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Abstract  

We analyzed pumice from the February 11, 2010 Vulcanian explosion that immediately 

followed a large dome collapse at Soufrière Hills volcano. We obtained pre-explosive values of 

porosity, pressure, and depth by combining textural analyses and glass water content determinations. 

Our data suggest that the February 2010 explosion evacuated the upper 3 km of the conduit from the 

dense magma (≤10 vol.% porosity) it contained. The low porosity distribution in the volcanic conduit 

implies that the magma rising from the reservoir had time to extensively degas during emplacement. 

We use a conduit flow model to characterize the effects of permeability on ascent conditions. Model 

input parameters were fitted so as to match our pre-explosive porosity data, which yielded first-order 

constraints on conduit radius, mass flux, outgassing efficiency, and permeability. This parametric 

study suggests that efficient lateral gas escape is necessary to explain the low pre-explosive porosities. 

Steady-state solutions fitting the observed range of dome extrusion rate in the month preceding the 

February 11 event suggest permeabilities <10
-13

 m
2
 deeper than 500 m, which are values typical of 

crack-supported permeability. Conversely, solutions with parameters consistent with bubble-supported 

permeability imply transient flow conditions prior to the February 11 event. The transient conditions 

imply that our data represent a snapshot of the porosity distribution within the conduit that does not 

preclude the temporary presence of much higher porosities in the conduit. Such unsteady conduit flow 

conditions are consistent with the irregular but active dome growth in the month prior to the February 

11 event. 

 

Keywords: fluid dynamics; magma porosity; magma permeability; textural analysis 
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1. Introduction 

Vulcanian explosions are short-lived but powerful events that evacuate parts of the magma 

present in a volcanic conduit. They often take place during dome eruptions, with little to no precursor 

signs (Clarke et al., 2015). Their occurrence and intensity is closely linked to magma decompression, 

degassing, and outgassing (Spieler et al., 2004; Mueller et al., 2011). The current eruption at Soufrière 

Hills volcano, Montserrat, is an ideal case to shed light on what conditions the occurrence of 

Vulcanian explosions. Soufrière Hills has produced over the last two decades a remarkable range of 

such events, from explosions series separated by a few hours to isolated explosions of variable 

intensity (Druitt and Kokelaar, 2002; Wadge et al., 2014a). Some explosions were closely following 

partial dome collapse, whereas others occurred in the absence of dome. Previous studies of pre-

explosive conduit conditions at Soufrière Hills volcano were done by Clarke et al. (2007), Burgisser et 

al. (2010), and Burgisser et al. (2011). They have shown that the magma filling the conduit prior to 

Vulcanian explosions consisted of a dense cap atop the conduit with a thickness of a few tens of 

meters, a 200–700 m thick region with heterogeneous vesicularities, and, at greater depth, a more 

homogeneous, low-porosity magma that was emplaced under partly open-system degassing. This 

conduit stratigraphy gives the vision of a strongly heterogeneous magma column immediately prior to 

its disruption. The data, however, was sampled among the products of a series of explosions that 

occurred in 1997, which yielded an average porosity distribution within the conduit. Here, we 

sampled a single Vulcanian event that occurred on February 11, 2010, to obtain a more accurate 

snapshot of the porosity distribution in the conduit just prior to explosion. 

The February 11 event ended the fifth phase of lava extrusion since the beginning of the current 

eruption of Soufrière Hills volcano (Stinton et al., 2014a; Stinton et al., 2014b; Wadge et al., 2014b; 

Cole et al., 2014; Cole et al., 2015). This 4-month period of intense extrusive activity was marked by 

a succession of dome growth as lava lobes and spines followed by partial dome collapse. Five isolated 

Vulcanian explosions occurred near the end of this phase. The average extrusion rate during phase 5 
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was 7 m
3
/s with wide variations (Stinton et al., 2014a). A rate of 9 m

3
/s was measured over January 

12–14, shortly after the most voluminous Vulcanian explosion to date on January 8 (Cole et al., 2014). 

A rate of 1.2 m
3
/s was measured over January 22–28, and a rate of 0.1 m

3
/s was measured from 

January 30 until February 5 when a Vulcanian explosion occurred (Stinton et al., 2014a). Another 

Vulcanian explosion took place on February 8. Lava extrusion soon resumed on the W side of the 

dome before changing direction to N a day before February 11, date at which the large Vulcanian 

explosion studied here took place during the last 20 minutes of the 107-min-long partial dome 

collapse (Stinton et al. 2014). 

The triggering context of the February 11 event is noteworthy. There is a well-established link 

between magma ascent rate and the occurrence of Vulcanian explosion (Miwa et al., 2009; Degruyter 

et al., 2012; Cassidy et al., 2015). Despite changes in extrusion rate in the days leading to it, the 

February 11 event seems to have been driven more by shallow processes than by deeper changes such 

as an increase of ascent rate and/or of chamber pressure (Stinton et al., 2014b; Cole et al., 2015). This 

complex event started by generation of pyroclastic density currents that occurred in rapid succession 

as a result of the collapse of the large dome that was present. The pulsatory Vulcanian explosion 

ensued the gravitational triggering of the event as a probable result of the unloading of the magma 

column. This makes the February 11 event an ideal case study to test whether the pre-explosive 

column was in a state close to that expected for dome-forming, effusive activity and, more broadly, to 

characterize the state of the volcano prior to a Vulcanian explosion. There is a wealth of information 

that can be used to characterize such a state because quite a number of studies involving conduit flow 

modeling that have been conducted at Soufrière Hills focused on its effusive activity (e.g., Melnik and 

Sparks, 2002; Melnik and Sparks, 2005; Mason et al., 2006; Costa et al., 2007; Collombet, 2009; 

Kozono and Koyaguchi, 2010; Albino et al., 2011; Costa et al., 2012; Degruyter et al., 2012; Costa et 

al., 2013). These models have provided first-order constraints on the interplay between ascent rate, 

volatile exsolution, and outgassing. 
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The transition between effusive behavior and explosive behavior is closely related to the way 

the gas phase separates itself from the rest of the ascending magma. There is a complex relationship 

between magma inflation by volatile exsolution and gas expansion and deflation by permeable flow 

and outgassing. One important step was to link the magma permeability to the structure and geometry 

of the bubble network (e.g., Klug et al., 2002; Rust and Cashman, 2004; Wright et al., 2006; Bouvet 

de Maisonneuve et al., 2009; Wright et al., 2009; Degruyter et al., 2010; Burgisser et al., 2017; 

Colombier et al., 2017; Vasseur and Wadworth, 2017). Extensive experimental work has shown that 

bubbles growing in response to decompression may connect each other and form a permeable network 

when a percolation threshold has been overcome. Such threshold occurs at 30–80 vol.% porosity (e.g., 

Lindoo et al., 2016). Recently, Burgisser et al. (2017) proposed a permeability relationship that 

includes a percolation threshold. It was built using experimentally decompressed natural melts and 

included samples bearing deformed bubbles. Natural samples, however, are permeable at porosities 

below this percolation threshold because the gas pathways are no longer made of interconnected 

bubbles. Below 10–15 vol.% porosity, the pathways are made of a network of cracks and permeability 

drops from ~10
-14

 to <10
-17

 m
2
 (Farquharson et al., 2015; Farquharson et al., 2016). While the 

presence of cracks has been confirmed at shallow depth (Heiken et al., 1988; Castro et al., 2012b; 

Lavallée et al., 2013; Kendrick et al., 2016), their existence at the depth of several kilometers is more 

speculative for intermediate and evolved magma compositions because the water dissolved in the melt 

lowers its viscosity and keeps the brittle behavior out of reach of reasonable strain rates (e.g., 

Edmonds et al., 2010; Cordonnier et al., 2012). Experiments on porous volcanic rock and magma 

have shown that ductile behavior can be expected even at shallow depths within the conduit (Heap et 

al., 2015; Heap et al., 2017). 

The relationship between the creation of gas pathways by bubble connection or by brittle 

behavior of the melt has only started to be addressed (Kushnir et al., 2017). Permeability supported by 

bubbles is sensitive to the presence of crystals (e.g., Parmigiani et al., 2017) and shear can strongly 

reorganize the permeable network (e.g., Laumonier et al., 2011; Pistone et al., 2012). Relationships 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

6 

 

describing permeability supported by cracks are not easily scaled up from laboratory to conduit 

characteristic sizes (Farquharson and Wadsworth, 2018). Another obstacle is that permeability has a 

hysteretic behavior that depends on whether it is being generated by expansion and exsolution of 

bubbles or by collapse (Rust and Cashman, 2004; Farquharson et al., 2016). In the case of collapse, 

porosity reduction can be accompanied by permeability reduction if the driving force is shear 

(Kolzenburg and Russell, 2014) or gravitation (Michaut et al., 2013). Such densification can also 

occur without significant reduction in permeability if the main mechanism is selective collapse of the 

smallest vesicles because of surface tension (Kennedy et al., 2016). The complexity of these 

interactions between crystal-bearing melt and networks of bubbles and cracks is such that there is 

currently no unified framework to describe magma outgassing at depth.  

We first present a combination of textural analyses and glass water content determinations of 

pumice emitted by the February 11, 2010 Vulcanian explosion that yields pre-explosive values of 

porosity, pressure, and depth. We then show that some permeability relationships calibrated for high 

(>15 vol.%) porosity can also be used to empirically represent the behavior of magma permeability at 

low porosity. We use one of these permeability relationships and a conduit flow model to characterize 

the pre-explosive conditions of the February 2010 event by fitting model outputs to our data on pre-

explosive porosities and pressures. 

2. Methods 

Twenty-three samples from the February 2010 eruption were collected for analysis (Table S1). 

Thirteen samples were from pumice-rich pyroclastic density current deposits in Farm River valley 

(AMO210 label prefix, pumice levee facies on Fig. 7.11 in Stinton et al., 2014b). Ten samples were 

pumices from fallout deposits at Harris Lookout, Spanish Point, and at White's Bottom Ghaut (WP 

label prefix, fallout deposits of Stinton et al., 2014b). All samples from fallout and some samples from 

levee that correspond to the “pumice boulders” of Cole et al. (2015) were texturally homogeneous 
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pumices. The other levee samples were texturally heterogeneous pumice with some clasts showing 

macroscopic banding with sharp to lobate or crenulate boundaries between the dense and vesicular 

parts (Farquharson and Wadsworth, 2018). Only one representative crystalline dense clast was 

analyzed (AMO210B) because such texture has been shown to originate from to the dome (Burgisser 

et al., 2010) and our focus was to characterize deeper sourced material. 

Small cores ~2 cm
3
 were drilled in each pumice. The half of the core closest to the clast surface 

was discarded so as to avoid weathering effects, while the other half was cut in two, one being 

subjected to textural analysis and the other being used for H2O measurement. This procedure ensured 

that the various analyses characterize the same volume of sample. The size of this volume and the 

image analysis techniques we used imposed an upper limit to the vesicle size that could be 

characterized (~1 mm across). As in the 1997 deposits (Giachetti et al., 2010), most pumices produced 

by the February 11 event that are smaller than ∼ 30 cm lack radial gradients in vesicle abundance or 

size. Some vesicular blocks larger than this exhibit anastomosed regions with vesicles up to several 

cm, which is well above the sizes our method can measure. Such blocks were avoided in our study to 

ensure that we obtained representative vesicle size distributions of all analyzed clasts. Drawing from 

the observations done of the 1997 flows, where similar blocks were sampled closer to the dome to 

minimize transport-induced breakage (Giachetti et al., 2010), regions with large voids tend to be 

concentrated in the center of the clasts, which suggest a post-fragmentation origin (i.e. such large 

voids belong to the syn-explosive, coalesced vesicle population defined below). Avoiding sampling 

clasts with large voids does not affect the representativeness of our reconstruction of the magma 

column because the effect of post-fragmentation bubbles is removed by the procedure described 

below that converts pumice porosities to pre-explosive conditions (Burgisser et al., 2010). 

The textural characterization of the samples was done by combining Scanning Electron 

Microscopy (SEM) and element mapping by Energy Dispersive Spectroscopy (EDS). Polished 

sections were imaged using a LEO STEREOSCAN 440 (LEICA) SEM operating at 20 kV 
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accelerating voltage (Université Savoie Mont Blanc) in backscattered electron mode (BSE) to which 

is attached an EDS probe QUANTAX EDS (Bruker AXS). Images were acquired using the BSE mode 

(Fig. 1A) and the elements Si, Fe, Mg, Al, and Ca at two different resolutions to ensure that the full 

range of object sizes was represented. The combination of resolutions was either one image at ×50 

and 2 to 3 images at ×1000 for the WP sample suite, or 1 to 2 ×50 images and 4 ×2000 images for the 

AMO sample suite. Images resolution was such that the respective pixel sizes at magnifications of 

either ×1000, or ×2000 were identical. The ×50 images of samples AMO210B, G, J, and L were 

composed by tiling 9 ×100 images, which added a reconstruction uncertainty of 2 vol.% on measured 

proportions. Instead of SEM images, the ×50 images of samples AMO210D, F, H, and Q were 2D 

slices of 3D volumes with voxel edge-length of 7–10 µm obtained by X-ray tomography (Phoenix 

Nanotom 180 at ISTO, Université d’Orléans) following the procedure described in Castro et al.  

(2012a). In these four samples, oxides and plagioclases were segmented manually from the 

ferromagnesian minerals based on X-ray attenuation level (Supplementary Fig. S1) and the respective 

proportions of ferromagnesian minerals were assumed constant at the values provided by Murphy et 

al. (2000). Images were used to quantify in each sample the amounts of phenocrysts, microlite, 

vesicles, and glass (Table 1) following the resolution assembly procedure of Giachetti et al. (2010) 

and the quantification method described in Drignon et al. (2016) (Supplementary Text S1 and Fig. 

S2).  

Glass water contents of the 20 samples listed in Table 2 were measured by using the Flash 2000 

elemental analyzer (ISTO, Université d'Orléans). Samples were crushed with an automatic grinder 

without removing phenocrysts to obtain ~7 mg of powder <30 μm. Following the procedure outlined 

in Drignon et al. (2016), tin capsules containing the powders were placed in a furnace where they 

were heated to ~1800°C in the presence of O2. A helium flux transported the liberated H in H2O form, 

which was discriminated from other volatiles by chromatography and analyzed by thermal 

conductivity. We used the certified standard PYRO (5 wt.% H2O by Karl Fisher titration, Burgisser et 

al., 2010). Total amounts of H given by the elemental analyzer were converted to bulk H2O content 
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using H and O molar masses (Table 2). Each sample was analyzed three times in order to quantify 

measurement error. The resulting relative uncertainty is comparable to that of the standard that was 

analyzed at regular intervals during a measurement day.  

Vesicles were subdivided in four populations using the criteria of Giachetti et al. (2010) (Fig. 

S2). Large, deformed vesicles of equivalent size >300 μm across and circularity <0.2 were divided 

into two populations. One population was composed of large angular voids existing between crystal 

fragments that are similar to those observed in the 1997 Vulcanian pumices (Fig. 1B, Giachetti et al., 

2010). We assumed that these voids were formed in response to the decompression accompanying the 

Vulcanian explosion. The other population was composed of the remaining large vesicles, which were 

considered as pre-explosive vesicles. The third population was composed of small, isolated, and 

rounded vesicles of equivalent size <50 μm across and circularity >0.4. The fourth population was 

composed of all the remaining vesicles, which were often interconnected. These last two populations 

have been interpreted by Giachetti et al. (2010) as having nucleated, grown, and coalesced in a syn-

explosive fashion. As our automatic process cannot discriminate between the two first populations, the 

voids belonging to the first population were visually identified thanks to their association to broken 

crystals. They were manually assigned to the syn-explosive, connected vesicle population by 

removing them one by one from the automatically segmented images (Table 2). 

The bubble-free vesicles and oxide number densities (i.e. number of objects per unit volume of 

melt plus crystal) were obtained from the SEM and tomography images using the stereological 

transformations from Cheng and Lemlich (1983) as explained in Giachetti et al. (2010). Having only 

two levels of magnifications yields size distributions with artifacts around the cut-off length scale 

(Supplementary Text S2 and Fig. S4). Total number densities reported in Table 2, however, are 

dominated by small vesicles and oxides that are below the cut-off scale. As a result, they are not 

sensitive to such artifacts. 

As in Drignon et al. (2016), two physical models were successively used to convert variables 
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measured in the pumice to pre-explosive conditions (Table 3). The first model uses the vesicularities 

and interstitial glass water contents to estimate pre-explosive pressures and porosities (Burgisser et al., 

2010). It has four free parameters (two related to bubble populations, one related to the quench 

pressure, and one related to outgassing), which combined yield 11 sets of pre-explosive pressures and 

porosities. The set with the reference values (see Results section) of the free parameters was kept as 

the average set and the two sets with the largest and smallest porosity values at any pressure were kept 

as extrema to characterize model uncertainty. Analytical uncertainties for each sample were calculated 

with an additional four sets of outputs that used the average values of the free parameters and the 

respective minimum and maximum values of glass water content and vesicularity. 

Pre-explosive pressures were then converted into pre-explosive depths thanks to the second 

model (Burgisser et al., 2011). Briefly, each sample is assumed to represent a slice of the magma 

column and the slice thickness is adjusted so that the pressure at its base due to the overlying load 

equals that determined by the first model. As in Drignon et al. (2016), two end-members scenarios 

were considered. The first assumes that pressure is magma-static, i.e. that the pressure in the magma 

column is created by the sole weight of magma because conduit walls are fully rigid. In the second 

scenario pressure is lithostatic, which implies that the conduit walls are not rigid. The pressure 

distribution within the conduit during eruption is, however, expected to be controlled dynamically. 

The higher the porosity is in the magma, the more the dynamic pressure deviates from a linear trend. 

Conversely, gas-poor conditions limit dynamic effects. Magma- and lithostatic pressure gradients 

frame most dynamic pressure distributions in gas-rich conditions (Burgisser et al., 2011). Here, we 

use the a posteriori argument that the conduit was mostly filled by low-porosity magma to linearly 

relate pressure and depth.  

2.1. Conduit flow modeling 

Two permeability relationships were used to quantify gas–melt separation during magma 

ascent: 
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𝑘𝐾 = 𝑎𝐾𝜙𝑐
𝑏𝐾 (1) 

𝑘𝐵 =
𝜙𝑐

2.73𝑑2

800
 (2) 

where aK and bK are fitting constants, d is the bubble equivalent diameter in m, and c is the connected 

porosity, which is volume of interconnected bubbles that span the entire sample from side to side, 

divided by the total sample volume. Equation (1) is from Klug and Cashman (1996) and Eq. (2) is 

from Burgisser et al. (2017) when neglecting bubble deformation and thus assuming spherical 

bubbles. The bubble equivalent diameter is given by: 

𝑑3 =
6𝜙𝑡

𝜋𝑁𝑇(1−𝜙𝑡)
 (3) 

where t is the total porosity and NT is the number of bubble per unit volume of melt and crystals. The 

connected porosity is given by (Burgisser et al., 2017): 

𝜙𝑐 =
𝜙𝑡

1+𝑒𝑥𝑝[𝑐1(1.5×106𝑑(𝜙𝑡
−1 3⁄

−1)𝑓−0.128−c2)]
 (4) 

where c1=0.342, c2= 33.2, and f is the ratio of the standard deviation of the bubble size distribution 

over d, which is a measure of the degree of polydispersity of the bubble population
1
. The percolation 

threshold is modeled by setting c=0 when the total porosity is below the percolation porosity, p: 

𝜙𝑝 = [1 +
𝑐2+𝑐3

1.5×106𝑑
𝑓0.128]

−3
 (5) 

where c3=6. 

Kozono and Koyaguchi (2010) provided a simple algebraic equation that relates pressure and 

porosity in a volcanic conduit and that approximates a steady state solution of a popular 1D, two-

phase conduit flow model (Kozono and Koyaguchi, 2009a; Kozono and Koyaguchi, 2009b; Degruyter 

                                                      

1
 The equation 19 in Burgisser et al. (2017) should read:  𝜙𝑐 =

𝜙𝑡

1+𝑒𝑥𝑝[−𝑐𝜙(1.5𝑑𝑎(𝜙𝑡
−1 3⁄

−1)𝑓−0.128−𝑐𝑝)]
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et al., 2012; Burgisser et al., 2017). For simplicity, we refer to this simplified formula as the 0D model 

(Kozono and Koyaguchi, 2010): 

1 −
𝑛𝜌𝑚𝑐𝑅𝑇(1−𝜙𝑡)

(1−𝑛)𝑃𝜙𝑡
(1 − 𝐸𝑤) + Π +

1−𝜙𝑡

1−𝑛
Θ = 0  (6) 

Π =
8𝜇𝑚𝑐𝑘𝑗

𝜇𝑔𝑟𝑐
2𝜙𝑡

  (7) 

Θ =
𝑘𝑗𝜌𝑚𝑐

2 𝑔(1−𝜙𝑡)𝜋𝑟𝑐
2

𝜇𝑔𝑄𝜙𝑡
   (8) 

where n is the gas mass-flow rate fraction, g=2×10
-5

 Pa s is the gas viscosity, rc is the conduit radius 

in m, g=9.81 m/s
2
 is the gravity acceleration, mc is the bulk (liquid and crystal) suspension viscosity 

in Pa s, mc is the bulk (liquid and crystal) density in kg/m
3
, T is the temperature in K, P is the 

pressure in Pa, R=462 J/K kg is the specific gas constant for H2O gas, kj is either of kB or kK, and Q is 

the mass flux in kg/s. The parameter Ew is defined as (Kozono and Koyaguchi, 2010): 

𝐸𝑤 =
𝜋𝑟𝑐

2𝑞𝑤

𝑛𝑄
 (9) 

where qw is the flow rate of gas escaping laterally. The gas mass-flow rate fraction is: 

𝑛 =
𝑛0−𝑠√𝑃

1−𝑠√𝑃
 (10) 

where the initial water content, 𝑛0 = 𝑠√𝜌𝑤𝑔𝐿, is a function of the conduit length, L, of the solubility 

constant, s, and of wallrock density, w=2600 kg/m
3
. For comparison purposes, we converted mass 

fluxes to representative ascent rates by using bubble-free magma density and assuming a constant 

conduit radius of 15 m (e.g., Wadge et al., 2014b) except where mentioned. 

Fitting of five free parameters (Q, rc, Ew, NT, and f) was done by minimizing the sum of squared 

differences between the measured porosities and those given by Eq. (6) for the 19 pre-explosive 

pressures determined from sample analysis. The parameter combinations having squared difference 

falling within the 95% level confidence were considered as plausible solutions. If Si is the sum of 
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squared differences for a given combination of the free parameters and Sm is the minimum sum of 

squared differences of the entire parametric sweep, the 95% level of confidence is given by: 

𝑆𝑖 ≤ 𝑆𝑚 (1 +
𝑝

𝑜−𝑝
𝐹1−𝛼

𝑝,𝑜−𝑝
) = 1.1858 𝑆𝑚 (11) 

where p=5 is the number of parameters, o=19 is the number of observations, =0.95 is the level of 

confidence, and F is the (1-) quantile of the F distribution with p and (o-p) degrees of freedom. 

We set the temperature, T, to 850 °C (Barclay et al., 1998; Murphy et al., 2000) and the liquid 

phase is considered as a single-phase suspension of silicate melt and crystals with a density, mc, of 

2450 kg/m
3
 (Burgisser et al., 2011). The effect of dissolved water on melt viscosity followed the 

relationship by Hess and Dingwell (1996) and the effect of crystals on bulk suspension viscosity, mc, 

was calculated using Krieger and Dougherty (1959) with a maximum packing of 0.65 and an Einstein 

coefficient of 2.5. The crystal content was set to 55 vol.% based on our data (Text S3, Fig. S5). Such a 

high value implies that magma rheology is non-Newtonian. Robust rheological relationships of 

realistic mixtures of phenocrysts and highly elongated microlites are currently not available, but 

various non-Newtonian approximations of the behavior of crystal-rich suspension have been proposed 

(e.g., Caricchi et al., 2007; Costa et al., 2009; Mader et al., 2013). In our case, the 0D approximation 

assumes a Newtonian liquid–wall friction that neglects such effects. This choice is motivated by the 

fact that our modeling focuses on the effusive regime with low gas volume fraction, which limits the 

upward acceleration within the conduit.  

3. Results 

Our samples from the February 11 event have bulk vesicularities of 44–78 vol.% and vesicle-

free glass contents of 23–73 vol.%, except AMO210B that has 7.5±2.4 vol.% glass (Table 1). Isolated 

syn-explosive vesicles, connected syn-explosive vesicles, and connected pre-explosive vesicles are 

present in the respective proportions of 1±1.1:87±7.0:12, where the uncertainties have been attributed 
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to the first two bubble populations and the percentage of the last population is such that the three sum 

to 100% of the total vesicle volume fraction. The pre-explosive vesicles are large, deformed and 

coalesced. Such textures can be due to deflation occurring either pre-explosively, or syn-explosively. 

The dominant population of syn-eruptive vesicles, however, displays convex surfaces that suggest net 

inflation. Many fallout pumices also suggest net inflation because of their bloated shapes. Glass water 

contents range from 0.4 to 2.2 wt.%, except again AMO210B that has 7.4±2.4 wt.% water (Table 2). 

The outlier values of AMO210B are due to the very low amount of bulk glass content, 3.6±1.1 vol.%. 

Considering that glass content is deduced by subtraction, which makes the quantification of small 

amounts of glass difficult and that AMO210B has a large (14 vol.% bulk) amount of unclassified 

mineral phases, we decided to leave AMO210B out of the analysis, which then comprises 19 samples. 

This is consistent with the fact that 7.4 wt.% glass water is much higher than the amount of water 

thought to be contained in the magmatic reservoir (4.6 wt.%, Barclay et al., 1998). 

In using the model that converts vesicularities and interstitial glass water contents to pre-

explosive pressures and porosities, a magma temperature of 850 °C and a bubble-free magma density 

of 2450 kg/m
3
 (i.e., melt plus crystals) is assumed (Burgisser et al., 2010). The two free parameters 

linked to bubble populations were constrained by the proportions of the three vesicle types and their 

uncertainties. The model assumes that only the pre-explosive vesicles existed in the conduit prior to 

the explosion and thus that the gas contained in the syn-explosive vesicles was either dissolved in the 

melt or has been outgassed during the explosion. Following Burgisser et al. (2010), the parameter 

constraining the amount of overpressure that clasts can sustain was set to the reference value of 1+1
−0.5. 

The parameter that quantifies outgassing is the ratio between the amount of gas lost by outgassing 

during magma fragmentation and the total amount of gas present during the explosion. The upper and 

lower values of this parameter were chosen so that the maximum total water content is <4.6 wt.%, 

which corresponds to a saturation pressure of 130 MPa (Barclay et al., 1998), and so that all clasts had 

net syn-explosive inflation, as suggested by textural observations. These conditions imply that 

between 10 and 76% of the gas present syn-explosively was outgassed, with an assumed reference 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

15 

 

value of 50% for this poorly constrained parameter that has a modest effect on pre-explosive 

pressures. 

Figure 2 shows the pre-explosive pressures as a function of the pre-explosive porosities. Clasts 

originated from 8–70 MPa with porosities from 1 to 10 vol.%. Uncertainties on the porosities are 

dominated by model assumptions whereas uncertainties in pre-explosive pressures reflect the natural 

variability of glass content in the samples. The number of samples is large enough to give a 

representative pressure-porosity distribution but too small to yield a reliable estimate of the upper pre-

explosive pressure limit (Drignon et al., 2016). The right vertical axis of Fig. 2 shows approximate 

pre-explosive depths that suggest a drawdown depth of ~3 km. Depths were estimated thanks to two 

end-member scenarios of overpressure (magma- and litho-static) in the conduit. There are only small 

differences between these two scenarios because of the low pre-explosive porosities (Table 3), so a 

single depth axis with an intrinsic uncertainty of ±5% is used in Fig. 2. 

Overall, our data indicate that the single Vulcanian event of February 11 evacuated at least the 

upper 3 km of a conduit that was filled by a low-porosity, high-crystallinity magma. To have ≤10 

vol.% porosity suggests that the magma rising from the reservoir had time to extensively degas during 

emplacement. One possibility is that the magmatic column was significantly permeable to gas, but 

such low porosities are generally associated with low permeability values. Another is that magma 

porosity varied rapidly, which implies that our data captures only a snapshot of the conduit state just 

prior to explosion. In both cases, there must have been specific conditions that allowed the magma to 

quickly develop significant permeability while its porosity was increasing in response to 

decompression and ascent from the magmatic reservoir. 

Most bubble-supported permeability relationships depend on magma porosity to first order, and 

tend towards impermeability when extrapolated at low porosity for natural products of effusive 

eruptions (e.g., Mueller et al., 2005; Rust and Cashman, 2011). Figure 3A illustrates that trend for a 

representative suite of natural samples from dome-forming eruptions at Soufrière Hills volcano and 
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Colima volcano, Mexico (Farquharson et al., 2015; Farquharson et al., 2016; Farquharson and 

Wadsworth, 2018). There are several reasons for the scatter in the data at a given porosity value. One 

reason is the 1–2 orders of magnitudes of permeability variation as a function of sample orientation 

the permeable network is anisotropic. Another reason is the transition from crack-supported 

permeability at low connected porosity to vesicle-supported permeability at connected porosities 

larger than ~10 vol.%. Finally, samples have heterogeneities that are large compared to sample size. It 

has been shown that these two types of permeabilities can be represented with two distinct sets of 

power-law coefficients (Farquharson et al., 2015; Heap and Kennedy, 2016; Kushnir et al., 2016). The 

wide data scatter, however, drove us to select the broader approach of representing both types with a 

single relationship. 

Figure 3A shows how the two permeability relationships, kB and kK, fit the entire range of the 

natural data. The relationship kK is a power law depending on c with coefficients that are not directly 

related to characteristics of the bubble network (aK =1.1×10
-11

 m
2
 and bK=3.35). The relationship kB 

includes information about the bubble network, namely the bubble number density, NT, and a measure 

of the spread of the bubble size distribution, f. It yields a good fit of all the data when f is allowed to 

exceed natural bounds (the best-fit value is f=10
10.2

 with NT =10
12.4

 m
-3

). Both relationships can thus 

empirically represent the behavior of magma permeability at low porosity, regardless of geometry (by 

bubble connections or by brittle behavior of the melt) or generation mechanism (by dilatation or by 

collapse).  

The percolation threshold occurs when c/t =0.114, which is obtained by setting p=t in Eqs. 

(4–5). As the maximum value of t is 1, the maximum value of c for bubble percolation is 11.4 

vol.%, which corresponds approximately to the boundary between crack- and bubble-supported 

regimes (Fig. 3A). This threshold does not affect the best-fits of kK and kB (i.e. t is always >p) but it 

limits the possibility of reaching permeabilities much higher than those best-fits curves (e.g., t<p in 

most of the gray region of Fig. 3A). If, however, Eq. (5) is neglected (i.e. if c is given by Eq. (4) even 
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if t<p), the whole span of values covered by the data (and the gray region of Fig. 3A) can be 

represented by kK or kB, regardless of permeability type. Here we focus on kB because it has been 

calibrated jointly with c, but similar conclusions can be drawn by using the simpler form of kK. The 

full range of permeabilities covered by the data of Fig. 3A can be represented by kB when 10
8
≤NT≤10

19
 

m
-3

, 10
-1

≤f≤10
12

, and the percolation threshold is neglected. When used in a conduit flow model as 

closure relationship, kK helps characterizing magma ascent dynamics. We fitted outputs of a simplified 

conduit model to our data of Fig. 2 to provide first-order constraints on the type of permeability and 

other important parameters such as mass flux and conduit radius.  

The 0D model relates conduit pressure to magma porosity and depends on the initial (basal) 

water content, n0. Two combinations of conduit length, L, and solubility constant, s, were used so as to 

obtain n0≈4.6 wt.% (s=4.11×10
-6

 Pa
-1/2

, L=5 km and s=3.4×10
-6

 Pa
-1/2

, L=6 km, respectively). The first 

combination is consistent with previous work on conduit flow modeling at Soufrière Hills volcano 

(Collombet, 2009; Degruyter et al., 2012) and the second combination is a fit of s to the Liu et al. 

(2005) solubility relationship that was used in the processing of our data to reconstruct pre-explosive 

pressures and porosities (Fig. 2). For a given pair of L and s, five free parameters were selected for a 

grid search: the mass flux, Q, the conduit radius, rc, the ratio of lateral gas flow rate to the vertical gas 

flow rate, Ew, the bubble number density, NT, and the spread of the bubble size distribution, f. This 

choice is motivated by the fact that all the other variables of the model, such as T or mc, are known 

much more accurately than these five parameters. The parameter Ew quantifies how efficiently the gas 

is evacuated through the conduit walls into the wallrock versus how the gas is transported vertically 

within the conduit (Kozono and Koyaguchi, 2010). Vanishing Ew values thus imply conduit wall 

impermeability and large Ew imply high wallrock permeability. The ranges of 10
-3

≤Q≤10
5
 kg/s, 

1≤rc≤50 m, 0≤Ew≤1, 10
8
≤NT≤10

19
 m

-3
, and 10

-1
≤f≤10

12
 were chosen so as to ensure solutions with a 

wide gamut of mass fluxes at the vent, conduit wall permeability, and magma permeabilities that 

cover the data range shown in Fig. 3A. Eleven values were used for each parameter, yielding 1.6×10
5
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unique combinations. Another 11-value sweep was done with a narrower range for Ew (0.8≤Ew≤1) to 

gain accuracy on this parameter because Ew<0.8 systematically yielded poor fits. Parameter 

combinations that verified Eq. (11) were considered solutions that fit our data (Fig. 2) within the 95% 

level of confidence. 

The grid search results are very similar for the two conduit lengths explored, so we only report 

those with L=5 km and s=4.11×10
-6

 Pa
-1/2

 for conciseness. The sum of squared differences at the 95% 

level of confidence are 1.7×10
-3

, which is well above the sum of squared differences of the data 

uncertainties, ~10
-6

, and below that of the reconstruction model uncertainties, ~10
-2

. The range of 

solutions we select as best fits thus produce porosity–pressure curves that are within the range of 

model uncertainties shown in Fig. 2. All solutions fall within a very narrow range of Ew values (0.9–

0.94), which implies that conduit walls must be permeable to gas flow. The four other parameters 

have more scattered values, except NT and Q that have strongly correlated values. Figure 4A shows 

the number of solutions sharing the same pairwise values of NT and Q. There are, for instance, 53 

combinations of rc, Ew, and f that fit our data within the 95% level of confidence with NT = 10
14.6

 m
-3

 

and Q = 10
0.2

 kg/s, which is represented by a circle of size 53 on Fig. 4A. The solutions parallel a 

power law, Q~NT
-2/3

, that stems from Eq. (6) and that is made visible because these two parameters are 

varied over several orders of magnitude. Figure 4B shows the number of solutions sharing the same 

pairwise values of NT and f. The presence of a percolation threshold was ignored during the grid 

search. If such a threshold is taken into account, all the solutions lying below the dashed line of Fig. 

4B are no longer valid because gas escape is impossible. 

Typical measured densities are 10
10

– 3×10
16

 m
-3

 for isolated, syn-explosive bubbles and 2×10
8
–

4×10
10

 m
-3

 for pre-explosive bubbles (Fig. S6). The pre-explosive population represents the lowest 

expected number densities in the magma column just prior to explosion because it results from the 

growth and coalescence of bubbles transported from (and/or nucleated in) the magma reservoir. The 

syn-explosive population is a reasonable upper estimate of the highest bubble number densities 
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expected to occur in the magma column prior to explosion because it results from the sudden 

decompression of the column by the explosion, which occurred at a rate larger than that 

accompanying magma ascent from the reservoir. 

The full range of measured NT is indicated on Fig. 4A, as well as the range of observed 

extrusion rates, from 10
4.3

 kg/s over January 12–14, to 10
3.5

 kg/s over January 22–28, and to 10
2.4

 kg/s 

over January 30–February 5. Solutions fitting the observed range of extrusion rate, 10
2.4

–10
4.3

 kg/s, 

comprise a narrow range of NT (10
10.2

–10
11.3

 m
-3

) and large f values (10
6.8

–10
12

, Fig. 4B). Such f values 

are orders of magnitude above natural vesicle distributions (0.1–10; Burgisser et al., 2017). 

Conversely, solutions that have NT values within the observed range, f values within the natural range, 

and that would be compatible with a percolation threshold correspond to very low mass fluxes (10
-2.2

–

10
0.67

 kg/s, Fig. 4A). There are thus two sets of remarkable solutions: one high-flux set that fits 

observed extrusion rates and that has permeability behavior inconsistent with gas bubbles, and a low-

flux set that has Q values well below those observed and that has NT and f values consistent with 

bubble-supported permeability. 

Each solution defines a curve of porosity vs. permeability. Figure 3A shows the permeability 

behavior of the high-flux solutions and Fig. 3B shows the permeability behavior of the low-flux 

solutions. The high-flux set covers the field occupied by most samples, whereas the low-flux set 

comprises permeabilities that are systematically lower than their natural counterparts at any values of 

connected porosity. 

Conduit evacuation and replenishment must occur on a time scale faster than the travel time 

stemming from the mass fluxes from the 0D model to be consistent with the model assumption of 

steady state. The January 8 explosion and the associated conduit evacuation were large enough to 

disturb the upward flow of magma feeding the dome because it is the largest single Vulcanian 

explosion to date (Cole et al., 2014). Steady-state conditions could thus only occur within the month 

preceding the February 11 explosion. Within that period, the timing of conduit replenishment depends 
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on the observed dome growth rate and on conduit radius. 

Observations indicate that lava extrusion was occurring irregularly during the month preceding 

the explosion (Stinton et al., 2014a). Several studies have suggested that the conduit feeding the 

current eruption at Soufrière Hills volcano is cylindrical in its upper part but takes the shape of a dike 

at depth (Costa et al., 2007; Costa et al., 2012). The commonly admitted geometry is a 15-m radius 

cylinder that extends from the vent down to 2 km to a dike of 5 by 400 m that extends from 2 km 

down to the reservoir at ~5 km depth. Ascent speed is proportional to conduit area and the dike area is 

equivalent to a 25-m radius cylinder. The largest suggested value of conduit radius is 40 m from 

volumetric strain data measured during the 29 July 2008 Vulcanian explosion (Young and Gottsmann, 

2015). Figure 5 shows the distance that a parcel of magma could have covered from January 8 to 

February 11 at the observed rates of extrusion when conduit radii of 15, 25, and 40 m are considered. 

A conduit of 5 km in length would have been fully replenished within ~15 days after the January 8 

explosion for a radius of 15 m, whereas ~12% of the conduit (760 m) would have been replenished 

during the month between the two explosions for a 40-m radius. The two minor Vulcanian explosions 

that occurred in the few days before February 11 caused negligible additional vertical movement. 

Because strong temporal variations of the flux were likely during that period (Odbert et al., 2014), the 

information conveyed by Fig. 5 is an order-of-magnitude estimate of the conduit replenishment rate. 

Conduit evacuation and refilling estimates are helpful to decide which solutions calculated by 

the 0D model are compatible with steady-state conditions. Notwithstanding the strong dependence on 

conduit radius, Fig. 5 suggests that ascent times shorter than 2–4 weeks are necessary to ensure steady 

state. Figure 6 shows the predicted ascent time as a function of conduit radius for the span of high- 

and low-mass flux solutions, respectively. Both solutions sets comprise the full range of explored 

conduit radii, but only a small fraction of the 0D model solutions are compatible with steady-state 

conditions. These solutions all belong to the high mass flux set and correspond to Q>10
3.5

 kg/s and 

rc<25 m. 
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In summary, low mass flux solutions are calculated assuming steady-state conditions that are 

incompatible with the natural observations but have permeability parameters (NT and f) consistent 

with bubble-supported permeability. Conversely, high mass flux solutions assume steady-state 

conditions that could be compatible with natural observations but have permeability parameters 

inconsistent with bubble-supported permeability. 

4. Discussion 

Our data suggest that the February 11 explosion took place while the magmatic column was 

dense and that it evacuated the upper 3 km of the conduit. The extensively outgassed magmatic 

column just prior to the explosion can be compared with similar data collected from the 1997 

Vulcanian explosion series (Fig. 7). Drawdown depths from 2010 are comparable with the 2.5–3.5 km 

values inferred for 1997 (Druitt et al., 2002; Burgisser et al., 2011). Porosities deeper than 1 km are 

<10 vol.% in both cases, but the distribution of shallow porosities differ. The larger porosities, up to 

60 vol.%, of the 1997 explosion at shallow level complicate the conversion between pre-explosive 

pressures and depths, which depend strongly on the presence of overpressures in the conduit. 

Comparing instead pre-explosive pressures removes the need to assume overpressure mechanisms. 

The high porosity 1997 data correspond to pressures <10 MPa with a few low-porosity samples <2 

MPa, whereas our 2010 data has only one, 10 vol.% sample at <10 MPa. The absence of low porosity 

cap reflects a sampling bias, as the only dense sample was an outlier left out of our analysis. The 

absence of >10 vol.% porosity samples in 2010 can be due to a combination of three factors. First, the 

number of samples is smaller for the 2010 event than for the 1997 events. Second, the 2010 data 

sampled one explosion, whereas the 1997 data was a random sampling of several explosions. Finally, 

the shallow parts of the magmatic column could have been more outgassed in 2010 than in 1997. 

Several studies have suggested that the conduit feeding the current eruption at Soufrière Hills 

volcano is cylindrical in its upper part but takes the shape of a dike at depth (see discussion in Wadge 
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et al., 2014b). The sampling depth of both the 1997 explosions (Burgisser et al., 2011) and the 2010 

event is 2.5–3.5 km, which is comparable to that of the conduit-dyke junction (~2 km, Wadge et al., 

2014b). This geometrical change may adversely affect the kinematics of the decompression front that 

feeds the Vulcanian explosions, thereby interrupting conduit evacuation. 

Dense magmatic columns prior to explosive eruptions have also been inferred at Merapi 

volcano, Indonesia (Fig. 7). Drignon et al. (2016) suggested low-porosity distributions of <10 vol.% 

deeper than 1 km prior to the opening and paroxysmal stages of the 2010 Merapi eruption. The 

drawdown depth is more variable at Merapi (4–10 km) than at Soufrière Hills volcano, but both 

volcanoes display extensive outgassing at depth. At Soufrière Hills, this creates a puzzling situation 

because the release of CO2 during dome growth points to the existence of gas pathways that transfer 

the gas from the deeper parts of the magmatic system to the surface (Edmonds et al., 2010). The 

percolation of CO2 through a poorly vesicular magmatic column is difficult to reconcile with the fact 

that large permeabilities are promoted in magmas where bubbles are numerous and large enough to 

form permeable networks (e.g., Burgisser et al., 2017). 

In an attempt to quantify how low permeabilities have to be to produce such dense magmatic 

columns, we used the fact that bubble-based permeability relationships recover to first order the 

behavior of crack-supported permeability. We focused on kB and assumed no lower limit for 

percolation. This relationship recovers the full range of a representative suite of eruptive products. 

These products, however, correspond to magmas that have undergone decompression, degassing, and 

outgassing. They are thus are not directly representative of the permeable network at depth. The kB 

relationship has been shown to represent the bubble-supported permeability of experimental melts at 

high pressure (Burgisser et al., 2017). It has not, however, been tested on bubble-supported 

permeability of crystal-bearing melts (Okumura et al., 2012; Parmigiani et al., 2017) or on crack-

supported permeability under high pressure conditions (Kushnir et al., 2017) because of scaling issues 

(e.g., Farquharson and Wadsworth, 2018). As a result, we cannot exclude that magma permeability at 
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depth deviates from the trend depicted in Fig. 3. Our first-order approach would thus benefit from 

future progress on the nature of magma permeability at depth.  

The 0D model fits of our pressure and porosity data point to a fairly narrow range of values for 

the ratio of horizontal to vertical gas flux (0.9≤Ew≤0.94). This is consistent with the expectation that 

lateral gas escape favors porosity reduction (e.g., Kozono and Koyaguchi, 2012). The importance of 

wallrock permeability in controlling outgassing has long been pointed out (Jaupart and Allegre, 1991; 

Taisne and Jaupart, 2008; Farquharson et al., 2015). Recently, Chevalier et al. (2017) have refined this 

view by suggesting that the lowest of wallrock permeability and horizontal magma permeability 

controls lateral gas loss. If magma permeability is supported by the bubble network, bubble 

elongation has the potential to reduce the horizontal permeability to very low values (Klug et al., 

2002; Wright et al., 2006; Degruyter et al., 2010; Burgisser et al., 2017), which opens the possibility 

that such permeability reduction exerts a control on the amount of lateral outgassing that exceeds that 

of wallrock permeability. 

Our model outputs suggest that outgassing of a bubble network can be efficient at low 

permeabilities provided that magma ascent is slow enough. This general result is consistent with 

findings from other conduit flow model studies (Kozono and Koyaguchi, 2010; Degruyter et al., 

2012). Although such combination of low permeability and ascent rate can explain the pre-explosive 

porosity distribution within the conduit, it is inconsistent with the extrusion rates and the course of the 

eruption during the month prior to the February 11 event. Whether due to transient magma flow and to 

the fact that permeability was not supported by a bubble network, this mismatch make it impossible to 

obtain an estimate of the number density of the bubbles that nucleated during ascent from the 

reservoir or, more likely, that were inherited from the reservoir (Edmonds et al., 2014; Edmonds et al., 

2015; Edmonds et al., 2016). The only constraint brought by our work is thus that measured number 

densities of pre-explosive bubbles (10
8
–10

10
 m

-3
) mark the upper limit of actual number densities 

because bubbles are expected to rarefy during ascent as coalescence and outgassing proceeds (e.g., 
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Gardner, 2007; Martel and Iacono-Marziano, 2015). 

Fits of the 0D model with permeabilities expected from connected gas bubbles feature very 

small discharge rates that suggest near stalling of the magmatic column just prior to the February 11 

explosion. These fits cannot be used quantitatively because the steady state conditions assumed by the 

model are not consistent with the observations. This opens the possibility that our data represent a 

snapshot of a transient state of the conduit, such as relatively brief and multiple stalling of the 

ascending magma (Lensky et al., 2008). Seismic record shows sub-daily activity cycles in the days 

before February 11 (Stinton et al., 2014b), the last activity peaks before dome collapse occurring 

every 7–8 h. The last magma stalling could not have occurred over more than a couple of hours before 

the explosion. Magma outgassing is thus efficient enough to occur in less than a few hours, which is 

consistent with observations (Rodgers et al., 2016) done over the whole course of the Soufrière Hills 

eruption. After dome collapse, for instance, outgassing decays in hours to a few days (Edmonds et al., 

2003). Hour-long, large outgassing events have been measured (Edmonds and Herd, 2007). These 

considerations suggest that unsteady flow was likely, which implies that rapid redistribution of 

porosity can occur over timescales of hours or less. A fruitful research direction would thus be to 

develop 2D, transient conduit flow models where the processes of degassing and outgassing are fully 

coupled to test whether the feedbacks between porosity reorganization and permeability development 

can be that fast. 

The high mass flux (>10
3.5

 kg/s) fits of the 0D model with conduit radii <25 m are compatible 

with steady-state flow within the conduit in the days to weeks prior to February 11 (Stinton et al., 

2014a). Calculated permeabilities are <10
-13

 m
2
 deeper than 500 m (Figs. 2–3), which are values 

typical of crack-supported permeability. Cracks have been shown to occur by magma brittle failure, 

which leads to shear bands (Hale and Wadge, 2008) or stick-slip motion (Costa et al., 2012; Costa et 

al., 2013). Such cracks, however, are only likely to occur shallowly (Kendrick et al., 2013). 

Considering the high crystal volume fraction in the Soufrière Hills magma (Murphy et al., 2000) and 
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the presence of gas in the reservoir, one possibility to explain permeability development at depth and 

at very low gas volume fraction is the interaction of bubbles and crystals (Parmigiani et al., 2017) in a 

shearing environment (Laumonier et al., 2011). In the absence of more conclusive evidence, we 

speculate that this scenario is less likely than that involving transient porosity redistribution. 

5. Conclusions 

We analyzed pumices from the February 11, 2010 Vulcanian explosion that immediately 

followed a large dome collapse at Soufrière Hills volcano. We obtained pre-explosive values of 

porosity, pressure, and depth by combining textural analyses and glass water content determinations. 

Our data suggest that the February 11 explosion evacuated the upper 3 km of the conduit from the 

dense (≤10 vol.% porosity) magma it contained. Such drawdown depth is comparable to that inferred 

for the 1997 Vulcanian explosion series (Burgisser et al., 2010). The low porosity distribution in the 

volcanic conduit suggests that the magma rising from the reservoir has had time to extensively degas.  

We used a conduit flow model to characterize conditions allowing the magma to develop 

significant permeability and outgassing that counteract the increase in porosity caused by ascent and 

decompression. We used permeability relationships that were calibrated for high (>15 vol.%) porosity 

but that also empirically represent the behavior of magma permeability at low porosity, regardless of 

geometry (by bubble interconnection or by melt fracturing) and generation mechanism (by inflation or 

by collapse). The conduit flow model is an algebraic equation relating pressure and porosity (Kozono 

and Koyaguchi, 2010) that approximates steady-state solutions of a 1D two-phase conduit flow model 

(Kozono and Koyaguchi, 2009b; Degruyter et al., 2012). Model input parameters were fitted so as to 

match our pre-explosive porosity data, which yielded first-order constraints on conduit radius, mass 

flux, outgassing efficiency, and permeability. 

Model fits point to high ratios of horizontal to vertical gas flux (0.9≤Ew≤0.94). Efficient lateral 

gas escape is thus necessary to explain the low pre-explosive porosities. Solutions fitting the observed 
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range of lava extrusion rate in the month preceding the February 11 event assume steady-state 

conditions that could be compatible with natural observations but have permeability parameters 

inconsistent with bubble-supported permeability. Conversely, solutions with permeability parameters 

(NT and f) consistent with bubble-supported permeability are associated to mass fluxes so low that the 

steady-state assumption is incompatible with the natural observations.  

Our modeling suggests two possible scenarios to explain the low pre-explosive porosities. The 

first possibility is that fast ascent prior to February 11 ensured steady-state conditions, in which case 

our modeling suggests permeabilities <10
-13

 m
2
 deeper than 500 m. These values typical of crack-

supported permeability (Farquharson et al., 2015; Farquharson et al., 2016) bring an additional 

confirmation of the gas pathways at depth that have been inferred from gas measurements at the vent 

(Edmonds et al., 2003), but the empirical nature of our permeability relationship leaves their genesis 

unexplained. The second possibility is that transient flow conditions prevailed prior to the February 11 

event, in which case our data are a snapshot of the porosity distributions within the conduit that does 

not preclude much higher porosities to have existed in the conduit. This scenario is consistent with the 

irregular but active dome growth in the month prior to the February 11 event. In particular, near 

stalling of the magmatic column and extensive outgassing could have happened at most a couple of 

hours before dome collapse. Taking into account observations on the degassing patterns over the 

whole course of Soufrière Hills eruption, this suggests that porosity redistribution can occur over 

timescales of hours or less. 
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Figure Captions 

Fig. 1: Representative pumice from the 2010 event. A) SEM image (BSE) with a red frame 

surrounding the region selected for textural analysis to avoid corners affected by the 

vignetting sometimes occurring at ×50 magnification. B) Analyzed region showing the 

different analyzed objects: oxides (red), plagioclases (green), orthopyroxenes (cyan), 

clinopyroxenes and amphiboles (blue), matrix (yellow), vesicles with circularity <0.2 and 

equivalent size >300 m (grey), and other vesicles (black). All objects were 

discriminated by chemical (EDS) mapping except the large, deformed vesicles that were 

manually outlined. 

Fig. 2: Pre-explosive magmatic columns represented by porosity as a function of pressure and 

depth. Triangles indicate the average model outputs for each sample, grey areas cover the 

ranges of outputs of the 10 parametric model runs, and error bars represent the combined 

effects of natural variability and analytical uncertainty on each sample. The solid black 

curve indicates closed-system degassing if the pure water saturation pressure is 130 MPa. 

Fig. 3: Permeability as a function of connected porosity for various input parameters of two 

relationships (kB and kK). Data are from natural products of dome-forming eruptions at 

Colima volcano (diamonds, Farquharson et al., 2015; Farquharson et al., 2016) and 

Soufrière Hills (triangles, Farquharson and Wadsworth, 2018). Black-filled symbols 

indicate permeability values in the direction parallel to gas channels (vesicles or cracks), 
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white-filled symbols indicate permeabilities perpendicular to gas channels, and gray-

filled symbols indicate permeabilities measured regardless of orientation. The limit 

between crack- and bubble-supported permeability is from Farquharson et al. (2015) and 

Kushnir et al. (2016). It also corresponds approximately to the percolation threshold (see 

text). A) The grey area covers the span of curves that correspond to high mass flux 

solutions. It is bounded by curves with the highest (dashed line) and lowest (solid line) 

values of bubble number density (NT), respectively. The thick continuous curve is the 

best-fit of all the data for kK and the dotted curve is the best-fit for kB. B) The grey area 

covers the span of curves that correspond to low mass flux solutions. It is bounded by 

curves with the highest (dashed line) and lowest (solid line) values of bubble number 

density (NT), respectively. 

Fig. 4: Solutions of the five-parameters sweep that fall within the 95% level of confidence. 

Circle sizes are proportional to the number of solutions that have identical values for the 

parameter pairs represented by graph axes but different combinations of the three other 

parameters. Circles are colored according to whether they represent high-flux solutions 

(10
2.4

–10
4.3

 kg/s, black), low-flux solutions (10
-0.6

–10 kg/s, white), or other solutions 

(grey) that fit neither the observed extrusion rates nor the measured values of NT and f.  

A) Bubble number density (NT) as a function of mass flux (Q). Grey bars indicate the 

range of values measured by photogrammetry (x-axis) and by textural analysis (y-axis). 

The dashed line indicates the slope of the relationship between Q and NT given by Eq. 

(6). B) Bubble number density (NT) as a function of the spread in bubble sizes (f). The 

dashed line marks the limit between solutions that are compatible with a percolation 

threshold (“yes”) and the solutions that ignore the percolation threshold (“no”).  

Fig. 5: Distance covered by a parcel of magma between the explosions of January 8 and 

February 11. Curves are calculated by linear interpolation between the observed average 
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rates of extrusion (Stinton et al., 2014a) and assuming various constant conduit radii (15, 

25, and 40 m). Stars mark explosion times, and the horizontal dashed line is set at the 

inferred conduit length of 5 km. 

Fig. 6: Magma ascent time from the reservoir to the surface as a function of conduit radius. 

Curves are labeled according to the value of mass flux. The dark grey area covers the 

ascent rates that are compatible with steady-state conduit replenishment. Light grey areas 

span combinations of mass fluxes and conduit radius that are solutions of the 0D model. 

Cases of high and low mass flux solutions are indicated by the labels “high Q” and “low 

Q”, respectively.  

Fig. 7: Comparison of different pre-explosive magmatic columns represented by porosity as a 

function of pressure. Merapi data are from Drignon et al. (2016). Soufrière Hills Volcano 

(SHV) data are from Clarke et al. (2007) as reanalyzed by Burgisser et al. (2010) and 

from Burgisser et al. (2010) (label “1997a”), from Williamson et al. (2010) (label 

“1997b”), and this study (label “Feb. 11, 2010”).  
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Tables 

Table 1: Sample phase proportions in vol.%. Values in parenthesis are one standard deviation, 

not analyzed is “n.a.”, and not detected is “n.d.”. Abbreviations OPx, CPx+A, and Plag respectively 

mean orthopyroxene, clinopyroxene plus amphibole, and plagioclase.  

 

Sample Vesicle Oxide
 a
 OPx

 a
 CPx+A

 a
 Plag

 a
 Glass

 a
 Quartz

 a
 Other

 a
 

AMO210A 65.3 (1.0) 1.5 (0.9) 5.3 (0.8) 8.9 (0.1) 38.6 (5.5) 45.6 (6.8) n.d. n.d. 

AMO210B 51.8 (1.6) 3.5 (0.8) 10.1 (0.7) 5.1 (0.4) 38.3 (1.6) 7.5 (2.4) 7.3 (2.4) 28.3 (1.7) 

AMO210C 67.8 (1.4) 1.2 (1.5) 2.9 (1.0) 8.4 (7.7) 46 (12) 45 (12) n.d. n.d. 

AMO210D 54.5 (3.1) 1.9 (1.2) 2.3 (1.0)
 b
 4.9 (2.1)

 b
 30.3 (3.5) 60.7 (4.8) 0

 b
 0

 b
 

AMO210E 71.0 (0.2) 3.9 (2.2) 20.3 (0.8) 7.4 (4.6) 36.2 (3.8) 31.2 (4.0) n.d. n.d. 

AMO210F 61.5 (1.1) 2.2 (0.4) 4.8 (1.1)
 b
 10.0 (2.3)

 b
 48.7 (5.3) 34.4 (1.9) 0

 b
 0

 b
 

AMO210G 43.5 (5.2) 1.8 (0.1) 7.7 (2.7) 4.7 (1.9) 26.6 (4.9) 37.4 (6.7) 1.1 (0.1) 20.7 (1.2) 

AMO210H 55.6 (4.2) 2.8 (1.6) 5.9 (1.3)
 b
 12.4 (2.8)

 b
 43.4 (5.6) 35.5 (6.5) 0

 b
 0

 b
 

AMO210I 59.7 (1.4) 2.4 (2.8) 11.7 (1.0) 3.9 (0.8) 53.8 (9.9) 27.9 (9.3) n.d. n.d. 

AMO210J 60.1 (2.0) 6.0 (1.1) 4.4 (3.6) 16.0 (0.1) 35.4 (1.9) 23.4 (1.5) 0.2 (0.1) 14.5 (1.0) 

AMO210K 73.6 (0.7) 4.1 (4.5) 1.9 (1.2) 1.8 (0.3) 53 (11) 39.2 (7.5) n.d. n.d. 

AMO210L 63.5 (2.0) 4.0 (0.3) 5.7 (1.2) 8.5 (1.3) 39.5 (4.1) 23.2 (3.9) 0.3 (0.2) 18.7 (0.8) 

AMO210Q 69.8 (0.9) 1.3 (0.4) 1.5 (0.7)
 b
 3.1 (1.5)

 b
 34.2 (5.9) 59.9 (4.5) 0

 b
 0

 b
 

WP1.095A 71.7 (0.3) 2.0 (0.1) 5.1 (2.0) 5.4 (3.3) 39.3 (1.1) 48.2 (0.9) n.d. n.d. 

WP1.095B 56.6 (0.1) 2.4 (0.5) 7.4 (0.7) 4.3 (3.6) 44.6 (4.1) 41.2 (6.7) n.d. n.d. 

WP1.108A 62.9 (0.2) 3.0 (1.0) 3.1 (0.5) 1.7 (0.3) 44.1 (5.0) 47.9 (4.7) n.d. n.d. 

WP1.108B 77.4 (0.8) 1.1 (0.1) 2.3 (0.1) 5.2 (0.4) 39.5 (1.2) 51.7 (3.0) n.d. n.d. 

WP2.200A 77.1 (0.2) 1.2 (0.04) 10 (10) 7.6 (0.1) 44.5 (6.1) 36.6 (3.6) n.d. n.d. 

WP2.200B 74.5 (0.5) 3.6 (1.0) 1.6 (0.1) 2.2 (0.4) 34.6 (0.6) 57.9 (2.8) n.d. n.d. 

WP2.201A 76.7 (0.1) 1.5 (1.4) 2.0 (0.7) 3.0 (3.5) 52.2 (3.7) 41.3 (3.7) n.d. n.d. 

WP2.201B 77.8 (0.1) 0.3 (0.4) 3.1 (1.6) 4.0 (2.7) 43.5 (0.4) 49.2 (4.8) n.d. n.d. 

WP2.329A 58.4 (0.7) 2.2 (1.0) 4.3 (1.8) 11.2 (0.3) 9.0 (3.6) 73.2 (5.7) n.d. n.d. 

WP2.329B 70.6 (1.1) 2.5 (0.7) 37.3 (0.4) 4.3 (0.4) 20.6 (1.3) 34.7 (2.4) n.d. n.d. 
a
 Bubble-free values. 

b
 Small magnification image was a slice from a tomography scan. Values were determined by 

assuming that all the segmented minerals minus plagioclases and oxides were ferromagnesian 

minerals and using the ratio (CPx+A)/(CPx+A+OPx) =0.68 and OPx/(CPx+A+OPx) =0.32 (Murphy 

et al., 2000). 
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Table 2: Sample glass water contents and textural characteristics. Values in parenthesis are one 

standard deviation. Columns “Syn isol”, “Syn conn”, and “Pre conn” respectively represent the 

proportions (to 100%) of syn-explosive and isolated vesicles, syn-explosive and connected vesicles, 

and pre-explosive and connected vesicles. Not analyzed is “n.a.” and NT are bubble-free number 

densities. 

 

Sample H2O bulk 

(wt.%) 

H2O glass 

(wt.%) 

Syn 

isol 

Syn 

conn 

Pre 

Conn 

Bubble NT 

(m
-3

) 

Oxide NT 

(m
-3

) 

AMO210A 0.89 (0.049) 1.64 (0.33) 0.9 91.0 8.1 3.6×10
15

 (1.2×10
14

) 2.1×10
18

 (5.3×10
16

) 

AMO210B 0.56 (0.031) 7.43 (2.44) 1.3 94.0 4.7 1.2×10
16

 (4.6×10
14

) 1.1×10
17

 (3.7×10
15

) 

AMO210C 1.03 (0.057) 1.97 (0.83) 1.2 87.1 11.7 1.5×10
16

 (4.0×10
14

) 1.1×10
16

 (5.0×10
14

) 

AMO210D 0.55 (0.030) 0.75 (0.14) 2.1 94.3 3.6 1.5×10
16

 (4.2×10
14

) 1.3×10
17

 (4.4×10
15

) 

AMO210E 0.70 (0.077) 2.03 (0.59) 0.4 82.0 17.6 2.0×10
16

 (6.2×10
14

) 1.1×10
17

 (4.5×10
15

) 

AMO210F 0.69 (0.049) 1.47 (0.29) 1.5 92.3 6.2 2.2×10
16

 (6.2×10
14

) 1.1×10
17

 (4.4×10
15

) 

AMO210G 0.74 (0.041) 1.99 (0.46) 2.1 89.2 8.7 1.2×10
16

 (3.3×10
14

) 1.1×10
17

 (4.0×10
15

) 

AMO210H 0.52 (0.029) 0.73 (0.31) 1.0 83.4 15.6 3.8×10
16

 (7.7×10
14

) 2.4×10
17

 (6.5×10
15

) 

AMO210I n.a. n.a. n.a. n.a. n.a. 2.3×10
16

 (6.0×10
14

) 1.9×10
17

 (5.9×10
15

) 

AMO210J n.a. n.a. n.a. n.a. n.a. 3.2×10
16

 (8.2×10
14

) 3.7×10
17

 (1.0×10
16

) 

AMO210K n.a. n.a. n.a. n.a. n.a. 1.3×10
16

 (3.5×10
14

) 1.2×10
17

 (4.1×10
15

) 

AMO210L 0.55 (0.030) 1.88 (0.41) 0.2 92.2 7.6 1.6×10
16

 (4.2×10
14

) 4.9×10
17

 (1.8×10
16

) 

AMO210Q 1.00 (0.055) 1.63 (0.22) 0.4 86.1 13.5 7.7×10
15

 (1.8×10
14

) 3.2×10
17

 (9.4×10
15

) 

WP1.095A 0.55 (0.030) 0.95 (0.20) 0.5 89.8 9.6 1.9×10
16

 (4.4×10
14

) 3.9×10
16

 (1.6×10
15

) 

WP1.095B 0.44 (0.024) 0.89 (0.29) 0.9 82.8 16.2 2.1×10
16

 (5.3×10
14

) 5.3×10
16

 (2.0×10
15

) 

WP1.108A 0.66 (0.019) 1.41 (0.18) 0.7 88.8 10.5 1.5×10
16

 (3.9×10
14

) 2.5×10
17

 (6.8×10
15

) 

WP1.108B 1.12 (0.027) 2.05 (0.15) 0.3 67.0 32.7 1.4×10
16

 (3.1×10
14

) 8.9×10
16

 (2.4×10
15

) 

WP2.200A 0.56 (0.031) 1.16 (0.29) 0.3 92.5 7.3 1.5×10
16

 (4.3×10
14

) 2.9×10
17

 (8.8×10
15

) 

WP2.200B 0.65 (0.023) 1.11 (0.08) 0.2 92.2 7.6 3.1×10
16

 (4.9×10
14

) 6.1×10
15

 (3.1×10
14

) 

WP2.201A 0.54 (0.035) 1.20 (0.28) 0.2 87.6 12.2 2.7×10
16

 (5.6×10
14

) 3.8×10
16

 (1.4×10
15

) 

WP2.201B 1.09 (0.11) 2.16 (0.39) 0.1 88.1 11.8 2.0×10
16

 (4.2×10
14

) 6.1×10
15

 (2.3×10
14

) 

WP2.329A 0.56 (0.004) 0.43 (0.07) 0.3 73.0 26.7 4.7×10
16

 (7.0×10
14

) 1.2×10
17

 (3.4×10
15

) 

WP2.329B 0.55 (0.005) 1.59 (0.13) 0.1 89.6 10.3 2.6×10
16

 (4.2×10
14

) 9.5×10
16

 (2.9×10
15

) 
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Table 3: Results on the pre-explosive conduit conditions. Values in parenthesis are one standard 

deviation and the plus and minus signs indicate positive and negative errors. Total gas is the total 

amount of syn-explosive gas. Depths are measured from the vent down and are considering 

respectively magma-static (Magm. depth) and litho-static (Lith. depth) conduit pressure gradient. 

 

Sample Melt H2O 

(wt%) 

Pressure 

(MPa) 

Porosity 

(vol.%) 

Total gas 

(wt%) 

Magm. depth 

(km) 

Lith. depth 

(km) 

AMO210A 2.27 (0.32) 38.7 (+9.3,-10.3) 2.818 (0.027) 0.73 1.7 1.5 

AMO210C 2.65 (0.82) 50.8 (+24.7,-30.7) 2.331 (0.038) 0.79 2.2 2.0 

AMO210D 1.23 (0.14) 12.7 (+2.5,-2.8) 6.243 (0.061) 0.55 0.6 0.5 

AMO210E 2.79 (0.58) 55.6 (+18.9,-21.8) 2.370 (0.007) 0.88 2.4 2.2 

AMO210F 2.04 (0.29) 31.9 (+7.8,-8.6) 3.070 (0.028) 0.66 1.4 1.2 

AMO210G 2.37 (0.45) 41.7 (+13.2,-15.1) 1.603 (0.049) 0.44 1.8 1.6 

AMO210H 1.22 (0.31) 12.5 (+5.2,-6.4) 6.505 (0.081) 0.57 0.6 0.5 

AMO210L 2.48 (0.41) 45.3 (+12.5,-14.1) 2.300 (0.047) 0.69 2.0 1.8 

AMO210Q 2.36 (0.22) 41.4 (+6.6,-7.1) 3.029 (0.029) 0.84 1.8 1.6 

WP1.095A 1.73 (0.19) 23.7 (+4.6,-5.0) 5.504 (0.006) 0.89 1.1 0.9 

WP1.095B 1.40 (0.29) 16.1 (+5.6,-6.7) 5.258 (0.002) 0.58 0.7 0.6 

WP1.108A 2.00 (0.18) 30.7 (+4.7,-5.1) 3.290 (0.005) 0.68 1.4 1.2 

WP1.108B 3.02 (0.15) 64.0 (+5.4,-5.6) 2.637 (0.033) 1.12 2.8 2.5 

WP2.200A 2.12 (0.29) 34.3 (+7.9,-8.8) 4.756 (0.006) 1.11 1.5 1.3 

WP2.200B 1.98 (0.08) 30.3 (+2.2,-2.3) 4.821 (0.015) 1.00 1.4 1.2 

WP2.201A 2.15 (0.28) 35.2 (+7.8,-8.6) 4.570 (0.004) 1.09 1.6 1.4 

WP2.201B 3.15 (0.38) 68.8 (+14.0,-15.2) 2.508 (0.005) 1.15 3.0 2.7 

WP2.329A 0.96 (0.07) 8.0 (+1.0,-1.1) 10.436 (0.003) 0.60 0.4 0.3 

WP2.329B 2.34 (0.12) 40.8 (+3.8,-3.9) 3.154 (0.035) 0.86 1.8 1.6 
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Highlights 

Pumices from a Vulcanian explosion were analyzed. 

Analysis yielded pre-explosive values of porosity, pressure, and depth. 

The explosion evacuated the upper 3 km of the conduit from the dense magma it contained. 

Conduit flow modeling suggests transient conditions prior to explosion. 
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