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Rock Strength and Texture Evolution During Deformation
in the Earth's Ductile Lithosphere: A Two-Phase
Thermodynamics Model

Benoit Bevillard1 , Guillaume Richard1 , and Hugues Raimbourg1

1Institut des Sciences de la Terre d'Orléans, UMR 7327 CNRS/Université d'Orléans 1A rue de la Férollerie, Orléans
Cedex 2, France

Abstract Building upon the two-phase and grain damage theory, we propose a new formulation
allowing to track the evolution of phase mixing/segregation during ductile deformation of a two-phased
aggregate. Our model is based on a set of variables characterizing a rock texture: the mean grain sizes
and the phase proportion. During ductile deformation, activation of different micromechanical processes
impacts the aggregate texture. Dislocation and diffusion creep are the two main deformation processes
considered. We only account for the effect of Zener pinning in slowing down grain growth and allow for
active grain-size reduction mechanisms in the diffusion creep domain. For this purpose, an equation is
proposed to track the phase mixing evolution during ductile deformation. Numerical application using
anorthite rheology shows that any grain reduction mechanisms that could be active in the diffusion creep
regime requires a very high partition fraction in order to reach the grain size predicted by the feldspar
piezometer. Application of this model to gabbroic composition, relevant for the ductile crust, demonstrates
that the strong coupling between phases grain sizes and interface evolution results in steady-state grain
sizes far below the field boundary. This effect is coeval with an important increase of mixing between the
two phases. In addition, accounting for the phase mixing results in a drop of the global aggregate stress
during deformation. This model allows for further comparison of mylonitized textures evolution with
natural shear zones at the local and regional scales.

Plain Language Summary In the Earth lower crust, the rocks deform by slow creep instead
of breaking due to high temperature and pressure. Observations of natural material deformed in such
conditions show that deformation concentrates on narrow-banded structures. At small scales (1 cm to
1 𝜇m), these shear bands generally present a very fine mean crystal size and a very good mixing of the
minerals. These features are characteristic of deformed rocks, but their origins and consequences on
geological structures at larger scales (1 m to 100 km) are yet to be fully understood. In this study we propose
a physical model (a mathematical representation of reality) that allows to represent a rock consisting of
two minerals, their mean crystal sizes and proportions and the quality of their mixing. This is based on
parameters constrained experimentally for each pure mineral. Using this model, we are able to track the
evolution of these rocks microscopical characteristic and their consequences on the rock strength during
deformation. Eventually, the results allow us to refine our understanding of the implied processes by
comparing the computed variables to measures performed on rock samples. The physical equations
proposed could then be used to model the rock strength in geodynamical models at larger scales.

1. Introduction
Since the development of the theory of plate tectonics, the lithosphere is described as the upper bound-
ary layer of mantle convection. Within this layer, the stress field induced by the motion of convective
asthenosphere is mainly accommodated by deformation at plate boundaries. Within the Earth crust, this
deformation appears heterogeneously distributed. This is evidenced by large-scale geological structures such
as mountain ranges, rifts, oceanic margins, strike-slip faults, or subduction trenches which exhibit intense
deformation and bound regions of much weaker strain. While the uppermost part of the crust exhibits brit-
tle deformation, the lower crust and lithospheric mantle are considered to accommodate tectonic stresses
through plastic deformation and creep flow (Kohlstedt et al., 1995; Wilks & Carter, 1990). The rheology of
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such materials is classically approximated by viscous flow with an effective viscosity depending on the inten-
sive parameters and/or the properties of the material (Kohlstedt, 2007; Nabarro, 1967; Weertman, 1957).
Numerous control factors play a role in the rheology of lithospheric rocks.

Deformation experiments (Hirth & Kolhstedt, 2003; Karato et al., 1986) on olivine aggregates described its
rheology as a combination of power-law and Newtonian behavior. In the case of lower crust materials, simi-
lar experiments involving plagioclase yielded similar conclusions (Rybacki & Dresen, 2000, 2004; Tullis et al.,
1991). The power-law rheology generally corresponds to dislocation (grain size insensitive) creep where
the material undergoes dynamic recrystallization and grain-size reduction. On the other hand, at lower
strain rate or higher temperature, the deformation is dominated by diffusion (grain size sensitive) creep, and
the material displays a Newtonian behavior. These studies provided empirical flow laws which remain an
essential tool in order to understand the ductile behavior of the rocks composing the lithosphere. Figure E1
displays a stress/grain-size deformation map for anorthite (Rybacki & Dresen, 2000), illustrating the rheol-
ogy resulting from a combination of these two mechanisms. These rheological laws yield an Arrhenius-type
dependence on the temperature which has been demonstrated to control the effective viscosity of rock at
large scale (Kameyama et al., 1997; Kaus & Podladchikov, 2006; Leloup et al., 1999; Schubert & Yuen, 1978).
Field studies on ductilely deformed rocks widely support the characteristic grain size as a crucial parameter
controlling effective viscosity, especially at scales at which the thermal diffusion would prevent significant
viscous drop due to temperature. Indeed, natural shear zones or shear bands from the scale of a few centime-
ters to regional scale commonly exhibit very high and localized grain-size reduction (Carreras, 2001; Fossen
& Cavalcante, 2017; Pennachioni & Mancktelow, 2007). This characteristic defines the mylonitic fabric. The
dependence of grain size on the driving stress promoted the use of grain-size measurements as piezometers
in natural mylonites (Stipp & Tullis, 2003; Twiss, 1977).

Grain-size reduction usually results from dislocation creep through dynamic recrystallization (Derby, 1991;
Derby & Ashby, 1987; Drury & Urai, 1990; Shimizu, 1998, 2008; Twiss, 1977). On the other hand, Newto-
nian creep is highly dependent on the grain size because of diffusion processes (Herring, 1950; Nabarro,
1967), but in the absence of a grain reduction mechanism, it results in grain growth. It has been proposed
that the coupling between dynamic recrystallization and grain-size sensitive creep can explain plastic weak-
ening at small scales (Drury et al., 1991; Poirier, 1980; Van der Wal et al., 1993). Dislocation creep allows
the mean grain size to decrease deep into the diffusion creep domain thus producing stress weakening.
Figure E1 green arrow (1) illustrates such an evolution toward the Post and Tullis (1999) piezometer (red
line) in the case of a feldspar aggregate. However, Austin and Evans (2007) and Ricard and Bercovici (2009)
proposed that the steady-state grain size depends on the rate of deformational work instead of the stress
alone, regarding the steady-state grain size as a paleo-wattmeter instead of a paleo-piezometer. Furthermore,
De Bresser et al. (2000) emphasized that such an interaction between dislocation and diffusion creep results
in a grain-size equilibrium at the transition between the two mechanisms and prevents any significant weak-
ening as schematized in Figure E1 green arrow (2). Therefore, explaining both the observed grain sizes
and the formation of shear bands imposes a grain-size reduction mechanism occurring below the grain
size insensitive/grain size sensitive transition grain size (Bercovici & Ricard, 2012; Platt, 2015; Rutter &
Brodie, 1988).

The nature of this mechanism and its potential control factors remains an important question. The complete
grain-size distribution and not only a characteristic grain size (Czaplinska et al., 2015; Herwegh et al., 2005;
Karato, 1984; Rozel et al., 2011; Ter Heege et al., 2004) and the presence of secondary phases, a common
characteristic of very fine grained shear zones (Herwegh et al., 2011; Hiraga et al., 2010; Linckens et al., 2015;
Platt, 2015) have been proposed to play a role in the transition between grain-size insensitive (dislocation)
to grain-size sensitive (diffusion) creep. Bercovici and Ricard (2012) proposed that grain splitting because of
pinning by a second phase could reduce grain size in the diffusion creep regime. More recently, Precigout
and Stunitz (2016) documented a possible grain nucleation mechanism triggered by grain boundary sliding
in diffusion creep domain. This mechanism is likely to produce important grain-size reduction. High strain
experiments of Cross and Skemer (2017) also produce well-mixed mylonitized textures.

The numerous studies on secondary phases, pinning, and phase mixing advocate for models with a more
complete description of deforming aggregates, taking into account grain-size distributions, secondary
phases, and the mixing state between them, that could be efficiently compared to field and experimental
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observations. A two-phase theory was proposed by Bercovici and Ricard (2012) using a continuum descrip-
tion of the system and involving the mean curvature of the interface as a measure of the phases mixing. This
theory encompasses the effect of pinning and provides an easily scalable framework to compare numerical
models of texture evolution to statistical measures on natural samples.

Our main objective is to propose a model allowing to compare numerical application with natural shear
zones. The two-phase damage theory (Bercovici & Ricard, 2012) was developed specifically for large-scale
purposes such as plate tectonics generation and persistence (Bercovici & Ricard, 2013). In this study, we
adapt it by using the smaller-scale model to compute a texture-dependent viscosity that could be imple-
mented in a geodynamical model and compared to field observations at both the textural and local/regional
scales. We choose to account for the interdependence between interface density and the phases mean grain
sizes in the entropy production equation. A modification of the equations for grain size and interface mean
curvature evolution is proposed, in order to limit the effect of Zener pinning to grain growth. To account
for the possible effect on the material viscosity of grain-size reduction mechanisms potentially active in the
diffusion creep domain (Bercovici & Ricard, 2012; Menegon et al., 2015; Precigout & Stunitz, 2016; Tasaka
et al., 2017), we introduce another generic deformation partition coefficient. Furthermore, we propose an
equation for the effective viscosity of the material that not only depend on the effective viscosity of the two
phase but also on their mixing state. For two phases A and B, this mixing state is measured from the rel-
ative quantity of AB and AA, BB grain-boundaries densities (Heilbronner & Barrett, 2014). Eventually, we
modify the scale numbers proposed in Bercovici and Ricard (2012) in order to account for different min-
eral rheologies. The variables used are specifically designed to be measurable on natural samples in order
to provide useful constraints from both natural and experimental data. We finally present simple numerical
applications, to display and discuss the general behavior of the equations.

2. Continuum Description of Grained Rocks
2.1. Grains Properties and Size Distributions
Following the formalism described in Bercovici and Ricard (2012, appendix A), within a control volume 𝛿V,
all the macroscopic variables and their derivatives are considered continuous. In the following description,
all variables accented as X̆ are related to one grain of specific size R̆, variables accented X̃ are related to
interfaces, and variables indexed Xi are phase dependent (i = 1or2, see Appendix E and Table E3). We
consider two immiscible phases represented by a function 𝜑i such that 𝜑i = 1 where only the phase i is
present and 0 where not. Therefore, the volume of phase i in 𝛿V is

𝛿Vi = ∫
𝛿V
𝜑idV = 𝜙i𝛿V , (1)

and 𝜙i satisfy
∑2

i=1
𝜙i = 1. Any variables summed over the two phases is written X =

∑
i𝜙iXi. The volume

and surface area of one grain of phase i are written as the following:

V̆i =
4
3
𝜋R̆3

i , (2)

̆i = ĂiP̆i = 4𝜋R̆2
i P̆i, (3)

which defines the grain-size variable R̆i and the grain “roughness” or “shape factor” P̆i. The grain-size vari-
able R̆i corresponds to the radius of the sphere with a volume equivalent to the grain as schematized by
Figure E3a. The grain roughness P̆i accounts for the amount of area in excess from the minimum area com-
patible with the grain volume (the area of a sphere of radius R̆i). All grains of a size R̆i share an identical
roughness P̆i. This is also illustrated in Figure E3a. Therefore, the grain volume and associated quantities
only involve the variable R̆i, while grain surface depends on both R̆i and P̆i. The mean curvature of one
grain reads

K̆i =
d̆i

dV̆i
=

2P̆i

R̆i
. (4)

Each phase within a control volume is described by a continuous and convergent distribution 𝜈i of grain size
R̆i (the distribution function 𝜈i vanishes at finite maximum and minimum R̆i). The variable i is the mean
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grain size and the variable i the mean grain roughness of the phase i grain population (Appendix B). The
volume of phase i reads (see; Bercovici & Ricard, 2012, appendix B, equation B.3)

𝛿Vi =
(
∫

∞

0
V̆i𝜈id,R

)
𝜙i𝛿V , (5)

which because of equation (1) yields

∫
∞

0
V̆𝜈idR = 1, (6)

implying that there is no void of any kind between the grains. The two phases being considered incompress-
ible, we will write all mass-dependent quantities as volume dependent. The general equations concerning
grain-size distributions are displayed in Appendix B.

2.2. Interface Density and Mean Radius of Curvature
Accounting for the effect of phase mixing on the rheology of two mineral phases materials such as the one
displayed in Figure E3b is one of our objectives. The interface area is defined as the sum of all the surfaces
separating a grain of phase A from a grain of the phase B in a given volume as illustrated by the red lines
in Figure E3b. On the other hand, the intraphase boundary area is defined as the sum of all the surfaces
separating two grains of the same phase (green and olive green lines in Figure E3). The amount of mixing
between the two phases is related to the relative quantity of interfacial area (AB) with respect to intraphase
grain boundaries AA or BB (Heilbronner & Barrett, 2014, chapter 18). The grain boundary area defines the
sum for one phase of the interface and intraphase boundary area. The total interface area 𝛿AI in the control
volume 𝛿V is written (Bercovici & Ricard, 2012, appendix A, equation A.3)

𝛿AI = ∫
𝛿V
𝛼dV , (7)

which defines the interface density 𝛼 as the total interface area normalized by the considered volume. A
grain-boundary density 𝛼i is similarly defined and corresponds to the sum of interface and intraphase grain
boundary area for all the phase i grains:

𝛼i = ∫
∞

0
i𝜈idR. (8)

The phase grain boundary area density is 𝜙i𝛼i, and the total grain boundary surface of phase i yields

𝛿Ai = ∫
𝛿V
𝜙i𝛼idV . (9)

The interface density should be a function of the phase volume fraction 𝜙i, the phase mean grain sizes i,
and mean roughness i. Furthermore, 𝛼must vanish if either𝜙1 or𝜙2 = 0 which advocate for 𝛼 = 𝑓

(
𝜙1𝜙2

)
(Bercovici et al., 2001; Bercovici & Ricard, 2012). If the interface density has to be a function of the phases
proportions and grain-size distributions, another independent variable is required in order to describe the
mixing state of the phase. On the basis of the work done by Ganesan and Poirier (1990), Bercovici et al.
(2001), and Bercovici and Ricard (2005), Bercovici and Ricard (2012) propose the general formula:

𝛼 = 3𝜙1𝜙2 =
3𝜙1𝜙2

r
, (10)

thus introducing the interface mean radius of curvature r as an independent variable measuring the interface
coarseness (inverse of interface fineness  ). However, in the following development, we will consider the
interface density as a function of not only phases volumic fractions𝜙i and interface mean radius of curvature
r but also of the mean grain sizes i, that is, 𝛼 = 𝑓

(
𝜙i, r,i

)
.

3. Thermodynamics of Coupled Two-Phase Deformation
3.1. Damage, Self-Similarity, and Entropy Production
Grain “damage” is related to the processes affecting grains evolution during deformation (Ricard &
Bercovici, 2009). The damage theory is generally based on the proposition that the internal energy E of a
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given system depends on its entropy S and density 𝜌 but also on a third state variable  related to damage,
that is, E = 𝑓

(
S, 𝜌,)

. However, if 𝜌 and S are clearly conjugated to the pressure P and the temperature T,
the conjugate variable of  is only defined by the partial derivative of the internal energy with respect to .
The approach proposed by Bercovici et al. (2001) considers the damage variable  as the quantity of interfa-
cial surface energy present in the system. Thus, the internal energy is now written as E = 𝑓 (S, 𝜌, 𝛼) where 𝛼
is the interfacial area density. The conjugate variable of 𝛼 becomes 𝛾̃I the interfacial surface tension. There-
fore, grain damage results in storage of deformation energy as surface tension energy through the creation
of grain boundary area. Even if mylonitized rocks exhibit a strong anisotropic fabric, we follow Bercovici
and Ricard (2012) and assume a scalar 𝛼 (grains properties are isotropic). As they demonstrated, mass con-
servation implies to split the grain-size fluxes in the grain-size space into continuous (grains vanishing or
growing) and discontinuous fluxes (grains breaking or fusing, see Appendix A for further details).

Furthermore, Rozel et al. (2011) consider that the grain-size distribution remains self-similar through-
out deformation (all distribution moments are only function of the mean). The self-similar grain-size
distribution function 𝜈i reads

𝜈i = B
(i

)
H (u) . (11)

The function B is an amplitude depending only on i, H is the shape function of the distribution which
depends on the self-similarity variable u = R̆∕i. Rozel et al. (2011) comes up with an equation for grain-size
evolution where the continuous fluxes of grain size are related to grain coarsening and the discontinuous
fluxes corresponds to grain damage:

di

dt
= C

(i
)
− D

(i
)
, (12)

where C
(i

)
and D

(i
)
, respectively, represent the continuous and discontinuous fluxes of mean grain

sizes i (see section B2 and equation (B11)). The two phases grain-size distributions are assumed to be
log-normal (Rozel et al., 2011), which allows to compute the various integrands related to grain-size distri-
bution. From these leading hypothesis, it becomes possible to write the entropy production within a control
volume under deformation (section C2) and to use it in order to derive phenomenological evolution laws for
mean grain sizes and interface density. The main difference with the previous model at this stage is that we
consider the interface density alpha to depend not only on phase volumic fractions 𝜙i and interface mean
curvature r but also on the phases mean grain size i. As a consequence, we cannot assume the mean grain
size and interface density to satisfy entropy positivity independently. However, using Onsager's phenomeno-
logical relations requires each thermodynamical flux to be independent from the other. We therefore rewrite
the interface density 𝛼 as the sum of all its partial derivative with respect to the grain size i, the phase volu-
mic fraction 𝜙i, and the interface mean radius of curvature r. Assuming that the grain-size distribution of
each phase remain self-similar, assuming that these grain-size distributions are log-normal and neglecting
heat production and transfer terms, because the thermal diffusion overcomes the heat produced by viscous
dissipation (high Brinkmann number) at the scales of interest,

yields the equation for the production of entropy (see section C2 and equation (C20)):

Σ =
∑

i

[
3𝜆2𝜙i𝛾ii

𝜆32
i

− 𝛾I
𝜕𝛼

𝜕i

]
di

dt
− 𝛾I

𝜕𝛼

𝜕r
𝜕r
𝜕t

−
(
𝛾I
𝜕𝛼

𝜕𝜙1
+ ΔΠ

)
D̃𝜙1

D̃t
+ 𝜓∗ ⩾ 0. (13)

The first term corresponds to the processes related to grain-size evolution and encompasses the inter-
face variation due to grain size (−𝛾I𝜕𝛼∕𝜕i term). The second term corresponds to processes that modify
interface density independently of grain size (for instance, phase mixing at constant mean grain sizes).
The third term is relative to phase volumic fraction, ΔΠ being the effective pressure difference defined as
ΔΠ = Π2 − Π1 and Πi = Pi + 𝛾ii (see sections C1 and C2, the mean grain curvature i is defined by
equation (4)). The intraphase boundary surface tension energy is 𝛾 i, while the true interfacial energy is 𝛾i.
However, in the following development, the surface tension energy related to interface area corresponds to
an effective surface tension energy 𝛾I = 𝛾I −

∑
i𝛾i (Bercovici & Ricard, 2012, appendix E.1, equation E.1). The

log-normal shape of the grain size allows to compute the grain-size distribution nth moment (section B2):

𝜆n = ∫
∞

0
unH (u) du = en2𝜎2∕2, (14)
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where again u is the self-similarity variable (see equation (11)), and 𝜎 is the dimensionless variance. An
important quantity is the grain boundaries density 𝛼i that is computed from the equations (8) and (11) for
self-similar log-normal distribution (see section B1 and equation (B6) for the form of 𝜈i):

𝛼i = ∫
∞

0
i𝜈idR =

3𝜆2i

𝜆3i
. (15)

Similarly, from equation (4), the mean grain boundaries curvature i reads

i = ∫
∞

0
K̆i𝜈idR =

2𝜆2i

𝜆3i
. (16)

3.2. Nonequilibrium Thermodynamics
In order to use the equation (13) to derive evolution equations for i and r, we consider that there are
only linear and homogeneous (phenomenological) kinetic relations between thermodynamical fluxes J and
dissipative forces X. Under this hypothesis, the entropy production equation is written as a scalar product
of thermodynamical fluxes and dissipation forces yielding:

Σ =
4∑

k=1
JkXk + 𝜓∗ ⩾ 0. (17)

According to Onsager (1931), satisfying the positivity of entropy production requires to write the thermody-
namical fluxes J as

Jk =
∑

l
KklXl, (18)

where K is a positive definite square matrix. Therefore, the entropy production reads

Σ =
∑
k,l

XkKklXl ⩾ 0. (19)

The positive definiteness of K is sufficient to ensure the positiveness of Σ. The Onsager's reciprocal relations
also imply that K is symmetrical. The thermodynamical fluxes are generally defined as the whole material
derivative Ẏ of the state variables Y (Fischer et al., 2014), which reads

Y =

⎛⎜⎜⎜⎜⎝
12
r
𝜙1

⎞⎟⎟⎟⎟⎠
Ẏ =

⎛⎜⎜⎜⎜⎝
̇1̇2
ṙ
𝜙̇1

⎞⎟⎟⎟⎟⎠
. (20)

The effective deformational work rate, 𝜓∗, is defined as the tensorial product of the strain-rate tensor ė with
the effective stress tensor 𝜏∗, that is,

𝜓∗ = 𝜏∗ ∶ ė (21)

(see section 3.5.3 and equation (122)). It is generally considered that the strain-rate tensor corresponds to
the thermodynamical flux associated to a dissipative force that is the stress tensor (De Groot & Mazur, 1984).
When writing the Onsager's matrix, this results in a rheological equation relating the strain-rate tensor to
a linear function of all the dissipative forces including the stress tensor. However, in the case of deforming
mineral aggregates, the rheologies are nonlinear (see sections 3.5.3 and D2). Furthermore, assuming the
strain rate as the thermodynamical flux induces two other questions. First, fluxes and forces that are not
of the same tensorial order should be decoupled (De Groot & Mazur, 1984). As the considered medium is
assumed isotropic (mean grain sizes are scalars), this implies that the mean grain-sizes evolution equations
should be decoupled from stress. Second, Austin and Evans (2007) and Ricard and Bercovici (2009) show
that mean grain sizes depend on deformational work rate rather than stress alone. Keeping with this result
and the phenomenological hypothesis implies that the dissipative force in that case has to be the deforma-
tional work which in turn implies the conjugated thermodynamical flux to be 1 so that the thermodynamical
fluxes are written as linear functions of the deformational work rate. We acknowledge the exotic char-
acter of this choice but will demonstrate that this assumption allows to recover the general forms of the
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equations proposed by Bercovici and Ricard (2012) and Rozel et al. (2011). Therefore, we choose to define
the thermodynamical fluxes J and dissipative forces X as follows:

Jk = Ẏk for k = 1, … , 4, (22)

J5 = 1, (23)

Xk = 𝑓k for k = 1, … , 4, (24)

X5 = 𝜓∗. (25)

Taking into account equations (13) and (26), the forces are thus given by

f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
3𝜆2𝜙1𝛾11
𝜆32

1
− 𝛾I

𝜕𝛼

𝜕1

)(
3𝜆2𝜙2𝛾22
𝜆32

2
− 𝛾I

𝜕𝛼

𝜕2

)
−𝛾I

𝜕𝛼

𝜕r

−
(
𝛾I

𝜕𝛼

𝜕𝜙1
+ ΔΠ

)
𝜓∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (26)

This yields the entropy production equation:

Σ
(
Ẏ,Y

)
=

4∑
k=1
𝑓kẎk + 𝜓∗ ⩾ 0. (27)

The Onsager's reciprocal relations imply Kkl = Klk, yielding the corresponding system of phenomenological
relations:

̇1 = K11𝑓1 + K12𝑓2 + K13𝑓3 + K14𝑓4 + K15𝜓
∗, (28)

̇2 = K12𝑓1 + K22𝑓2 + K23𝑓3 + K24𝑓4 + K25𝜓
∗, (29)

ṙ = K13𝑓1 + K23𝑓2 + K33𝑓3 + K34𝑓4 + K35𝜓
∗, (30)

𝜙̇1 = K14𝑓1 + K24𝑓2 + K34𝑓3 + K44𝑓4 + K45𝜓
∗, (31)

1 = K15𝑓1 + K25𝑓2 + K35𝑓3 + K45𝑓4 + K55𝜓
∗, (32)

where we should have Kkk ⩾ 0 and KkkKll ⩾
1
4

(
Kkl + Klk

)2 for K to be positive definite.

3.3. Phases Proportions
As we neither consider phase transition nor any mass transfer between the two phases, and we assume
equivalent velocities between the two phases (see section 3.2), we prescribe D̃𝜙i∕D̃t = 0 in a given control
volume. Furthermore, we consider all the equations (28)–(30), and (32) to be decoupled from 𝜙̇1 (31) which
imposes Kk4 = 0. The phases volumic fractions 𝜙i will be considered as constant parameters. The system
thus reduces to

̇1 = K11𝑓1 + K12𝑓2 + K13𝑓3 + K15𝜓
∗, (33)

̇2 = K12𝑓1 + K22𝑓2 + K23𝑓3 + K25𝜓
∗, (34)

ṙ = K13𝑓1 + K23𝑓2 + K33𝑓3 + K35𝜓
∗, (35)

𝜙̇1 = 0, (36)

1 = K15𝑓1 + K25𝑓2 + K35𝑓3 + K55𝜓
∗. (37)
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To achieve the 𝜙̇1 = 0 condition, either K44 or f4 or both has to be 0. The condition

𝑓4 = 0, (38)

taking into account the expression of the dissipation force 𝔣4 (equation (26)) yields

−𝛾I
𝜕𝛼

𝜕𝜙1
= ΔΠ. (39)

According to Bercovici and Ricard (2012), the pressure difference term reads ΔΠ = Π2 − Π1 where Πi is an
effective pressure taking into account the effect of surface tension, that is, Πi = Pi + 𝛾ii (see Appendix C).
Equation (39) describes the equilibrium between the variation of surface tension on the interface and the
pressure difference on both side of the interface. It is equivalent to Bercovici and Ricard (2012, appendix E,
equation E.23a) and corresponds to the Laplace quasi-static equilibrium across the interface.

3.4. Grain-Size Evolution Equation Without Deformation
The system now reads

̇1 = K11𝑓1 + K12𝑓2 + K13𝑓3 + K15𝜓
∗, (40)

̇2 = K12𝑓1 + K22𝑓2 + K23𝑓3 + K25𝜓
∗, (41)

ṙ = K13𝑓1 + K23𝑓2 + K33𝑓3 + K35𝜓
∗, (42)

1 = K15𝑓1 + K25𝑓2 + K35𝑓3 + K55𝜓
∗. (43)

At this point, we assume that the diffusion processes occurring in each phase are independent, the phases
are only coupled through the evolution of interface density, this assumption implies K12 = 0, and the system
comes down to

̇1 = K11𝑓1 + K13𝑓3 + K15𝜓
∗, (44)

̇2 = K22𝑓2 + K23𝑓3 + K25𝜓
∗, (45)

ṙ = K13𝑓1 + K23𝑓2 + K33𝑓3 + K35𝜓
∗, (46)

1 = K15𝑓1 + K25𝑓2 + K35𝑓5 + K55𝜓
∗. (47)

3.4.1. Mono-Phase Aggregate
For one phase (𝜙1 = 1), considering the continuous and discontinuous grain-size fluxes to independently
satisfy the positivity of entropy (Ricard & Bercovici, 2009), and if there is no deformation, we are left with

̇1 = K11𝑓1 + K13𝑓3, (48)

which, once introduced the expression of the forces (equation (26)) and taking into account that 𝛼 must
vanish if either 𝜙1 or 𝜙2 = 0, yields

̇1 =
3𝜆2𝜙1𝛾11

𝜆32
1

K11. (49)

This equation appears similar to the equation (12) proposed by Rozel et al. (2011) in the case of no
deformation ( (i

)
= 0):

̇i = C
(i

)
. (50)

Following Ricard and Bercovici (2009) and Rozel et al. (2011), we consider that, in the absence of deforma-
tion, the grain size evolution results from mass diffusive transfer driven by surface tension minimization,
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that is, classical grain growth. This implies that the coefficient K11 should be related to the rate of growth of
the grains volume and yields

̇1 = C
(1

)
=

3𝜆2𝜙1𝛾11

𝜆32
1

K11

=
G1

pp−1
1

,

(51)

where G1 is the rate ([m]2.[s]−1) at which the mean grain size grows in order to decrease surface tension and
p is the grain-growth power exponent (Bercovici & Ricard, 2012; Rozel et al., 2011). Taking all these remarks
into account yields a K11 coefficient of the form:

K11 =
𝜆3G11

6𝜙1𝜆21
. (52)

3.4.2. Two-Phase Aggregate
3.4.2.1. Grain-Size Evolution Equation
The discontinuous fluxes which depend on deformational work rate are related to grain damage (Ricard
& Bercovici, 2009; Rozel et al., 2011). In the absence of deformation, the deformation work terms in the
system vanish, which, using the equation 52 and the expressions for the thermodynamical forces of the
equation (26), yields the system:

̇1 =

(
3𝜆2𝜙1𝛾11

𝜆32
1

− 𝛾I
𝜕𝛼

𝜕1

)
K11 − 𝛾I

𝜕𝛼

𝜕r
K13, (53)

̇2 =

(
3𝜆2𝜙2𝛾22

𝜆32
2

− 𝛾I
𝜕𝛼

𝜕2

)
K21 − 𝛾I

𝜕𝛼

𝜕r
K23, (54)

ṙ =

(
3𝜆2𝜙1𝛾11

𝜆32
1

− 𝛾I
𝜕𝛼

𝜕1

)
K13 +

(
3𝜆2𝜙2𝛾22

𝜆32
2

− 𝛾I
𝜕𝛼

𝜕2

)
K23 − 𝛾I

𝜕𝛼

𝜕r
K33. (55)

During grain growth, the presence of interfacial area related to the second phase particles is likely to impede
the migration of grain boundaries allowing the mean grain size to reach a steady-state at smaller size. This
mechanism called Zener pinning has been described by Smith (1948) and widely investigated for metallur-
gical purposes as it constrains the influence of impurities on the rheology of metallic alloys (see; Roberts,
2008; Smith, 1948, for instance). It occurs when a migrating grain boundary passes through a smaller inclu-
sion which increases the interface curvature, thus increasing surface tension energy and impeding grain
growth (Herwegh et al., 2005; Mehl & Hirth, 2008). In geological materials, this process extends to the grain
effect of one phase on the other during grain growth. In classical grain-growth theories, the Zener pinning
effect involves the second phases particles that are very small in size and proportions with respect to the
major phase in such a way that they do not evolve during the coarsening of the opposite phase. In this case
Hillert (1965) proposes that the pinning effect could be represented by an equation of the form:

d2

dt
= G

[
1 − z

( 
cr

)2
]
, (56)

thus allowing a steady-state when the major phase grain-size  reach a given critical size cr . Additionally,
Bercovici and Ricard (2012) build a micromechanical model for Zener pinning allowing the two phases to
be of relative equivalent proportions and grain sizes and end up with a comparable equation:

di

dt
=

Gi

pp−1
i

[
1 − z

(
1 − 𝜙i

)(i

r

)2
]

=
Gi

pp−1
i

i,

(57)
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where the critical grain size cr corresponds to the interface mean curvature radius r. The coefficient z reads

z =
3b𝔫𝜆𝔫+1

2 (𝔫 + 3) 𝜆2
, (58)

where 𝔫 depends on the assumed function accounting for the evolution of grain surface curvature during
pinning (Bercovici & Ricard, 2012, appendix F.4, equation F.27). We assume that each thermodynamic flux
satisfies the positivity of entropy independently. The coefficients K13 and K23 which couple the grain size
i and the mean radius of curvature r evolution equations are thus imposed to be 0 (K13 = K23 = 0).
Substituting equation (52) in (53) and (54) and factorizing reads

̇1 =
G1

pp−1
1

(
1 −

𝛾I𝜆32
1

3𝜆2𝜙1𝛾11

𝜕𝛼

𝜕1

)
, (59)

̇2 =
G2

pp−1
2

(
1 −

𝛾I𝜆32
2

3𝜆2𝜙2𝛾22

𝜕𝛼

𝜕2

)
, (60)

ṙ = −𝛾I
𝜕𝛼

𝜕r
K33. (61)

In the case of grain growth alone, we aim to recover the form of the Zener pinning coefficient proposed by
Bercovici and Ricard (2012). Comparing equations 59 and (60) with (57) yields

1 − z
(
1 − 𝜙1

)(1

r

)2

= 1 −
𝛾I𝜆32

1

3𝜆2𝜙1𝛾11

𝜕𝛼

𝜕1
, (62)

1 − z
(
1 − 𝜙2

)(2

r

)2

= 1 −
𝛾I𝜆32

2

3𝜆2𝜙2𝛾22

𝜕𝛼

𝜕2
, (63)

and thus allows to constrain the partial derivatives of the interface density:

𝜕𝛼

𝜕1
=

3𝜆2𝜙1𝜙2z𝛾11

𝜆3𝛾Ir2 , (64)

𝜕𝛼

𝜕2
=

3𝜆2𝜙1𝜙2z𝛾22

𝜆3𝛾Ir2 . (65)

The simplest solution of this system is

𝛼 =
3𝜆2𝜙1𝜙2z
𝜆3𝛾Ir2

(∑
i
𝛾iii

)
+
∑

i
Ii, (66)

with Ii being the integrand constant relative to phase i. This expression appears consistent with the
form of the interface density 𝛼 used by Bercovici and Ricard (2012) to derive their two-phase model (see
equation (7)). In the absence of a better choice, we will further assume the two integrand constants Ii to
be zero.
3.4.2.2. Interface Mean Radius of Curvature Evolution
From deriving the equation (64) with respect to the interface mean curvature radius r, one can write

𝜕𝛼

𝜕r
= −

6𝜆2𝜙1𝜙2z
𝜆3𝛾Ir3

∑
i
𝛾iii, (67)

which yields from equation (61):

ṙ =
6𝜆2𝜙1𝜙2z
𝜆3r2

∑
i
𝛾iiiK33. (68)

According to Bercovici and Ricard (2012, appendix E, equation E.23b), the coarsening term of the interface
evolution equation reads

ṙ =
3𝜙1𝜙2ĜI

qrq−1 . (69)
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To remain consistent with this expression but keeping with the dependence of 𝛼 on i, we impose that

K33 =
ĜI

4
, (70)

which provided that the interface coarsening contributions of phases 1 and 2 written as GIi∕𝛾 i are equal to
the interface coarsening rate ĜI :

GI1

𝛾1
=

GI2

𝛾2
= ĜI , (71)

and that q = 4 yields the interface coarsening expression:

ṙ =
6𝜙1𝜙2𝜆2zĜI

𝜆3qrq−1

∑
i
ii. (72)

3.5. Grain Growth and Damage Evolution Laws
3.5.1. Time Evolution of a Mono-Phase Aggregate With Deformation
Using equation (52) and considering that 𝛼 = 0 if 𝜙1 or 𝜙2 = 0 leads from equations (44) and (47) to

̇1 =
G1

pp−1
1

+ K15𝜓
∗, (73)

1 = K15
3𝜆2𝜙1𝛾11

𝜆32
1

+ K55𝜓
∗. (74)

The last term in equation (73) depending on 𝜓∗ is related to damage. It has to be negative as damage must
reduce grain size (see equation (12)), but the deformation work rate 𝜓∗ is positive. Thus, the coefficient K15
must be negative. Recasting the equation (74) as

K15
3𝜆2𝜙1𝛾11

𝜆32
1

= 1 − K55𝜓
∗, (75)

it implies that

1 − K55𝜓
∗ ⩽ 0. (76)

In order to remain consistent with the Rozel et al. (2011) formalism, this condition is satisfied provided that{
K55 = X

𝜓∗

X ⩾ 1
. (77)

Furthermore, we assume that damage to grains occurs through two mechanisms:

1. Dynamic recrystallization in the dislocation creep domain; and
2. Potential grain reduction mechanisms in the diffusion creep domain (Bercovici & Ricard, 2012; Menegon

et al., 2015; Precigout & Stunitz, 2016; Tasaka et al., 2017).

To account for these mechanisms, we propose to write the function X as

X =
(
1 + 𝔣D1

)
F +

(
1 + 𝔣N1

)
(1 − F) , (78)

where fD1 accounts for the storage of deformation energy due to dynamic recrystallization during dislocation
creep, while fN1 corresponds to the possible grain-size reduction mechanisms active in diffusion creep. This
yields the phenomenological coefficient K55:

K55 =
[(

1 + 𝔣D1
)

F +
(
1 + 𝔣N1

)
(1 − F)

]
𝜓 ∗

, (79)

where
0 ⩽ 𝔣D1 ⩽ 1, (80)

0 ⩽ 𝔣N1 ⩽ 1. (81)
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The function F must constrain the activation domains of each mechanisms (Figure E1); to stay consistent
with Rozel et al. (2011) equation, we set

F =
x

1

x
c1 +x

1
, (82)

1 − F =
x

c1

x
c1 +x

1
, (83)

where c1 is the transition grain size between the two mechanisms (field boundary grain size), defined by
the equation (section D2 and equation (D13)):

ci =

(
bi

ai𝜏
ni−1
i

)1∕mi

, (84)

and x is an exponent controlling the sharpness of the transition, F → 1 if1 ⋙ c1 and F → 0 if1 ⋘ c1.
Substituting equations (82) and (83) into (79) yields the phenomenological coefficient:

K55 =

[(
1 + 𝔣D1

) x
1

x
c1+x

1
+
(
1 + 𝔣N1

) x
c1

x
c1+x

1

]
𝜓∗ , (85)

which allows to constrain K15 from equation (75):

K15
3𝜆2𝜙1𝛾11

𝜆32
1

=
x

1

x
c1 +x

1
+

x
c1

x
c1 +x

1
−
[(

1 + 𝔣D1
) x

1

x
c1 +x

1
+
(
1 + 𝔣N1

) x
c1

x
c1 +x

1

]
K15

3𝜆2𝜙1𝛾11

𝜆32
1

= −
𝔣D1x

1

x
c1 +x

1
−

𝔣N1x
c1

x
c1 +x

1
,

(86)

K15 = −
𝜆32

1
(
𝔣D1x

1 + 𝔣N1x
c1
)

3𝜆2𝜙1𝛾11
(x

c1 +x
1
) . (87)

If we do not consider any grain-size reduction mechanism in the diffusion creep domain (𝔣N1 = 0) and
consider spherical grains (i = 1), we recover the grain-size evolution law proposed by Rozel et al. (2011):

̇1 =
G1

pp−1
1

−
𝜆32

1𝜓
∗

3𝜆2𝜙1𝛾11
FD1, (88)

where FD1 is defined by

FD1 =
𝔣D1x

1(x
c1 +x

1
) . (89)

On the other hand, the existence of a nucleation mechanism yields

̇1 =
G1

pp−1
1

−
𝜆32

1𝜓
∗

3𝜆2𝜙1𝛾11

(
FD1 + FN1

)
, (90)

with FN1 defined by

FN1 =
𝔣N1x

c1(x
c1 +x

1
) . (91)

We are only interested here in accounting for such mechanisms and their potential roles and magnitudes in
producing the textural variations observed in natural mylonites (see Figure E2). It is not in the scope of this
study to propose a complete micromechanical model at grain-size scale explaining these processes, even if it
could be added later by relating the partition functions 𝔣D1 and 𝔣N1 to grain-scale micromechanical models.
3.5.2. Time Evolution of a Two-Phase Aggregate With Deformation
Reintroducing all the interface dependent terms in the system yields

̇1 =
G1

pp−1
1

1 + K15𝜓
∗, (92)
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̇2 =
G2

pp−1
2

2 + K25𝜓
∗, (93)

ṙ =
6𝜙1𝜙2𝜆2zĜI

𝜆3qrq−1

∑
i
ii + K35𝜓

∗, (94)

1 = K15
3𝜆2𝜙1𝛾11

𝜆32
1

1 + K25
3𝜆2𝜙2𝛾22

𝜆32
2

2 − K35
6𝜆2𝜙1𝜙2z
𝜆3r3

(
𝛾111 + 𝛾222

)
+ K55𝜓

∗. (95)

Again, we recast the equation (95) in the same form than in equation (75) yielding:

1 − K55𝜓
∗ = K15

3𝜆2𝜙1𝛾11

𝜆32
1

1 + K25
3𝜆2𝜙2𝛾22

𝜆32
2

2 − K35
6𝜆2𝜙1𝜙2z
𝜆3r3

(
𝛾111 + 𝛾222

)
. (96)

Because the coefficients Ki5 must be negative and to remain consistent with Bercovici and Ricard (2012)
formalism, we propose to write the phenomenological coefficient K55:

K55 =
𝜙1

[(
1 + 𝔣D1

)x
1 +

(
1 + 𝔣N1

)x
c1
]

𝜓∗
(x

1 +x
c1
) +

𝜙2
[(

1 + 𝔣D2
)x

2 +
(
1 + 𝔣N2

)x
c2

]
𝜓∗

(x
2 +x

c2

) , (97)

with 𝔣Di the deformational work partition fraction relative to dislocation creep and dynamic recrystallization
processes and 𝔣Ni a deformational work rate partition fraction accounting for grain-size reduction mecha-
nisms occurring in the diffusion creep domain. In each case a portion of this energy is stored by creating
intraphase grain boundaries, while the rest of available energy is stored through the creation of interface
surface. In order to account for these energy storage processes, we introduce the forms

𝔣Di = 𝔣𝛼i𝔣Di +
(
1 − 𝔣𝛼i

)
𝔣Di, (98)

𝔣Ni = 𝔣𝛼i𝔣Ni +
(
1 − 𝔣𝛼i

)
𝔣Ni. (99)

Taking into account equation (97), the left-hand side of equation (96) becomes

1 − K55𝜓
∗ = −𝜙1

[
𝔣𝛼1

(
FD1 + FN1

)
+
(
1 − 𝔣𝛼1

) (
FD1 + FN1

)]
− 𝜙2

[
𝔣𝛼2

(
FD2 + FN2

)
+
(
1 − 𝔣𝛼2

) (
FD2 + FN2

)]
,

(100)

where FDi and FNi are defined by equations (89) and (91). By comparing this expression with the right-hand
side of equation (96), we propose

K15
3𝜆2𝜙1𝛾11

𝜆31
1 = −𝜙1𝔣𝛼1

(
FD1 + FN1

)
, (101)

K25
3𝜆2𝜙2𝛾22

𝜆32
2 = −𝜙2𝔣𝛼2

(
FD2 + FN2

)
, (102)

K35
6𝜆2𝜙1𝜙2z
𝜆3r3

(
𝛾111 + 𝛾222

)
= −

∑
i
𝜙i

(
1 − 𝔣𝛼i

) (
FDi + FNi

)
, (103)

which yields the following expressions for the phenomenological coefficients:

K15 = −
𝜆32

1𝔣𝛼1

3𝜆2𝛾111

(
FD1 + FN1

)
, (104)

K25 = −
𝜆32

2𝔣𝛼2

3𝜆2𝛾222

(
FD2 + FN2

)
, (105)

K35 = −
𝜆3r3 [∑

i𝜙i
(
1 − 𝔣𝛼i

) (
FDi + FNi

)]
6𝜆2𝜙1𝜙2z

(
𝛾111 + 𝛾222

) . (106)
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Replacing equations (104), (105), and (106) into, respectively, (92), (93), and (94), the set of evolution
equations reads

̇1 =
G1

pp−1
1

1 −
𝜆32

1𝔣𝛼1

3𝜆2𝛾111

(
FD1 + FN1

)
𝜓∗, (107)

̇2 =
G2

pp−1
2

2 −
𝜆32

2𝔣𝛼2

3𝜆2𝛾222

(
FD2 + FN2

)
𝜓∗, (108)

ṙ =
6𝜙1𝜙2𝜆2zĜI

𝜆3qrq−1

∑
i
ii −

𝜆3r3∑
i𝜙i

(
1 − 𝔣𝛼i

) (
FDi + FNi

)
6𝜆2𝜙1𝜙2z

(∑
i𝛾iii

) 𝜓∗. (109)

We consider the Zener pinning effect to be only related to grain growth, and we therefore aim to limit
the effect of Zener pinning to the grain-growth member of the grain-size evolution equation (C

(i
)

equation 12). For this purpose, a variable change is necessary in order to allow for the Zener coefficient i
to decrease interface curvature which is an expected effect of Zener pinning (distorting interface), while
grain-size damage is the result of deformation energy storage on grain boundaries. To do so, we write 𝔣𝛼i as

𝔣𝛼i = 𝜒i − 𝜒i𝜙iz
(i

r

)2

. (110)

This yields

1 − 𝔣𝛼i = 1 − 𝜒i + 𝜒i𝜙iz
(i

r

)2

. (111)

Eventually, substituting equation (111) into (107)–(109), the final set of evolution equations reads

̇1 =
G1

pp−1
1

1 −
𝜆32

1𝜒1

3𝜆2𝛾11

(
FD1 + FN1

)
𝜓∗, (112)

̇2 =
G2

pp−1
2

2 −
𝜆32

2𝜒2

3𝜆2𝛾22

(
FD2 + FN2

)
𝜓∗, (113)

ṙ =
6𝜙1𝜙2𝜆2zĜI

𝜆3qrq−1

∑
i
ii −

𝜆3r3∑
i𝜙i

(
1 − 𝜒ii

) (
FDi + FNi

)
6𝜆2𝜙1𝜙2z

∑
i𝛾iii

𝜓∗. (114)

3.5.3. Two-Phase Deformational Work Rate
3.5.3.1. Mixing Variables
For two phases A and B, the mixing state of the aggregate is defined by the relative quantity of interfacial area
AB and intraphase grain boundaries areas AA and BB (Heilbronner & Barrett, 2014, chapter 18). Normalized
by the volume, these quantities are the interface density 𝛼 and the intraphase grain boundaries densities 𝛼11
and 𝛼22 (which are different from the phases grain boundaries densities 𝛼1 and 𝛼2). According to Heilbronner
and Barrett (2014, chapter 18), a relevant way to estimate the mixing state is to compute the ratio of the
interface area over the sum of interface and both intraphase grain boundaries areas:

S = 𝛼

𝛼 + 𝛼11 + 𝛼22
. (115)

The interface density is given by the equation (66), and the phase intraphase grain boundaries densities could
be estimated as the phase grain boundaries density minus the interface density. This is only an estimation
because of the grains that are cut by the control volume surfaces; however, for very large number of grains,
this error should be small (i.e., if L the volume characteristic length is much larger than i, which is already
a necessary condition for continuous grain-size distributions). S therefore reads

S = 𝛼

𝛼1 + 𝛼2 − 𝛼
, (116)
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where 𝛼i is given by equation (15). For a given phase volume fraction, the mixing state of the aggregate is
therefore only dependent on the evolution of both phases mean grain size and interface mean curvature
radius. Grain growth by removing primarily intraphase grain boundaries (coalescence of neighboring
grains) increases the mixing of the phases. In two phase aggregates, dislocation creep which involves grains
splitting either by subgrains rotation or bulging (Shimizu, 2008) creates intraphase grain boundaries and
results in clusters formation (Raimbourg et al., 2008) thus decreasing the phase mixing. In the diffusion
creep domain, the evolution of the mixing state must depend on the mechanism considered. However,
fine-grained mylonite often exhibits well-mixed pattern that advocate for a grain reduction mechanism
with important creation of interface such as nucleation (Dimanov et al., 2007; Precigout & Stunitz, 2016).
3.5.3.2. Phases Effective Viscosities
It is now necessary to define the form of the deformational work 𝜓∗. Even if numerous microscopic, ele-
mentary processes are simultaneously involved in ductile rock deformation (dislocation glide and climb,
diffusion through grain boundaries or interiors, and grain boundary sliding), the macroscopic deformation
and associated flow laws are classically classified under two main types:

1. dislocation or grain size insensitive creep; and
2. diffusion or grain-size sensitive creep.

The effective viscosities associated with these two mechanisms reads (see section D2):

𝜇disl
i = 1

2

(
ai𝜏

ni−1
i

)−1
, (117)

𝜇diff
i = 1

2

(mi

bi

)
, (118)

with 𝜏 i being the second invariant of the stress tensor in phase i. We consider that within a phase i, all
grains share a stress 𝜏̆ i equivalent to the macroscopic stress 𝜏∗ (Bercovici & Ricard, 2012; Rozel et al., 2011).
Furthermore, the deformation of a grain can be due to the two mechanisms acting simultaneously, thus
the total strain rate is assumed to be the sum of the strain rate related to each deformation mechanism. We
therefore use a composite rheology of the form:

ė = ėdisl
i + ėdiff

i =

(
ai𝜏

ni−1
i +

Bi

mi
i

)
𝛕i, (119)

where the coefficient Bi = bi
𝜆3−m
𝜆3

accounts for the effect of grain-size distribution variance on the overall
rheology (Rozel et al., 2011). This relation defines the phase i global viscosity:

𝜇i =
1
2

(
ai𝜏

ni−1
i +

Bi

mi
i

)−1

. (120)

3.5.3.3. Effective Deformational Work Rate
The simplest hypothesis is to assume the aggregate effective viscosity 𝜇∗ to be a volume average of the
phases viscosities, we get 𝜇∗ = 𝜇 =

∑
i𝜙i𝜇i and 𝜓∗ = 𝜓 (Bercovici & Ricard, 2012). However, the influence

of phases mixing on the material rheological behavior may be taken into account in defining the effective
deformational work rate. Therefore, the aggregate viscosity 𝜇∗ is written as a function of phases viscosities
𝜇i, volume fractions 𝜙i, and the variable S quantifying the degree of mixing between the phases. Evaluat-
ing the rheology of heterogeneous materials requires a complex mathematical treatment (Drew & Segel,
1971; Hill, 1965; Ravichandran & Seetharaman, 1993). Here the effective viscosity is considered to be a
function of the two pure phase end-members viscosities, whose relative contributions is a function of the
aggregate “mixing pattern” depicted by the variable S. The aggregate is considered to evolve between two
end-member cases:

1. The phase tends toward clustering (see Figures E2b and E2e), when  → 0 (i.e., intraphase boundaries
are dominant); and

2. The phase tends toward maximum mixing (see Figures E2c and E2f), when  → 1 (i.e., interface
boundaries are dominant).

If interface grain boundaries are dominant, the variable S tends toward unity (the case S = 1 corresponds to
the perfect mixing state where there is no intraphase boundaries anymore akin to the chessboard pattern). In
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contrast, even if the texture includes large clusters, the presence of two phases implies a nonzero amount of
interface. As a consequence, if S could be low depending on the amount and size of grains clusters, it cannot
reach zero. The evolution of the aggregate mixing state is likely to be controlled by the dominant deformation
mechanism acting on each of the two phases. In order to compute the material effective viscosity, we consider
that in case (1) the whole rheology is dominated by the clusters (or layers) of the weakest phase, while the
homogeneous mixing of case (2) is likely to results in an average of the two phases viscosities. These remarks
lead us to propose the following expression for the aggregate effective viscosity:

𝜇∗ =  (
𝜙1𝜇1 + 𝜙2𝜇2

)
+ (1 − )

(
𝜇1𝜇2

𝜙1𝜇2 + 𝜙2𝜇1

)
. (121)

Thus, when the phases are clustered ( → 0), the first term is negligible, and the rheology is dominated
by the weakest phase (harmonic mean). On the contrary, when the phase are well mixed ( → 1), the
viscosity is approximated by the first term and results from a volume average of the two phases viscosities.
This averaging hypothesis on the rheology of the general aggregate is still linear with respect to the strain
rate, thus the total work rate acting on the control volume reads

𝜓∗ = 𝜏∗ ∶ ė
= 2𝜇∗ė2

= 2ė2
[
 (

𝜙1𝜇1 + 𝜙2𝜇2
)
+ (1 − )

(
𝜇1𝜇2

𝜙1𝜇2 + 𝜙2𝜇1

)]
.

(122)

4. Application of the Model in Mono and Two-Phase Cases
4.1. Dimensionless Equations and Solving Method
In deriving dimensionless relations, we account for the possibility of different phases rheological laws. The
phase 2 rheological parameters a2 = 𝔞2exp

(
−Edisl

2 ∕RT
)
, b2 = 𝔟2 exp

(
−Ediff

2 ∕RT
)

are scaled using the cor-
responding parameters of the phase 1, thus the imposed strain rate ė and the rheological parameters of the
phase 1, a1 = 𝔞1exp

(
−Edisl

1 ∕RT
)

and b1 = 𝔟1 exp
(
−Ediff

1 ∕RT
)

are our main scaling parameters:

ė = ėsė′ with ės = ė, (123)

t = tst′ with ts =
1
ė
, (124)

𝜏 = 𝜏s𝜏
′ with 𝜏s =

(
ės

a1s

) 1
n1
, (125)

 = s′ with s =
(

b1s
𝜏s

ės

) 1
m1
, (126)

a1 = a1sa′
1 with a1s = a1, (127)

B1 = B1sB′
1 with B1s = B1, (128)

a2 = a2sa′
2 with a2s =

ės

𝜏
n2
s

=
ė

1− n1
n2

s

a
− n1

n2
1

, (129)

B2 = B2sB′
2 with B2s =

m2
s ė
𝜏s

= B
m2
m1
1 ė

m2(1−n1)+m1(n1−1)
m1n1 a

m2−m1
m1n1

1 , (130)

where

Bi =
𝜆3−mi

𝜆3
bi. (131)

Using these scaling parameters, the rheological equation does not change and yields

ė′ = a′
i𝜏

′ni
i +

B′
i

′mi
i

𝜏′i . (132)
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From equations (112) and (113), using the scaling parameters described above, the grain size evolution law
reads

̇i
′ =

Gi

p(p−1)
s ės

[
1 − z

(
1 − 𝜙i

)(′

r′

)2
]
−
𝜆3

(
1 − 𝜒1

)′2
i s𝜏s

3𝜆2𝛾ii

(
FDi + FNi

)
𝜓 ′∗, (133)

̇i
′p = CiZi − Di′(p+1)

1
(

FDi + FNi
)
𝜓 ′∗, (134)

where Ci, Zi, and Di are given by

Ci =
Gi

2
s ės
, (135)

Zi = 1 − z
(
1 − 𝜙i

)(′
i

r′

)2

, (136)

Di =
p𝜆3𝜒is𝜏s

3𝜆2𝛾ii
. (137)

The dimensionless mean radius of curvature equation reads from equation (114):

ṙ′ =
3𝜙1𝜙2𝜆2zĜI

𝜆3qr′(q−1)q
s ės

∑
i
ii −

q𝜆3r′3s𝜏s
∑

i𝜙i
(
1 − 𝜒iZi

) (
FDi + FNi

)
6𝜆2𝜙1𝜙2z

∑
i𝛾iii

𝜓 ′∗, (138)

̇r′q = CI

∑
i
ii − DI

r′ (q+2))∑
i𝜙i

(
1 − 𝜒iZi

) (
FDi + FNi

)∑
i𝛾iii

𝜓 ′∗, (139)

with the coefficients:

CI =
3𝜙1𝜙2𝜆2zĜI

𝜆3q
s ės

, (140)

DI =
q𝜆3s𝜏s

6𝜆2𝜙1𝜙2z
. (141)

To evaluate the behavior of the model, we assume velocity boundaries conditions to be v = u(𝑦)x̂ (simple
shear), applied to a horizontal layer infinite in x and finite in y. The medium is considered uniform in both
x and y directions so the volume fractions 𝜙 and 𝜙2 = 1 − 𝜙 remain constant and uniform throughout the
calculation. Therefore, all material derivatives become only dependent on time t, and we have

D
Dt

= d
dt

(142)

In simple shear and zero dimension, the only imposed strain-rate tensor component is ė = 1
2
𝜕u
𝜕𝑦

. Thus, the
only component of stress tensor is given by

𝜏i =

(
ė

ai + Bi−mi
i 𝜏

1−ni
i

)1∕ni

, (143)

which is evaluated numerically using a Picard fixed point scheme. This yields the deformational work on
each phase i through

𝜓i = 2ė𝜏i. (144)

Then, the total deformational work rate𝜓∗ is computed using equation (115) which then allows to calculate
the time evolution of 1, 2 (equation (134)), and r (equation (139)) using a fourth-order Runge-Kutta
explicit iterative scheme. The code was developed with using Matlab©.
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4.2. Model Parameters
4.2.1. General Parameters and Rheological Laws
The role of the grain-size distribution dispersion during two-phase material deformation could be important
(Rozel et al., 2011). Accordingly, we choose to use rheological laws for dislocation and diffusion creep derived
from the same starting material. We use the rheological parameters from Hirth and Kolhstedt (2003) for
olivine flow laws, Rybacki and Dresen (2000) for anorthite, and Dimanov and Dresen (2005) for diopside. For
grain-growth laws, we use the parameters proposed by Karato (1989) for olivine using an activation energy of
3105 Jmol−1K−1 (Bercovici & Ricard, 2012). The growth laws used for anorthite and diopside are from Dresen
et al. (1995) and Fisler et al. (1997), respectively. The experimental parameters are summarized in Table E1.
A rough estimate from Hidaka gabbro thin section measurement (ratio of measured grain perimeter over the
perimeter of a circle of equivalent area, 2-D measures) yields a value of 1.2 for the grain roughness i, which
we will adopt for our computations. Grain boundaries and interfaces surface tension energy differences are
assumed close enough to be assumed equal to 1J (Bercovici & Ricard, 2012; Duyster & Stockhert, 2001).
As the medium is considered incompressible, we do not account for activation volume and also neglect the
possible effect of water fugacity. All the parameters are summarized in Table E1 below. The rheological laws
for plagioclase, diopside, and olivine are plotted in a deformation map (stresses as a function of grain size)
in Figure E5. We impose throughout the computation a constant strain rate of 10−12s−1 as a reasonable order
of magnitude for geological deformation processes.
4.2.2. Zener Pinning Parameters
The value of the pinning coefficient z is computed using the value of n = 1 which yields bn = 1∕20 and
z = 3𝜆4

160𝜆2
. The exponent of the mean interface curvature radius is q = 4 as comes out of our equation (72)

and was also proposed by Bercovici and Ricard (2012). To determine the interface mean curvature radius
growth rate ĜI by comparing the model to the grain growth experiments of Hiraga et al. (2010), Bercovici
and Ricard (2012) proposed the form

GI =
qGi

p250
r̃(q−p), (145)

where Gi the phase growth rate considered identical for the two phases, p is the grain growth exponent
considered to be 2 (Hashim, 2016), and r̃ is the experimental interface roughness considered to be of the
order 1𝜇m (Bercovici & Ricard, 2012, 2013). In the current case, in order to account for different grain-size
growth rates, we propose

ĜI = gI
(
𝜙2G1 + 𝜙1G2

)
, (146)

because in the case of𝜙i >>> (1 − 𝜙i)
)
, the interface growth rate should be dominated by the less abundant

phase. This equation imposes a linear dependence of ĜI on the phases volumic fractions. Another possibility
can be

ĜI = gI

(
G1G2

𝜙1G1 + 𝜙2G2

)
, (147)

which yields a hyperbolic relationship between ĜI and𝜙i. These equations are likely to be valid when𝜙i → 0,
but in the limit case where𝜙i = 0, the whole equation for the interface mean radius of curvature r vanishes,
and this equation does not make sense anymore. We will choose the equation (146) as the simplest choice
for the following numerical applications. The parameter gI is fixed to 7.910−2 because lower values yield
unphysical negative value of the Zener coefficient i. The grain growth rate Gi is given by

Gi = ggrow
i exp

(
−Egrow

i

RT

)
, (148)

where R is the gas constant, T is the temperature, and gi and Egrow
i are, respectively, a prefactor and an acti-

vation energy (Table E1). As the phases volumic fraction may have an important impact on the grain-sizes
growth rates, we display on Figure E4 the grain sizes of during grain growth using the grain growth law of
Dresen et al. (1995) for anorthite (phase 1) and Fisler et al. (1997) for enstatite (phase 2) computed with
varying 𝜙1. The mixing variable S growth until the aggregate reach the maximum mixing possible, that
is, all the intraphase boundaries have disappeared in the less abundant phase, all its grains are therefore
dispersed within the “matrix” phase. As expected, the maximum S value is reached for 𝜙1 = 𝜙2 = 0.5
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(Figure E4, cyan curves), while strongly different volumic fractions yield a weaker mixing (Figure E4, green
and brown curves).
4.2.3. Deformational Work Partition Fractions
To constrain the value of the deformational work partition fraction 𝔣Di, we consider the case of a pure phase
aggregate, where according to De Bresser et al. (2000), we should obtain steady-state when the mean grain
size reaches the field boundary. This assumption allows to compute the corresponding partition functions
𝔣Di using equation (134) in the case of 𝜙1 = 1 and taking into account that FDi = 𝔣Di∕2:

𝔣Di =
2Ci

Di3
ci𝜓

∗
, (149)

where ci is the transition grain size computed using equation (84), and the stresses are evaluated numer-
ically using equation (119). With the rheological parameters summarized in Table E1, this equation yields
the following 𝔣Di values for each phase.

The dimensionless variance 𝜎 of the experimental grain-size distributions used to constrain the flow laws
parameters is estimated from the Rybacki and Dresen (2000) for anorthite. The value of 0.8 yields a
steady-state grain size on the field boundary for a partition fraction 𝔣Di of 9.844510−6 as depicted on Table E2
column 3. For olivine and diopside, the values for 𝜎 and 𝔣Di are estimated by computing the steady-state grain
size using equation (92) and comparing the resulting values to the experimental stress/grain-size curves dis-
played in Figure E5. For the grain sizes to achieve steady-state on the field boundary requires the value of
𝜎 and 𝔣Di displayed in Table E2 columns 2 and 3, respectively. In the case of olivine, our estimated value
lies within the range predicted by the Mulyukova and Bercovici (2017) parametrization (𝔣Di = 9.9 10−4 to
1.5 10−11 depending on the chosen activation energy) for a temperature of 1,000 K, taking into account the
value of i. For the following computation, we therefore use the values computed for the pure phase aggre-
gate and displayed in Table E2 last column, while assuming that the two phases share similar normalized
variance 𝜎. This does not change the values computed for anorthite and olivine; however, the value of 𝔣Di
for pyroxene using a dimensionless variance of 0.8 is displayed in Table E2 column 4.

One of the main parameter of the model is the partition function 𝜒 i between intraphase and interface grain
boundaries (between i and r). So far, we cannot explicitly constraint its potential range of values. However,
a discussion on the expected behavior of our set of variables with respect to the texture evolution during
deformation is able to provide significant insight on 𝜒 i.

First, it is expected that dislocation creep forms grain clusters (for instance, recrystallized tails around por-
phyroclasts; Passchier & Trouw, 2006; Raimbourg et al., 2008), which could be deformed as the deformation
goes on. In this case, when a new small grain forms, a large portion of its boundary remains “intraphase.”
In the extreme limit, one could think of a large grain segmenting in smaller ones without any change of
its extern boundary. Within our model framework, this case would lead to a mean radius of curvature
decreasing more slowly than the mean grain size yielding a decrease of S, the degree of mixing.

Second, when classical diffusion creep becomes the dominant mechanism, the mean grain size increases.
This results from the migration of intraphase grain boundary in order to decrease surface tension energy.
Simultaneously, grain growth involves a smoothing of the interface, but interfacial grain boundaries den-
sity would not decrease at the same rate than intraphase boundaries densities. Indeed, for one grain to be
consumed by another one separated by the other phase requires mass transfer of one phase across the other
one, a process slower than simple intraphase boundaries migration between two grains of the same phase.
The corresponding evolution of our variables yields mean grain sizes i growing much faster than the mean
interface curvature radius r. As a consequence, the aggregate degree of mixing increases because of grains
clusters are consumed by the growing grains.

Eventually, if any processes reducing grain size is active in the diffusion creep domain, the formation of a
new small grain involves the creation of an important amount of interfacial area. In this model, this results
in a difference between the rate of decrease of the grain size and the interface mean radius of curvature, the
later decreasing more rapidly. The main parameter controlling the relative evolution of i and r rates is the
function 𝜒 i. For anorthite compositions, a value below 𝜒 i = 0.5 yields an interface mean radius of curvature
of the interface decreasing more rapidly than the grain size, while a value of approximately 𝜒 i = 0.7 leads
to similar rates of evolutions. We have chosen the 𝜒 i = 1 value to be consistent with this interpretation.

BEVILLARD ET AL. 19



Geochemistry, Geophysics, Geosystems 10.1029/2018GC007881

4.3. Application to a Gabbroic Aggregate
4.3.1. Mono-Phase Deformation and Grain Size Reduction in the Diffusion Creep Regime
Figure E6 depicts the effect of a grain-size reduction mechanism active in diffusion creep domain. In the case
where no grain-size reduction is allowed within the diffusion creep regime (Figure E6, blue solid lines), the
anorthite grain size stabilizes on the dislocation/diffusion transition grain size depicted by the blue-dotted
line. The rate of grain-size decrease is controlled by the partition fraction 𝔣Di

adjusted in section 4.2.3 to
match the field boundary hypothesis. The small weakening observed on the stress curve is due to the por-
tion of the grain-size distribution that is already deforming in the diffusion creep domain when the mean
grain-size approach the transition between the two domains. If a grain-size reduction mechanism is active
in the diffusion creep domain (Figure E6, red solid lines), as expected, both the steady-state grain size and
stress appear much smaller than the ones reached in the previous case, highlighting the role such a mech-
anism to weaken the material. The importance of this effect is related to the partition fraction 𝔣Ni. Within
our model framework and given the chosen parameters, a portion function 𝔣Ni ≃ 160𝔣Di is required to reach
the Post and Tullis (1999) piezometer. Therefore, if the mechanism involved remains compatible with a
dissipation of deformation work under the form of surface tension energy, it has to be much more efficient.
4.3.2. Bi-Phase Aggregate, Dislocation Creep, and Phase Mixing
Figure E7 depicts a deforming two-phase aggregate of gabbroic composition (70 % anorthite/30% diopside)
computed with the rheologies depicted in Table E1. If no energy storage in the diffusion creep regime is
allowed (a), the two mean grain sizes 1 and 2 stabilize on the field boundary (dotted green and blue
lines). The rates of evolution of the phases mean grain sizes and interface mean radius of curvature depend
mostly on the value of the coarsening rate ĜI (equation (146)). As expected, the interface density 𝛼 achieves
steady-state when the value of the smallest phase grain boundary density is reached. The mixing degree S
(magenta solid line) displays a decrease when dislocation creep is dominant. This is due to the small rate of
decrease of r with respect to 1 and 2. An important stress drop is synchronous of the mechanism transi-
tion due to the most abundant phase grain size (anorthite, blue lines) stabilizing below the field boundary.
The minimum stress is reached at about 1 My.

If an active grain-size reduction mechanism is active in the diffusion creep domain (𝔣Ni ≠ 0, Figure E7b), the
behavior of the main variables appears much more disturbed. Both mean grain sizes show a sharp decrease
at the transition between dislocation and diffusion creep and reach smaller values than presented in the case
Figure E7a. The interface density appears to achieve steady-state near the smaller grain boundary density.
The computed steady-state grain sizes appear compatible with the fine grain size and the mixture pattern
observed in natural ultramylonites (Drury et al., 2011; Warren & Hirth, 2006). The behavior of the mixing
variable S appears similar to the case Figure E7a during dislocation creep but displays a smaller increase
when diffusion creep is dominant while the contrary would have been expected. The stress decrease is very
sharp, and the smallest stress value are reached as soon as diffusion creep becomes active and much sooner
(30,000 years) than the case without important grain-size reduction in the diffusion creep regime.

The final grain size and the difference between the two phases depend mostly on volumic fraction as illus-
trated by Figure E8. Especially, anorthite grains can reach a size compatible with the Post and Tullis (1999)
piezometer for small volume fractions.

5. Discussion
5.1. Model Objectives
Natural shear zones or shear bands are characterized as “band-like structures of higher strain and vorticity
than their surrounding” (Mancktelow, 2002). This definition appears valid at all the scales where deforma-
tion localization is observed, that is, from the thin section (millimeters) to regional scales (100 km). From a
mechanical point of view, such a localization phenomenon requires stress weakening, which could results
from great variety of control factors, over the involved range of scales (White et al., 1980). However, grain-size
reduction appears to be a very common feature of deformation localization whatever the scale of observation.
Whether it is a consequence or a cause of the related high strain is still largely debated. In the case of rel-
atively homogeneous materials (granites, gabbro, and peridotite) where neither preexistent heterogeneities
of higher scales nor external factors could be identified, the inherent rock mechanical properties have to
be the crucial factors to explain rock complex rheologies especially deformation localization (Raimbourg
et al., 2008; Sullivan et al., 2013). These mechanical properties are determined by the rock microstructural
organization, that is, the rock texture. The rock texture depends both on its nature (the mineral phases that
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are present, their proportions, and chemical compositions) and its history (the deformation history and a
resulting preexistent fabric and the thermal history that control the rate of grains recovery).

From a numerical point of view, geodynamical models are based on the known deformation mechanisms,
and the related experimental data provided the hypothesis that the results obtained at high experimental
strain rate (10−5 to 10−7s−1) can be linearly extrapolated to geological ones (10−12 to 10−14s−1). The flow laws
(see Appendix A) related to these mechanisms are yet the only available mean to connect strain rate to stress
for geological materials.

The model presented here aims to connect the evolution of rock textures with the underlying dominant
creep mechanisms while keeping with the self-consistent framework of the grain damage theory. This is
obtained by linking the theoretical evolution of the statistical variables described by our set equations to the
observation and interpretation of natural mylonitic texture. To this end, it is crucial not only to measure and
constrain the evolution of phases mean grain sizes during deformation and grain recovery but also to define
and characterize a set of variable able to fully describe the variety of mylonite textures. To serve this purpose,
the self-consistent physical framework provided by the Bercovici and Ricard (2012), Ricard and Bercovici
(2009), and Rozel et al. (2011) grain damage theory appears to be of great efficiency. Indeed, the continuum
approach using statistical variables allows to represent geological processes over a wide range of scales and
statistical variables can easily be compared to natural or experimental measures.

In this model, we consider a set of five statistical variables to be sufficient in describing the microscopic
texture characterizing a mylonitized two-phase aggregate. These variables are the two mean grain sizes 1
and 2, the mean interface curvature radius r which depicts the overall coarseness of the interface area
between the two phases and eventually the phases volumic fractions 𝜙1 and 𝜙2 = 1 − 𝜙1. If the whole
grains-size distributions are taken into account, the assumption of self-similar distribution (Rozel et al.,
2011) implies that all distributions parameters are only function of the mean i, in this case the normalized
variance 𝜎 (normalized by the mean grain-size) also has to be fixed (see section B2). Even if, rigorously
speaking, we do not account for the anisotropic fabric ubiquitous in ductile deformation, the “roughness”
variable i could to some extent be regarded as a measure of grain shape variation (stretching and distortion
of crystal surface), but we keep it constant in the current formalism.

5.2. Zener Pinning, Phase Mixing, and Texture Evolution
In dealing with two-phase aggregates, Bercovici and Ricard (2012) proposed a micromechanical model to
account for the effect of interface in grain-size evolution, eventually yielding an equation where Zener pin-
ning not only impedes grain recovery but also actively promotes grain-size reduction during deformation.
We consider that the Zener pinning effect is only relevant to grain coarsening. This leads to a grain-size
equation where the Zener coefficient i appears only in the coarsening term of equations (112) and (113).
We achieve this by proposing a partition function 𝔣𝛼i of the Zener coefficient i (equation (110)).

Unlike previous studies (Bercovici & Ricard, 2012), we do not assume entire independence of the interface
density 𝛼 on the two phases mean grain sizes i. We use the Zener pinning mathematical description of
Hillert (1965) and Bercovici and Ricard (2012) in order to propose an equation for 𝛼 that depends on the full
set of statistical variables (1, 2, r, 𝜙1, and 𝜎). Thus, each grain-size equation appears related on r and vice
versa. This dependence implies to modify the evolution equation for the interface mean curvature radius,
as both coarsening and damage term appears now dependent on grain size. Furthermore, in spite of reliable
knowledge of the related micromechanisms, we choose to allow for work storage in the diffusion creep
domain. Within the general framework of this model, we show that such a mechanism requires a partition
fraction at least 160 time the dislocation creep one in order to reach the steady-state grain size predicted by
the Post and Tullis (1999) piezometer (Figure E6). The presented model allows for different phase rheologies
and grain growth laws. As a consequence, an expression for the interface mean curvature radius coarsening
rate ĜI that is slightly different than the Bercovici and Ricard (2012) one is proposed (equations (145) and
(146)). The resulting coarsening rate appears higher, but it does not significantly impacts the results.

In order to represent the textural evolution of a two-phase aggregate, we are especially interested in mea-
suring the amount of mixing between the two phases. Indeed, the evolution of mixing (Figure E2) can be
regarded as a critical clue to characterize both the active deformation mechanisms and the relative strength
of the deforming material (Bercovici & Skemer, 2017; Cross & Skemer, 2017; Menegon et al., 2015; Precigout
& Stunitz, 2016). Taking into account the proposed set of variables, the degree of mixing of the aggregate and
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its evolution are described using the ratio between the interface area 𝛼 and the sum of all grain boundaries
within the control volume 𝛼11 + 𝛼22 + 𝛼 (Heilbronner & Barrett, 2014; see section 3.5.3 and equations (115)
and (116)). This variable called S measures the quantity of grain clusters and their relative sizes with respect
to the mean grain sizes. Therefore, taking into account the equation for 𝛼 (66) and 𝛼i (15), the evolution
of the mixing state between the phases is controlled by the difference between the grain size i and mean
interface curvature radius r. Mixing requires the mean interface curvature r to be smaller than the mean
grain sizes, while phase segregation (or clustering, because formation of clusters requires intraphase grain
boundaries creation) requires the mean grain sizes to be smaller than the mean interface curvature.

In the presented formalism, the dependence of the partition function 𝔣𝛼i implies that the damage term of the
interface mean curvature radius equation is coupled to the grain-growth slow down (equation (111)). The
evolution rates of these variables are directly controlled by the partition function 𝜒 i, which is imposed to be
1 in order to couple interface damage with Zener pinning and the interface coarsening rate ĜI . Therefore,
constraining the forms or the values of 𝜒 i requires to constrain the effect of deformation mechanisms on
the textural characteristics of the aggregate. Accordingly, the grain damage and mixing that is depicted in
Figure E8a results from this coupling. They are coherent with the effect of a nucleation mechanism on the
aggregate (Precigout & Stunitz, 2016) because nucleation would promote both the formation of very small
grains and an important quantity of interface grain boundaries. However, here this effect relates on the Zener
pinning coefficient promoting the damage of interface to the point where the Zener pinning itself becomes
negative (i < r; see equation (57)) which cannot explicitly be related to nucleation.

5.3. Thermodynamics and Grain-Size Distributions
In the physical development of section 3, we use Onsager (1931) and Fischer et al. (2014) thermodynamical
formalism to infer the relationship between the evolution equations. However, dealing with the full coupling
between the variables describing a rock fabric and stress/strain-rate tensor requires our variable to be of the
same tensorial order (De Groot & Mazur, 1984).

In theory, the deformation work rate term of the entropy production equation should be written as the
product of the strain rate (a thermodynamical flux) and the stress (a dissipation force; De Groot & Mazur,
1984). However, because of the non-Newtonian rheology of mineral aggregates, the stress depends on the
strain rate; therefore, the dissipation force is a function of the thermodynamical flux which requires a more
general thermodynamical extremum principle. As a consequence, keeping with the hypothesis of linear
and homogeneous evolution equations yields formally an unusual deformation work rate equation where
the dissipation force has to be the deformation work rate while its conjugate thermodynamical flux is 1
(equations (74) and (95)). In such a framework, we show that equations equivalent than the ones of previous
studies (Bercovici & Ricard, 2012; Rozel et al., 2011) can be obtained.

Concerning the shapes of the grain-size distributions, we assume self-similar log-normal grain-size dis-
tributions (Rozel et al., 2011). This choice simplifies the mathematical treatment and remains reasonably
consistent with natural observations in mono-phase (Faul & Scott, 2006; Feltham, 1957; Slotemaker, 2006)
and polyphase (Brodhag & Herwegh, 2010; Dimanov et al., 2003) aggregates. Rozel et al. (2011) proposes to
account for the effect of self-similar grain-size distribution (variance normalized by the mean) on the prefac-
tor of diffusion creep rheological law (see section B2 and equation (A12)). However, experimental flow laws
parameters already incorporate this effect (characteristic of the experimental aggregate). Therefore, allowing
a variable variance in the model requires a correction of the bi parameter using the experimental variance of
the aggregate used to constrain the rheological law (Table E2). As illustrated by Figure E5 (red-dashed line),
taking into account this correction, the variance of the grain-sizes distribution has a nonnegligible impact
on the aggregate rheology by shifting the steady-state mean grain size toward smaller sizes. When the mean
grain size reaches the field boundary, most of the grains are already deforming in the diffusion creep regime,
while in term of mass, the phase is still predominantly recrystallizing.

Eventually, upscaling this model from 0.1–1 m to shear-zone scales (100 m to 10 km) requires to account for
the temperature variations due to dissipative processes. Indeed, the energy not dissipated by grain-damage
mechanisms has to be dissipated through heat. However, temperature increase as a result of deformation
(“shear heating”) is not expected to play a major role at the space/time scales that are in the scope of this
study. Indeed, heat diffusion would be too efficient, and thermal dissipation cannot result in an effective
viscosity drop (low Brinkmann number). Therefore, we do not treat heat sources and fluxes in this study.
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Indeed, due to the nonlinear dependence on temperature of rheological laws (Arrhenius), Onsager's linear
formalism would not be sufficient and a nonlinear thermodynamical formalism required.

6. Conclusion and Perspectives
This study provides a model for the evolution of two-phase rock texture evolution during ductile deforma-
tion from the two-phase damage theory of Bercovici & Ricard (2012, 2013). The coupling between mean
grain size and interface density allows us to track the effect of microscopical deformation mechanism on the
texture and to propose an equation to transfer this effect on the macroscopical scale. Grain-size relevant for
ultramylonites could be reached either by considering the activation of a grain-size reduction mechanism in
the diffusion creep domain or by the interaction between interface and intraphase grain boundaries area in
two-phase aggregate (section 3.5.2). The evolution of phases mixing during long-term deformation at con-
stant strain rate displays a complex global aggregate strength involving important stress weakening whose
impact has to be investigated at larger scales. This rheology is likely to impact the initiation and dynamic
of shear zones and to study the scale transfer of strain localization from shear bands to fully developed
shear zones.

Even if the observation of natural and experimental rock samples provides meaningful insights on the rel-
ative behavior of the model variables in order to accurately represent the textural evolution of rock during
deformation, a reliable set of quantified data is required to constrain the magnitude of the variables and their
relationships. Measured mean grain sizes and phase proportions are generally available in the literature
treating of rock microstructures, and grain-size distribution parameters appear to be increasingly included.
However, there is few data available on interface and mixing quantification (Kruse & Stunitz, 1999). In
order to test the validity of our set of equations in accurately describing texture evolution during deforma-
tion, we will constrain their values and relations using natural mylonites samples. While not in the scope of
the current model, the understanding of grain-size reduction mechanisms during diffusive creep requires a
micromechanical model in order to link the magnitude of the partition fraction 𝔣Ni to the aggregate fabric,
intensive parameters, and deformational work rate.

In mylonitized rocks, the microstructural fabric displays a strong anisotropy characteristic of the magnitudes
and orientations of principal stresses. However, in the current state of the model, considering scalar variables
implies textural isotropy. Acknowledging for the strong anisotropy observed in natural samples thus requires
to consider tensorial variables accounting for textural variations in all space directions. This is also required
to self-consistently link the geometry of mylonite texture to the stress and strain-rate tensors.

The model of textures evolution proposed here will be implemented in a 2-D framework to study its impact
on strain localization and ductile deforming rock dynamic at higher scales. Indeed, the framework provided
by the Bercovici and Ricard (2012) theory allows to study the effect of scale transfer between the length scale
on which the statistical variables are averaged (the volume characteristic size represented by the averaged
variables) and the length scale of the geodynamical model where each point yields an effective viscosity that
depends on the statistical variables. Therefore, numerical results could be discussed with respect to natural
rocks at two different scales which could provide efficient mean to both constraint the physics of the model
and the effect of textural variables on the evolution of the whole material rheology.

Appendix A: Mass Conservation
According to Bercovici and Ricard (2012), considering the two phases to fill the entire control volume (no
gap or void of any king the grains), the two phases incompressible, and no mass transfer between the two
phases, the mass conservation equations reads

𝜕𝜙i

𝜕t
+ ∇.

(
𝜙ivi

)
= 0, (A1)

where the term vi accounting for phase velocity could be potentially different for each phase. However, as
stated in Bercovici and Ricard (2012), in presence of two solid silicates phases, the relative difference between
v1 and v2 is considered negligible so that v1 = v2 = v. Therefore, the velocity averaged over the control
volume is v̄ =

∑
i
𝜙ivi = v, and there is only one mass conservation equation that yields

𝜕𝜙

𝜕t
+ v.∇𝜙 = 0 and ∇.v = 0, (A2)
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where 𝜙 could be indifferently 𝜙1 or 𝜙2. In a finite volume ΔV, the number of grain between sizes R1 and
R2 is

ni = ∫ΔV ∫
R2

R1

𝜈idR𝜙idV . (A3)

𝜈i being the grain-size distribution function. The control volume ΔV is considered open and fixed, and in
the same conditions, the portion of grain-size space between two grain sizes R1 and R2 is fixed and open to
mass transfer from other populations in the grain-size space. Therefore, the rate of change of grains number
reads

𝜕ni

𝜕t
= ∫ΔV ∫

R2

R1

𝜕𝜈i𝜙i

𝜕t
dRdV (A4)

= ∫ΔA ∫
R2

R1

𝜈idR𝜙ivi · n̂dA − ∫ΔV

[
𝜈iṘi

]R2
R1
𝜙idV + ∫ΔV ∫

R2

R1

ΓidR𝜙idV , (A5)

where ΔA is the surface area of the volume ΔV, n̂ is the unit vector normal to a surface element dA, Ṙi is
the growth rate of a grain of size R, and Γi is the discontinuous transfer of populations dispersed within the
grain-size distribution resulting of breaking or fusing of grains. Considering the limit where R2 − R1 → 0,
taking in account that vi and 𝜙i are independent from the grain-size R and using Stokes theorem yields the
distribution continuity equation (Bercovici & Ricard, 2012, appendix B, equation, B.11):

𝜕𝜙i𝜈i

𝜕t
+ ∇.

(
vi𝜙i𝜈i

)
+ 𝜙i

𝜕

𝜕R
(
Ṙi𝜈i

)
= Γi𝜙i, (A6)

which, using the equation (A1), could be written
Di𝜈i

Dt
+ 𝜕

𝜕R
(
Ṙi𝜈i

)
= Γi, (A7)

with the differential operator:
Di

Dt
= 𝜕

𝜕t
+ vi.∇. (A8)

From there, it is possible to write the evolution of any grain property 𝜃̆i:

DiΘi

Dt
= ∫ΔV ∫

∞

0

(
𝜈i

[
Di𝜃̆i

Dt
+ Ṙ

𝜕𝜃̆i

𝜕R

]
− 𝜕

𝜕R
(
Ṙi𝜃̆i𝜈i

)
+ 𝜃̆iΓi

)
dR𝜙idV (A9)

= ∫ΔV ∫
∞

0

(
𝜈i

di𝜃̆i

dt
− 𝜕

𝜕R
(
Ṙi𝜃̆i𝜈i

)
+ 𝜃̆iΓi

)
dR𝜙idV , (A10)

defining the full derivative in grain-size space:
di

dt
=

Di

Dt
+ Ṙi

𝜕

𝜕R
. (A11)

Given the fact the distribution must vanish at a definite maximum and minimum grain size (i.e., Ṙi𝜃̆i𝜈i → 0
if R → 0 or ∞) and that 𝜃̆i is an extensive property then equation (A10) yields

DiΘi

Dt
= ∫ΔV ∫

∞

0

(
𝜈i

di𝜃̆i

dt
+ Γi𝜃̆i

)
dR𝜙idV . (A12)

Written in term of the grain mass, it reads
DiMi

Dt
= ∫ΔV ∫

∞

0

(
𝜈i

dim̆i

dt
+ Γim̆i

)
dR𝜙idV , (A13)

where m̆i is the mass of one grain and Mi the total mass of phase i in the volume ΔV. The volume ΔV is
closed, assuming that locally within its limits, mass is conserved, thus DiMi

Dt
= 0 which implies

∫
∞

0

(
𝜈i

dim̆i

dt
+ Γim̆i

)
dR = 0. (A14)
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So that, the sum of discontinuous and continuous mass transport within the volume ΔV must satisfy mass
conservation. Furthermore, following Ricard and Bercovici (2009), it is assumed that continuous processes
(grains growing or shrinking) and discontinuous ones (breaking or fusing of grains) are decoupled:

∫
∞

0

dim̆i

dt
𝜈idR = 0, (A15)

∫
∞

0
Γim̆idR = 0. (A16)

A general differential operator is defined as

𝔇i

𝔇t
=

di

dt
+

Γi

𝜈i
≡ Di

Dt
+ Ṙi

𝜕

𝜕R
+

Γi

𝜈i
, (A17)

so that equations (A12) and (A13) read:

DiΘi

Dt
= ∫ΔV ∫

∞

0

𝔇i𝜃̆i

dt
𝜈idR𝜙idV , (A18)

DiMi

Dt
= ∫ΔV ∫

∞

0

𝔇im̆i

dt
𝜈idR𝜙idV = 0. (A19)

Appendix B: Grain-Size Distributions
B1. Self-Similar Grain-Sizes Distributions
The grain-sizes distribution (𝜈i) evolution is calculated using the same self-similarity hypothesis than Rozel
et al. (2011). Self-similarity implies that the distribution shape remains similar throughout deformation.
As a consequence, all the distribution moments (mean, variance, skewness, etc.) are functions of a mean
grain-size i which is time dependent. If this assumption is valid for grain growth in the limit of long times,
there is qualitative arguments to maintain it even in the presence of deformation. Indeed, small grains should
be less sensitive to deformation than bigger ones. Consequently, the distribution variance and mean are
driven down simultaneously. Rozel et al. (2011) defines the self-similar grain-size distribution 𝜈i as

𝜈i (R, x, t) = B
(i (t)

)
H (u) , (B1)

where i is the time-dependent characteristic mean grain size of phase i, u = R∕i is the self-similarity
variable (assumed identical between the two phase for the sake of simplicity even if it is not truly exact),
B
(i

)
an amplitude function, and H (u) the shape function of the distribution. Taking into account the

assumption that vi = ṽ = v, all the material derivatives become equivalent to D∕Dt = 𝜕∕𝜕t+ v.∇. Therefore,
all variables that are function of both time t and space x become function of time t following a particle with
a velocity v, that is, 𝑓 (R, x, t) = 𝑓 (R, t). Using equation (6),

∫
∞

0
V̆𝜈idR = 1. (B2)

The amplitude B can be directly derived:

∫
∞

0
V̆𝜈idR = 4

3
𝜋4

i B
(i

)
∫

∞

0
u3H (u) du = 1, (B3)

yielding

B = 3
4𝜋𝜆34

i

. (B4)

In this equation the term 𝜆3 is the third moment of the grain-size distribution, defined according to Rozel
et al. (2011) as

𝜆n = ∫
∞

0
unH (u) du, (B5)
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for n = 3. Accordingly, the distribution 𝜈i yields from equations (B1) and (B4):

𝜈i =
3H(u)

4𝜋𝜆34
i

. (B6)

Derived with respect to time variable, it yields

D𝜈i

Dt
=
𝜕𝜈i

𝜕t
= − 3

4𝜋𝜆35
i

di

dt
1

u3

d
(

u4H
)

du
. (B7)

Rozel et al. (2011) demonstrated that the form of D𝜈i∕Dt must constrain the form of Ṙi and Γi because they
have to be symmetrical in order to be balanced in equation (A7), thus leading to

Γi =
3

4𝜋𝜆35
i

 (i
) 1

u3

d
(

u4H
)

du
, (B8)

where D
(i

)
is an amplitude function of i accounting for discontinuous fluxes of grains populations.

Symmetrically, the 𝜕(Ṙi𝜈i)
𝜕R

term reads

𝜕
(
Ṙi𝜈i

)
𝜕R

= 3
4𝜋𝜆35

i

C
(i

) 1
u3

d
(

u4H
)

du
, (B9)

which after integration yields

Ṙi = C
(i

)( b
H

+ u + 3
H ∫

u

0
H
(

u′) du′
)
, (B10)

where C
(i

)
is the amplitude function of i that account for the continuous fluxes of grains populations.

Substituting equations (B7)–(B9) into the equation (A7), Rozel et al. (2011) proposes the mean grain-size
kinetic equation:

di

dt
= C

(i
)
− D

(i
)
. (B11)

B2. Log-Normal Grain-Size Distributions
To explore the model behavior, we need to choose the form of the self-similar distribution. A log-normal
distribution function, that is, a Gaussian distribution when plotted in logarithmic coordinates, appears to
be a reasonable approximation for natural grain-size distributions, considering the mean of the grain-size
distribution plotted in logarithmic coordinate as the “mean grain size”i (Rozel et al., 2011). The self-similar
distribution reads

H(u) = 1√
2𝜋𝜎u

e−log(u)2∕(2𝜎2), (B12)

where u is the self-similar variable R∕i, and 𝜎 is the dimensionless variance of the distribution plotted as
a function of ln

(
R∕i

)
. This choice yields the following important quantity from equation (B5):

𝜆n = ∫
∞

0
unH(u)du = exp

(
n2𝜎2

2

)
. (B13)

The true mean grain size reads

⟨R⟩ = ∫ ∞
0 R𝜈 (R) dR

∫ ∞
0 𝜈 (R) dR

= i exp
(
𝜎2

2

)
, (B14)

and the variance function of i yields

𝜎2 (i
)
= 2

i exp
(
𝜎2) [exp

(
𝜎2) − 1

]
. (B15)

Appendix C: Thermodynamics of Two-Phase Aggregates
C1. Energy
Using the framework described above, the rate of total energy (where the volume kinetic energy is neglected)
derived by Bercovici and Ricard (2012) and Ricard and Bercovici (2009) reads

𝜕E
𝜕t

= −J𝜀 − J𝛾 + Wb + Ws + Wl − ∫
𝛿A

qdA + ∫
𝛿V

QdV , (C1)
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with

1. J𝜀: energy flux due to grain internal energy and surface tension of grain boundaries;
2. J𝛾 : energy flux due to surface tension of interfaces between phases;
3. Wb: work done by body forces;
4. Ws: work done by surface forces;
5. Wl: work done by line forces;
6. q: surface heat flux; and
7. Q: heat source.

The Gibbs energy written for a grain reads (Bercovici & Ricard, 2012, appendix E, equation E.6):

di𝜀̆i

dt
= T

di̆i

dt
− P̆i

d
(
1∕𝜌i

)
dt

. (C2)

𝜀̆ is the grain specific internal energy, ̆i is the grain specific entropy, T is the temperature within the control
volume, Pi the pressure in phase i, and 𝜌i the phase i density. The chemical potential of a grain is (Bercovici
& Ricard, 2012, appendix E, equation E.7):

𝜇̆i = 𝜀̆i − T̆i + P̆i𝜌i. (C3)

Taking into account that

1. the temperature T is assumed homogeneous across all grains of all phases within the control volume 𝛥V.
2. both phases are incompressible which leads to d𝜌i

dt
= 0 and d𝜀̆i = TdS̆i and applying expansion of scale

yields 𝜀̆i = TS̆i and 𝜇̆i = P̆i∕𝜌i (Bercovici & Ricard, 2012, appendix E).
3. the velocities of both phases are assumed very close, that is, v1 = v2 = ṽ = v.
4. the effective pressure Πi = Pi + 𝛾ii includes the work done by grain boundary surface tension on the sur-

face of the control volume (i being the average grain-boundary curvature of phase i; Bercovici & Ricard,
2012, appendix D).

5. the effective pressure difference ΔΠ is defined as ΔΠ = Π2 − Π1 (Bercovici & Ricard, 2012, appendix D).
6. the effective interface surface tension is defined as 𝛾I = 𝛾I −

∑
i𝜙i𝛾i with 𝛾̃I being the interface surface

tension energy and 𝛾 i the intraphase grain boundaries surface tension energy (Bercovici & Ricard, 2012,
appendix E.1).

7. the phases volume fraction is defined as 𝜙 = 𝜙1 = 1 − 𝜙2 (Bercovici & Ricard, 2012, appendix D).

and using standard method (see; Ricard & Bercovici, 2009 and; Bercovici & Ricard, 2012, appendix E.1 for
details), the equation (C1) eventually reduces to

∑
i
∫

∞

0

(
T
𝔇i

(
m̆i𝜀̆i

)
𝔇t

− P̆i
𝔇i

(
m̆i∕𝜌i

)
𝔇t

+ 𝜇̆i
𝔇𝔦m̆i

𝔇t
+ 𝛾i

𝔇i̆i

𝔇t

)
𝜈idR + 𝛾I

D̃𝛼
D̃t

= c(Δv)2 + 𝜓∗ − ΔΠ D̃𝜙
D̃t

+ Q − ∇.q,

(C4)

where m̆i is the mass of grain of phase i, c(Δv)2 is a drag coefficient depending on the phases velocities, Q is
the heat source within the control volume, ∇.q is the heat fluxes across the control volume boundaries, and
the differential operator 𝔇∕𝔇t is the material derivative in the framework of phase i defined by (A15):

𝔇i

𝔇t
=

di

dt
+

Γi

𝜈i
, (C5)

and the differential operator D̃∕D̃t is the material derivative in the framework of interface defined by the
equation:

D̃
D̃t

=
∑

i
𝜔i

D
Dt
. (C6)

The coefficient 𝜔i accounts for how the interfacial surface energy is partitioned between each phase (see;
Bercovici et al., 2001; Bercovici & Ricard, 2003, 2012, appendix D).
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C2. Rate of Entropy Production
The energy balance equation, as well as the Second Law of Thermodynamics, allows to infer the entropy
production rate. As this production must inevitably be positive in the case of irreversible work, it becomes
possible to use nonequilibrium thermodynamics to infer phenomenological laws and damage relations (De
Groot & Mazur, 1984). Following Bercovici and Ricard (2012, appendix E.2), the total entropy of the control
volume ΔV is

 = ∫ΔV

∑
i
𝜙i ∫

∞

0
m̆iS̆i𝜈idRdV . (C7)

The Second Law of Thermodynamics states that entropy production must be equal or greater than to zero
which is written as

D
Dt

= ∫ΔV

∑
i
∫

∞

0

𝔇i
(

m̆iS̆i
)

𝔇t
𝜈idRdV ⩾ −∫ΔA

1
T

q.n̂dA, (C8)

where the last term, on the left-hand side of the inequality, represents the entropy flux through the surface
of the control volume. Therefore, using the equation (C3) divided by T which is assumed uniform at every
points of the control volume, the entropy production Σ reads

Σ =
∑

i
𝜙i ∫

∞

0

((
P̆i∕𝜌i − 𝜇̆i

) 𝔇im̆i

𝔇t
− 𝛾i

𝔇i̆i

𝔇t

)
𝜈idR − 𝛾I

D̃𝛼
D̃t

− ΔΠ
D̃𝜙1

D̃t

c(Δv)2 + 𝜓∗ + Q − 1
T

q.∇T ⩾ 0,

(C9)

where ̆i is the boundary area of a grain of size R̆ defined by equation (3). According to the assumptions
made for equation (C3), that is, 𝜇̆i = P̆i∕𝜌i, equation (C9) becomes

Σ = −
∑

i
𝜙i𝛾i ∫

∞

0

𝔇iĂi

𝔇t
𝜈idR − 𝛾I

D̃𝛼
D̃t

− ΔΠ
D̃𝜙1

D̃t
+ c(Δv)2 + 𝜓∗ + Q − 1

T
q.∇T ⩾ 0, (C10)

which is the relation used by Bercovici and Ricard (2012) to derive phenomenological laws plus the heat
source and fluxes terms. This equation describes the different entropy sources related to intraphase grain
boundaries, interfaces, phases volumic fractions, deformational work, heat production, and fluxes. The drag
work term c

(
Δvi

)2 will be neglected as we expect two mineral phases to have macroscopic velocities of the
same order (Bercovici & Ricard, 2012). At the scales involved in the following model, the heat diffusion is
not expected to play a major role; therefore, we neglect the heat production and fluxes terms.
C2.1. Intraphase Grain Boundary Entropy Production Terms
Using the expression of the effective grain area i (see equation (3)):

̆i = ĂiP̆i = 4𝜋R̆2
i P̆i, (C11)

and the definition of the 𝔇∕𝔇t operator (equation (C5)), the first member of equation (C10) yields

−
∑

i
𝜙i𝛾i ∫

∞

0

𝔇̆i

𝔇t
𝜈idR = −

∑
i
𝜙i𝛾i

(
∫

∞

0

d̆i

dt
𝜈idR + ∫

∞

0
̆iΓidR

)

= −
∑

i
𝜙i𝛾i

(
∫

∞

0

dĂiP̆i

dt
𝜈idR + ∫

∞

0
ĂiP̆iΓidR

)

= −
∑

i
𝜙i𝛾i

[
∫

∞

0

(
P̆i + Ăi

dP̆i

dĂi

)
dĂi

dt
𝜈idR + ∫

∞

0
ĂiP̆iΓidR

]

= −
∑

i
𝜙i𝛾i

[
−∫

∞

0

(
P̆i + Ăi

dP̆i

dĂi

)
𝜕
̇̆Ri𝜈i

𝜕R
ĂidR

+∫
∞

0
ĂiP̆iΓidR

]
.

(C12)
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Then, using equations (B8) and (B9) for the continuous (𝜕 ̇̆R𝜈i∕𝜕R̆) and discontinuous (Γi) fluxes of grains
in the grain-size space, respectively, the entropy production terms related to intraphase grain-boundary
evolution eventually reads

−
∑

i
𝜙i𝛾i ∫

∞

0

𝔇̆i

𝔇t
𝜈idR =

∑
i

[
3𝜙i𝛾iC

(i
)

𝜆32
i

∫
∞

0

(
P̆i + Ăi

dP̆i

dĂi

)
1
u

d
(

u4H
)

du
du

−
3𝜙i𝛾iD

(i
)

𝜆32
i

∫
∞

0

P̆i

u
d
(

u4H
)

du
du

]
,

(C13)

where we recall that u = R̆∕i is the self-similarity variable, and H (u) and 𝜆n are, respectively, the
shape function and the nth moment of the self-similar distribution (see Appendix B and equations (B12)
and (B13)).
C2.2. Interface Entropy Production Term
From the entropy production equation (C10), given that D̃

D̃t
=

∑
i𝜔i

d
dt

is the material derivative related
to phase interface, using the fact that

∑
i𝜔i = 1 (see; Bercovici & Ricard, 2012, appendix D), and using

equation (B11), the interface density term reads

−𝛾I
D̃𝛼
D̃t

= −𝛾I

(∑
i

𝜕𝛼

𝜕i

𝜕i

𝜕t
+ 𝜕𝛼

𝜕r
𝜕r
𝜕t

+ 𝜕𝛼

𝜕𝜙1

𝜕𝜙1

𝜕t

)
(C14)

= −𝛾I

(∑
i

𝜕𝛼

𝜕i

[
C
(i

)
− D

(i
)]

+ 𝜕𝛼

𝜕r
𝜕r
𝜕t

+ 𝜕𝛼

𝜕𝜙1

𝜕𝜙1

𝜕t

)
. (C15)

C2.3. Final Entropy Production Equation
Substituting the expressions (C13) and (C15) in (C10) and factorizing yields the entropy production
equation:

Σ =
∑

i

{[
3𝜙i𝛾i

𝜆32
i
∫

∞

0

(
P̆i + Ăi

dP̆i

dĂi

)
1
u

d
(

u4H
)

du
du − 𝛾I

𝜕𝛼

𝜕i

]
C
(i

)
−

[
3𝜙i𝛾iD

(i
)

𝜆32
i

∫
∞

0

P̆i

u
d
(

u4H
)

du
du − 𝛾I

𝜕𝛼

𝜕i

]
D
(i

)}
− 𝛾I

𝜕𝛼

𝜕r
𝜕r
𝜕t

−
(
𝛾I
𝜕𝛼

𝜕𝜙1
+ ΔΠ

)
D̃𝜙1

D̃t
+ 𝜓∗.

(C16)

For the sake of simplicity, we then choose to assume that the grain roughness variable P̆i remains indepen-
dent from the grain-size variable R̆i and constant with respect to time, that is, all the grains of phase i share
the same shape, or the shape of a grain does not depend on its size. Therefore, the variable P̆i is considered
in the following model as a mean parameter i representing the average “shape” of the grains. As a con-
sequence, the grain roughness P̆i is not different from the Πi coefficient proposed by Ricard and Bercovici
(2009, section 2.2) to account for averaged grain shapes. However, we retain the variable P̆i in the current
model. This simplification yields from (C16):

Σ =
∑

i

{[
3𝜙i𝛾ii

𝜆32
i

∫
∞

0

1
u

d
(

u4H
)

du
du − 𝛾I

𝜕𝛼

𝜕i

]
C
(i

)
−

[
3𝜙i𝛾ii

𝜆32
i

∫
∞

0

1
u

d
(

u4H
)

du
du − 𝛾I

𝜕𝛼

𝜕i

]
D
(i

)}
− 𝛾I

𝜕𝛼

𝜕r
𝜕r
𝜕t

−
(
𝛾I
𝜕𝛼

𝜕𝜙1
+ ΔΠ

)
D̃𝜙1

D̃t
+ 𝜓∗,

(C17)

which for log-normal distributions (see section B2) and using equations (B12) and (B13) allow to evaluate
the integrand through integration by parts (Rozel et al., 2011):

∫
∞

0

(
1
u

d
(

u4H
)

du

)
du =

[
u3H(u)

]∞
0 + ∫

∞

0
u2H(u)du

= 𝜆2.

(C18)
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The final entropy production equation reads

Σ =
∑

i

{[
3𝜆2𝜙i𝛾ii

𝜆32
i

− 𝛾I
𝜕𝛼

𝜕i

]
C
(i

)
−

[
3𝜆2𝜙i𝛾ii

𝜆32
i

− 𝛾I
𝜕𝛼

𝜕i

]
D
(i

)}
− 𝛾I

𝜕𝛼

𝜕r
𝜕r
𝜕t

−
(
𝛾I
𝜕𝛼

𝜕𝜙1
+ ΔΠ

)
D̃𝜙1

D̃t
+ 𝜓∗,

(C19)

and making use again of equation (B11) can be reduced to

Σ =
∑

i

[
3𝜆2𝜙i𝛾ii

𝜆32
i

− 𝛾I
𝜕𝛼

𝜕i

]
di

dt
− 𝛾I

𝜕𝛼

𝜕r
𝜕r
𝜕t

−
(
𝛾I
𝜕𝛼

𝜕𝜙1
+ ΔΠ

)
D̃𝜙1

D̃t
+ 𝜓∗. (C20)

Appendix D: Flow Mechanisms, Viscosities, and Deformation Work Rate
D1. Micromechanical Deformation Mechanisms
Even if numerous microscopic, elementary processes are simultaneously involved in ductile rock deforma-
tion (dislocation glide and climb, diffusion through grain boundaries or interiors, and grain boundary slid-
ing), the macroscopic deformation is generally described by two main mechanisms to which experimental
flow laws are associated:

1. dislocation or grain size insensitive creep
2. diffusion or grain-size sensitive creep
D1.1. Dislocation creep
Dislocation creep requires creation and motion of dislocations in the crystal lattice. Recrystallization
operates in parallel to decrease the stored strain energy, resulting, through grain boundaries migration
or the formation of subgrains, in creating new, strain-free, grains of smaller size (see; Drury & Urai,
1990; Shimizu, 2008; Twiss, 1977 for instance). From experimental data, an empirical rheological law as
been proposed:

ė = ai𝜏
ni Dislocation flow law (D1)

where ė is the strain rate, 𝜏 is the deviatoric stress, and ai and n are, respectively, a rheological coefficient
and an exponent depending on phase i and experimentally calibrated.
D1.2. Diffusion creep
Diffusion creep mechanism results from atom diffusion through vacancies in the lattice from the regions
undergoing maximum stress to the minimum stress regions. The grain atoms could diffuse at grain
boundaries (Coble creep, Coble, 1963) or through the grain lattice (Nabarro-Herring creep, Herring, 1950)
depending on the intensive conditions of deformation. It could also imply a component of grain boundary
sliding. Diffusion creep flow law reads

ė = bi𝜏
ni−mi

i Diffusion flow law (D2)

where  is a characteristic grain size. The rheological coefficient bi and the exponent ni and mi both depend
on the mineral phase i considered. Thus, diffusion creep involves a dependence on grain size. In these two
different flow laws, the rheological coefficients ai and bi usually take the form of Arrhenius-type equations:

ai = 𝔞i exp

(
−Edisl

i

RT

)
bi = 𝔟i exp

(
−Ediff

i

RT

)
, (D3)

with 𝔞i and 𝔟i being prefactors, Edisl
i and Ediff

i activation energies, T the temperature, and R the gas con-
stant. The prefactors 𝔞i, 𝔟i, the activation energies Edisl

i and Ediff
i , and the exponents ni, mi are constrained

by experimental studies. Consequently, they are theoretically only valid for a given mono-phase aggregate
with specific chemical composition and grain-sizes distributions. These flow laws defines two mechanical
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domains according to the mean grain size of the deforming aggregate. The transition between these two
mechanisms could lead to mechanical weakening provided that the mean grain size could still decrease
while the material is deforming in diffusion creep domain.

D2. Effectives Viscosities and Deformational Work Rates
We consider the aggregate mechanical strength to be controlled by the dislocation and diffusion creep
rheologies. The corresponding rheological laws (equation (D1) and (D2)) are assumed equivalent to

𝜏 i = 2𝜇disl
i ėdisl, (D4)

𝜏 i = 2𝜇diff
i ėdiff, (D5)

where 𝜏i is the stress tensor, and ė is the strain-rate tensor. These relations are used to define effective
viscosities associated with each deformation domain:

𝜇disl
i = 1

2

(
ai𝜏

ni−1
i

)−1
, (D6)

𝜇diff
i = 1

2

(mi

bi

)
, (D7)

with 𝜏 i being the second invariant of the stress tensor in phase i. The deformational work rates associated
with each mechanism thus yield

𝜓diff
i = 𝜏i ⋮ ėdisl = 2𝜇disl

i ėdisl ⋮ ėdisl = ė2

ai𝜏
ni−1
i

, (D8)

𝜓disl
i = 𝜏i ⋮ ėdiff = 2𝜇diff

i ėdiff ⋮ ėdiff = ė2mi

bi
. (D9)

We assume that within a phase i, all grains share a stress 𝜏̆ i equivalent to the macroscopic stress 𝜏∗ (Bercovici
& Ricard, 2012, appendix F; Rozel et al., 2011). Furthermore, the deformation of a grain can be due to the
two mechanisms acting simultaneously; thus, the total strain rate is assumed to be the sum of the strain rate
related to each deformation mechanism. We therefore use a composite rheology of the form:

ė = ėdisl
i + ėdiff

i =

(
ai𝜏

ni−1
i +

Bi

mi
i

)
𝛕i, (D10)

where the coefficient B = bi
𝜆3−m
𝜆3

accounts for the effect of grain-size distribution variance on the overall
rheology (Rozel et al., 2011). This relation defines the phase i global viscosity:

𝜇i =
1
2

(
ai𝜏

ni−1
i +

Bi

mi
i

)−1

, (D11)

and yields the deformational work rate related to each phase

𝜓i = 𝜏 i ∶ ė = 2𝜇iė2 =

(
ai𝜏

ni−1
i +

Bi

mi
i

)−1

ė2. (D12)

The point where each mechanisms contribute equally to the grain deformation defines a transition grain
size ci given by the equation:

ci =

(
bi

ai𝜏
ni−1
i

)1∕mi

, (D13)
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Appendix E: Table of Used Symbols
These tables gather all the symbols used in the model description as well as the section number in which
they first appear of are defined and the related equation number.

Table E1
Model Parameters

Symbols Value Dimension SI Description Reference
T 1,000 K Temperature
𝛾 1 J Surface tension of grain boundaries and interfaces Duyster and Stockhert (2001)
Adisl

ol 1.10 10−16 Panol s−1 Prefactor of olivine dislocation creep law Hirth and Kolhstedt (2003)

Edisl
ol 5.30 105 J · mol−1 · K−1 Activation energy of olivine dislocation creep law Hirth and Kolhstedt (2003)

nol 3.5 ∅ Stress exponent of olivine dislocation creep law Hirth and Kolhstedt (2003)
Adiff

ol 1.50 10−15 mmol · Pa−1 · s−1 Prefactor of olivine diffusion creep law Hirth and Kolhstedt (2003)

Ediff
ol 3.75 105 J · mol−1 · K−1 Activation energy of olivine diffusion creep law Hirth and Kolhstedt (2003)

mol 3 ∅ Grain-size exponent of olivine diffusion creep law Hirth and Kolhstedt (2003)
Adisl

An 5.01 10−6 Pandio s−1 Prefactor of diopside dislocation creep law Rybacki and Dresen (2000)

Edisl
An 6.48 105 J · mol−1 · K−1 Activation energy of diopside dislocation creep law Rybacki and Dresen (2000)

nAn 3 ∅ Stress exponent of diopside dislocation creep law Rybacki and Dresen (2000)
Adiff

An 1.26 10−12 mmdio · Pa−1 · s−1 Prefactor of diospside diffusion creep law Rybacki and Dresen (2000)

Ediff
An 4.67 105 J · mol−1 · K−1 Activation energy of diopside diffusion creep law Rybacki and Dresen (2000)

mAn 3 ∅ Grain-size exponent of diopside diffusion creep law Rybacki and Dresen (2000)
Adisl

dio 3.10 10−28 Pandio s−1 Prefactor of diopside dislocation creep law Dimanov and Dresen (2005)

Edisl
dio 6.91 105 J · mol−1 · K−1 Activation energy of diopside dislocation creep law Dimanov and Dresen (2005)

ndio 5.5 ∅ Stress exponent of diopside dislocation creep law Dimanov and Dresen (2005)
Adiff

dio 3.19 10−11 mmdio · Pa−1 · s−1 Prefactor of diospside diffusion creep law Dimanov and Dresen (2005)

Ediff
dio 5.28 105 J · mol−1 · K−1 Activation energy of diopside diffusion creep law Dimanov and Dresen (2005)

mdio 3 ∅ Grain-size exponent of diopside diffusion creep law Dimanov and Dresen (2005)
ggrow

ol 2.80 10−8 mp s−1 Prefactor of olivine grain-growth law Karato (1989)

Egrow
ol 3.00 105 J · mol−1 · K−1 Activation energy of olivine grain-growth law Karato (1989)

ggrow
An 2.59 10−4 mp s−1 Prefactor of anorthite grain-growth law Dresen et al. (1995)

Egrow
An 3.65 105 J · mol−1 · K−1 Activation energy of anorthite grain-growth law Dresen et al. (1995)

ggrow
Ens 3.30 10−3 mp s−1 Prefactor of enstatite grain-growth law Fisler et al. (1997)

Egrow
Ens 4.00 105 J · mol−1 · K−1 Activation energy of enstatite grain-growth law Fisler et al. (1997)

Table E2
Values of the Partition Function Related to Dislocation Creep 𝔣Di

Mineral phase Estimated 𝜎 𝔣Di with estimated 𝜎 𝔣Di with 𝜎 = 0.8
Olivine 0.8 2.432610−8 2.432610−8

Plagioclase 0.8 9.844510−6 9.844510−6

Pyroxene 0.4 5.253110−5 3.814610−5
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Table E3
List of Used Symbols

Symbol Description Dimension SI Section Equation no.
𝜃i Variable related to one specific phase (i = 1, 2) 2.1
𝜃̆ Variable related to one specific grain 2.1
𝜃 Variable related to the interface between phases 2.1
𝜃s Dimension analysis scale 4.1
𝜃
′ Dimensionless variable ∅ 4.1
𝜃 Simple weighted average of the variable 𝜃, 𝜃 =

∑
i
𝜙i𝜃i 2.1

𝜃∗ Variable averaged over the entire control volume 3.5.3 (11)
ai Dislocation creep prefactor Pa−ns−1 D (D3)
asi Scale of dislocation creep prefactor Pa−ns−1 4.1 (126)
𝔞i Prefactor of the dislocation creep Arrhenius coefficient Pa−ns−1 D (D3)
A Area m2 2.1 (3)
̆i Effective grain boundary area m2 2.1 (3)
bi Diffusion creep prefactor mm · Pa−1 · s−1 D (D3)
𝔟i Prefactor of the diffusion creep Arrhenius coefficient mm · Pa−1 · s−1 D (D3)
B Amplitude coefficient of the self-similar distribution function ∅ B1 (B4)
Bsi Scale of corrected diffusion creep prefactor mm · Pa−1 · s−1 4.1 (127)
Bi Diffusion creep coefficient variance corrected mm · Pa−1 · s−1 4.1 (131)
c Drag coefficient s−1 C1 (C4)
C
(i

)
Amplitude function accounting for continuous grain-size fluxes m/s 3.1, B1 (12),(B11)

Ci Coarsening coefficient of phase i ∅ 4.1 (134)
CI Coarsening coefficient of interface ∅ 4.1 (139)
D
(i

)
Amplitude function accounting for discontinuous grain-size fluxes m/s 3.1, B1 (12),(B11)

Di Damage coefficient of phase i ∅ 4.1 (136)
DI Damage coefficient of interface ∅ 4.1 (140)
ė Total strain rate s−1 3.5.3 (118)
Edisl

i Dislocation creep activation energy of phase i Jmol−1K−1 D (D3)

Ediff
i Diffusion creep activation energy of phase i Jmol−1K−1 D (D3)

Egrow
i Grain growth activation energy of phase i Jmol−1K−1 D (D3)

f Vector of thermodynamical forces 3.2 (26)
𝔣Di Partition fraction of the deformational work rate ∅ 3.5.1 (79)

related to dislocation creep
𝔣Ni Partition function of the deformational work rate ∅ 3.5.1 (79)

related to grain damage in the diffusion creep domain
𝔣𝛼i Partition fraction of the deformation work rate ∅ 3.5.2 (110)
F Deformation mechanisms partition function ∅ 3.5.1 (79)
 Fineness of the interface (Bercovici & Ricard, 2012) m−1 2.2 (7)
gi Prefactor of the grain growth Arrhenius coefficient mps−1 4.2.2 (148)
Gi Grain growth rate of phase i mps−1 4.2.2 (148)
GI Bercovici and Ricard (2013) coarsening rate of mean mqs−1 4.2.2 (145)

interface curvature radius r
ĜI Generic grain growth rate of interface roughness r mqs−1 4.2.2 (146)
H Shape function of the self similar distribution ∅ 3.1, B2 (11),(B12)
i Phase indice = 1 or 2 ∅ 2.1
Ii Integrand constant related to phase i 3.4.2 (66)
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Figure E1. Deformation map for anorthite (blue lines) using Rybacki and Dresen (2000) flow law parameters and
computed at 1,000 K. The red line displays the piezometer proposed by Post and Tullis (1999) with the uncertainties
(dotted red lines). The dotted blue line corresponds to the fields boundary. As demonstrated by De Bresser et al. (2000),
the known behavior of grains deforming under dislocation and diffusion creep alone implies a steady-state grain size
limited to the boundary between the two domains (green arrows 1). In order to reach the piezometric grain size, other
mechanisms are needed (green arrows 2).

Figure E2. Optical microscope images of thin sections presenting different textures exhibited by the Hidaka shear zone
(Hokkaido, Japan). Upper pictures are in plane light and lower ones in cross-polarized light. (a) and (d) present the
quasi-undeformed texture. (b) and (e) display a classical dislocation creep texture where pyroxenes grains tend to
cluster around porphyroclasts and plagioclase ones form layers. Grain sizes are decreasing through predominant
dynamic recrystallization. (c) and (f) illustrate a pattern of very fine and well-mixed grain where grain boundary
sliding-induced nucleation is suspected. All the samples consist of mylonitized gabbro deforming under
granulitic/amphibolitic conditions.
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Table E4
List of Used Symbols

Symbol Description Dimension SI Section Equation no.
J Vector of thermodynamical fluxes 3.2 (18)
k Indice of the phenomenological coefficients 3.2 (18)
K Matrix of phenomenological coefficients 3.2 (18)
Kkk Phenomenological coefficient 3.2 (18)
K Mean curvature of a grain surface m−1 2.1 (4)
 Mean curvature of a grain boundaries averaged over the volume ΔV m−1 2.1 (4)
l Indice of the phenomenological coefficients 3.2 (18)
m Grain-size exponent of the diffusion creep law ∅ 3.5.3 (118)
m̆i Mass of one grain of size R̆i kg A (A15)
Mi Total mass of phase i kg A (A15)
n Stress exponent of the dislocation creep law ∅ 3.5.3 (117)
ni Number of grain of phase i ∅ A (A3)
n̂ Unit vector normal to element dA ∅ A (A6)
P Pressure Pa C1 (C2)
P Roughness variable relative to one grain ∅ 2.1 (3)
 Mean grain roughness variable ∅ 2.1
q Heat fluxes across the control volume surface J/m2 C1 (C1)
Q Heat source within the control volume J C1 (C1)
r Interface mean curvature radius of curvature m 2.2 (10)

(Bercovici & Ricard, 2012)
R Gas constant J · mol−1 · K−1 4.2.2 (148)
R Grain-size variable in the grain-size space m 2.1 (2)

(radius of the sphere equivalent of a specific grain)
 Mean grain-size variable m 2.1
ci Transition grain size between GSI and GSS creep m 3.5.1 (84)
s Grain-size (microscopical) scale m 4.1 (126)
S Mixture variable ∅ 3.5.3 (115)
 Total entropy ∅ 3.5.3 (115)
̆i Entropy of one grain of phase i ∅ 3.5.3 (115)

between grain size and interface
t Time variable s 4.1 (124)
ts Time scale s 4.1 (124)
T Temperature K 4.2.2 (148)
u Self-similarity variable u = R∕ ∅ B1 (B1)
V Volume m3 2.1 (1)
v Velocity tensor m/s 4.1
x Exponent of partition function ∅ 3.5.1 (82)
x Vector of space coordinates ∅ B (B1)
X Undetermined partition function ∅ 3.5.1 (77)
X Vector of dissipative forces 3.2 (17)
Y Vector of state variables 3.2 (20)
Ẏ Vector of kinetic variables 3.2 (20)
Z Coefficient of Zener pinning ∅ 4.1 (136)
z Amplitude coefficient of Zener pinning ∅ 3.4.2 (58)

Note. GSI = grain size insensitive; GSS = grain size sensitive.
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Figure E3. (a) Sketch representing the overall assumptions and relations between the “real” two-phase aggregate and
its physical representation in the model. (b) Manually segmented pictures of a quasi-two-phase aggregate (gabbro from
Hidaka, Japan), illustrating the relationship between phase proportion, grain-size distributions, and the mean
curvature radius of the interface r. The mixture quality of the aggregate is a function of all these variables. The orange
and black grains are scarce amphiboles and oxides, respectively.
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Figure E4. Evolution of the two grain size 1, 2 without deformation at a temperature of 1,000 K. All initial grain
size are set up to 5𝜇m. (black) Grain size computed with anorthite grain-growth law (Dresen et al., 1995) without active
Zener pinning. (blue curves) The two phases share anorthite grain-growth law (Dresen et al., 1995) with volumic
fractions 𝜙1 = 0.7. (green to brown curves) Grain sizes computed with anorthite grain-growth law (Dresen et al., 1995)
for phase 1 and enstatite grain-growth law (Fisler et al., 1997) for phase 2 at varying phase volumic fractions. Using
different grain growth laws for the two phase shows little difference in the final grain sizes at 109 years, the main
controlling parameter being the phase volumic fractions. The maximum mixing state is reached for 𝜙1 = 𝜙2 = 0.5,
while much larger difference in phase proportion decreases the value of the maximum S.
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Table E5
List of used symbols

Symbol Description Dimension SI Section Equation no.
𝛼 Interface area volume density m−1 3.4.2 (66)
𝛼i Grain boundary volume density m−1 3.1 (15)
𝛾 i Surface tension of intraphase grain boundaries s−2 3.1 (13)
𝛾I Effective surface tension of interfaces s−2 3.1 (13)
Γi Discontinuous flux of grain size in grain-size space s−1 B1 (B8)
𝜈i Grain-size distribution function of phase i ∅ 3.1, B1 (11),(B1)
𝛱i Effective pressure within phase i, Π = Pi + 𝛾ii Pa 3.3 (39)
𝜌i Density of phase i kg/m3 C1 (C2)
𝜆n nth moment of the grain-size distribution ∅ 3.1, B1 (14),(B13)

(Rozel et al., 2011)
𝜇i Effective viscosity of phase i Pa s 3.5.3 (120)
𝜎 Variance of the grain-size distribution ∅ 3.1 (14)

normalized by the mean
𝜎 () True variance of the grain-size distribution m2 B2 (B15)
Σ Entropy production J · K−1 · s−1 3.1 (13)
𝜏 Stress (second invariant of the stress tensor) Pa 3.5.3 (117)
𝜙i Phase i volume fraction ∅ 2.1 (1)
𝜒 i Phase i deformation work rate partition coefficient ∅ 3.5.2 (110)
𝜑i Phase i spacial continuous function ∅ 2.1 (1)
𝜓 Deformation work rate W 3.5.3 (122)

Figure E5. Deformation map for olivine, anorthite, and diopside computed at a strain rate of 10−12s−1. The grain
size/stress curves are displayed as solid lines, and the grain size insensitive/grain size sensitive domains are defined by
the blue and green dashed lines (the field boundary limit; De Bresser et al., 2000). The stars display the steady-state
grain size computed using the partitions functions 𝔣D and the variances 𝜎 displayed in Table E2 for each mineral
phases. The red solid line presents the effect of a varying partition function 𝔣N on the steady-state grain size (𝔣N varying
between 0 and 250𝔣D). The dashed red lines illustrates the effect of a varying variance on the steady-state grain size
(from 0 to 1). Generally, a higher dimensionless variance 𝜎 results in a smaller steady-state mean grain size at fixed
temperature and strain rate.
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Figure E6. (a) Evolution of the aggregates variables (mean grain sizes i, grain size insensitive/grain size sensitive
transition grain-sizes ci, and stresses 𝜏 i during deformation without dissipation of energy in the grain size sensitive
domain [blue lines] and when such a mechanism is occurring [red lines]). Comparing the grain-size evolution yields as
expected, smaller steady-state grain size and lower stress when deformation energy dissipation is possible in the
diffusion creep domain. In this case a partition function 𝔣Ni of about 160 time 𝔣Di is required to reach the steady-state
grain size predicted by the Post and Tullis (1999) piezometer. (b) Deformation map for anorthite comparing the
computed steady-state grain sizes with the stress/grain-size curve computed using Rybacki and Dresen (2000) flow
laws and the Post and Tullis (1999) piezometer.

BEVILLARD ET AL. 39



Geochemistry, Geophysics, Geosystems 10.1029/2018GC007881

Figure E7. Time evolution of the phases mean grain sizes (i), interface mean radius of curvature r, degree of mixing
 grain boundary and interface densities (𝛼 and 𝛼i), and stresses (𝜏 i) describing gabbroic texture evolution during
deformation. The rheological parameters are described in Table E1. (a) No storage of deformation work is allowed in
the diffusion creep regime. The two phases mean grain size stabilize near the field boundary (dotted lines). The
interface mean radius of curvature r decrease slowly during dislocation creep (clusters formation) and more rapidly
when diffusion creep becomes dominant. The mixing degree S describes this evolution with a decrease during dynamic
recrystallization and a important increase when diffusion creep is active. (b) If deformation energy storage is allowed
in the diffusion creep regime, the two phases depict a sharp decrease near the field boundary. The steady-state mean
grain size are much smaller, and the resulting stress drop appears very sharp and occurs much earlier than the
previous case.
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Figure E8. Evolution of a gabbro aggregate during deformation. (a) Time evolution of phases mean grain sizes (i),
interface mean radius of curvature r, degree of mixing  grain boundary and interface densities (𝛼 and 𝛼i), and stresses
(𝜏 i). Even in the absence of work storage in the diffusion creep domain, the coupling between interface and grain-size
evolution allows the two phases to reach smaller steady-state grain sizes. (b) Deformation map computed for anorthite
(blue solid line) and diopside (green solid line) along with the Post and Tullis (1999) piezometer for feldspar (red solid
lines). The dashed blue and green lines display the computed steady-state grain size for anorthite and diopside,
respectively, when we vary the phase volumic fraction from 0.1 to 0.9.
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