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SUMMARY

Magnitudes of differential stress in the lithosphere, especially in the crust, are still disputed.
Earthquake-based stress drop estimates indicate median values <10 MPa whereas the lateral
variation of gravitational potential energy per unit area (GPE) across significant relief indicates
stress magnitudes of ca. 100 MPa in average across a 100 km thick lithosphere between the
Indian lowland and the Tibetan plateau. These standard GPE-based stress estimates correspond
to membrane stresses because they are associated with a deformation that is uniform with depth.
We show here with new analytical results that lateral variations in GPE can also cause bending
moments and related bending stresses of several hundreds of MPa. Furthermore, we perform
2-D thermomechanical numerical simulations (1) to evaluate estimates for membrane and
bending stresses based on GPE variations, (2) to quantify minimum crustal stress magnitudes
that are required to maintain the topographic relief between Indian lowland and Tibetan
plateau for ca. 10 Ma and (3) to quantify the corresponding relative contribution of crustal
strength to the total lithospheric strength. The numerical model includes viscoelastoplastic
deformation, gravity and heat transfer. The model configuration is based on density fields
from the CRUST1.0 data set and from a geophysically and petrologically constrained density
model based on in situ field campaigns. The numerical results indicate that values of differential
stress in the upper crust must be >ca. 180 MPa, corresponding to a friction angle of ca. 10°
to maintain the topographic relief between lowland and plateau for >10 Ma. The relative
contribution of crustal strength to total lithospheric strength varies considerably laterally. In
the region between lowland and plateau and inside the plateau the depth-integrated crustal
strength is approximately equal to the depth-integrated strength of the mantle lithosphere.
Simple analytical formulae predicting the lateral variation of depth-integrated stresses agree
with numerically calculated stress fields, which show both the accuracy of the numerical
results and the applicability of simple, rheology-independent, analytical predictions to highly
variable, rheology-dependent stress fields. Our results indicate that (1) crustal strength can be
locally equal to mantle lithosphere strength and that (2) crustal stresses must be at least one
order of magnitude larger than median stress drops in order to support the plateau relief over
a duration of ca. 10 Ma.

Key words: Numerical modelling; Continental tectonics: compressional; Dynamics: gravity
and tectonics; Mechanics, theory, and modelling; Rheology: crust and lithosphere.

mechanically stronger lithosphere exhibits a larger flexural wave-

I INTRODUCTION length than a weaker one (e.g. Burov & Diament 1995). Also, during

The magnitude and vertical distribution of stress in the continental long-term lithospheric deformation significant deviatoric stresses
lithosphere and the associated vertical distribution of strength con- can potentially generate sufficient dissipative work so that ther-
trol the deformation behaviour of the lithosphere. For example, a mal softening can trigger lithospheric-scale strain localisation (e.g.

© The Author(s) 2018. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1313

6102 Aienuer |z uo Jasn ssuusy s9ousI0s0a9) Aq 92615 L S/ELE L/2/9 1 ZAornsqe-aoiue/I[B/wod dno olwapeoe)/:sdny Woll papeojumoq


http://orcid.org/0000-0003-4724-2181
http://orcid.org/0000-0001-9036-4761
mailto:stefan.schmalholz@unil.ch

1314 S.M. Schmalholz et al.

10 f

-
[¢)]

Depth (km)

2B € ! Byerlee, compression, hydrostatic 7
1 ! ®  Brittle strength, KTB (Townend & Zoback, 2000)
;| | 1 @® Ductile shear zones (Behr & Platt, 2014)
30 e o : i
H ._ 1 1 H
: : 1 | -
35 v’ 1 I i
| 1 " ______ :Median stress drop (Allmann & Shearer, 2009)
I | I | I I I I I I
0 50 100 150 200 250 300 350 400

Differential stress (MPa)

Figure 1. Differential stress estimates for the crust. The solid black line shows differential stress based on Byerlee’s law for compression and hydrostatic
fluid pressure (see e.g. Kohlstedt e al. 1995). Blue circles indicate stress estimates from the KTB borehole after Townend & Zoback (2000) and transparent
blue rectangles indicate the reported uncertainty range. The KTB borehole data are for a regional strike-slip regime (Brudy er al. 1997). Red circles indicate
piezometer estimates from ductile shear zones after Behr & Platt (2014) and transparent red rectangles indicate the reported uncertainty range. Blue dashed
rectangle indicates the range of stress estimated from microstructure in a folded quartz vein after Trepmann & Stckhert (2009). Red dashed rectangle indicates
the range of stress estimated from microstructure in quartz veins after Stipp ef al. (2002). Black dashed rectangle indicates the range of stress estimated from
microstructure in quartz, jadeite, omphacite and calcite after Kuester & Stockhert (1999). Green dashed rectangle indicates the range of stress estimated from
microstructure in quartz after Sullivan & Monz (2016). Thick black dashed vertical rectangle indicates the range of depth-averaged (over 100 km thickness)
stress estimated from lateral GPE variations after Molnar ez al. (1993). Thick dotted magenta line indicates the median of earthquake-based stress drop estimates

range after Allmann & Shearer (2009).

Schmalholz ez al. 2009; Jaquet et al. 2016) and subduction initiation
(e.g. Thielmann & Kaus 2012). Furthermore, if differential stresses
exist in the lithosphere then the stress state is neither hydrostatic
nor lithostatic. Rock deformation experiments show that such non-
hydrostatic stresses can affect mineral transformations, such as the
quartz-coesite transition (Hirth & Tullis 1994; Richter et al. 2016),
and differential stresses could, hence, affect mineral phase trans-
formations in the lithosphere (e.g. Moulas et al. 2014; Moulas et
al. 2018; Tajémanova et al. 2015). Conversely, metamorphic phase
changes accompanied by volume change affect the stress and defor-
mation field (e.g. Hetényi ef al. 2011; Hetényi 2014). Consequently,
the commonly performed conversion of metamorphic pressure to
burial depth, assuming a lithostatic stress state, could be signifi-
cantly inaccurate (e.g. Petrini & Podladchikov 2000; Schmalholz &
Podladchikov 2013; Moulas ef al. 2014; Moulas et al. 2018).

The above examples show that stress magnitudes can potentially
have significant impact on lithospheric deformation and associated
metamorphic processes. However, these stress magnitudes are still
controversially debated, particularly stress magnitudes in the crust.
For example, estimates of differential stress in the upper crust, which
are based on in situ stress measurements in deep wells and a borehole
of the German Continental Deep Drilling Program (KTB), indicate
differential stress between 170 and 210 MPa at a depth of approx-
imately 8 km (e.g. Brudy et al. 1997; Townend & Zoback 2000;
Fig. 1). Also, differential stress in natural shear zones estimated

from grain size piezometers (e.g. Twiss 1977) can reach a few hun-
dred MPa in crustal depths of 5-25 km (see Fig. 1 and references in
caption). Such differential stress estimates from piezometers agree
with flow laws for dislocation creep for quartzite and limestone (e.g.
Behr & Platt 2014; Jaquet & Schmalholz 2018).

In contrast to the above stress estimates, earthquake-based stress
drop estimates range typically between 0.3 and 50 MPa with a me-
dian stress drop of ca. 4 MPa for depths less than 60 km (e.g.
Allmann & Shearer 2006; Fig. 1). The histogram of the logarith-
mic stress drop estimates of Allmann & Shearer (2006; their Fig.
6) indicates a standard deviation of stress drops from 1 to 10 MPa
(Fig. 1). The stress drop usually refers to a drop in shear stress,
which is approximately half the differential stress. It is, however,
not clear whether stress drop magnitudes are close to total stress
drop or whether the stress drop only represents a small fraction
of the crustal stress (e.g. McGarr & Gay 1978; Kanamori 1980;
Hardebeck & Okada 2018). Stress drop estimates require assump-
tions on fault geometry, which is usually not well known, and er-
rors concerning fault plane geometry can cause large errors in the
corresponding stress drop estimate (e.g. Madariaga 1977). Further-
more, the static stress drop estimated by seismologists provides a
lower bound to the actual dynamic stress drop on the fault occur-
ring during dynamic fracturing (e.g. Madariaga 1977). The analysis
of pseudotachylyte fault veins, commonly considered to represent
‘palacoearthquakes’, indicates that stress drop can be greater than
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Figure 2. (a) Colour plot of GPE (N m~!) for the region around the Tibetan plateau (region mainly in red). Values of G PE have been calculated directly
from the CRUST1.0 data set (http://igppweb.ucsd.edu/~gabi/rem.html), namely from the given densities and depths of the crustal units. Values of G P E were
calculated using eqs (6) and (13) assuming a compensation depth, Sb, at 100 km and no corrections have been applied to the CRUST1.0 data. Three profiles
(solid black, magenta and blue lines) have been calculated for the corresponding AG P E (b), topography (c) and crust-mantle boundary depth (Moho, d). (b)
Three profiles of AG P E (see panel a for location). The value of G P E from the leftmost position (X = —600 km) has been subtracted from all other values of
G PE to generate values of AG PE. The dashed black line corresponds to the initial profile of AG P E corresponding to the performed numerical simulation
initially in isostasy. (c) Three profiles (see panel a for location) of topography taken directly from the CRUST1.0 data set without corrections. (d) Three profiles

(see panel a for location) of Moho depth taken directly from the CRUST1.0

220 MPa and as high as 580 MPa (Andersen et al. 2008), which
also suggests that earthquake-based stress drop estimates provide
lower bounds to the actual stress.

Another method to estimate lithospheric stress magnitudes is
based on vertical integrals of the force balance equations for the
lithosphere. Models based on vertical integrals of the force bal-
ance equations are commonly referred to as thin-sheet models (e.g.
England & McKenzie 1982; Medvedev & Podladchikov 1999a).
Based on such thin-sheet models, the vertical integral of the dif-
ferential stress in the lithosphere can be estimated from the lateral
variation of crustal thickness and topography (e.g. Jeffreys 1959;
Arthyushkov 1973) or, more generally, from lateral variations of
the gravitational potential energy per unit area (GPE; e.g. Molnar
& Lyon-Caen 1988; Molnar ef al. 1993; Schmalholz et al. 2014).
These integrated stress estimates result from force balance calcula-
tions only and are robust because they are independent on constitu-
tive equations (e.g. flow laws), that is, irrespective of the lithosphere
deformation being elastic, plastic or viscous. Consequently, lateral
GPE variations can be used only to calculate the vertical integral

data set without corrections.

of the stress, which can be related to the horizontal driving force
per unit length (F; e.g. Molnar & Lyon-Caen 1988), but not maxi-
mum stress magnitudes in the lithosphere. Also, standard thin-sheet
models assume that the deformation is uniform with depth so that
horizontal stresses along a vertical profile are either all compressive
or extensive. Stresses associated with a depth-uniform deforma-
tion are commonly referred to as membrane, or in-plane, stresses.
When integrated vertically, all membrane stresses contribute to F7,.
Stresses associated with bending (or flexure) of the lithosphere are
neglected in standard thin-sheet models. Bending stresses typically
change their sign across a bending layer, for example, due to exten-
sion in the outer hinge region and compression in the inner region.
Since bending stresses change their sign along a vertical profile
they usually do not contribute significantly during vertical stress
integration to F, and are, hence, not estimated from standard lat-
eral GPE variations. We show here with new analytical relations
that lateral GPE variations are associated with bending moments
due to lateral mass variations and that these mass moments cause
significant bending stresses.
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(a) Density (kg/m3) from Hetenyi et al. (2007)
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Figure 3. (a) Colour plot of density distribution from Hetényi e al. (2007). The location of the corresponding profile is indicated by the blue line in Fig. 2(a).
(b) Lateral variation of AG P E for the density profile in panel (a) (black line) and for the corresponding density profile along the same section of the CRUST1.0
data (blue line). The red diamonds show values of AG P E corresponding to the numerical simulation 1 (crustal friction angle of 10° and Moho transition width
of 300 km; Figs 6a—c) at 8 Ma. (c) Lateral variation of lithostatic pressure at 100 km depth corresponding to the density profile in panel (a) (black line) and for
the corresponding density profile along the same section of the CRUST1.0 data (blue line). The red diamonds show the lateral variation of lithostatic pressure
at the model depth (300 km) corresponding to the numerical simulation 1 (crustal friction angle of 10° and Moho transition width of 300 km; Figs 6a—c) at 8
Ma. The lateral variation of lithostatic pressure corresponds to the tectonic pressure, that is, rock pressure minus lithostatic pressure.

Lateral GPE variations between the Tibetan plateau and the In-
dian lowland, referring to the hinterland and foreland of the Hi-
malaya, respectively, provide estimates of ca. 7 x 10'> N m~! for
F, (e.g. Molnar & Lyon-Caen 1988; Fig. 2) and between Tibet and
Central Asia estimates of 7 — 10 x 10> N m™! (e.g. Molnar et al.
1993; England & Molnar 2015). If one assumes that a representative
value for the thickness of the lithosphere is 100 km then the above
estimates of F, provide depth-average differential stresses between
70 and 100 MPa in the lithosphere. However, due to considerable
rheological variations within the lithosphere, local stresses can be
significantly smaller or larger than these depth-averaged estimates
(see examples for the flexure of the Indian plate, e.g. Cattin et al.
2001; Hetényi et al. 2006). Furthermore, the relative contribution,
or fraction, of stresses in the crust and mantle lithosphere to the
total integrated stress across the lithosphere is usually unknown.
England & Molnar (2015) suggest that values of F, acting on the
lithosphere of the Tien Shan are 7-10 x 10> N m~' and they argue
that a significant fraction, up to 90 per cent, of F\ is provided by
the ductile mantle lithosphere. If the continental crust would indeed

only provide a small fraction of the lithospheric resistance to F,
then the question arises: how can such a weak crust maintain for ca.
10 Ma the significant lateral variations in surface topography and
G P E between the Tibetan plateau and Indian lowland (Figs 2 and
3)? The main aim of our study is to quantify with 2-D thermome-
chanical numerical simulations the magnitudes of differential stress
in the crust that are required to maintain the relief of the Tibetan
plateau for a duration of ca. 10 Ma. Furthermore, bending of the
lithosphere generates likely the largest stress magnitudes on Earth
compared with other geophysical processes such as mantle convec-
tion (e.g. Karato 2008; his table 19.2). Medvedev (2016) suggested
that lateral variations of G P E may result in lithospheric bending
stresses and that these stresses may dominate the orientation of
stresses even in the absence of compressive deformation such as
lithospheric folding. Therefore, we also investigate the influence
of bending on the stress state of the India—Himalaya—Tibet system
because we are interested in estimates for local, maximum stress
magnitudes.
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Figure 4. Model configuration for both the 2-D numerical simulations and the

analytical thin-sheet results. The /. is the initial topography of the plateau with

respect to the lowland, /. is the total crustal thickness of the lowland, #; is the thickness of the crustal root (including the lower crust) below the plateau, /1.
is the thickness of the lower crust, /4, is the thickness of the mantle lithosphere below the lowland and £, is the thickness of the asthenosphere layer. M is the
width of the transition zone of the crust-mantle boundary (Moho) in which the Moho deepens from 35 to 68 km depth below topography. M can vary from 50

to 300 km in the different simulations. The transition zone of the topographic

variation has always a width of 100 km. For the analytical results, the values of

GPEy and G P Ep have been calculated for a constant density in the upper and lower crust of 2800 kg m~ and for constant density of the mantle lithosphere

0f 3300 kg m—3.

We perform 2-D numerical simulations considering viscoelasto-
plastic deformation, heat transfer, gravity, and temperature depen-
dent flow laws to calculate the distribution of stresses in a continen-
tal lithosphere caused by interaction of a plateau and neighbouring
lowland in the absence of any additional tectonic influence. The
initial lithosphere geometry is close to the standard geometry of
thin-sheet models, which were used to calculate the lateral GPE
variation between India and Tibet (e.g. Molnar & Lyon-Caen 1988;
Molnar et al. 1993; Schmalholz ef al. 2014), and to construct a
gravimetrically and petrologically constrained density model of the
Indian plate beneath the Tibetan plateau (Hetényi et al. 2007). We
also compare the lateral variation of depth-integrated numerical
stresses with predictions of analytical thin-sheet models to show
the accuracy and robustness of the numerical results.

2 STRESS RELATIONS,
GRAVITATIONAL POTENTIAL ENERGY
AND BENDING

2.1 Lithospheric stress relations

For incompressible deformation in 2-D, the components of the total
stress tensor are

Oxx = —-P + Txx

0. = —-P + 7. (1)
Oz = Tyz

where pressure, or negative mean stress, P = —(0,, + 0..)/2,
T.x = —T,, are the normal deviatoric stress tensor components,

0., = T,, represents the shear stress and x and z are the horizontal

and vertical coordinates, respectively. The maximum, o;, and min-
imum, o3, principal stresses are (e.g. Turcotte & Schubert 2014)

1

Oxx + Oz (axx - azz)z 2 ’
P { 7 Tt

o) =

= P[22 +2] =P+ @)

2 2
Oxx + O Oxx — O3z
03 = 5 - [( 4 ) + 'L'xzzi|

1
=P[R+ =P 3)

where 7y is the square root of the second invariant of the deviatoric

stress tensor. The differential stress is

Ao = o) — 03 = 21'11. (4)

Following Molnar & Lyon-Caen (1988) and Schmalholz ef al.
(2014) we separate the total normal horizontal stress into two com-
ponents:

d
Oy =07, + 05, )

where the static stress, o7, is identical to the negative of the litho-
static pressure, P, or hydrostatic stress, which is the vertical integral

of the product of density, p, times gravitational acceleration, g:

St(x)
o =P == [ o) ©)

with St(x) being the topography, which can vary laterally. The
dynamic component of the total stress in eq. (5), ., thus represents

s Yxxo
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stress. These maximum bending stresses are contoured in the space £RT versus W. W is the distance of the neutral reference line, w, from the Moho. The
four profiles displayed in panel (a) are indicated by the corresponding numbered stars. The maximum bending stress depends to first order on the ERT.

(@) 7 [MPa]; 6 = 10°, 0.334 [Ma]

(d) 7 [MPaJ; 0 = 0°, 0.0529 [Ma]

— 100
— T — —
-E 100 | e —— — —— —
3 0
N -200
300 -100
(b) 7, [MPa]; 6 = 10°, 5.26 [Ma] (e) 7,, [MPa]; 6 =0°, 0.197 [Ma]
0 e
_ e $T— — - — —
£ -100
2,
N -200
-300
(c) 7, [MPa]; 6 = 10°, 15.3 [Ma] (f) 7, [MPa]; 6 =0°,1.05 [Ma]
0
T -100 R— — —
2,
N -200
-300
600  -400  -200 0 200 400 600 600  -400  -200 0 200 400
X [km] X [km]

600

200

-200

Figure 6. Colour plot of horizontal deviatoric stress, 7y, (MPa), for three different times for simulation 1 with a friction angle in the crust of 10° (a—c) and
simulation 2 with 0° (d—f), both for M = 300 km. Negative values indicate compression, positive ones extension and the legends at the top right of the two
columns (a—c and d—f) apply to the entire column. The entire model domain is shown. Times in million years (Ma) indicate the duration of the simulations. In
each panel, the lowermost horizontal white line indicates the lithosphere/asthenosphere boundary, the middle white line indicates the base of the lower crust
(Moho) and the uppermost white line indicates the upper/lower crustal boundary. The two short vertical white lines in the upper and lower crust are passive
marker lines, which indicate horizontal flow in the crust.

a measure of how far the stresses in the lithosphere deviate from the

lithostatic state.

The above stress relations are exact and free from assumptions. In
order to simplify calculations, several approximate stress relations

are assumed in traditional thin-sheet approximations (e.g. England
& McKenzie 1982, Schmalholz ef al. 2014). The main assumption

is that shear stress, T

xz>

can be neglected when considering the

large-scale lithospheric stress state. The approximate equalities in
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the following equations are based on this assumption of negligible
7... The total normal vertical stress can then be approximated by
the lithostatic pressure:

o~ —P L- (7)

zz

The relation between dynamic horizontal stress and deviatoric
horizontal stress is then

d ~ _ —
0 =0, +PLRT—P—0, =1, — T =27,,. (8)

Eq. (8) shows that axdx ~ 21,,, which is relevant because it ex-
plains the factor two difference in stress magnitudes obtained from
lateral GPE variations around the Tibetan plateau by Molnar &
Lyon-Caen (1988), who calculated o , and stress magnitudes ob-
tained by Ghosh ez al. (2006, 2009), who calculated t,, (Schmalholz
et al. 2014). The condition of negligible 7, results in the principal
stress axes to be close to the vertical and horizontal orientations and
thus eq. (4) can be approximated

Ao = o) — 03 X abs (0, — 0,,) ~ abs (U\?\) : ©)

2.2 GPE and thin-sheet relations

Integration of the horizontal balance of stresses from the top stress-
free surface St(x) down to the horizontally constant depth of com-
pensation, Sh, at which the deviatoric stresses can be neglected,
reveals the absence of the lateral variation of the depth-integrated
horizontal total stress, o,, (Molnar & Lyon-Caen 1988; Schmalholz
etal 2014):

d
a(c'r”) =0. (10)

Here, an overbar indicates the depth integral of the corresponding
symbol, for example,

St(x)
G (x) = / oy (x,2)dz. (11)
b

Eq. (10) is not based on the thin-sheet approximation presented
in Section 2.1 and is thus fundamental. For example, it was shown
that eq. (10) holds for a numerically calculated 2-D stress field
of a shortening viscoelastoplastic lithosphere involving buckling
and shear zone generation (Schmalholz & Podladchikov 2013).
Eq. (10), however, is based on the condition of vanishing deviatoric
stresses at the bottom boundary, Sh, which is a reasonable assump-
tion at the lithosphere—asthenosphere transition. Consequently, Sb
is often termed the depth of the lithosphere in the framework of
depth-integrated stress analysis, although Sb differs from tradi-
tional geological and geophysical definitions of the lithosphere—
asthenosphere boundary (e.g. Turcotte & Schubert 2014). Substi-
tution of the separation of the normal horizontal stress into static
and dynamic components, eqs (5) and (6), into eq. (10) yields (e.g.
Molnar & Lyon-Caen 1988; Schmalholz ef al. 2014)

d
d F, = —GPE, (12)

de " dx
where F, = ¢ is commonly termed the driving horizontal force

per unit length and the GPE is the vertical integral of P :
B St(x)
GPE (x) = P, (x)+ const = / Py (x, z)dz + const. (13)
b
Eq. (12) can be integrated with respect to x and for a simple

geometry with essentially only a plateau and lowland (Fig. 4) the
horizontal derivatives in eq. (12) can be replaced by horizontal
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differences, indicated with the symbol A, between values for the
plateau and the lowland, for example, AGPE = GPEp — GPEL

(Fig. 4):
AF, = AGPE. (14)

Therefore, AGPE can be related to vertically integrated stress
differences by

AGPE = AGS ~ 2A%,,. (15)

Similar to Section 2.1, we use the approximate equality sign to
indicate the thin-sheet assumption of negligible 7. The lateral vari-
ation in GPE assuming local isostasy at the base of the lithosphere
and uniform densities within the crust, p., and mantle lithosphere,
Pm> 18 (e.g. Molnar & Lyon-Caen 1988; Schmalholz et al. 2014)

Pm he

where /. and /. are the height of the plateau with respect to the one
of the lowland and the crustal thickness of the lowland, respectively
(Fig. 4).

The above estimations operate with depth-integrated stresses
whereas the magnitude of stresses is the target of our study. Strong
rheological heterogeneity of the lithosphere results in strong varia-
tions of stresses with depth. Most of the integrated lithospheric stress
quantities, such as F,, are controlled by stresses in the strong levels
of the lithosphere (e.g. Burov 2011). The magnitudes of the stresses
within these stress-bearing levels are the focus of our study. Simi-
lar to the effective elastic thickness, which characterizes an elastic
lithospheric model (e.g. Burov & Diament 1995), we introduce here
the effective rheological thickness (£ RT') of the lithosphere, which
is independent of a particular rheological model. A formal definition
of ERT is out of the scope of our study. We use a more qualita-
tive approach here to illustrate the results of analytical studies and
compare them with 2-D thermomechanical numerical results in the
following sections. The scope of the analytical study, which is inde-
pendent on any rheology assumption, is to obtain a comparison with
the numerical results, which are calculated for specific rheological
models. The difference of the characteristic deviatoric stress is by
definition, and using eqs (14)—(16)

. AF.  peghe ( P he)

AGPE = p.gh. (hc +

AT* = = 2 17
Y T 2ERT T 2ERT o — pe 2 17

To illustrate the usage of £ RT, we assume that the crust is much
stronger than other regions of the lithosphere (Fig. 4) and that ERT
is equal to the crustal thickness averaged between plateau and low-
land, thatis, ERT = h. + (he + h;)/2. We also assume that charac-
teristic deviatoric stresses in the plateau and lowland are identical,
but opposite in sign, so that 7 = At /2 (Schmalholz et al. 2014).
Using the isostasy relation 4, = p.he/(pm — pe) €q. (17) yields

« _ Pcghe
o, = 280 (18)

This result indicates that the average deviatoric stress in the crust
is directly proportional to the topographic relief. For . = 5 km and
pe = 2800 kgm™3 one obtains t¥. = ca. 35 MPa which is a value
that is nearly one order of magnitude larger than the median stress
drop of ca. 4 MPa estimated from earthquakes.

The above estimations of the characteristic membrane, or in-
plane, stresses assume the homogeneous deformation with depth
of the lithosphere so that the stresses do not change their sign
with depth and additively contribute to the integrated stress. This
depth-uniform deformation may be associated with the traditional
thin-sheet approximation (England & McKenzie 1982).
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2.3 Bending stresses related to lateral variations of GPE

Lateral variations of G P E are associated with the laterally varying
distribution of mass. This lateral mass variation can also result in
moments of forces, which can cause bending stresses. The numer-
ical simulations performed in this study will show bending related
stresses and we derive here fundamental relations between GPE
and bending stresses to estimate the order of magnitude of these
bending stresses, independent of any rheological assumptions.

Schmalholz et al. (2014) presented the integration of the ver-
tical balance of stresses in a form that links the lateral variation
of the tectonic pressure, Py (the difference between P and P,
Py = P — Pp), at depth Sb with the horizontal derivative of the
depth-integrated shear stress:

d
Po (x, §b) = ™ (Txz) - (19)

In the absence of horizontal tractions along the top and bottom
boundaries, the integrated shear stress 7,. can be related to the total
horizontal stress, oy, by the following equation (e.g. Schmalholz
& Mancktelow 2016; their eq. A14)

- d _ dw
Tz = a T (0yx) + Grx a . (20)

The bending moment, [ |, associated with any stress component,
0;;, and with the vertical coordinate of a neutral reference line,
w(x), is

St(x)
l_[(o,»j) :/Sb 0ij (z —w)dz = 0;; (z — w). (21)

Separating o, into dynamic and static components, eq. (5), sub-

stituting eq. (20) into eq. (19), and using eq. (10) yields
2 2 2
Po (x, Sb) = %n(a;’x)jw”ix—f - %H(PL). (22)

Eq. (22) indicates that the existence of tectonic pressure at the
base of the model, Po(x, Sb), is related to bending moments and
flexure in the model domain. To estimate the bending, or fibre, stress
we decompose the dynamic stress into a membrane stress, 0., and
a bending stress, o, that is, o, = o5 + o, (e.g. Schmalholz &
Podladchikov 2000, their Fig. 1; Schmalholz & Mancktelow 2016,
their eq. A19). The membrane stress, o, corresponds to the depth-
uniform thin-sheet deformation and is constrained by conditions
58 =6&% and [](¢") = 0. The bending stress, o , represents the
deviation from o5 due to bending and is constrained by the con-
jugate conditions 6°. = 0 and [](c%) = [](¢’,). In Appendix A,
we show that this separation is possible by the appropriate choice
of the reference level, w(x). As illustrative example we assume that
w(x) is a piecewise linear function of x as, for example, the lateral
variation of the crust-mantle boundary in the model configuration
of Fig. 4. Assuming furthermore local isostasy (i.e. Pp(x, Sb) = 0),
eq. (22) reduces to

2 2
%n (o) = %n (P). (23)

The term with d?w/dx? has disappeared due to the assumption
of piecewise linearity of w(x).

Eq. (23) indicates that lateral variations of mass moments, [ [(PL),
are balanced by lateral variations of moments related to bending
stresses. [ [(PL) can be calculated from the initial model geometry
and associated densities (see Appendix A). [ [(PL) can further be ex-
pressed as a third-order polynomial in 4., = St(x) — St(lowland),
which is the laterally varying height of the topography. Therefore,

hex = 0 in the lowland of the model and /e, = A, in the plateau
(Fig. 4). We only have to consider powers of /. on the order of 2
and 3 since lower powers will disappear due to the second derivative
of [T(PL) in eq. (23):

M(P)=hiA+h,B+.. (24)

The coefficients 4 and B depend on the densities and geometrical
parameters of the model configuration and are derived in Appendix
A. We assume that initially [[(c’®.) is non-zero only in the transition
zone between lowland and plateau, and thus its polynomial form
should include roots at 4., = 0 and he, = he:

I (Gf\) =J hex [hex — he] [hex — K1, (25)

where J and K are unknown coefficients. Substituting eqs (24) and
(25) into eq. (23) and comparing the terms on both sides of the
equation yields

J=4

K =he. — B/A. (26)

Characteristic values of o can then be estimated from [](c?,)
by (e.g. Turcotte & Schubert 2014; Medvedev 2016)
61-[ (O-J?x)

ERT?
where ERT is the effective rheological thickness discussed in Sec-
tion 2.2. Eq. (27) applies to beams with uniform rheology and esti-
mates maximum bending stresses at the upper and lower boundaries
of the beam. In the lithosphere the rheology varies with depth and
the bending regions are typically not limited by two sharp bound-
aries so that eq. (27) provides an upper limit for the bending stress.
We will quantify values of bending stresses for a reasonable range
of values of £RT. The horizontal deviatoric stress due to bending,

b~
o, ~=*

@7

¥, can be approximated as half of the total bending stress (eq. (8))
b 31 (o))
b Oxx XX
& ~t—L 28
Tex 2 ERT? ( )

The values of % vary laterally since [[(c?,) varies laterally due
to its dependence of /¢ (Fig. 5a). The main uncertain parameters
are the values of w(x) and £ RT and, therefore, we calculate max-
imum values of t°_ for a range of reasonable values of w(x) and
ERT (Fig. 5b). The results show that maximum values of °_are
between 150 and 300 MPa corresponding to differential stresses
approximately between 300 and 600 MPa. We will show that such
maximum values for t°, and for associated differential stresses are
in broad agreement with the results of the performed 2-D thermo-
mechanical numerical simulations.

3 GPE VARIATION BETWEEN TIBETAN
PLATEAU AND INDIAN LOWLAND

The structure and density distribution of the Tibetan plateau have
been extensively investigated by mostly 2-D and some 3-D geo-
physical surveys based on land campaigns (e.g. Tilmann et al.
2003), satellite observations (e.g. Shin e al. 2015) and joint ap-
proaches (e.g. Basuyau ef al. 2013). Such and other geophysical
data sets, together with sparse thermal constraints as well as geo-
logical and petrological information, have been regularly used to
construct models and geodynamic evolution scenario of the Tibetan
plateau at various scales and levels of complexity (e.g. Dewey et al.
1988; Avouac & Tapponier 1993; Chemenda et al. 2000; Liu &
Yang 2003; Beaumont et al. 2004; Zhao et al. 2010; Vozar et al.
2014; Baumann & Kaus 2015; Tunini ef al. 2016).
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For the current study we use two density fields to calculate the
spatial variation of G P E between the Tibetan plateau and the In-
dian lowland, namely the density field from the CRUST1.0 data set
(http://igppweb.ucsd.edu/~gabi/rem.html; Fig. 2) and the best-fit,
in situ observation-constrained density field of Hetényi ez al. (2007,
their Fig. 6; Fig. 3a). The location of the density profile of Hetényi
et al. (2007) corresponds to the blue solid line in Fig. 2(a). For
the CRUST1.0 data, values of G P E were calculated using eqs (6)
and (13) assuming a compensation depth, Sb, at 100 km. The cal-
culated values of GPE first decrease in the region of the Indian
foreland basin and then considerably increase with the increase of
the topography along profiles from India towards the Tibetan plateau
(Fig. 2). Values of AG P E between the Indian foreland region and
the adjacent Tibetan plateau are ca. 10 x 10'> N m~' (Fig. 2b).
The considerable increase of topography between the Indian fore-
land and the Tibetan plateau occurs within a narrow region of ca.
100 km (Fig. 2¢). The density field of Hetényi et al. (2007) pro-
vides an even larger AGPE of ca. 12 x 10'> N m~! between the
Indian foreland region and the adjacent Tibetan plateau (Fig. 3b).
In contrast to the profile of AG P E resulting from the CRUST1.0
data, the AG P E resulting from the model of Hetényi ez al. (2007)
shows a smaller decrease of AGPE around the Indian foreland
region (-200 km < X < 0 km in Fig. 3b) but higher AG P E around
the adjacent Tibetan plateau (50 km < X < 400 km in Fig. 3b). The
lithostatic pressure, Py, at 100 km depth varies along the profile for
both the CRUST1.0 and the Hetényi ez al. (2007) model indicating
that the depth of 100 km is not a level of local isostasy. The lateral
variation of P and, hence, Py indicates either non-zero deviatoric
stresses or the influence of the flexural rigidity of the lithosphere
(eq. (22)) in the region of the topographic increase which likely
could be related to bending associated with the Indian foreland
basin. Both density models show an increase of P in the region
of considerable topographic variation and hence significant lateral
variation of crustal thickness. This deviation from local isostasy can
be expected due to the flexural strength of the Indian crust, which is
deflected and thrusted under the Tibetan crust. This regional com-
pensation is well documented by gravity anomalies (e.g. Berthet
et al. 2013; Hammer et al. 2013; Hetényi ez al. 2016). In Section 6,
we argue that this geodynamic regime prevails since at least 10 Ma
(e.g. Luet al. 2018).

4 NUMERICAL MODEL

4.1 2-D thermomechanical finite-difference model

The applied numerical algorithm is based on the finite-
difference/marker-in-cell method (e.g. Gerya & Yuen 2003; Duretz
et al. 2016). The governing equations for 2-D incompressible defor-
mation of viscoelastoplastic material coupled with heat transfer and
gravity are described in detail in Appendix B. The diffusive terms in
the force balance equations and in the heat transfer equations are dis-
cretized on an Eulerian staggered grid while advection and rotation
terms are treated explicitly on Lagrangian markers using a fourth
order in space Runge—Kutta time integration (Duretz et al. 2016).
The topography in the model is a material interface defined by a
Lagrangian marker chain and this interface is displaced with the nu-
merically calculated velocity field. With ongoing deformation, this
marker chain needs to be locally remeshed, which is achieved by
adding marker points in the deficient chain segments. The applied
numerical mesh consists of 2000 nodes in the horizontal direction
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(resolution of 600 m) and 750 nodes in the vertical direction (res-
olution of 413 m). The models were run with a Courant number of
0.45 and a maximum allowed time step of 0.1 Ma.

4.2 Model configuration

The model configuration is similar to the model configuration which
has been used to derive the analytical relations between AGPE,
F, and bending moments (Section 2, Fig. 4). The corresponding
thicknesses and model dimensions are given in Fig. 4. The initial
geometry and density field generates a GPE difference between
plateau and lowland of ca. 7 x 10" N m~! in agreement with
published data (e.g. Molnar et al. 1993) and the density field of
CRUSTI1.0 (Fig. 2). The initial crustal geometry corresponds to
isostatic equilibrium if the topographic variation is related to the
variation of the crust-mantle boundary (Moho), that is, the transition
width in which the topography increases is identical to the width
of the region in which the Moho deepens (Fig. 4). However, the
study of Hetényi et al. (2007; Fig. 3) indicates that the topography
increases over a distance of ca. 100 km while the Moho deepens over
a distance of ca. 300 km (Fig. 3). Therefore, we vary the transition
width of the Moho (M Fig. 4) in the simulations. The topographic
transition width is always 100 km, close to the observed value.

For the 2-D numerical simulations we use the flow law of wet
quartzite (Kirby 1983) for the upper crust and of Maryland di-
abase (Carter & Tsenn 1987) for the lower crust (Table 1). For
the mantle lithosphere and asthenosphere we use a combination of
dislocation and diffusion creep (Hirth & Kohlstedt 2003) for dry
olivine and Peierls creep (Goetze & Evans 1979, with formulation
of Kameyama et al. 1999; see Appendix B and Table 1). The left,
right and bottom boundaries are free slip boundaries and the top
boundary is a stress free surface. There is no far-field shortening
or extension applied to the lateral boundaries as we focus on the
evolution of the topographic relief. The top and bottom boundaries
for heat transfer are described by fixed temperatures with 0 °C at
the top and 1350 °C at the bottom. The lateral boundaries are zero
heat flow boundaries. The initial temperature field is at equilibrium
and is computed using the thermal parameters listed in Table 1.

5 RESULTS

5.1 Fundamental impact of crustal stress magnitudes

We first show the fundamental impact of the crustal friction angle on
the numerical results by comparing two representative simulations,
the only difference being the friction angle of the crust, namely,
0 = 10° (simulation 1) and & = 0° (simulation 2; Fig. 6). We use
here the friction angle as parameter to limit maximum stress magni-
tudes in the crust without any particular mechanical interpretation,
such as high fluid pressure or the presence of weak faults in the crust.
We use M = 300 km, since this configuration is presumably closest
to the observed geometry of Fig. 3. The scope of this comparison is
to show the general deformation behaviour of the numerical model,
the associated stress magnitudes and stress distributions and the
fundamental impact of crustal stress magnitudes on the overall de-
formation of the lithosphere. For 8 = 0°, the maximum shear stress
is limited by the cohesion only so that maximum differential stress
in the upper crust in simulation 2 was 10 MPa, that is, twice the
maximum shear stress of 5 MPa. In the following, we refer to the
left model domain with initially normal crustal thickness of 35 km
as lowland, to the right model domain with an initial topography of
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Table 1. Model parameters. For all materials, specific heat is 1050 J kg~' K™, thermal expansion is 1 x 107> K~!, compressibility is 1 x 10~'! Pa~!, shear
modulus is 2.5 x 10'® Pa and cohesion is 5 MPa. The friction angle of the mantle lithosphere is always 30°. For the mantle lithosphere and asthenosphere, a
combination of dislocation, diffusion and Peierls creep is applied. For diffusion and Peierls creep only those parameters are displayed that are different from
the ones for dislocation creep; non-specified parameters are the same as for dislocation creep.

Dislocation creep

A@Pa~"s7h) n O (kI mol™1) k(Wm™' K1) po (kgm™3) Hg (Wm™3) 7 (m?)
Upper crust India 5.0717 x 10718 23 154 25 2800 1.4 x 107 0
Upper crust Tibet 5.0717 x 10718 23 154 25 2800 02 x 1076 0
Lower crust 3.2 x 10720 3.0 276 2.1 2800 0.2 x 10~° 0
Mantle lithosphere 1.1 x 10710 35 530 3.0 3300 0 11 x 1076
Asthenosphere 1.1 x 10716 35 530 3.0 3250 0 11 x 1076
Diffusion creep
d (m) m
Mantle lithosphere 1.5 x 10713 1 375 1073 3 9 x 107
Asthenosphere 1.5%x 10713 1 375 1073 3 9x 1076
Peierls creep
Ap s7h op (Pa) 14
Mantle lithosphere 540 5.7 x 10! 8.5 x 10° 0.1
Asthenosphere 540 5.7 x 10 8.5 x 10° 0.1
(a) Tex [MPa]; 6 = 10°, 0.334 [Ma] (d) Tex [MPa]; 6 = 0°, 0.0529 [Ma]
0 5
g -20 0
N -40
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Figure 7. Enlargements of the colour plots of Fig. 6 for three different times for simulation 1 with a friction angle in the crust of 10° (a—c) and simulation 2
with 0° (d—f), both for M = 300 km. Negative values indicate compression, positive ones extension and the legends at the top right of the two columns (a—c and
d—f) apply to the entire column. The region of the crust around the transition zone is shown. Times in million years (Ma) indicate the duration of the simulations.
For a friction angle of 0° (d—f) the absolute magnitude of ., is controlled by the cohesion of 5 MPa. The vertical white line, initially at X = —50 km, indicates

the lateral flow of the crust.

5 km as plateau, and to the central model domain with an initially
laterally varying crustal thickness as transition zone.

The stress distribution in the lithosphere is profoundly different
for simulations 1 and 2 (Fig. 6). In simulation 1, high horizontal
deviatoric stresses, t,,, are generally concentrated around the tran-
sition zone in the upper region of the mantle lithosphere and in the
upper crust (Figs 6a—c). The lowland is under compression (neg-
ative deviatoric stress) and the plateau under extension (positive
deviatoric stresses). Absolute maximum values of deviatoric stress
in the lowland and plateau are similar and in the order of 100 MPa.
Below the Moho in the mantle lithosphere, between X = 0 and
200 km, compressive stresses are directly above extensive stresses.
This stress pattern indicates a region of bending where the upper re-
gion of the bending area is compressed, the lower region is extended
and between the two regions is a neutral level with zero stress. This
neutral level may be associated with the reference level w(x) in the

analytical bending results of Section 2.3. The bending region is re-
stricted to the transition zone, supporting the analytical assumption
of eq. (25). In simulation 2 significant stresses occur only in the
upper region of the mantle lithosphere in the transition zone and
lowland (Figs 6d—f). Stress magnitudes in the mantle lithosphere in
simulation 2 are locally more than twice the stresses in the mantle
lithosphere in simulation 1. The higher bending stresses in simula-
tion 2 are consistent with the analytical results of Section 2.3 which
predict higher stresses for smaller values of ERT. The ERT of
simulation 2 is thinner than the one of simulation 1 because crustal
levels do not contribute to £ R T in simulation 2. The absolute max-
imum magnitudes of 100-250 MPa for the deviatoric stresses due
to bending agree also with rheology-independent analytical predic-
tions (Fig. 5). The ERT of the mantle lithosphere in the transition
zone of simulation 2 is between 40 and 50 km in agreement with
values assumed in Fig. 5.
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Figure 8. (a—c) Three vertical profiles of o7 — 03 and oy, —

o [MPa]

o [MPa]

o0, for simulation 1 (6 = 10° and M =300 km) at ~15 Ma (Fig. 6¢) in the lowland at X = —500 km

(a), the transition zone at X = —20 km (b) and in the plateau at X = 450 km (c). See Fig. 6(c) for the horizontal X-position of the three profiles. (d—f) Three
vertical profiles of o1 — 03 and oy, — o, for simulation 2 (¢ = 0° and M = 300 km) at ~1 Ma (Fig. 6f) in the lowland at X = —500 km (d), the transition
zone at X = —20 km (e) and in the plateau at X = 450 km (f). See Fig. 6(f) for the horizontal X-position of the three profiles.

In the upper crust of simulation 1, the transition between com-
pressive and extensive regions occurs at the location where the
initial topography reached the plateau height (Figs 7b and c). The
upper crust with significant topographic slope is under compres-
sion. In simulation 2 the topography is essentially flat after 1 Ma
but the transition between compression and extension occurs ap-
proximately at the same location as in simulation 1 (Figs 7d-f).
Generally, lateral flow of material induced by G P E variations is
not uniform with depth and the crust flows laterally towards the
lowland while stronger levels of the mantle lithosphere essentially
do not flow (material flow is indicated by initially vertical white
lines in Fig. 7).

For simulation 1 at 15.3 Ma, vertical profiles of o; — 03 and
o.x — 0, have been calculated in the lowland (Fig. 8a), in the tran-
sition zone (Fig. 8b) and in the plateau (Fig. 8c; see also Fig. 6¢). By
definition, values of o1 — o3 are always positive whereas values of
o,y — 0, are negative for compression and positive for extension.
The lithosphere in the lowland is under compression and absolute
values of o1 — 03 and o,, — 0., are essentially identical which in-
dicates negligible shear stresses, eq. (9), and negligible bending
stresses since stresses do not change sign along the vertical pro-
file. The same applies to stress profiles in the plateau (Fig. 8c) but
stresses there are extensive and values of o,, — 0., are positive. In
the transition zone, absolute values of oy — 03 and o,, — 0. are not
everywhere similar and in some depth the values of o,, — 0., are
nearly zero while corresponding values of oy — o5 are significant
with ca. 50-70 MPa (Fig. 8b). The stress profiles for simulation 1
show that the stress state of the lowland and plateau is dominated
by membrane stresses while in the transition zone both membrane
and bending stresses are important. The largest stresses occur at
the brittle-ductile transition in the upper crust in the transition zone

where o7 — o3 ~185 MPa (Fig. 8b). In the lowland, the nearly ver-
tical domains of the oy — o3 versus depth profile indicate a vis-
coelastic deformation and stresses did not reach the plastic yield
strength.

For simulation 2, vertical profiles of o; — o3 at ~1.05 Ma at the
same horizontal positions (Figs 8d—f) are significantly different to
the ones of simulation 1. In contrast to simulation 1, profiles of the
absolute values of oy — 03 and o, — 0., vary significantly in the
lowland, transition zone and plateau because values of o, — 0.,
change their sign along vertical profiles. This sign change is associ-
ated with significant bending stresses (Fig. 6f). Maximal values of
o1 — 03 are ca. 645 MPa and occur in the transition zone at the top
of the mantle lithosphere (Fig. 8e). Results of simulation 2 show
that for a weak crust the deformation of the mantle lithosphere is
dominated by bending and values of oy — o3 reach several hundreds
of MPa due to the reduced ERT of the lithosphere.

5.2 Accuracy of numerical models and applicability of
analytical stress estimates

To evaluate the accuracy of the numerical results and to compare
the analytical predictions of Section 2.2 with numerical results we
calculate values of &,,, F, and GPE by vertical integration of
the numerically calculated stresses and the model density field for
both simulations 1 and 2 (Fig. 9). Representative results are shown
for both simulations at ca. 8§ Ma. Horizontal profiles of F,, GPE
and &,, are plotted by subtracting the leftmost values of F\,, GPE
and &,, from all values of F,, GPE and &,, (Figs 9a and c). As
predicted by the analytical thin-sheet results (eq. 10), &, is con-
stant along the entire model (Figs 9a and c). Horizontal profiles

6102 Aienuer |z uo Jasn ssuusy s9ousI0s0a9) Aq 92615 L S/ELE L/2/9 1 ZAornsqe-aoiue/I[B/wod dno olwapeoe)/:sdny Woll papeojumoq



1324 S.M. Schmalholz et al.

(a) 0 = 10°; 8.27 [Ma]

E
Z | ———— F%
o 10 O AGPE
o _
A Ogx
PR
[0}
o
T 0 IR
e]
2o
© 5¢
(@]
L
£ 10 . . . .
-400 -200 0 200 400
(c) 6 = 10°; 8.27 [Ma]
40

- ﬁ (7_'962)
O  P,(SY)

Stress [MPa]

400 -200 0 200 400
Width [km]

(b)_0 = 0°; 7.99 [Ma]

101

Integrated stress [1012 N/m]

- Fx
-5 O AGPE
5’1‘1
-10 = : : : :
400  -200 0 200 400

(d) ¢ =0°;7.99 [Ma]

Stress [MPa]

400 -200 0 200 400
Width [km]

Figure 9. (a—c) Horizontal profiles of dy,, Fy and AGPE calculated from the numerical simulations 1 (a) and from simulation 2 (c) at ~8 Ma. From all
three quantities, the leftmost value is subtracted so that the quantities are zero at the left side of the plot. (b and d). Horizontal profiles of tectonic pressure,
Po = P — Pp, at the model bottom, Sh, and horizontal gradient of vertically integrated shear stress, d7,./dx, calculated from the numerical simulations 1 (b)

and 2 (d).

of F,, calculated by numerically computed stresses, and profiles
of AGPE, calculated by model densities, match along the entire
model, demonstrating the correctness of the calculated stresses for
the corresponding density fields (see eqs 14 and 15). The agreement
of the horizontal profiles of F, and G PE indicates that the sim-
ple analytical relations, which are independent on rheology, apply
to considerably heterogeneous stress fields in the lithosphere. For
simulation 1, values of AG P E vary strongly around the transition
zone but values of F, nevertheless correspond to values of AGPE.
Maximum values of AGPE are ca. 10 x 10> N m~! and values in
the right region of the plateau settle to ca. 7 x 10'> Nm~' (Fig. 9a).
These values and the lateral variation of AG P E are close to values
calculated from natural density fields (Fig. 3b). In contrast, for sim-
ulation 2 the profile of AG P E is significantly different, especially
around the transition zone where values of AGPE are already of
the same order as AG P E values in the plateau (Fig. 9¢). The nu-
merical results also show that the bottom of the model domain is not
a level of local isostasy because values of P are not identical to P
so that the tectonic pressure, Po = P — P, varies along the model
bottom (Figs 9b and d). As predicted by the analytical thin-sheet
results (eq. (19)), the value of Pg at the model bottom is close to the
numerically calculated value of d7,. /dx (Figs 9b and d). The reason
for the non-zero tectonic pressure at the model bottom is the flexural
strength of the upper level of the lithosphere where the associated
bending stresses are responsible for the deviation of the lithosphere
from the local isostasy state (eq. (22)). For simulation 1 values of

Po(Sb) are close to zero on both model sides away from the transi-
tion zone because there the model domain is close to local isostasy.
The largest deviation from local isostasy is around the transition
zone with values of Py (Sb) close to 30 MPa. To the left and right of
this maximum the values of Po(Sh) are negative with magnitudes as
low as —20 MPa (Fig. 9b). The relative lateral variation of Po(Sb) in
simulation 1 is similar to the pressure variation associated with the
density fields of CRUST1.0 and Hetényi et al. (2007; Fig. 3c). The
absolute magnitudes of Po(Sb) are slightly smaller in the numerical
simulations. This is expected since the natural density field is only
100 km deep whereas the density field of the numerical simulation
is 300 km deep and in such larger depth the deviation from local
isostasy is presumably smaller. For simulation 2 the lateral varia-
tion of Po(Sh) is considerably different to the one of simulation 1
(Fig. 6f).

5.3 Crustal stress magnitudes required to maintain
topographic relief

To determine the minimum crustal stress magnitude required to
maintain the topographic relief between Indian lowland and Tibetan
plateau for ca. 10 Ma, we performed a series of simulations for the
model configuration shown in Fig. 4. We varied systematically two
parameters, namely the friction angle of the crust, 6 = 0°, 3°, 6°,
10° and 30°, and the Moho transition width, M = 50, 100, 200
and 300 km. The results of all the performed simulations show
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Figure 10. Lateral variation of topography for simulations with different friction angle in the crust, 6, and different initial Moho transition zone widths, M
(distance in legend in panel a applies to all panels). The topography is given for the same time (in Ma) for simulations with the same 6 but times differ for
simulations with different 6. The dashed black line in all four panels indicates the initial topography.

that both & and M have a significant impact on the topography
evolution (Fig. 10). The collapse, or lateral flow, of the topographic
relief reaches the maximum value for M = 50 km, whereas it is
minimal for M = 300 km. For § = 30° and 10° the width of the
topographic transition zone is essentially stable and tends to the
corresponding values of M after ca. 11 Ma (Figs 10a and b). For
6 = 3° the width of the topographic transition zone has essentially
doubled at ca. 11 Ma when compared to the corresponding initial
value of M (Fig. 10c). For & = 0° there is no more topographic
transition zone after already ca. 0.5 Ma (Fig. 10d). The results for
0 = 0° show that maximum values of Ao of ca. 10 MPa in the
crust are unable to maintain the topographic relief between lowland
and plateau for as little as 0.5 Ma. We focus on the evolution of
topography with time for simulations with # = 10°, 3° and 0° and
for M =300 km (Fig. 11). For & = 10° the width of the topographic
transition zone is more or less stable in the horizontal direction
within the displayed 15 Ma (Fig. 11a). Also, no significant foreland
basin with negative topography is formed in the lowland (Fig. 11a).
In contrast, for & = 3° the width of the topographic transition
zone widens significantly within 15 Ma (Fig. 11b). Furthermore,
a basin with a depth of more than 500 m subsidence develops in
the lowland and this basin migrates more than 100 km towards the
foreland within 15 Ma (Fig. 11b). For 6 = 0° there is essentially
no difference anymore between plateau and lowland already after 1
Ma (Fig. 11c).

We compare all the performed simulations with different 6 and
M Dby calculating for each simulation the maximum differential
stress, Aomax, at X = 0 km which occurred in the upper crust within
the entire simulation duration (Fig. 12a). Fig. 12(a) presents values
of the maximum differential stress reached within the upper crust
for a range of 6 and M. Values of Ao,y increase from 10 to ca.
220 MPa for increasing values of 0, whereas they are essentially
independent of M (Fig. 12a). The maximum values of the horizontal
velocity at the surface at X = 0, Vo, for each simulation decrease
with increasing 6 (Fig. 12b). For 6 < 10° the decrease of Vo
with increasing 6 is significant and essentially independent of M.
However, for 6 > 10° the V essentially does not decrease anymore
with increasing 6, but the decrease depends on M, whereby larger
values of M correspond to smaller V, (Fig. 12b). The results show
that for a given M an increase in 6 from 0° to 10° causes an
increase in Aoy, Which decreases V,o and, hence, significantly
help to maintain plateau relief. An increase in 6 from 10° to 30°
still causes an increase in Ao, but this stress increase does not
significantly decrease V. The plateau is most stable, that is, V¢ is
smallest, for M = 300 km which is closest to the observed geometry
(Fig. 3a). In the simulations with 6 = 10° and M = 300 km values of
Ao are ca. 180 MPa and the systematic results (Fig. 12) indicate
that such stress levels are minimum stress levels that are required
in the upper crust to support the relief of the plateau for a duration
on the order of 10 Ma.
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Figure 11. Colour plot of the evolution of topography (in km) with time for three simulations all with A = 300 km but different crustal friction angles, 6, of
10° (a), 3° (b) and 0° (c). In panel (a) and (b), white contour lines indicate the topography of —0.5, 0 and 1 km.

For the simulation with 6 = 10° and M = 300 km the vertical
integral of the differential stress across the lithosphere, Ao , varies
significantly horizontally but insignificantly with time (Fig. 13a).
The maximal values of Ao occur in the transition zone and are ca.
7.5 x 10> N m~'. The relative contribution of the stresses in the
crust to the stresses in the entire lithosphere is quantified by the ratio
of the vertically integrated differential stress across the crust, Ao,
to Ao . In the transition zone the values of Ao ¢ /Ao are >0.3 and
in the right side of the plateau even >0.5 so that in these regions
the contribution of the crust to the integrated lithospheric stress is
significant (Fig. 13b). In some regions of the lowland, values of
Aoc/Aoy decrease to ca. 0.1 (Fig. 13b). The results show that
the contribution of the crust to the vertically integrated differential
stresses in the lithosphere varies significantly horizontally. For com-
parison, for the simulation with = 3° and M = 300 km maximal
values of Ao also occur around the transition zone but are slightly
larger reaching up to ca. 8.5 x 10> N m~! (Fig. 13c). Values of
Ao /Ao can locally also be larger than 0.3 (Fig. 13d).

For & = 10° and M = 300 km the maximum differential stress,
Aomax, in the upper crust is ca. 185 MPa (Fig. 14a) while for
0 = 3° and M = 300 km it is ca. 80 MPa (Fig. 14d). For both
simulations, maximum values of Ao, occur around the transition
zone (Figs 14a and d). In the lower crust, values of Aoy, are more
or less the same for & = 10° and 3° and are ca. 120 MPa (Figs 14b
and e). In the mantle lithosphere, values of Aoy, are larger for
6 = 3° reaching >500 MPa (Fig. 14f) while for 6 = 10° maximum

values of Aoy, are ca. 350 MPa (Fig. 14c). For 6 = 3°, the high
stress values are due to bending of the relatively thin (<50 km)
and strong upper level of the mantle lithosphere; in agreement with
analytical bending results (Fig. 5).

6 DISCUSSION

The present day AG P E in the transition zone between Indian low-
land and Tibetan plateau is about 10 to 12 x 10'> N m~' (Fig. 3b).
If averaged over a 100 km thick lithosphere, these AG P E varia-
tions imply average values of Ao between 100 and 120 MPa and
average values of A1, between 50 and 60 MPa (eq. 15). Assuming
that absolute values of t,, = Art,,/2 yields typical absolute val-
ues of 7., between 25 and 30 MPa. Due to the pressure-sensitive
yield stress and the temperature-dependent viscosity of rocks, the
stresses cannot be constant with depth. Assuming that the load-
bearing levels in the lithosphere have a cumulative £RT of one
half to one third of the total lithospheric thickness of 100 km
implies that values of 7. are between 50 and 90 MPa (eq. 17;
assuming 1 = At} /2). These stress magnitudes are in broad
agreement Wlth Values of oy — o3 occurring in the high-stress re-
gions in the numerical simulations (Figs 6 and 14). However, the
analytical and numerical results indicate that stresses in the litho-
sphere can be locally considerably larger if bending is significant
(Figs 6 and 14).
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Figure 12. Maximum differential stress (in MPa) in the upper crust (a) and maximum horizontal velocity at the surface (b) at X-position = —50 km for
simulations with different crustal friction angle, 6, and different Moho transition width, M. Stress values in panel (a) for specific values of § and M represent
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Allmann & Shearer (2009) report that the median of earthquake-
based stress drop estimates of about 4 MPa does not vary signifi-
cantly with seismic moment and within the top 45 km of the litho-
sphere. Our results indicate that median stress drop values of 4 MPa,
corresponding to differential stress of ca. 8 MPa, cannot be repre-
sentative for the absolute deviatoric stress magnitudes in a crust with
lateral variations of GPE as observed between the Indian lowland
and the Tibetan plateau. Absolute deviatoric magnitudes between
one and two orders of magnitudes larger than 4 MPa are required to
maintain the relief of the Tibetan plateau over geological spatial and
time scales (Figs 6b and c). Stress magnitudes of several hundreds
of MPa have also been reported from 3-D numerical simulations of
the present-day India—Asia collision (Lechmann et al. 2014). There-
fore, stress drop estimates of ca. 4 MPa represent most likely only
a minor fraction of the total crustal deviatoric stress magnitude; at

least in a collisional setting mimicking the India—Himalaya—Tibet
system. A possible explanation for the different stress estimates has
been proposed by Nadeau & Johnson (1998) who argue that stresses
on fault planes are strongly heterogeneous and that stresses around
fault plane asperities with surface <1 m? can be locally very high,
up to 2000 MPa, whereas the corresponding stress drop, which is
averaged over the entire fault plane, is orders of magnitudes smaller
and thus provides a stress drop between 1 and 10 MPa.

A key assumption for our estimates of crustal stress magnitudes
is that the topography of the Tibetan plateau was relatively stable
during the last 10 Ma. This assumption can be supported by a rep-
resentative cross-section from India to Tibet (Figs 2 and 3) which is
characterized by considerable underthrusting of Indian lower crust
below Tibet (Hetényi et al. 2007; Nabélek et al. 2009). The un-
derthrusted Indian lower crust is approximately horizontal along
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Figure 13. Evolution of vertically integrated differential stress with time for simulations with A = 300 km. Panels (a) and (b) show results for 6 = 10°, and
panels (c) and (d) for & = 3°. Panels (a) and (c) show the evolution of the vertically integrated differential stress across the entire lithosphere, Ao . Panels (b)
and (d) show the evolution of the ratio of vertically integrated differential stress across the crust to the vertically integrated differential stress across the entire
lithosphere, Aoc/Ao. The black contour line indicates a ratio of 1/3 and the orange-red domains indicate regions where the integrated crustal strength is

larger than one third of the entire integrated lithospheric strength.

250 km below Tibet. Geophysical data indicates that this under-
thrusting extends for at least ca. 1000 km along the strike of the
central part of the Himalayas (Wittlinger et al. 2009). The geode-
tic and geological shortening rate across the Himalaya is ca. 2 cm
yr~!, so that the ca. 250 km underthrusting occurred over the last
ca. 12.5 Ma. Assuming that the underthrusting was horizontal im-
plies that there were no major vertical displacements during the last
12.5 Ma because otherwise the Indian lower crust would today not
be horizontal over a length of 250 km. The absence of significant
crustal-scale vertical displacements suggests that the topographic
relief between India and Tibet and the more or less flat topography
of southern Tibet likely existed for times on the order of 10 Ma.
There is geological evidence, independent from the previously pre-
sented geophysical arguments, in support of Southern Tibet’s high
elevation since ca. 10 Ma or more. While the Tibetan plateau’s uplift
history has evolved from north to south (Molnar ez al. 2010), sev-
eral approaches point out that its elevation was close to 4000 m over
geologically significant times. For the central part of the plateau,
palaeoaltimetry suggests elevations higher than 4000 m since 35 £ 5
Ma (Rowly & Curie 2006). In a compilation, Harris (2006) argues
that elevations in the southern part of the plateau have not changed
since at least 15 Ma, and this time is pushed back locally as far as 28
Ma for an elevation of 5000 m (Xu ez al. 2013). Thermochronologic,
sedimentologic, oceanographic and palaeoclimatic studies suggest
that rapid uplift of Southern Tibet started 20 Ma ago and reached the
present elevation by 8 Ma (Harrison et al. 1992). Fielding (1996)

even argues for higher elevation than current prior to 8 Ma and its
slow decrease during the late Cenozoic. Similar findings have been
reported over Tibet and the Himalaya by Quade ef al. (2011). Fi-
nally, cosmogenic nuclide exposure histories in southern and central
Tibet, although measured on much shorter time scales, suggest very
low erosion rates, less than 30 m Ma~' (Lal et al. 2004). The above
observations support our assumption that the Tibetan plateau and
the present-day topographic relief can have existed for a duration of
ca. 10 Ma.

The simulations show that crustal strength does not only affect
the evolution of lowland-plateau transition zone width but also the
formation of a sedimentary basin in the foreland. For 6 = 3° maxi-
mum values of o7 — o3 in the upper crust are ca. 80 MPa (Fig. 14)
and for 6 = 3° a basin forms in the lowland with a depth between
0.5 and 1 km. This basin is steadily migrating away from the to-
pographic relief. This is not the case in the Himalayan foreland,
as the Ganges foreland basin is getting broader with time, but the
deepest part remains close to the topographic front as a result of
flexure (see map in Hetényi et al. 2016). This is witnessed by the
accumulated lower, middle and upper Siwalik sedimentary units,
studied in surface outcrops and boreholes (e.g. Sastri et al. 1971;
Schelling 1992; Métivier et al. 1999). The situation is different at
the Brahmaputra foreland basin in the east, where the very shallow
sedimentary basin is explained by a different foreland lithosphere
and seismotectonics (Hetényi et al. 2016; Diehl et al. 2017; Grujic
etal 2018).
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Figure 14. Evolution of maximum differential stresses, Aomax (MPa), in the upper crust (a and d), the lower crust (b and e) and the mantle lithosphere (c
and f) for simulations with 6 = 10° (a—c) and 3° (d—f), both with M = 300 km. Aopmax indicates the maximum differential stress that occurred at a specific

X-position and time within the respective model unit.

7 CONCLUSIONS

The numerical simulations show that maximum magnitudes of dif-
ferential stress in the upper crust must be at least ca. 180 MPa to
maintain the relief of the Tibetan plateau for a duration of ca. 10 Ma.
The required crustal stress magnitudes are at least one order of mag-
nitude larger than median earthquake-based stress drop estimates
from seismology of ca. 4 MPa, corresponding to ca. 8 MPa differen-
tial stress. Analytical estimates of stress magnitudes based on lateral
variation of GPE agree with stress magnitudes in the performed 2-
D thermomechanical numerical simulations. We, therefore, argue
that median stress drop estimates do not represent absolute stress
magnitudes in the crust around the Tibetan plateau and that stress
drop estimates are relative, and only represent a small fraction of
the total crustal stress.

The performed simulations show that the contribution of depth-
integrated crustal stress to the lithospheric depth-integrated stress
varies significantly along profile between lowland and plateau. The
results indicate that depth-integrated crustal stress in the region
between lowland and plateau must be approximately equal to the
depth-integrated stress of the mantle lithosphere in order to maintain
the topographic relief of the Tibetan plateau.

The large-scale density heterogeneities between lowland and
plateau can result in significant bending moments and large bend-
ing stresses in the rheologically stratified lithosphere. Analytical
and numerical results show that the magnitudes of bending stresses

can be few hundreds of MPa. The magnitude of bending stresses
strongly depends on the effective rheological thickness of the litho-
sphere. Therefore, the value of the crustal friction angle controls
not only the stress magnitudes in the crust but also in the mantle
lithosphere, because this friction angle controls the effective rheo-
logical thickness of the lithosphere. Smaller crustal stresses cause
a smaller effective rheological thickness of the lithosphere, which
in turn causes higher bending-related stresses in the mantle litho-
sphere.

Simple analytical relations between depth-integrated horizontal
stresses, horizontal variations of depth-integrated shear stresses,
tectonic pressure at the compensation depth, and bending stresses
based on rheology-independent estimations from lateral G P E vari-
ations and integrated density moments are valid for highly variable
stress fields calculated with 2-D numerical thermomechanical simu-
lations considering viscoelastoplastic deformation. Therefore, these
analytical relations are useful to estimate stress magnitudes in the
lithosphere and to test the correctness and accuracy of numerical
algorithms for modelling lithospheric deformation.
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APPENDIX A

The kinematic model of the traditional thin-sheet approximation
(England & McKenzie 1982) assumes that the horizontal velocity
is constant with depth, so that the depth integral of 6. corresponds
to the driving horizontal force per unit length, E = F,. To derive
eq. (23) we assume that [ (of,) = 0, which is true only for certain
properties of the reference level for bending, w(x), namely,

o z—w)=0 = oSz—-—Fw=0

= w=05z/F,. (A1)

For a viscoplastic lithosphere, the values of ¢ are controlled
by a depth-dependent effective viscosity, 7n.g, and for a depth-
uniform strain rate the expression for w(x) in eq. (Al) becomes
W = Tewrz/Nesr- For the lithospheric model considered here, the ap-
propriate value of w(x) can be calculated only numerically and it
varies also in space and with time. Generally, w(x) should be located
close to the level of the maximum strength in the lithosphere. If the
system would be characterized by more than one distinct ‘strength
maxima’, the system is unlikely to be treatable with the thin-sheet
approximation of bending stresses with any accuracy.

The moment of the lithospheric pressure, [ [(PL), can be evaluated
using formulae for moment evaluations in a two-layer system with
a laterally variable crustal thickness, /4.(x), and lithospheric mantle
thickness, /,,(x), (Medvedev & Podladchikov 1999b):

St(x) St(x)
I[(P) = / (z— w)/ o (x,z’) gdz'dz =
Sb z

3 2 3
_ (hc(;) N hm(x)zhc (x)) g 4 m)

3 Pm&

—[St(x) —w(x)]GPE. (A2)
Assuming local isostasy, the geometry of the lithosphere can be

expressed as a single function of the laterally variable elevation,
hex = St(x) — St(lowland):

Pm

he (x) = he + hex
P = Pe
him ()C) =l — hex <
m — Pec
St (x) — w(x) =hex + W = hex + wihex + wy,

(A3)

where /. and £, are initial thicknesses of the crust and lithospheric
mantle in the lowland, both independent from x, and W = wihe +
wy is the positive distance from the topography of the lowland to
the reference line w(x). We express all the parts of [[(PL) from
eq. (A2) as a polynomial of /. using the following relations:

3 2
(hcoc) L m@)he (x)) g 4 Mm@

3
. 5 3 Pmg = hodig+ e Big

+he C1 + Dy
hexGPE = h3 Aag + h2 Bag + ho Ca (A4)
W.-GPE = h wiAyg + h2.g[wi By + woda] + W - Cy
[St(x) —w(x)]GPE = h (1 +wy) drg
+hZ (1 + wy) By + wod2]l g + ...

In the polynomial expression we only need coefficients for the
second and third power of /¢ since we use the polynomial only in

eq. (23) with the second derivative of [](PL). The required coeffi-
cients are as follows:

4y = Peb (@ L PP _ &f)

(pmh_ ,09)3 3 22 3

cPe 2 Pe
Bl=—— e
l (pm . pc)z Fm * 2 ) (AS)

Ay = PP

2 (lom - pc)
B, = hcpc~

The coefficients 4 and B used in eq. (24) are then

A=[4—0+w)A4]g

B=[B —(1+uw)Bs — wods]g. (A6)

Several properties of the resulting bending moment and charac-
teristic bending stress are important to mention: (1) Neither part
of the density moment [](PL) that contributes to bending stress
estimates (eqs A1-A3) nor G PE evaluation (eq. 16) depends on
hym. As discussed in Section 2, the principal contribution of inte-
grated stresses and moments results from the stress bearing areas,
characterized by £ RT, which is not related to the chosen depth of
compensation. That makes the total depth of the model lithosphere
an inadequate measure of the characteristic length scale in the thin-
sheet model. That is in contrast with the usage of the depth of
compensation as the characteristic length-scale measure in the thin-
sheet approximation introduced by England & McKenzie (1982).
(2) ERT and w(x) are two approximate parameters that control the
characteristic bending stress. Whereas the dependence on ERT is
clear from eq. (27), the dependence on the reference surface w(x)
is not obvious. To illustrate the dependence on w(x), we calculate
the moment for another reference surface w’(x) and consider the
difference:

[TE) -TT (@)

U;/x (Z - w) - ng (Z - w,)
=F (v —w). (A7)

Using eqs (17) and (28) and assuming that £ RT is the same for
in-plane and for bending stresses, eq. (A7) can be rearranged to
yield:

6w —w) ,
w’ + ERT Tyxe (AS)

The resulting stress depends, hence, linearly on the choice of
w(x). The low angle of the isolines for stress in Fig. 5(b) demon-
strates the minor dependence of bending stress on the choice of w(x)
because magnitudes of bending stresses are substantially larger than
magnitudes of characteristic membrane stresses, that is, T2 > 7.
This inequality is justified if we compare maximum values of T2,
in Fig. 5 with estimates for t. from eq. (18). This inequality in
combination with eq. (A8) also validates the use of an arbitrary
chosen w(x) instead of the use of the exact value of w(x) given in
eq. (Al).
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APPENDIX B

The applied numerical algorithm solves the partial differential equa-
tions of continuum mechanics for 2-D slow deformations (no in-
ertia) coupled with heat transfer under gravity. The force balance
equations are:

80[1-

ox, p (B1)
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where 7 and j are indexes of either 1 or 2 and represent the horizontal
x-direction (i, j = 1) and vertical y-direction (i, j =2), by = 0
and b, = g. o;; are the total Maxwell-viscoelastic stress tensor
components which are expressed using a backward-Euler rule (e.g.
Schmalholz et al. 2001) by

1 1\,
O‘,‘j = —P+2<; + @) 8,‘]

GAt\ ™!
+<1 + T) o+ Jijs (B2)

where P corresponds to the pressure, &;; are the components of
the deviatoric strain rate tensor, G is the shear modulus, 7 is the
effective viscosity, A7 is the numerical time step, o/, are the stress
tensor components from the previous time step and J;; includes
all the corresponding terms resulting from the Jaumann rate of the
stress tensor (e.g. Beuchert & Podladchikov 2010).

The rheological model is based on the additive decomposition of
the deviatoric strain rate tensor &;;:

o — gol 4 gPl o adis | oodif | ope

&y =& e HE]HE +HE (B3)
sel - oPl o adis  adif spe ;

where &7, &, &%, & and &, respectively, correspond to the

strain rate contributions arising from elasticity, plasticity and vis-
cous creep (dislocation, diffusion and Peierls). This strain rate equa-
tion is nonlinear and solved locally on cell centroids and vertices in
order to define the current effective viscosity and stress (e.g. Popov
& Sobolev 2008). The viscosity for dislocation creep is a function
of the dislocation creep strain rate invariant, &3¢ = 7;; /2%,

L2 PV
= A Lexp (—Q}; - ) (B4)
where the ratio involving the stress exponents to the left of 4 results
from the conversion of the experimentally derived 1-D flow law to
a general flow law for tensor components based on invariants (e.g.
Gerya 2010; Schmalholz & Fletcher 2011). Applied parameters are
displayed in Table 1. Diffusion creep is taken into account in the
lithospheric and asthenospheric mantle and its viscosity is expressed
as

. PV
ndlf:AdmeXp<Q+ >’

RT (BS5)

where d is grain size and m is grain size exponent (Table 1). Peierls
creep (i.e. low-temperature plasticity) is applied only in the mantle
lithosphere with parameters from Goetze & Evans (1979) using the
formulation of Kameyama et al. (1999). The viscosity correspond-
ing to Peierls creep takes the following form:

2? A 1
N = ?)I?A(sﬁe)f , (B6)
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where s is an effective stress exponent that depends on the temper-
ature:

s=2r 2 (-y). (B7)

The A for this formulation is

L—p\]"
A=|:Apexp<—Q(RTy)>i| Yo, (B8)

where y is a fitting parameter from the Peierls flow law (Table 1).
The stress of all material phases is limited by a yield stress, t,,
defined by the Drucker—Prager criterion

7, = bcos(f) + P sin(h), (B9)
where b is the cohesion and 6 is the angle of internal friction.
In case of yielding, the effective viscosity is iteratively reduced
until the corresponding stress invariant equals the yield stress (e.g.
Lemiale et al. 2008; Schmalholz & Maeder 2012). Therefore, the
effective viscosity for plasticity is computed only for 7y — 7, > 0
and takes the form of

P = ifn -1, 2 0,

en

(B10)

where éﬂl is the second invariant of the plastic strain rate tensor
having components égl (eq. B3).

At the end of the local iteration cycle, the effective viscosity is
equal to the harmonic mean of the viscosities of each dissipative
deformation mechanism:

-1

! . (B11)

n= — T T g an T ooy T
) E ) (e

Eq. (B11) indicates that each viscosity is calculated with the
respective second strain rate invariant, which is calculated from
the strain rate tensor components of the corresponding deformation
mechanism (eq. B3).

The applied 2-D equation for heat transfer is

DT 9 [ 0T
_(k

pe—r (B12)

= Hp + H,
Dt 8x,~ ) + P + R

3x,~
with D/Dt representing the total time derivative, Hr being radio-
genic heat production and Hp = (v}, + 5 + 2t5)/2n being the
heating due to viscous and plastic dissipative work. We assume
here that all dissipative work is converted into heat (i.e. the so-
called Taylor—Quinney coefficient is 1) since we do not model grain
size reduction which consumes typically only a minor fraction of
the dissipative work.
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