-lived 
geodynamic events profoundly alter the physiography of Sundaland, at a 
much faster rate than long-term subsidence and paleogeographic changes. 
The Indo-Australian plate has steadily subducted underneath Sundaland 
and Wallacea, from Sumatra to the Banda arc (Fig. 1A), but disturbances 
come from heterogeneities entering the Sunda trench. Examples are many 
during the Miocene–Pliocene, near Sumba (Rigg and Hall, 2011), or East-
ern Java (Hall and Spakman, 2015), and more importantly near Timor, 
where the Australian continental margin (Scott Plateau) entered the trench 
less than 5 m.y. ago, while oceanic subduction has continuously operated to 
the west (Hall, 2011; Fig. 3A). The entry of continental blocks in subduc-
tion zones disrupts mantle flow and, in turn, the dynamic deflection of the 
overriding plates (e.g., Guillaume et al., 2013): it first causes a wholesale 

uplift of the entire overriding plate, as the overall vigor of the subduction 
decreases. Then, oceanic slab-pull stretches and ultimately ruptures the 
slab at the ocean-continent boundary (the torn and disrupted slabs beneath 
Java or Banda are plausible illustrations, sketched in Figure 3B, although 
their nature is still debated; Ely and Sandiford, 2010; Widiyantoro et al., 
2011; Hall and Spakman, 2015). As the oceanic segment separates from 
the continental unit, rapid subduction resumes, slab suction underneath the 
lithosphere simultaneously increases, and dynamic subsidence is expected 
(e.g., Guillaume et al., 2013). We therefore suggest that Late Quaternary 
flooding of the Sunda shelf can only result from transient mantle dynam-
ics, and that it is such a geodynamic epiphenomenon that reshaped the 
paleogeography of Sundaland. Overall, we argue that dynamic topography 
favored land connections between Eurasia and Indonesian islands until 400 
ka and interrupted them afterward. In the absence of dynamic subsidence, 
Sundaland would have remained mostly continental until today, regardless 
of sea-level oscillations. Paleogeographic changes in Sundaland impact the 
oceanic and atmospheric segments of the regional climate system. Expos-
ing the shelf implies shutting the Karimata strait outflow, which currently 
feeds the Indonesian Throughflow and in turn sets the surface temperature 
and salinity of the eastern Indian Ocean (Sprintall et al., 2014). With con-
trasting results, climate modeling experiments have also suggested that 
shelf exposure alters atmospheric circulation over the Maritime Continent, 
the Walker circulation, and El Niño–Southern Oscillation (DiNezio et al., 
2016; Tozuka et al., 2015).

A subsiding Sundaland also impacts the biosphere: understanding 
biogeographic patterns (including Homo erectus; see Wurster and Bird, 
2016) between Eurasia, Sundaland, and Wallacea requires constraining 
the paleogeography and paleoclimate during the late Miocene and Qua-
ternary, since dispersal and diversification occur at both time scales (e.g., 
Richardson et al., 2013). Hypotheses regarding the latest dispersal routes 
are grounded on the premise that Sundaland has remained vertically stable 
during the Quaternary, with glacial low sea levels periodically exposing 
the Sunda shelf land bridge between mainland Asia and the Indonesian 
islands (de Bruyn et al., 2014). Our results, by suggesting that the Sunda 
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shelf was exposed regardless of sea-level change before 400 ka, imply 
that permanent land connections existed until MIS11, and these results 
might lead to a reevaluation of biogeographic and dispersal patterns of 
species in Sundaland during the Quaternary.

Ultimately, subsiding Sundaland remarkably illustrates the links 
between the solid Earth and the soft Earth (hydrosphere-, atmosphere, 
and biosphere).
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