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1 INTRODUCTION
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SUMMARY
Magnitudes of differential stress in the lithosphere, especially in the crust, are still dispute d
Earthquake-based stress drop estimates indicate median wal0gdPa whereas the lateral 8
variation of gravitational potential energy per unit aré&g) across signi cantreliefindicates 2
stress magnitudes @h. 100 MPa in average across a 100 km thick lithosphere between tBe
Indian lowland and the Tibetan plateau. These stan@&g based stress estimates correspon%

to membrane stresses because they are associated with a deformation that is uniform with depth
We show here with new analytical results that lateral variatioi@RIE can also cause bending %
moments and related bending stresses of several hundreds of MPa. Furthermore, we peé‘orm
2-D thermomechanical numerical simulations (1) to evaluate estimates for membrane @nd
bending stresses based®RE variations, (2) to quantify minimum crustal stress magnitude%
that are required to maintain the topographic relief between Indian lowland and Tibetan
plateau forca. 10 Ma and (3) to quantify the corresponding relative contribution of crustﬁ
strength to the total lithospheric strength. The numerical model includes V|sc0elastopla§t|c
deformation, gravity and heat transfer. The model con guration is based on density elfis
from the CRUST1.0 data set and from a geophysically and petrologically constrained dengity
model based oim situ eld campaigns. The numerical results indicate that values of differentia$
stress in the upper crust must bea. 180 MPa, corresponding to a friction angleaat. 10 2

to maintain the topographic relief between lowland and plateawftd Ma. The relative
contribution of crustal strength to total lithospheric strength varies considerably laterally.dn
the region between lowland and plateau and inside the plateau the depth-integrated crﬁstal
strength is approximately equal to the depth-integrated strength of the mantle lithosph@ére.
Simple analytical formulae predicting the lateral variation of depth-integrated stresses a@'ee
with numerically calculated stress elds, which show both the accuracy of the numerical
results and the applicability of simple, rheology-independent, analytical predictions to hlggly
variable, rheology-dependent stress elds. Our results indicate that (1) crustal strength caﬁ be
locally equal to mantle lithosphere strength and that (2) crustal stresses must be at Ieaspone
order of magnitude larger than median stress drops in order to support the plateau relief gver
a duration ofca. 10 Ma.
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mechanically stronger lithosphere exhibits a larger exural wave-
length than a weaker one (e.g. Burov & Diam&895. Also, during

The magnitude and vertical distribution of stress in the continental long-term lithospheric deformation signi cant deviatoric stresses
lithosphere and the associated vertical distribution of strength con- can potentially generate suf cient dissipative work so that ther-
trol the deformation behaviour of the lithosphere. For example, a mal softening can trigger lithospheric-scale strain localisation (e.g.

¢ The Author(s) 2018. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1313
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Figure 1. Differential stress estimates for the crust. The solid black line shows differential stress based on Byerlee’s law for compression and hydrost
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uid pressure (see e.g. Kohlstedt al. 1995. Blue circles indicate stress estimates from the KTB borehole after Townend & Zab@@8 and transparent )
blue rectangles indicate the reported uncertainty range. The KTB borehole data are for a regional strike-slip regimet é8r1@87). Red circles indicate a
piezometer estimates from ductile shear zones after Behr & Rt and transparent red rectangles indicate the reported uncertainty range. Blue dashed &
rectangle indicates the range of stress estimated from microstructure in a folded quartz vein after Trepndekh&t®009. Red dashed rectangle indicates N
the range of stress estimated from microstructure in quartz veins afteredi@hg2002). Black dashed rectangle indicates the range of stress estimated from 5
microstructure in quartz, jadeite, omphacite and calcite after Kuesteo&kBert 1999. Green dashed rectangle indicates the range of stress estimated from E

microstructure in quartz after Sullivan & Mon2@16. Thick black dashed vertical rectangle indicates the range of depth-averaged (over 100 km thickness)®
stress estimated from late@PEvariations after Molnaet al.(1993. Thick dotted magenta line indicates the median of earthquake-based stress drop estimates§
range after Allmann & Sheare2(09.

Schmalholzt al.2009 Jaquett al.2016 and subduction initiation from grain size piezometers (e.g. Twiss77) can reach a few hun-
(e.g. Thielmann & Kaug012. Furthermore, if differential stresses  dred MPa in crustal depths of 5-25 km (see Eignd references in
exist in the lithosphere then the stress state is neither hydrostaticcaption). Such differential stress estimates from piezometers agree
nor lithostatic. Rock deformation experiments show that such non- with ow laws for dislocation creep for quartzite and limestone (e.g.
hydrostatic stresses can affect mineral transformations, such as théehr & Platt2014 Jaquet & Schmalhol2018.
quartz-coesite transition (Hirth & Tulli$994 Richteret al. 2016, In contrast to the above stress estimates, earthquake-based stressg
and differential stresses could, hence, affect mineral phase trans-drop estimates range typically between 0.3 and 50 MPa with a me-
formations in the lithosphere (e.g. Moulasal. 2014 Moulaset dian stress drop ofa. 4 MPa for depths less than 60 km (e.g.
al. 2018 Tajcmanowaet al. 2015. Conversely, metamorphic phase Allmann & Shearer 2006; Figl). The histogram of the logarith-
changes accompanied by volume change affect the stress and defomic stress drop estimates of Allmann & Shearer (2006; their Fig.
mation eld (e.g. Heényiet al.2011 Hetenyi2014). Consequently, 6) indicates a standard deviation of stress drops from 1 to 10 MPa
the commonly performed conversion of metamorphic pressure to (Fig. 1). The stress drop usually refers to a drop in shear stress,
burial depth, assuming a lithostatic stress state, could be signi - which is approximately half the differential stress. It is, however,
cantly inaccurate (e.g. Petrini & Podladchike®0Q Schmalholz & not clear whether stress drop magnitudes are close to total stress
Podladchikov2013 Moulaset al. 2014 Moulaset al. 2018. drop or whether the stress drop only represents a small fraction
The above examples show that stress magnitudes can potentiallyof the crustal stress (e.g. McGarr & Ga@78 Kanamori198Q
have signi cant impact on lithospheric deformation and associated Hardebeck & Okad2018. Stress drop estimates require assump-
metamorphic processes. However, these stress magnitudes are stitions on fault geometry, which is usually not well known, and er-
controversially debated, particularly stress magnitudes in the crust.rors concerning fault plane geometry can cause large errors in the
For example, estimates of differential stress in the upper crust, which corresponding stress drop estimate (e.g. Madari&3a). Further-
are based oim situstress measurements in deep wells and a borehole more, the static stress drop estimated by seismologists provides a
of the German Continental Deep Drilling Program (KTB), indicate lower bound to the actual dynamic stress drop on the fault occur-
differential stress between 170 and 210 MPa at a depth of approx-ring during dynamic fracturing (e.g. Madaria@77). The analysis
imately 8 km (e.g. Brudyet al. 1997 Townend & Zoback200Q of pseudotachylyte fault veins, commonly considered to represent
Fig. 1). Also, differential stress in natural shear zones estimated ‘palaeoearthquakes’, indicates that stress drop can be greater than
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Stresses caused by GPE variations 1315

Figure 2. (a) Colour plot of GP E (N mgl) for the region around the Tibetan plateau (region mainly in red). Valu€&RE have been calculated directly
from the CRUST1.0 data séitfp://igppweb.ucsd.edufabi/rem.htm), namely from the given densities and depths of the crustal units. Valle®& were
calculated using eq$) and (L3) assuming a compensation dep8f at 100 km and no corrections have been applied to the CRUST1.0 data. Three pro IS
(solid black, magenta and blue lines) have been calculated for the correspor@iRdt (b), topograpvhy (c) and crust-mantle boundary depth (Moho, d). (b§
Three pro les of G P E (see panel a for location). The value®P E from the leftmost positionX = S 600 km) has been subtracted from all other values ofg
G P E to generate values of G P E. The dashed black line corresponds to the initial pro le @& P E corresponding to the performed numerical simulation
initially in isostasy. (c) Three pro les (see panel a for location) of topography taken directly from the CRUST1.0 data set without correctibree (fpTes
(see panel a for location) of Moho depth taken directly from the CRUST1.0 data set without corrections.
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220 MPa and as high as 580 MPa (Anderseml. 2008, which of the stress, which can be related to the horizontal driving force
also suggests that earthquake-based stress drop estimates provideer unit length E,; e.g. Molnar & Lyon-Caeri988, but not maxi- %
lower bounds to the actual stress. mum stress magnitudes in the lithosphere. Also, standard thin-shegt
Another method to estimate lithospheric stress magnitudes is models assume that the deformation is uniform with depth so that
based on vertical integrals of the force balance equations for the horizontal stresses along a vertical pro le are either all compressivé
lithosphere. Models based on vertical integrals of the force bal- or extensive. Stresses associated with a depth-uniform deforma-
ance equations are commonly referred to as thin-sheet models (e.gtion are commonly referred to as membrane, or in-plane, stresses.
England & McKenzie1982 Medvedev & Podladchikod9993. When integrated vertically, all membrane stresses contribugg.to o
Based on such thin-sheet models, the vertical integral of the dif- Stresses associated with bending (or exure) of the lithosphere ar%
ferential stress in the lithosphere can be estimated from the lateralneglected in standard thin-sheet models. Bending stresses typicagy

variation of crustal thickness and topography (e.g. Jeffle59 change their sign across a bending layer, for example, due to exteg-
Arthyushkov1973 or, more generally, from lateral variations of  sion in the outer hinge region and compression in the inner regiorig
the gravitational potential energy per unit ar&PE, e.g. Molnar Since bending stresses change their sign along a vertical pro le
& Lyon-Caen1988 Molnar et al. 1993 Schmalholzet al. 2014). they usually do not contribute signi cantly during vertical stress

These integrated stress estimates result from force balance calculaintegration toF, and are, hence, not estimated from standard lat-
tions only and are robust because they are independent on constitueral GPE variations. We show here with new analytical relations
tive equations (e.g. ow laws), thatis, irrespective of the lithosphere that lateralGPE variations are associated with bending moments
deformation being elastic, plastic or viscous. Consequently, lateral due to lateral mass variations and that these mass moments cause
GPE variations can be used only to calculate the vertical integral signi cant bending stresses.
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Figure 3. (a) Colour plot of density distribution from Hexyi et al. (2007). The location of the corresponding pro le is indicated by the blue line in Hia).

(b) Lateral variation of G P Efor the density pro le in panel (a) (black line) and for the corresponding density pro le along the same section of the CRUST1.0
data (blue line). The red diamonds show values &P E corresponding to the numerical simulation 1 (crustal friction angle obb@ Moho transition width

of 300 km; FigsBa—c) at 8 Ma. (c) Lateral variation of lithostatic pressure at 100 km depth corresponding to the density pro le in panel (a) (black line) and foE’
the corresponding density pro le along the same section of the CRUST1.0 data (blue line). The red diamonds show the lateral variation of ligssstatic p
at the model depth (300 km) corresponding to the numerical simulation 1 (crustal friction angleafd.™oho transition width of 300 km; Figa—c) at 8
Ma. The lateral variation of lithostatic pressure corresponds to the tectonic pressure, that is, rock pressure minus lithostatic pressure.
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Lateral GPE variations between the Tibetan plateau and the In- only provide a small fraction of the lithospheric resistancé{p
dian lowland, referring to the hinterland and foreland of the Hi- then the question arises: how can such a weak crust maintaia.for

malaya, respectively, provide estimatescaf 7 x 102 N mS? for 10 Ma the signi cant lateral variations in surface topography and
Fx (e.9. Molnar & Lyon-Caeri988 Fig. 2) and between Tibetand G P E between the Tibetan plateau and Indian lowland (Rigad
Central Asia estimates of 3 10 x 102 N m®! (e.g. Molnaret al. 3)? The main aim of our study is to quantify with 2-D thermome-

1993 England & Molnar2015. If one assumes that a representative  chanical numerical simulations the magnitudes of differential stress
value for the thickness of the lithosphere is 100 km then the above in the crust that are required to maintain the relief of the Tibetan
estimates oF provide depth-average differential stresses between plateau for a duration ofa. 10 Ma. Furthermore, bending of the

70 and 100 MPa in the lithosphere. However, due to considerable lithosphere generates likely the largest stress magnitudes on Earth
rheological variations within the lithosphere, local stresses can be compared with other geophysical processes such as mantle convec-
signi cantly smaller or larger than these depth-averaged estimatestion (e.g. Karat@®2008 his table 19.2). Medvede2(16 suggested

(see examples for the exure of the Indian plate, e.g. Cattial. that lateral variations o6 P E may result in lithospheric bending
2001 Hetényi et al. 2006. Furthermore, the relative contribution,  stresses and that these stresses may dominate the orientation of
or fraction, of stresses in the crust and mantle lithosphere to the stresses even in the absence of compressive deformation such as
total integrated stress across the lithosphere is usually unknown.lithospheric folding. Therefore, we also investigate the in uence
England & Molnar (2015) suggest that valueskqfacting on the of bending on the stress state of the India—Himalaya—Tibet system
lithosphere of the Tien Shan are 7-4Q.0*2 N m5! and they argue because we are interested in estimates for local, maximum stress
that a signi cant fraction, up to 90 per cent, Bf is provided by magnitudes.

the ductile mantle lithosphere. If the continental crust would indeed

6T0Z Arenuer TZ UO J3SN SBUUSY S9IUBINS03D)



Stresses caused by GPE variations 1317

Figure 4. Model con guration for both the 2-D numerical simulations and the analytical thin-sheet resultbe Thihe initial topography of the plateau with
respect to the lowlandh is the total crustal thickness of the lowlarm,is the thickness of the crustal root (including the lower crust) below the platgau,
is the thickness of the lower crusty, is the thickness of the mantle lithosphere below the lowlandhansl the thickness of the asthenosphere lalykis the
width of the transition zone of the crust-mantle boundary (Moho) in which the Moho deepens from 35 to 68 km depth below topdgraptwary from 50
to 300 km in the different simulations. The transition zone of the topographic variation has always a width of 100 km. For the analytical reslues tfe va
G PE_ andG P Ep have been calculated for a constant density in the upper and lower crust of 280¢ lemchfor constant density of the mantle lithosphere
of 3300 kg n¥3.
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We perform 2-D numerical simulations considering viscoelasto- and vertical coordinates, respectively. The maximumand min-
plastic deformation, heat transfer, gravity, and temperature depen-imum, 3, principal stresses are (e.g. Turcotte & Schu2érit4)
dent ow laws to calculate the distribution of stresses in a continen-
tal lithosphere caused by interaction of a plateau and neighbouring _  xxt 2z . (xS 227 + 2
lowland in the absence of any additional tectonic in uence. The *~
initial lithosphere geometry is close to the standard geometry of B .
thin-sheet models, which were used to calculate the la@RfE =SP+ 2+ 2,2=SP+ 2
variation between India and Tibet (e.g. Molnar & Lyon-C4&88
Molnar et al. 1993 Schmalholzet al. 2014, and to construct a

1
2

1
gravimetrically and petrologically constrained density model of the wt 222 (xS 22? 5 2
Indian plate beneath the Tibetan plateau @tgtet al. 2007). We 3= 2 S 4 o
also compare the lateral variation of depth-integrated numerical .
stresses with predictions of analytical thin-sheet models to show =SpPS§ 2+ 22=85pS |, (3)

the accuracy and robustness of the numerical results.
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where |, is the square root of the second invariant of the deviatori

stress tensor. The differential stress is g
2 STRESS RELATIONS, = ;8 ;=2.. 4 o
GRAVITATIONAL POTENTIAL ENERGY ) o
AND BENDING Following Molnar & Lyon-Caen 1988 and Schmalholzt al. §
(2019 we separate the total normal horizontal stress into two comg
. <
2.1 Lithospheric stress relations ponents: N
— s d s
For incompressible deformation in 2-D, the components of the total xx ~  xx oo ®) ©
stress tensor are where the static stress;, is identical to the negative of the litho-
- Sp+ static pressurds., or hydrostatic stress, which is the vertical integral
C_&pe o (1) of the product of density,, times gravitational acceleratiog;
zz zz
Xz = xz = v St
. w(2)=SP(x,2=S X,z gdz ®)
where pressure, or negative mean stréBs5 S ( xx+ 22/ 2, z

« =S ,; are the normal deviatoric stress tensor components, with St(x) being the topography, which can vary laterally. The
xz = xz represents the shear stress arahdz are the horizontal dynamic component of the total stress in &), (¢,, thus represents

XX?



1318 S.M. Schmalholzt al.

Figure 5. (a) Lateral variation of estimated bending stressesA@dor speci c values of effective rheological thickne€sR T, and for speci ¢ position of the
neutral reference linay (eqs20and21), which is set parallel to the Mohuy is the depth ofv in the lowland. (b) Each bending stress pro le has a maximum
stress. These maximum bending stresses are contoured in theEsBdceersusW. W is the distance of the neutral reference ling from the Moho. The
four pro les displayed in panel (a) are indicated by the corresponding numbered stars. The maximum bending stress depends to rst odeiTon the

Figure 6. Colour plot of horizontal deviatoric stress, (MPa), for three different times for simulation 1 with a friction angle in the crust of(&8c) and
simulation 2 with 0 (d—f), both forM = 300 km. Negative values indicate compression, positive ones extension and the legends at the top right of the tw&
columns (a—c and d—f) apply to the entire column. The entire model domain is shown. Times in million years (Ma) indicate the duration of the simulations
each panel, the lowermost horizontal white line indicates the lithosphere/asthenosphere boundary, the middle white line indicates the base afutte |
(Moho) and the uppermost white line indicates the upper/lower crustal boundary. The two short vertical white lines in the upper and lower caigt are pas
marker lines, which indicate horizontal ow in the crust.
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ameasure of how far the stresses in the lithosphere deviate from theare assumed in traditional thin-sheet approximations (e.g. England

lithostatic state. & McKenzie 1982 Schmalholzt al.2014). The main assumption
The above stress relations are exact and free from assumptions. Inis that shear stress,,, can be neglected when considering the

order to simplify calculations, several approximate stress relations large-scale lithospheric stress state. The approximate equalities in
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the following equations are based on this assumption of negligible differences, indicated with the symbol, between values for the
«»~ The total normal vertical stress can then be approximated by plateau and the lowland, for exampleGPE= GPES GPE

the lithostatic pressure:

S p. (7

The relation between dynamic horizontal stress and deviatoric
horizontal stress is then

zz

XXSPs )(XS ZZ=2XX'

xx ®

Eqg. @) shows that ¢ 2 ,, which is relevant because it ex-
plains the factor two difference in stress magnitudes obtained from
lateral GPE variations around the Tibetan plateau by Molnar &
Lyon-Caen 1988, who calculated ¢, and stress magnitudes ob-
tained by Ghoskt al.(2006 2009, who calculated,y (Schmalholz
et al.2014. The condition of negligible,, results in the principal

w ¥ P

zz

stress axes to be close to the vertical and horizontal orientations and

thus eq. 4) can be approximated

1S 3 abs( xxé ZZ) d

XX

abs 9)

2.2 GPE and thin-sheet relations

Integration of the horizontal balance of stresses from the top stress-
free surfaceSt(x) down to the horizontally constant depth of com-
pensation,Sh at which the deviatoric stresses can be neglected,
reveals the absence of the lateral variation of the depth-integrated
horizontal total stress xx (Molnar & Lyon-Caenl988 Schmalholz

et al.2014:

d  _
&( xx) = 0.

Here, an overbar indicates the depth integral of the corresponding
symbol, for example,

St(x)

(10)

T (X) = xx (X, Z) dz. 11)

Eq. (10) is not based on the thin-sheet approximation presented
in Section 2.1 and is thus fundamental. For example, it was shown
that eq. £0) holds for a numerically calculated 2-D stress eld
of a shortening viscoelastoplastic lithosphere involving buckling
and shear zone generation (Schmalholz & PodladchR@i3.

Eq. 0), however, is based on the condition of vanishing deviatoric
stresses at the bottom bound&®yy which is a reasonable assump-
tion at the lithosphere—asthenosphere transition. Consequ8htly,
is often termed the depth of the lithosphere in the framework of
depth-integrated stress analysis, althohdiffers from tradi-
tional geological and geophysical de nitions of the lithosphere—
asthenosphere boundary (e.g. Turcotte & Schubett). Substi-
tution of the separation of the normal horizontal stress into static
and dynamic components, edg and ©), into eq. (L0) yields (e.g.
Molnar & Lyon-Caen1988 Schmalholzt al.2014)

d d

—F= —GPE, 12
dx * dx (12)
whereF, = & is commonly termed the driving horizontal force

per unit length and th&PE s the vertical integral oP_:

St(x)

GPE((X) = P (x) + const= P. (x,z)dz+ const  (13)

Sb
Eq. (12) can be integrated with respect xoand for a simple
geometry with essentially only a plateau and lowland (Bjgthe
horizontal derivatives in eq.1@) can be replaced by horizontal

(Fig. 4):
Fy (14)

Therefore, GP E can be related to vertically integrated stress
differences by

GPE= 2 (15)

Similar to Section 2.1, we use the approximate equality sign to
indicate the thin-sheet assumption of negligikle The lateral vari- ©
ation inGPEassuming local isostasy at the base of the Ilthospherg

GPE.

2

XX+

and uniform densities within the crust,, and mantle lithosphere, 8
m, iS (e.9. Molnar & Lyon-Caeri988 Schmalholzt al. 2014 §
h =

GPE= ghe he+ —2——= | (16) S
mS 2 z

whereh, andh, are the height of the plateau with respect to the on&;
of the lowland and the crustal thickness of the lowland, respectlvely(;
(Fig. 4). m
The above estimations operate with depth-integrated stressgs
whereas the magnitude of stresses is the target of our study. Strong
rheological heterogeneity of the lithosphere results in strong variag
tions of stresses with depth. Most of the integrated lithospheric stress
guantities, such aBy, are controlled by stresses in the strong IeveI53
of the lithosphere (e.g. Bur®011). The magnitudes of the stresses =:
within these stress-bearing levels are the focus of our study. SimE.
lar to the effective elastic thickness, which characterizes an elastic
lithospheric model (e.g. Burov & Diameh995, we introduce here
the effective rheological thicknesk R T) of the lithosphere, which
isindependent of a particular rheological model. A formal de nition =
of ERT is out of the scope of our study. We use a more qualita+;
tive approach here to illustrate the results of analytical studies anﬂ
compare them with 2-D thermomechanical numerical results in thg
following sections. The scope of the analytical study, which is inde<2
pendent on any rheology assumption, is to obtain a comparison Wil'ﬁ
the numerical results, which are calculated for speci c rheologica§
models. The difference of the characteristic deviatoric stress is by

9T z0ensqe-gme/

de nition, and using eqs14)—(16)
FX cghe m he
= = AL 17
7 2ERT 2ERT ° .S .2 an

To illustrate the usage d&& RT, we assume that the crust is much
stronger than other regions of the lithosphere (Bj@nd thatE RT
is equal to the crustal thickness averaged between plateau and lo@-
land, thatisE RT = h¢ + (he + h;)/ 2. We also assume that charac- 3
teristic deviatoric stresses in the plateau and lowland are identica,

2y S90UBI19S099) Al

but opposite in sign, sothat, = ./ 2 (Schmalholztal.2014). 3
Using the isostasy relatidm = che/ ( mS o) €q. (L7) yields N
N

gh o

XX — 04 £ . (18) g
[

=

This result indicates that the average deviatoric stress in the crust
is directly proportional to the topographic relief. Fgr= 5 km and
¢ = 2800 kg n¥? one obtains,, = ca.35 MPa which is a value ©
that is nearly one order of magnitude larger than the median stress

drop ofca.4 MPa estimated from earthquakes.

The above estimations of the characteristic membrane, or in-
plane, stresses assume the homogeneous deformation with depth
of the lithosphere so that the stresses do not change their sign
with depth and additively contribute to the integrated stress. This
depth-uniform deformation may be associated with the traditional
thin-sheet approximation (England & McKenZi682).

TOC
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2.3 Bending stresses related to lateral variations of GPE hex = 0 in the lowland of the model anlde, = he in the plateau
(Fig. 4). We only have to consider powers lof, on the order of 2

Lateral variations o P E are associated with the laterally varying . . o
o - L . and 3 since lower powers will disappear due to the second derivative
distribution of mass. This lateral mass variation can also result in of (P)ineq. 3
L . .

moments of forces, which can cause bending stresses. The numer-
ical simulations performed in this study will show bending related (P)=hSA+NiB+ .. (24)

stresses and we derive here fundamental relations bet@éxha . . .
. } . The coef cientsA andB depend on the densities and geometrical
and bending stresses to estimate the order of magnitude of these

bending stresses, independent of any rheological assumptions. parameters of the model con guration and are derived in Appendix

Schmalholzet al. (2014 presented the integration of the ver- A. We assume thatinitially ( ;) is non-zero onlylnthe trangltlon
. . . .. zone between lowland and plateau, and thus its polynomial form
tical balance of stresses in a form that links the lateral variation should include roots dtu, = 0 andhey = he:
of the tectonic pressureéo (the difference betwee® and P, xT e e
Po= PS P.), at depthSbwith the horizontal derivative of the b = J he[hex S he] [hex S K], (25)

XX
depth-integrated shear stress: whereJ andK are unknown coef cients. Substituting ed® and

_d (25) into eq. @3) and comparing the terms on both sides of the
Po(x, SB = 5 (). (19) equation yields
In the absence of horizontal tractions along the top and bottom j = A

boundaries, the integrated shear strgssan be related tothe total K = h, § B/ A. (26)
horizontal stress, «x, by the following equation (e.g. Schmalholz
& Mancktelow20186 their eq. A14) Characteristic values of?, can then be estimated from( 2,

d dw by (e.g. Turcotte & Schube014 Medvedev2016
2= o= (xx)* Txx o (20) 6 b

dx dx b 4 = xx (27)

» T ERT?

The bending moment, , associated with any stress component, ] . . ' . .

w(x), is tion 2.2. Eq. 27) applies to beams with uniform rheology and esti-
S0 mates maximum bending stresses at the upper and lower boundaries
i o= i (2 S w)dz= TZSW) (1) of the begm. In Fhe Ilthospht_are the rhgol_ogy varies with depth and
sb the bending regions are typically not limited by two sharp bound-
Separating « into dynamic and static components, €8), 6ub- aries so that eq2({) provides an upper limit for the bending stress.

We will quantify values of bending stresses for a reasonable range

stituting eq. R0) into eq. (L9), and using eq.10) yields
9 eq. €0 a-49 geal0y of values ofE RT. The horizontal deviatoric stress due to bending,

d2 _ d2W . d2 b . .
Po (X, SB = = de + -7 5 13 (P). (22) < can be approximated as half of the total bending stressg&gq. (
b 3 b
Eq. 22) indicates that the existence of tectonic pressure at the °, % + W‘Iﬁ; (28)

base of the modelPo(x, Sh), is related to bending moments and . . . )
exure in the model domain. To estimate the bending, or bre, stress ~ The values of , vary laterally since ( ),) varies laterally due

we decompose the dynamic stress into a membrane st{gsand to its dependence dfe, (Fig. 5a). The main uncertain parameters
a bending stress,?,, thatis, 3, = 5+ 2 (e.g. Schmalholz & are the values ofv(x) andERT and, therefore, we calculate max-

Podladchikov200Q their Fig. 1; Schmalholz & Mancktelow 2016, ~ imum values of >, for a range of reasonable valuesw(x) and
their eq. A19). The membrane stres&, corresponds to the depth- ~ ERT (Fig. 5b). The results show that maximum values f are

uniform thin-sheet deformation and is constrained by conditions between 150 and 300 MPa corresponding to differential stresses
= Sand ()= 0.The bending stress? , representsthe ~ approximately between 300 and 600 MPa. We will show that such

XX XX?

deviation from )t(sx due to bending and is constrained by the con- maximum values for}(]x and for associated differential stresses are

jugate conditions ;= 0and ( &)= ( 2). In Appendix A, in broad agreement with the results of the performed 2-D thermo-

we show that this separation is possible by the appropriate choicemechanical numerical simulations.
of the reference levely(x). As illustrative example we assume that
w(x) is a piecewise linear function ofas, for example, the lateral
variation of the crust-mantle boundary in the model con guration
of Fig. 4. Assuming furthermore local isostasy (iR (x, Sb = 0),

3 GPE VARIATION BETWEEN TIBETAN
PLATEAU AND INDIAN LOWLAND

eq. @2) reduces to The structure and density distribution of the Tibetan plateau have
& @ been extensively investigated by mostly 2-D and some 3-D geo-
— xbx = — (P). (23) physical surveys based on land campaigns (e.g. Tilmetnal.
dx dx 2003, satellite observations (e.g. Shét al. 2015 and joint ap-
The term with dw/ dx? has disappeared due to the assumption proaches (e.g. Basuyaai al. 2013. Such and other geophysical
of piecewise linearity ofv(x). data sets, together with sparse thermal constraints as well as geo-
Eqg. 23) indicates that lateral variations of mass moment&?, ), logical and petrological information, have been regularly used to

are balanced by lateral variations of moments related to bending construct models and geodynamic evolution scenario of the Tibetan
stresses. (P_) can be calculated from the initial model geometry plateau at various scales and levels of complexity (e.g. Detval

and associated densities (see Appendix A)P. ) can further be ex- 1988 Avouac & Tapponierl993 Chemendaet al. 200Q Liu &
pressed as a third-order polynomialiig, = St(x) S St(lowland), Yang 2003 Beaumontet al. 2004 Zhaoet al. 201Q Vozar et al.
which is the laterally varying height of the topography. Therefore, 2014 Baumann & Kau®015 Tunini et al.2016).
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For the current study we use two density elds to calculate the (resolution of 600 m) and 750 nodes in the vertical direction (res-
spatial variation ofG P E between the Tibetan plateau and the In- olution of 413 m). The models were run with a Courant number of
dian lowland, namely the density eld from the CRUST1.0 data set 0.45 and a maximum allowed time step of 0.1 Ma.
(http://igppweb.ucsd.eduhabi/rem.html Fig. 2) and the best-t,
in situobservation-constrained density eld of Helyiet al. (2007,
their Fig. 6; Fig.3a). The location of the density pro le of Henyi 4.2 Model conbguration
et al. (2007 corresponds to the blue solid line in Fig(a). For
the CRUSTL.0 _data, values GP.E were calculated using eqs)( has been used to derive the analytical relations betwe@i E,
and (L3) assuming a compensation dep8t at 100 km. The cal- : - ; .

. . . Fx and bending moments (Section 2, F. The corresponding
culated values o5 PE rst decrease in the region of the Indian . . . . S s
: . . . - thicknesses and model dimensions are given in &ig.he initial
foreland basin and then considerably increase with the increase of : .
. ) geometry and density eld generatesGPE difference between
the topography along pro les from India towards the Tibetan plateau 5 &7 .

- . . plateau and lowland ofa. 7 x 10> N m®! in agreement with

(Fig. 2). Values of G P E between the Indian foreland region and : .
: ) > S1 published data (e.g. Molnat al. 1993 and the density eld of
the adjacent Tibetan plateau ara. 10 x 102 N m°! (Fig. 2b).
CRUSTL1.0 (Fig.2). The initial crustal geometry corresponds to =
The considerable increase of topography between the Indian fore-.
isostatic equilibrium if the topographic variation is related to thed
land and the Tibetan plateau occurs within a narrow regioceof
variation of the crust-mantle boundary (Moho), thatis, the transitiort;

100 km (Fig.2c). The density eld of Hegnyi et al. (2007) pro-
vides an even larger G PE of ca. 12 x 102 N mSt between the width in which the topography increases is identical to the WIdthD

The model con guration is similar to the model con guration which

apeojumoq

-S|

Indian foreland region and the adjacent Tibetan plateau @&y. of the region in which the Moho deepens (F). However, the o
. study of Heényi et al. (2007 Fig. 3) indicates that the topography &
In contrast to the pro le of GP E resulting from the CRUST1.0 . . : a
. P increases over a distanceaaf. 100 km while the Moho deepens over @
data, the G P Eresulting from the model of Hétyi et al. (2007 . - o 3
. a distance ota. 300 km (Fig.3). Therefore, we vary the transition 3
shows a smaller decrease ofG P E around the Indian foreland . - - . . .5
3 R 5 width of the Moho M; Fig. 4) in the simulations. The topographic ¢
region (-200 knx X< 0 km in Fig.3b) but higher G P Earound " i ]
. . - transition width is always 100 km, close to the observed value. o
the adjacent Tibetan plateau (50 kmX < 400 km in Fig.3b). The - . : ]
. : . For the 2-D numerical simulations we use the ow law of wet 3
lithostatic pressure?,, at 100 km depth varies along the pro le for uartzite (Kirby 1983 for the upper crust and of Maryland di S
both the CRUST1.0 and the Htyi et al. (2007 model indicating 4 y PP y )
- . abase (Carter & Tsenh987) for the lower crust (Tabld). For =
that the depth of 100 km is not a level of local isostasy. The lateral . P,
o - . o the mantle lithosphere and asthenosphere we use a combinationzf
variation of P. and, hencePy indicates either non-zero deviatoric . . ee . ;
. S . dislocation and diffusion creep (Hirth & Kohlsted003 for dry &
stresses or the in uence of the exural rigidity of the lithosphere o . . . @
- . el S olivine and Peierls creep (Goetze & Evat®79 with formulation =
(eq. @2) in the region of the topographic increase which likely of Kameyamaet al. 1999 see Appendix B and Tab®. The left o
could be related to bending associated with the Indian foreland . Y i PP ) N

right and bottom boundaries are free slip boundaries and the t
boundary is a stress free surface. There is no far- eld shortening
or extension applied to the lateral boundaries as we focus on tH?s
evolution of the topographic relief. The top and bottom boundanesie
for heat transfer are described by xed temperatures witlC Gt
the top and 1350C at the bottom. The lateral boundaries are zerog
heat ow boundaries. The initial temperature eld is at equilibrium S
and is computed using the thermal parameters listed in Table

basin. Both density models show an increaséPofin the region

of considerable topographic variation and hence signi cant lateral

variation of crustal thickness. This deviation from local isostasy can

be expected due to the exural strength of the Indian crust, which is

de ected and thrusted under the Tibetan crust. This regional com-
pensation is well documented by gravity anomalies (e.g. Berthet
et al.2013 Hammeret al.2013 Hetényiet al.2016. In Section 6,

we argue that this geodynamic regime prevails since at least 10 Ma
(e.g. Luet al.2018.

Z6VSTS

5 RESULTS

5.1 Fundamental impact of crustal stress magnitudes

uay S80UaIs099) Aq

4 NUMERICAL MODEL We rst show the fundamental impact of the crustal friction angle onz

the numerical results by comparing two representative simulation%
the only difference being the friction angle of the crust, namely,®
The applied numerical algorithm is based on the nite- = 10 (simulation 1) and = 0 (simulation 2; Fig.6). We use S
difference/marker-in-cell method (e.g. Gerya & Yu#903 Duretz here the friction angle as parameter to limit maximum stress magnjx
etal.2016. The governing equations for 2-D incompressible defor- tudes in the crust without any particular mechanical interpretations'
mation of viscoelastoplastic material coupled with heat transfer and such as high uid pressure or the presence of weak faults in the cru%
gravity are described in detail in Appendix B. The diffusive termsin  We useM = 300 km, since this con guration is presumably closest<
the force balance equations and in the heat transfer equations are disto the observed geometry of Fig. The scope of this comparison is §
cretized on an Eulerian staggered grid while advection and rotation to show the general deformation behaviour of the numerical model®
terms are treated explicitly on Lagrangian markers using a fourth the associated stress magnitudes and stress distributions and the
order in space Runge—Kutta time integration (Durtal. 2016. fundamental impact of crustal stress magnitudes on the overall de-
The topography in the model is a material interface de ned by a formation of the lithosphere. For= 0 , the maximum shear stress
Lagrangian marker chain and this interface is displaced with the nu- is limited by the cohesion only so that maximum differential stress
merically calculated velocity eld. With ongoing deformation, this in the upper crust in simulation 2 was 10 MPa, that is, twice the
marker chain needs to be locally remeshed, which is achieved by maximum shear stress of 5 MPa. In the following, we refer to the
adding marker points in the de cient chain segments. The applied left model domain with initially normal crustal thickness of 35 km
numerical mesh consists of 2000 nodes in the horizontal direction as lowland, to the right model domain with an initial topography of

4.1 2-D thermomechanical bnite-difference model
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Table 1. Model parameters. For all materials, speci ¢ heat is 10503k¢>1, thermal expansion is1 10°° K>1, compressibility is & 10°11 pa1, shear
modulus is 2.5¢ 10'° Pa and cohesion is 5 MPa. The friction angle of the mantle lithosphere is alwayEd@he mantle lithosphere and asthenosphere, a
combination of dislocation, diffusion and Peierls creep is applied. For diffusion and Peierls creep only those parameters are displayeddahattdremif
the ones for dislocation creep; non-speci ed parameters are the same as for dislocation creep.

Dislocation creep

A (PN 1) n Q (kJ mofl) k(W mS1KS1) o (kg m®3) Hgr (W mS3) V (md)
Upper crust India 5.071% 10518 2.3 154 25 2800 1.4 1056 0
Upper crust Tibet 5.071% 10°18 2.3 154 25 2800 0.2 10°6 0
Lower crust 3.2 10520 3.0 276 21 2800 0.2 10°6 0
Mantle lithosphere 1.x 10°16 35 530 3.0 3300 0 1% 10°6
Asthenosphere 14 10°16 35 530 3.0 3250 0 1% 10°¢
Diffusion creep
v d(m) m .
Mantle lithosphere 1.5 10°1° 1 375 16° 3 9x 10°6
Asthenosphere 1.8 10°15 1 375 163 3 9x 10°6
Peierls creep .
Ap (s°1) p (Pa)
Mantle lithosphere 540 55 101 8.5x 10° 0.1
Asthenosphere 540 5% 101 8.5x 10° 0.1

Figure 7. Enlargements of the colour plots of Figfor three different times for simulation 1 with a friction angle in the crust of (8-c) and simulation 2

with 0 (d—f), both forM = 300 km. Negative values indicate compression, positive ones extension and the legends at the top right of the two columns (a—c
d-f) apply to the entire column. The region of the crust around the transition zone is shown. Times in million years (Ma) indicate the durationutdtibasim

For a friction angle of 0 (d—f) the absolute magnitude ofy is controlled by the cohesion of 5 MPa. The vertical white line, initiall)Xa S 50 km, indicates

the lateral ow of the crust.

[«

5 km as plateau, and to the central model domain with an initially analytical bending results of Section 2.3. The bending region is re-
laterally varying crustal thickness as transition zone. stricted to the transition zone, supporting the analytical assumption
The stress distribution in the lithosphere is profoundly different of eq. 25). In simulation 2 signi cant stresses occur only in the
for simulations 1 and 2 (Figg). In simulation 1, high horizontal upper region of the mantle lithosphere in the transition zone and
deviatoric stressesyy, are generally concentrated around the tran- lowland (Figs6d—f). Stress magnitudes in the mantle lithosphere in
sition zone in the upper region of the mantle lithosphere and in the simulation 2 are locally more than twice the stresses in the mantle
upper crust (Figba—c). The lowland is under compression (neg- lithosphere in simulation 1. The higher bending stresses in simula-
ative deviatoric stress) and the plateau under extension (positivetion 2 are consistent with the analytical results of Section 2.3 which

deviatoric stresses). Absolute maximum values of deviatoric stresspredict higher stresses for smaller valuesEoRT. The ERT of

in the lowland and plateau are similar and in the order of 100 MPa. simulation 2 is thinner than the one of simulation 1 because crustal
Below the Moho in the mantle lithosphere, betweerr 0 and levels do not contribute t& RT in simulation 2. The absolute max-
200 km, compressive stresses are directly above extensive stresseanum magnitudes of 100-250 MPa for the deviatoric stresses due
This stress pattern indicates a region of bending where the upper reto bending agree also with rheology-independent analytical predic-
gion of the bending area is compressed, the lower region is extendedions (Fig.5). The ERT of the mantle lithosphere in the transition
and between the two regions is a neutral level with zero stress. Thiszone of simulation 2 is between 40 and 50 km in agreement with
neutral level may be associated with the reference leye) in the values assumed in Fi§.
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Figure 8. (a—c) Three vertical prolesof1 S zand xx S 2. forsimulation1( = 10 andM = 300 km)at 15 Ma (Fig.6c) in the lowland aX =S 500 km
(a), the transition zone &= S 20 km (b) and in the plateau %t= 450 km (c). See Figs(c) for the horizontaX-position of the three pro les. (d—f) Three
vertical proles of 1S zand yxS ,for simulation 2 ( = 0 andM = 300 km) at 1 Ma (Fig.6f) in the lowland atX = S 500 km (d), the transition
zone afX = S 20 km (e) and in the plateau Xt= 450 km (f). See Fig6(f) for the horizontalX-position of the three pro les.

-a)o1e/1[6/wo9o°dnoaiwepede//:sdiny wolj papeojumoqd

In the upper crust of simulation 1, the transition between com- where ;S 3 185 MPa (Fig8b). In the lowland, the nearly ver-
pressive and extensive regions occurs at the location where thetical domains of the ; S 5 versus depth pro le indicate a vis-
initial topography reached the plateau height (Figsand c). The coelastic deformation and stresses did not reach the plastic yie
upper crust with signi cant topographic slope is under compres- strength.
sion. In simulation 2 the topography is essentially at after 1 Ma For simulation 2, vertical pro les of; S zat 1.05 Ma at the
but the transition between compression and extension occurs ap-same horizontal positions (Figsl—f) are signi cantly different to
proximately at the same location as in simulation 1 (Figsf). the ones of simulation 1. In contrast to simulation 1, pro les of the
Generally, lateral ow of material induced b P E variations is absolute values of; S zand «S vary signi cantly in the
not uniform with depth and the crust ows laterally towards the lowland, transition zone and plateau because values, 08 ,,
lowland while stronger levels of the mantle lithosphere essentially change their sign along vertical pro les. This sign change is associe.
do not ow (material ow is indicated by initially vertical white ated with signi cant bending stresses (Ff). Maximal values of 3

0 9¢6VSTS/ETET/C/9T¢eNsqe
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lines in Fig.7). 1S 3areca.645 MPa and occur in the transition zone at the top$
For simulation 1 at 15.3 Ma, vertical pro les of; S 5 and of the mantle lithosphere (Fi®e). Results of simulation 2 show J
« S zzhave been calculated in the lowland (F8g), in the tran- that for a weak crust the deformation of the mantle lithosphere i%
sition zone (Fig8b) and in the plateau (Figc; see also Figsc). By dominated by bending and values @fS 3 reach several hundreds o
de nition, values of ; S 3 are always positive whereas values of of MPa due to the reducedRT of the lithosphere. @
S jare negative for compression and positive for extension. §
The lithosphere in the lowland is under compression and absolute . o N
values of 1S zand «$ ,,are essentially identical which in- -2 Accuracy of numerical models and applicability of o
dicates negligible shear stresses, @), 4nd negligible bending ~ analytical stress estimates 5

stresses since stresses do not change sign along the vertical protg evaluate the accuracy of the numerical results and to compate

le. The same applies to stress pro les in the plateau (Bg). but the analytical predictions of Section 2.2 with numerical results wes
stresses there are extensive and values,08 ., are positive. In cajlculate values of 5, Fx and GPE by vertical integration of ©
the transition zone, absolute values 5 zand xS ;. are not the numerically calculated stresses and the model density eld for
everywhere similar and in some depth the valuesQfS ;; are both simulations 1 and 2 (Fi). Representative results are shown
nearly zero while corresponding values afS 3 are signi cant for both simulations ata. 8 Ma. Horizontal pro les ofF,, GPE

with ca. 50-70 MPa (Fig8b). The stress pro les for simulation 1 and -, are plotted by subtracting the leftmost valuesf GP E
show that the stress state of the lowland and plateau is dominatedand 7, from all values ofF,, GPE and & (Figs9a and c). As

by membrane stresses while in the transition zone both membranepredicted by the analytical thin-sheet results (&8, T« is con-

and bending stresses are important. The largest stresses occur &tant along the entire model (Figg and c). Horizontal pro les
the brittle-ductile transition in the upper crust in the transition zone
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Figure 9. (a—c) Horizontal pro les of xx, Fx and G P E calculated from the numerical simulations 1 (a) and from simulation 2 (c)8aMa. From all
three quantities, the leftmost value is subtracted so that the quantities are zero at the left side of the plot. (b and d). Horizontal pro les pfésstoei
Po = P S P, at the model bottonSh and horizontal gradient of vertically integrated shear stress/ dx, calculated from the numerical simulations 1 (b)
and 2 (d).

of Fy, calculated by numerically computed stresses, and pro les Po(Sb) are close to zero on both model sides away from the transi-
of GPE, calculated by model densities, match along the entire tion zone because there the model domain is close to local isostasy.
model, demonstrating the correctness of the calculated stresses foiThe largest deviation from local isostasy is around the transition
the corresponding density elds (see dgsand15). The agreement zone with values oPo(SH) close to 30 MPa. To the left and right of

of the horizontal pro les ofF, and G P E indicates that the sim- this maximum the values #o(Sb) are negative with magnitudes as
ple analytical relations, which are independent on rheology, apply low asS 20 MPa (Fig9b). The relative lateral variation &% (Sh) in

to considerably heterogeneous stress elds in the lithosphere. Forsimulation 1 is similar to the pressure variation associated with the
simulation 1, values of G P E vary strongly around the transition  density elds of CRUST1.0 and Hetyiet al. (2007 Fig. 3c). The

zone but values dfy nevertheless correspond to values @ P E. absolute magnitudes &(Sb) are slightly smaller in the numerical

Maximum values of GP Eareca.10x 102N m3! and values in simulations. This is expected since the natural density eld is only
the right region of the plateau settleda.7 x 10'?N mS1 (Fig. 9a). 100 km deep whereas the density eld of the numerical simulation
These values and the lateral variation d& P E are close to values  is 300 km deep and in such larger depth the deviation from local
calculated from natural density elds (Fi@b). In contrast, for sim- isostasy is presumably smaller. For simulation 2 the lateral varia-

ulation 2 the pro le of G P Eis signi cantly different, especially tion of Po(Sb) is considerably different to the one of simulation 1
around the transition zone where values db P E are already of (Fig. 6f).

the same order as G P E values in the plateau (Fi§c). The nu-

merical results also show that the bottom of the model domain is not

a level of local isostasy because valuedddire not identical td, 5.3 Crustal stress magnitudes required to maintain

so that the tectonic pressui, = P S P_, varies along the model  topographic relief

bottom (Figs9b and d). As predicted by the analytical thin-sheet
results (eq.19)), the value oPg at the model bottom is close to the
numerically calculated value of g/ dx (Figs9b and d). The reason
for the non-zero tectonic pressure gt the model bottom is the ex_ural model con guration shown in Figl. We varied systematically two
strength of the upper level of _the Ilthosphere_ V\{here the e}ssoc'atedparameters, namely the friction angle of the crust, 0, 3 , 6 ,
bending stress_es are responsible for the dgwathn of the I|thosphere:LO and 30, and the Moho transition widtiM = 50, 100, 200
from the local isostasy state (eq3). For simulation 1 values of and 300 km. The results of all the performed simulations show

To determine the minimum crustal stress magnitude required to
maintain the topographic relief between Indian lowland and Tibetan
plateau forca. 10 Ma, we performed a series of simulations for the
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Figure 10. Lateral variation of topography for simulations with different friction angle in the crusand different initial Moho transition zone widthis
(distance in legend in panel a applies to all panels). The topography is given for the same time (in Ma) for simulations with thewamees differ for
simulations with different . The dashed black line in all four panels indicates the initial topography.

that both and M have a signi cant impact on the topography We compare all the performed simulations with differerand
evolution (Fig.10). The collapse, or lateral ow, of the topographic M by calculating for each simulation the maximum differential
relief reaches the maximum value fbf = 50 km, whereas it is stress, max atX= 0 km which occurred in the upper crust within
minimal for M = 300 km. For = 30 and 10 the width of the the entire simulation duration (Fig2a). Fig.12(a) presents values
topographic transition zone is essentially stable and tends to theof the maximum differential stress reached within the upper cru
corresponding values dfl afterca.11 Ma (Figs10a and b). For for a range of andM. Values of . increase from 10 tea.

= 3 the width of the topographic transition zone has essentially 220 MPa for increasing values of whereas they are essentially
doubled atta. 11 Ma when compared to the corresponding initial independent ol (Fig.12a). The maximum values of the horizontal
value of M (Fig. 10c). For = 0 there is no more topographic  velocity at the surface & = 0, Vo, for each simulation decrease
transition zone after alreadya. 0.5 Ma (Fig.10d). The results for with increasing (Fig. 12b). For < 10 the decrease o¥o

= 0 show that maximum values of of ca. 10 MPa in the with increasing is signi cant and essentially independent ldf.
crust are unable to maintain the topographic relief between lowland However, for 10 theV,o essentially does not decrease anymor
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and plateau for as little as 0.5 Ma. We focus on the evolution of with increasing , but the decrease depends Mn whereby larger §
topography with time for simulations with= 10, 3 and 0 and values ofM correspond to smallery (Fig. 12b). The results show &
for M = 300 km (Fig.11). For = 10 the width of the topographic  that for a givenM an increase in from 0 to 10 causes an 2
transition zone is more or less stable in the horizontal direction increase in  nax Which decrease¥,q and, hence, signi cantly 3
within the displayed 15 Ma (Fid.1a). Also, no signi cant foreland help to maintain plateau relief. An increase irffrom 10 to 30 N
basin with negative topography is formed in the lowland (Eit). still causes an increase in max but this stress increase does not o
In contrast, for = 3 the width of the topographic transition  signi cantly decreasd&/,. The plateau is most stable, thatVgg is
zone widens signi cantly within 15 Ma (Figl1b). Furthermore, smallest, foM = 300 km which is closest to the observed geometry

a basin with a depth of more than 500 m subsidence develops in(Fig.3a). In the simulations with = 10 andM = 300 km values of

the lowland and this basin migrates more than 100 km towards the  ,oxareca.180 MPa and the systematic results (Aig) indicate
foreland within 15 Ma (Figl1b). For = O there is essentially  that such stress levels are minimum stress levels that are required
no difference anymore between plateau and lowland already after 1in the upper crust to support the relief of the plateau for a duration
Ma (Fig. 11c). on the order of 10 Ma.
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Figure 11. Colour plot of the evolution of topography (in km) with time for three simulations all Witle 300 km but different crustal friction angles, of
10 (a), 3 (b) and 0 (c). In panel (a) and (b), white contour lines indicate the topograpi$/005, 0 and 1 km.

For the simulation with = 10 andM = 300 km the vertical
integral of the differential stress across the lithospherg,, varies
signi cantly horizontally but insigni cantly with time (Fig.13a).
The maximal values of | occur in the transition zone and ara.
7.5x 102 N mSL. The relative contribution of the stresses in the
crustto the stresses in the entire lithosphere is quanti ed by the ratio
of the vertically integrated differential stress across the crusg,
to  _.Inthetransition zone the valuesof o/ | are>0.3and
in the right side of the plateau ever0.5 so that in these regions
the contribution of the crust to the integrated lithospheric stress is
signi cant (Fig. 13b). In some regions of the lowland, values of
" ¢/ L decrease t@a. 0.1 (Fig.13b). The results show that
the contribution of the crust to the vertically integrated differential
stresses in the lithosphere varies signi cantly horizontally. For com-
parison, for the simulation with = 3 andM = 300 km maximal
values of | also occur around the transition zone but are slightly
larger reaching up toa. 8.5 x 102 N mS! (Fig. 13c). Values of
"¢/ L canlocally also be larger than 0.3 (Fiid).

For = 10 andM = 300 km the maximum differential stress,

max IN the upper crust ica. 185 MPa (Fig.14a) while for

= 3 andM = 300 km it isca. 80 MPa (Fig.14d). For both
simulations, maximum values of 5, occur around the transition
zone (Figsl4a and d). In the lower crust, values of . are more
or less the same for= 10 and 3 and areca. 120 MPa (Figsl4b
and e). In the mantle lithosphere, values of ,,x are larger for

= 3 reaching>500 MPa (Fig14f) while for = 10 maximum

values of o areca. 350 MPa (Fig.14c). For = 3, the high
stress values are due to bending of the relatively thiBQ km)

and strong upper level of the mantle lithosphere; in agreement with
analytical bending results (Fi§).

DISCUSSION

The present day G P E in the transition zone between Indian low-
land and Tibetan plateau is about 10 tox120*2 N m5? (Fig. 3b).

If averaged over a 100 km thick lithosphere, thes8 P E varia-

tions imply average values of ¢ between 100 and 120 MPa and
average values of 4 between 50 and 60 MPa (ebp). Assuming

that absolute values of, = «x! 2 yields typical absolute val-
ues of s« between 25 and 30 MPa. Due to the pressure-sensitive
yield stress and the temperature-dependent viscosity of rocks, the
stresses cannot be constant with depth. Assuming that the load-
bearing levels in the lithosphere have a cumula®&BT of one

half to one third of the total lithospheric thickness of 100 km
implies that values of ., are between 50 and 90 MPa (eLy;
assuming ,, = ,,/2). These stress magnitudes are in broad
agreement with values of; S 3 occurring in the high-stress re-
gions in the numerical simulations (Figsand 14). However, the
analytical and numerical results indicate that stresses in the litho-
sphere can be locally considerably larger if bending is signi cant
(Figs6 and14).
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Figure 12. Maximum differential stress (in MPa) in the upper crust (a) and maximum horizontal velocity at the surface({pdsition= S 50 km for
simulations with different crustal friction angle, and different Moho transition widthVl. Stress values in panel (a) for speci c values aindM represent
the maximum value at some depth in the upper crust of the entire corresponding numerical simulatiofmaghion= S 50 km. Velocity values in panel
(b) for speci ¢ values of andM represent the maximum value at the surface of the entire corresponding numerical simulatiok-pogiteon= S 50 km.
The logarithm to the basis 10 of the velocity (in cn¥ ¥y is displayed.
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Allmann & ShearerZ009 report that the median of earthquake- least in a collisional setting mimicking the India—Himalaya-Tibetg
based stress drop estimates of about 4 MPa does not vary signi - system. A possible explanation for the different stress estimates has
cantly with seismic moment and within the top 45 km of the litho-  been proposed by Nadeau & Johnsb@98 who argue that stresses &
sphere. Our results indicate that median stress drop values of 4 MPapn fault planes are strongly heterogeneous and that stresses arouhd
corresponding to differential stresscd. 8 MPa, cannot be repre-  fault plane asperities with surfagel n? can be locally very high, 3
sentative for the absolute deviatoric stress magnitudes in a crust withup to 2000 MPa, whereas the corresponding stress drop, which i
lateral variations ofSPE as observed between the Indian lowland averaged over the entire fault plane, is orders of magnitudes smaller
and the Tibetan plateau. Absolute deviatoric magnitudes betweenand thus provides a stress drop between 1 and 10 MPa.
one and two orders of magnitudes larger than 4 MPa are required to A key assumption for our estimates of crustal stress magnitudes
maintain the relief of the Tibetan plateau over geological spatial and is that the topography of the Tibetan plateau was relatively stable
time scales (Figéb and c). Stress magnitudes of several hundreds during the last 10 Ma. This assumption can be supported by a rep-
of MPa have also been reported from 3-D numerical simulations of resentative cross-section from India to Tibet (Rigad3) which is
the present-day India—Asia collision (Lechmaatial.2014). There- characterized by considerable underthrusting of Indian lower crust
fore, stress drop estimatesad. 4 MPa represent most likely only ~ below Tibet (Hekényi et al. 2007 Nakelek et al. 2009. The un-

a minor fraction of the total crustal deviatoric stress magnitude; at derthrusted Indian lower crust is approximately horizontal along



1328 S.M. Schmalholzt al.

Figure 13. Evolution of vertically integrated differential stress with time for simulations Witk 300 km. Panels (a) and (b) show results for 10 , and
panels (c) and (d) for = 3 . Panels (a) and (c) show the evolution of the vertically integrated differential stress across the entire lithosphePanels (b)

and (d) show the evolution of the ratio of vertically integrated differential stress across the crust to the vertically integrated differentairss® the entire
lithosphere, ¢/~ L. The black contour line indicates a ratio of 1/3 and the orange—red domains indicate regions where the integrated crustal strengt
larger than one third of the entire integrated lithospheric strength.

]

250 km below Tibet. Geophysical data indicates that this under- even argues for higher elevation than current prior to 8 Ma and its
thrusting extends for at least. 1000 km along the strike of the  slow decrease during the late Cenozoic. Similar ndings have been
central part of the Himalayas (Wittlinget al. 2009. The geode- reported over Tibet and the Himalaya by Quadel. (2011). Fi-

tic and geological shortening rate across the Himalayai® cm nally, cosmogenic nuclide exposure histories in southern and central
yrél, so that theca. 250 km underthrusting occurred over the last ~ Tibet, although measured on much shorter time scales, suggest very
ca.12.5 Ma. Assuming that the underthrusting was horizontal im- low erosion rates, less than 30 m #dLal et al. 2004. The above
plies that there were no major vertical displacements during the last observations support our assumption that the Tibetan plateau and
12.5 Ma because otherwise the Indian lower crust would today not the present-day topographic relief can have existed for a duration of
be horizontal over a length of 250 km. The absence of signi cant ca.10 Ma.

crustal-scale vertical displacements suggests that the topographic The simulations show that crustal strength does not only affect
relief between India and Tibet and the more or less at topography the evolution of lowland-plateau transition zone width but also the
of southern Tibet likely existed for times on the order of 10 Ma. formation of a sedimentary basin in the foreland. Fer 3 maxi-
There is geological evidence, independent from the previously pre- mum values of ; S 3 in the upper crust area. 80 MPa (Fig.14)
sented geophysical arguments, in support of Southern Tibet’s highand for = 3 a basin forms in the lowland with a depth between
elevation sincea.10 Ma or more. While the Tibetan plateau’s uplift 0.5 and 1 km. This basin is steadily migrating away from the to-
history has evolved from north to south (Molretral. 2010, sev- pographic relief. This is not the case in the Himalayan foreland,
eral approaches point out that its elevation was close to 4000 m overas the Ganges foreland basin is getting broader with time, but the
geologically signi cant times. For the central part of the plateau, deepest part remains close to the topographic front as a result of
palaeoaltimetry suggests elevations higher than 4000 m sine&35  exure (see map in Hényi et al. 2016. This is witnessed by the

Ma (Rowly & Curie 2006. In a compilation, HarrisZ006 argues accumulated lower, middle and upper Siwalik sedimentary units,
that elevations in the southern part of the plateau have not changedstudied in surface outcrops and boreholes (e.g. Seisti. 1971;

since atleast 15 Ma, and this time is pushed back locally as far as 28Schelling1992 Métivier et al. 1999. The situation is different at

Ma for an elevation of 5000 m (Xet al.2013. Thermochronologic, the Brahmaputra foreland basin in the east, where the very shallow
sedimentologic, oceanographic and palaeoclimatic studies suggessedimentary basin is explained by a different foreland lithosphere
that rapid uplift of Southern Tibet started 20 Ma ago and reached the and seismotectonics (Hatyiet al. 2016 Diehl et al. 2017 Grujic
present elevation by 8 Ma (Harris@ al. 1992. Fielding (L1996 etal.2018.
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[\
Figure 14. Evolution of maximum differential stresses, max (MPa), in the upper crust (a and d), the lower crust (b and e) and the mantle Iithospheregc
and f) for simulations with = 10 (a—c) and 3 (d—f), both withM = 300 km.  max indicates the maximum differential stress that occurred at a speci ¢,
X-position and time within the respective model unit. ai

791G

7 CONCLUSIONS can be few hundreds of MPa. The magnitude of bending stress%
strongly depends on the effective rheological thickness of the Iithoér
ferential stress in the upper crust must be at least80 MPa to sphere. Therefore, the va_llue of_the crustal friction ar_wgle controlg)

not only the stress magnitudes in the crust but also in the mantie

maintain the relief of the Tibetan plateau for a durationafLO Ma. . e .
. . lithosphere, because this friction angle controls the effective rhed2:
The required crustal stress magnitudes are at least one order of mag-_ . . )
: ; . logical thickness of the lithosphere. Smaller crustal stresses cause
nitude larger than median earthquake-based stress drop estimates - . : : ")
a smaller effective rheological thickness of the lithosphere, which

The numerical simulations show that maximum magnitudes of dif-

from seismology ofa.4 MPa, corresponding ta.8 MPa differen- . . . . o D
. ) . . jn turn causes higher bending-related stresses in the mantle litha-
tial stress. Analytical estimates of stress magnitudes based on IateraSphere 3
. 9]

variation of GPEagree with stress magnitudes in the performed 2- Simple analytical relations between depth-integrated horizontal

D thermomechanical numerical simulations. We, therefore, argue . o . 7
. : stresses, horizontal variations of depth-integrated shear stresses,
that median stress drop estimates do not represent absolute stress

magnitudes in the crust around the Tibetan plateau and that stres%egstggIgnprrﬁzzrggyﬁ;?:pgzggin;;?;gﬂciﬁg?r’oi]g%igglcgrstres%s
N

drop estimates are relative, and only represent a small fraction of ations and integrated density moments are valid for highly variablé;
the total crustal stress. i . ’ 5
stress elds calculated with 2-D numerical thermomechanical simus

The performed simulations show that the contribution of depth- . S . . .
. . . . lations considering viscoelastoplastic deformation. Therefore, these
integrated crustal stress to the lithospheric depth-integrated stress

i o analytical relations are useful to estimate stress magnitudes in i
varies signi cantly along pro le between lowland and plateau. The =
2 . . —__lithosphere and to test the correctness and accuracy of numerical

results indicate that depth-integrated crustal stress in the region

between lowland and plateau must be approximately equal to thealgorlthms for modelling lithospheric deformation.
depth-integrated stress of the mantle lithosphere in order to maintain
the topographic relief of the Tibetan plateau.
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APPENDIX A

The kinematic model of the traditional thin-sheet approximation
(England & McKenziel982 assumes that the horizontal velocity
is constant with depth, so that the depth integral §fcorresponds

to the driving horizontal force per unit lengthfs = F,. To derive
eg. 3) we assume that ( 5) = 0, which is true only for certain
properties of the reference level for bendiagx), namely,

E(@zSw)=0 " EzZSFw=0

w= 57ZF,. (A1)

For a viscoplastic lithosphere, the values g¢f are controlled
by a depth-dependent effective viscosity, and for a depth-
uniform strain rate the expression fa(x) in eq. (A1) becomes

W = "2/ “o. For the lithospheric model considered here, the ap-

propriate value ofv(x) can be calculated only numerically and it
varies also in space and with time. Generalfx) should be located

close to the level of the maximum strength in the lithosphere. If the
system would be characterized by more than one distinct ‘strength
maxima’, the system is unlikely to be treatable with the thin-sheet

approximation of bending stresses with any accuracy.
The moment of the lithospheric pressurg,P_ ), can be evaluated

using formulae for moment evaluations in a two-layer system with

a laterally variable crustal thicknesg(x), and lithospheric mantle
thicknesshm(x), (Medvedev & Podladchiko29990:

St St(x)
(P) = (zSw) X,z gdzdz=
Sh z
_ hc(x)3 + hm(X)th (x) + hm(X)3
= g+ oM
3 2 3

S[St(x) S w(x)]GPE. (A2)

Assuming local isostasy, the geometry of the lithosphere can be

cients are as follows:

2 2
A - CV m 7m+ cm é _c
(a8 3 273
B; = he o 24 _C
(nS 7 ™ 2 (A3)
= c vm
T 2(mS 0
Bzz hc c-
The coef cientsA andB used in eq.Z4) are then
A=[AS (1+w)A)]g (A6)

B=[B:S (1+ wy) B, S woA] g

Several properties of the resulting bending moment and charac-
teristic bending stress are important to mention: (1) Neither part
of the density moment (P_) that contributes to bending stress
estimates €qs AL-A3) nor G P E evaluation (eql6) depends on
hm. As discussed in Section 2, the principal contribution of inte-
grated stresses and moments results from the stress bearing areas
characterized b¥ R T, which is not related to the chosen depth of
compensation. That makes the total depth of the model lithosphere
an inadequate measure of the characteristic length scale in the thin-
sheet model. That is in contrast with the usage of the depth of
compensation as the characteristic length-scale measure in the thin-
sheet approximation introduced by England & McKenZi8§2).

(2) ERT andw(x) are two approximate parameters that control the
characteristic bending stress. Whereas the dependengdrdnis
clear from eq. 27), the dependence on the reference surfate

is not obvious. To illustrate the dependencevg(x), we calculate
the moment for another reference surfac¢x) and consider the
difference:

d S d

S@Sw)S J(@zSw)

=F wSw . (A7)

Using egs 17) and £8) and assuming thd RT is the same for

expressed as a single function of the laterally variable elevation, in-plane and for bending stresses, e§7) can be rearranged to

hex = St(X) S St(lowland):

he(x) = he + heme

m [

hm (X) = hm S hex SC

8 m c
St(X) S W(X) = hex+ W = hey+ Wihey + wo,

(A3)

whereh. andhy, are initial thicknesses of the crust and lithospheric
mantle in the lowland, both independent franandW = wihey +

Wp is the positive distance from the topography of the lowland to
the reference linav(x). We express all the parts of (P_) from

eg. (A2) as a polynomial ohe, using the following relations:

he()° , Pm(%he ()
3 2

hm(x)3
g+ mé ) mg = h3,A1g+ hZBig
+ hexcl + D1
hexGPE = h3,Axg+ h2,Bog+ hg,Co
W-GPE= hd,wiAxg+ h2g[wiBs+ woAg] + W-Cp
[St(x) S w(x)] GPE= h3, (1+ wi) Azg

+hZ [(1+ w1) Bo + WoAl g+ ..

(A4)

In the polynomial expression we only need coef cients for the
second and third power @i, since we use the polynomial only in

yield:
6(w Sw)
>l()XW: EXW+WXX' (A8)

The resulting stress depends, hence, linearly on the choice of
w(x). The low angle of the isolines for stress in Figb) demon-
strates the minor dependence of bending stress on the chei¢g)of
because magnitudes of bending stresses are substantially larger than
magnitudes of characteristic membrane stresses, thatis, ,,.

This inequality is justi ed if we compare maximum values df,
in Fig. 5 with estimates for ,, from eq. (8). This inequality in
combination with eq.A8) also validates the use of an arbitrary
chosernw(x) instead of the use of the exact valuevfx) given in

eq. Al).

APPENDIX B

The applied numerical algorithm solves the partial differential equa-
tions of continuum mechanics for 2-D slow deformations (no in-
ertia) coupled with heat transfer under gravity. The force balance
equations are:

J:é bi
X

(B1)
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wherei andj are indexes of either 1 or 2 and represent the horizontal wheresis an effective stress exponent that depends on the temper-

x-direction {, j = 1) and verticaly-direction {, j = 2), b, = 0 ature:
andb, = g. j; are the total Maxwell-viscoelastic stress tensor Q .
components which are expressed using a backward-Euler rule (e.gs = 2 RT (s ). (B7)
Schmalholzt al.2001) by
81 TheA for this formulation is
. 1 1
i =SP+2 -+ —— < y2 5%
Gt - Q1S )
o q o A= Agexp S b (B8)
+ 1+ — i+ Ji (B2)
where is a tting parameter from the Peierls ow law (Tablg. o
where P corresponds to the pressurg, are the components of The stress of all material phases is limited by a yield strgss, 2
the deviatoric strain rate tensd, is the shear modulus, is the de ned by the Drucker—Prager criterion 2
effective viscosity, t is the numerical time step,] are the stress ) %
tensor components from the previous time step dndncludes y = becos()+ Psin(), (B9 =
all the corresponding terms resulting from the Jaumann rate of the whereb is the cohesion and is the angle of internal friction. g
stress tensor (e.g. Beuchert & PodladchiR60). In case of yielding, the effective viscosity is iteratively reduced=.
The rheological model is based on the additive decomposition of until the corresponding stress invariant equals the yield stress (e:§.
the deviatoric strain rate tensay: Lemialeet al. 2008 Schmalholz & Maede2012). Thergfore, the =
. _ effective viscosity for plasticity is computed only fof S 0
T R R A U (B3) and takes the form of ’
where 7, §° ' and [, respectively, correspond to the  pl = it wS 0, (B10)
strain rate contributions arising from elasticity, plasticity and vis- 25

cous creep (dislocation, diffusion and Peierls). This strain rate equa- ol . ) ) ] _
tion is nonlinear and solved locally on cell centroids and vertices in Where i is the second invariant of the plastic strain rate tenso
order to de ne the current effective viscosity and stress (e.g. Popov NVing components; (ed. B3.

1e/1[6/Too dnoolwspeoe)/:

& Sobolev2008. The viscosity for dislocation creep is a function At the end of the Ipcal iteration cyc.le, th.e. effective visgosjty i.S 2
of the dislocation creep strain rate invariarffs = /2 equal to the harmonic mean of the viscosities of each dissipative
" ! deformation mechanism: 2

Ln 8 a

dis — 21: A ds %Slexp Q+ PV (B4) 81 5
3w nRT 1 1 1 1 S

. . S A | - (B11) R

where the ratio involving the stress exponents to the left césults i i f piop 2
from the conversion of the experimentally derived 1-D ow law to =

a general ow law for tensor components based on invariants (e.g. Eg. (B11) indicates that each viscosity is calculated with thei
Gerya201Q Schmalholz & Fletche2011). Applied parameters are  respective second strain rate invariant, which is calculated fromy
displayed in Tablel. Diffusion creep is taken into account in the the strain rate tensor components of the corresponding deformatign

€1¢

whered is grain size andh is grain size exponent (Tablg. Peierls
creep (i.e. low-temperature plasticity) is applied only in the mantle
lithosphere with parameters from Goetze & Evat$q9 using the
formulation of Kameyamat al. (1999. The viscosity correspond-
ing to Peierls creep takes the following form:

with D/ Dt representing the total time derivativilg being radio-
genic heat production anlp = ( 7+ 2+ 2 £,)/2 being the
heating due to viscous and plastic dissipative work. We assum@
here that all dissipative work is converted into heat (i.e. the so§
called Taylor—Quinney coef cient is 1) since we do not model grainc
e 2% be 151 size reduction which consumes typically only a minor fraction of®

= FA TR (B6) the dissipative work.

lithospheric and asthenospheric mantle and its viscosity is expressednechanismeq. B3. §
as The applied 2-D equation for heat transfer is o
<

. + PV 0]
df = A d™exp Q+ PV , (B5) CE: _ kl + Hn+ H B12 3
RT Dt X Xi b R ( ) 8

g

(]
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