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In intensive livestock areas, veterinary pharmaceutical residues (VPRs) can occur in water resources, but also in tap water because treatment processes are not designed to remove these contaminants. The main objective of this study is to assess the occurrence of VPRs in water resources and tap waters in Brittany. As several identical compounds are used in both veterinary and human medicine, a toolbox (stanols and pharmaceuticals) is used to help determine the origin of contamination in the case of mixed-use molecules. Water resources samples were collected from 25 sites (23 surface waters and two groundwaters) used for tap water production and located in watersheds considered as sensitive due to intensive husbandry activities. Samples were also taken at 23 corresponding tap water sites. A list of 38 VPRs of interest was analyzed. In water resources, at least one VPR was quantified in 32% of the samples. 17 different VPRs were quantified, including antibiotics, antiparasitic drugs and anti-inflammatory drugs. Concentration levels ranged between 5 ng/L and 2946 ng/L. Mixeduse pharmaceuticals were quantified in twelve samples of water resources and among these samples nine had a mixed overall fecal contamination. In the context of this large-scale study, it appeared difficult to determine precisely the factors impacting the occurrence of VPRs.

VPRs were quantified in 20% of the tap water samples. Twelve VPRs were quantified, including ten compounds exclusively used in veterinary medicine and two mixed-use compounds. Concentration levels are inferior to 40 ng/L for all compounds, with the exception of the antibiotic florfenicol which was quantified at 159 ng/L and 211 ng/L. The population of Brittany may therefore be exposed to these contaminants through tap water.

These observations should be put into perspective with the detection frequencies per compound which are all below 10% in both water resources and tap water.

INTRODUCTION

Intensive livestock farming leads to greater vulnerability of the animals to develop and spread diseases as they are often confined together [START_REF] Hu | Health risk from veterinary antimicrobial use in China's food animal production and its reduction[END_REF]. To limit this issue, veterinary pharmaceuticals are often used not only for a curative goal, but also for prophylactic [START_REF] Hu | Health risk from veterinary antimicrobial use in China's food animal production and its reduction[END_REF]. However, only veterinary drugs containing a critical antibiotic (third and fourth generation cephalosporins, fluoroquinolones) are banned for prophylactic use since 2016 (Code de la Santé Publique, 2016). When administered to the animal, veterinary pharmaceuticals may be partially metabolized in the organism. They are then excreted in urine or feces as the parent compounds and/or as metabolites. Excretion rates for veterinary antibiotics can vary from 40% for tetracyclines to 90% for sulfonamides [START_REF] Kemper | Veterinary antibiotics in the aquatic and terrestrial environment[END_REF][START_REF] Tasho | Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review[END_REF]. Thus, VPRs can be released to the environment either directly with urine and feces of animals in pastures or indirectly during the spreading of contaminated manure and slurry as fertilizers on fields [START_REF] Bártíková | Veterinary drugs in the environment and their toxicity to plants[END_REF][START_REF] Boxall | Veterinary Medicines and the Environment[END_REF][START_REF] Jeon | Reactions and Behavior Relevant to Chemical and Physical Properties of Various Veterinary Antibiotics in Soil[END_REF][START_REF] Kim | Occurrence and Environmental Fate of Veterinary Antibiotics in the Terrestrial Environment[END_REF][START_REF] Kools | A ranking of European veterinary medicines based on environmental risks[END_REF]. VPRs can then reach natural waters, i.e. surface water and groundwater, via runoff, erosion and leaching [START_REF] Jaffrézic | Veterinary pharmaceutical contamination in mixed land use watersheds: from agricultural headwater to water monitoring watershed[END_REF][START_REF] Jeon | Reactions and Behavior Relevant to Chemical and Physical Properties of Various Veterinary Antibiotics in Soil[END_REF][START_REF] Kemper | Veterinary antibiotics in the aquatic and terrestrial environment[END_REF][START_REF] Kim | Occurrence and Environmental Fate of Veterinary Antibiotics in the Terrestrial Environment[END_REF].

A previous study performed on VPRs in waters from nested watersheds from agricultural headwater to water framework management outlet in Brittany [START_REF] Jaffrézic | Veterinary pharmaceutical contamination in mixed land use watersheds: from agricultural headwater to water monitoring watershed[END_REF] demonstrated that VPR contamination is indeed an issue, as animal-specific pharmaceuticals were detected at all sampling dates upstream and downstream from a wastewater treatment plant and at concentrations higher than those for human-specific pharmaceuticals (i.e. maximum concentrations of 181 ng.L -1 and 1450 ng.L -1 for sulfamethazine and flunixin respectively). VPRs also have been widely quantified worldwide in natural waters (either surface water or groundwater) from ng.L -1 to µg.L -1 during the last decade (García-Galán et [START_REF] Boxall | Veterinary Medicines and the Environment[END_REF][START_REF] Hu | Determination of 26 veterinary antibiotics residues in water matrices by lyophilization in combination with LC-MS/MS[END_REF][START_REF] Iglesias | Detection of veterinary drug residues in surface waters collected nearby farming areas in Galicia, North of Spain[END_REF][START_REF] Kim | Effect of runoff discharge on the environmental levels of 13 veterinary antibiotics: A case study of Han River and Kyungahn Stream, South Korea[END_REF][START_REF] Luo | Occurrence and Transport of Tetracycline, Sulfonamide, Quinolone, and Macrolide Antibiotics in the Haihe River Basin, China[END_REF][START_REF] Ok | Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea[END_REF][START_REF] Tong | Occurrence of antibiotics in the aquatic environment of Jianghan Plain, central China[END_REF][START_REF] Tong | Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS[END_REF][START_REF] Wei | Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China[END_REF][START_REF] Yao | Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: A case study at Jianghan Plain, central China[END_REF][START_REF] Yao | Seasonal variation of antibiotics concentration in the aquatic environment: a case study at Jianghan Plain, central China[END_REF][START_REF] Zhou | Occurrence, spatiotemporal distribution, mass balance and ecological risks of antibiotics in subtropical shallow Lake Taihu, China[END_REF]. As data on VPR behavior in drinking water treatment plants (DWTPs) is scarce [START_REF] Charuaud | Veterinary pharmaceutical residues from natural water to tap water: Sales, occurrence and fate[END_REF], there is a public health concern as the human population may be exposed to these compounds via tap water, especially when tap water is produced with surface water resources from intensive livestock areas. In Brittany, surface water is the major resource (75%) for water production; while the national ratio is 64% groundwater and 36% surface water (ARS Bretagne, 2017). However, no data is available concerning the occurrence of VPRs in tap water even though it is a high-risk region. This lack of information is also true at international level, where very few studies have been conducted on VPRs in tap waters [START_REF] Leung | Pharmaceuticals in Tap Water: Human Health Risk Assessment and Proposed Monitoring Framework in China[END_REF][START_REF] Ye | Trace Analysis of Trimethoprim and Sulfonamide, Macrolide, Quinolone, and Tetracycline Antibiotics in Chlorinated Drinking Water Using Liquid Chromatography Electrospray Tandem Mass Spectrometry[END_REF]. Due to the highly varied physico-chemical properties of VPRs, their low concentration levels in the environment and the complexity of environmental matrices, it is difficult to develop an optimal multi-residue analysis method for a large number of compounds, especially when they belong to different therapeutic classes. There are many analytical methods dedicated to veterinary antibiotics [START_REF] Gao | Multiclass method for the quantification of 92 veterinary antimicrobial drugs in livestock excreta, wastewater, and surface water by liquid chromatography with tandem mass spectrometry: Liquid Chromatography[END_REF][START_REF] Hu | Determination of 26 veterinary antibiotics residues in water matrices by lyophilization in combination with LC-MS/MS[END_REF][START_REF] Tong | Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS[END_REF][START_REF] Wei | Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China[END_REF][START_REF] Xue | Ultra-high performance liquid chromatography-electrospray tandem mass spectrometry for the analysis of antibiotic residues in environmental waters[END_REF][START_REF] Yao | Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: A case study at Jianghan Plain, central China[END_REF][START_REF] Zhang | Prevalence of Veterinary Antibiotics and Antibiotic-Resistant Escherichia coli in the Surface Water of a Livestock Production Region in Northern China[END_REF] and some dedicated to antiparasitic drugs [START_REF] Krogh | Development of an analytical method to determine avermectins in water, sediments and soils using liquid chromatography-tandem mass spectrometry[END_REF][START_REF] Thompson | Large volume injection for the direct analysis of ionophores and avermectins in surface water by liquid chromatography-electrospray ionization tandem mass spectrometry[END_REF][START_REF] Zrnčić | Analysis of anthelmintics in surface water by ultra high performance liquid chromatography coupled to quadrupole linear ion trap tandem mass spectrometry[END_REF], but few include different therapeutic classes [START_REF] Iglesias | Detection and quantitative analysis of 21 veterinary drugs in river water using high-pressure liquid chromatography coupled to tandem mass spectrometry[END_REF]. There is therefore a need to develop specific analytical methods and the selection of the VPRs needs to be performed according to the veterinary uses on the study site (Soulier et al., 2015).

In addition, the contamination originating from veterinary medicine cannot always be distinguished from that arising from human medicine, since several identical compounds are used in both veterinary and human medicine. It is therefore necessary to develop tools to help determine the origin of contamination in the case of mixed-use molecules. The monitoring of fecal contamination in natural water samples may be of interest.
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Several tools have been developed and efficiently applied to distinguish human and animal fecal contamination in environmental matrices, such as microbiological markers [START_REF] Ahmed | Current Status of Marker Genes of Bacteroides and Related Taxa for Identifying Sewage Pollution in Environmental Waters[END_REF][START_REF] Derrien | Origin of fecal contamination in waters from contrasted areas: Stanols as Microbial Source Tracking markers[END_REF][START_REF] Gourmelon | Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France[END_REF][START_REF] Heaney | Source tracking swine fecal waste in surface water proximal to swine concentrated animal feeding operations[END_REF][START_REF] Ohad | Microbial Source Tracking in Adjacent Karst Springs[END_REF][START_REF] Raith | Comparison of PCR and quantitative real-time PCR methods for the characterization of ruminant and cattle fecal pollution sources[END_REF][START_REF] Seurinck | Microbial Source Tracking for Identification of Fecal Pollution[END_REF][START_REF] Solecki | Persistence of microbial and chemical pig manure markers as compared to faecal indicator bacteria survival in freshwater and seawater microcosms[END_REF], viral markers [START_REF] Cole | Evaluation of F+ RNA and DNA Coliphages as Source-Specific Indicators of Fecal Contamination in Surface Waters[END_REF][START_REF] Gourmelon | Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France[END_REF][START_REF] Jofre | Bacteriophages infecting Bacteroides as a marker for microbial source tracking[END_REF][START_REF] Lee | Molecular Characterization of Bacteriophages for Microbial Source Tracking in Korea[END_REF][START_REF] Muniesa | Differential persistence of Fspecific RNA phage subgroups hinders their use as single tracers for faecal source tracking in surface water[END_REF][START_REF] Tyagi | Distinguishing between human and animal sources of fecal pollution in waters: a review[END_REF] or chemical markers such as fecal stanols [START_REF] Biache | The use of sterol distributions combined with compound specific isotope analyses as a tool to identify the origin of fecal contamination in rivers[END_REF][START_REF] Derrien | Origin of fecal contamination in waters from contrasted areas: Stanols as Microbial Source Tracking markers[END_REF][START_REF] Gourmelon | Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France[END_REF][START_REF] Harrault | Are fecal stanols suitable to record and identify a pulse of human fecal contamination in short-term exposed shellfish? A microcosm study[END_REF][START_REF] Jardé | Application of a microbial source tracking based on bacterial and chemical markers in headwater and coastal catchments[END_REF][START_REF] Jeanneau | Influence of salinity and natural organic matter on the solid phase extraction of sterols and stanols: Application to the determination of the human sterol fingerprint in aqueous matrices[END_REF][START_REF] Leeming | Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters[END_REF][START_REF] Shah | Evaluating potential applications of faecal sterols in distinguishing sources of faecal contamination from mixed faecal samples[END_REF][START_REF] Tran | Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater[END_REF][START_REF] Tyagi | Distinguishing between human and animal sources of fecal pollution in waters: a review[END_REF], pharmaceuticals or other compounds related to human consumption (caffeine, nicotine, artificial sweeteners) [START_REF] Madoux-Humery | Temporal variability of combined sewer overflow contaminants: Evaluation of wastewater micropollutants as tracers of fecal contamination[END_REF][START_REF] Tran | Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater[END_REF][START_REF] Wade | Detection of human-derived fecal contamination in Puerto Rico using carbamazepine, HF183 Bacteroides, and fecal indicator bacteria[END_REF]. Markers of fecal contamination are often used in association in what is called a "Fecal Source Tracking (FST)

Toolbox" [START_REF] Gourmelon | Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France[END_REF][START_REF] Tran | Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater[END_REF]Devane et al., 2018) in order to gain more certainty. Stanols seem to fulfill various criteria to be useful tracing tools. Stanols are sensitive and specific markers of fecal contamination. Their distribution in feces will vary according to the specie's diet, the ability of animals to biosynthesize endogenous sterols and the composition of the intestinal flora which will converts sterols into stanols by biohydrogenation [START_REF] Leeming | Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters[END_REF]. This species distribution, called "stanol fingerprint", has been successfully used, via stanol ratio analysis or by multivariate analysis, to distinguish human and animal contamination in water [START_REF] Biache | The use of sterol distributions combined with compound specific isotope analyses as a tool to identify the origin of fecal contamination in rivers[END_REF][START_REF] Derrien | Origin of fecal contamination in waters from contrasted areas: Stanols as Microbial Source Tracking markers[END_REF][START_REF] Gourmelon | Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France[END_REF][START_REF] Harrault | Are fecal stanols suitable to record and identify a pulse of human fecal contamination in short-term exposed shellfish? A microcosm study[END_REF][START_REF] Jardé | Application of a microbial source tracking based on bacterial and chemical markers in headwater and coastal catchments[END_REF][START_REF] Jeanneau | Influence of salinity and natural organic matter on the solid phase extraction of sterols and stanols: Application to the determination of the human sterol fingerprint in aqueous matrices[END_REF][START_REF] Leeming | Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters[END_REF][START_REF] Shah | Evaluating potential applications of faecal sterols in distinguishing sources of faecal contamination from mixed faecal samples[END_REF][START_REF] Tran | Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater[END_REF][START_REF] Tyagi | Distinguishing between human and animal sources of fecal pollution in waters: a review[END_REF]. Besides, stanols demonstrate a significant persistence in the environment [START_REF] Harrault | Are fecal stanols suitable to record and identify a pulse of human fecal contamination in short-term exposed shellfish? A microcosm study[END_REF] and sufficient concentrations to be detected. Regarding the limitations of the use of stanols, some studies report a difficulty in identifying the source of fecal contamination via the "stanol fingerprint" in the case of watersheds affected by several sources of pollution [START_REF] Shah | Evaluating potential applications of faecal sterols in distinguishing sources of faecal contamination from mixed faecal samples[END_REF]).
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Secondly, because of their hydrophobic nature, stanols are easily absorbed on soils and are not a suitable marker for monitoring fecal contamination of groundwater [START_REF] Tran | Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater[END_REF].

The analysis of indirect markers of fecal contamination as pharmaceuticals can be a complementary tool to trace the sources of contamination of a given sample. Indeed, only the study of pharmaceuticals can establish contamination from both human and animal origin, as there are drugs specific of human use and others used only in veterinary medicine. The other indirect chemical markers only highlight human contamination (i.e. caffeine, nicotine).

The relevance of pharmaceuticals as fecal markers depends largely on many contributing factors, including land use patterns, population, amount consumed of each type of pharmaceutical, characteristics of pollution sources, hydrology and geology of the study area [START_REF] Tran | Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater[END_REF]. Carbamazepine (anti-epileptic and neuroleptic) and diclofenac (antiinflammatory) are pharmaceuticals widely used in human medicine. They are not completely degraded during wastewater treatment plant processes and are often quantified in water resources [START_REF] Wade | Detection of human-derived fecal contamination in Puerto Rico using carbamazepine, HF183 Bacteroides, and fecal indicator bacteria[END_REF]Zhang et al., 2008). Moreover, carbamazepine and diclofenac have been quantified in water resources in Brittany in previous studies (Jaffrezic et al. 2017;Mompelat et al., 2011). For those reasons, carbamazepine and diclofenac can be adequate markers of fecal human contamination in water resources.

The main objective of this study is to assess the occurrence of VPRs in water resources, and corresponding tap waters, in watersheds characterized by intensive livestock farming and recycling of animal waste on soils. The secondary objectives are to identify the sources of contamination through use of chemical markers (stanols and pharmaceuticals) to determine the origin of the fecal contamination associated with the presence of VPRs, and to identify the factors related to the occurrence of VPRs. For these purposes, several stages were necessary to select the VPRs of interest and drinking water treatment plants with high husbandry pressure in Brittany and then to develop a suitable method of analysis.
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MATERIAL AND METHODS

Sampling sites and sampling strategy

The investigated area is the region of Brittany in northwest France. Agriculture holds an important place in Brittany, both economically (agricultural or agro-alimentary production)

and in terms of land use. About 60% of the territory of Brittany is dedicated to agricultural activities (1 630 536 hectares out of a total regional area of 2 750 667 hectares), and it is the leading French region for livestock production (Chambres d'Agriculture de Bretagne, 2017).

In 1 shows the sampling periods and the characteristics of the five sampling campaigns.

[Table 1]

A total of 199 samples were collected for analysis, including 105 natural waters (97 surface waters and eight groundwaters) and 94 tap waters.

For VPR analysis, water resources or tap water were sampled in 1 L amber glass bottles containing 200 µL of a stabilizing agent (ascorbic acid; 20 g/L) in order to block the effect of oxidants such as free chlorine. 1 L of surface water or 2 L of groundwater or tap water were sampled in sterilized plastic bottles for stanol analysis. 500 mL of water resources were sampled in sterilized plastic bottles for dissolved organic carbon (DOC) analysis. 500 mL of water resources were sampled in sterilized plastic bottles with 60 mg of thiosulfate sodium for microbiological analyses. All samples were kept in ice boxes during transport to the laboratory.
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VPRs of interest

A list of 38 VPRs of interest was defined according to veterinary practices in Brittany, animal targets, routes of administration, pharmacokinetics, mobility from soil to water, persistence in water and analytical feasibility [START_REF] Charuaud | Prioritisation of veterinary pharmaceuticals prior to a monitoring campaign: Case of Brittany, an intensive husbandry area[END_REF]. S2.

VPR analysis

Chemicals, reagents and stock solutions are described in Supplementary information S3.

At the laboratory, 200 mL of water samples were filtered through glass fiber filters of 0.7 µm diameter (Millipore) and stored at 4 °C if the extraction could be performed in the next 48 hours. However, the samples from the first two sampling campaigns were stored at -20 °C for one to five months before analysis. Samples from the other three sampling campaigns were
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extracted within 48 hours after sampling, according to XP T90-223 guidelines (Afnor, 2013a), and analyzed within 14 days.

Immediately prior to the extraction, sample pH was adjusted to pH2 with nitric acid (67%, VWR), and 100 µL of an internal standards mix solution (0.5 mg/L) was added to each sample.

Samples were extracted by solid phase extraction with a robot GX-274 ASPEC TM (Gilson) on Strata-X cartridge (200 mg, 6 mL, Phenomenex). The cartridges were conditioned with 6 mL of acetonitrile (ACN) / methanol (MeOH) (90:10 v/v) followed by 6 mL of acidified ultrapure water (pH2). Each 200 mL sample was loaded onto a cartridge at a flow rate of 10 mL/min.

Cartridges were then rinsed with 10 mL of ultrapure water to eliminate impurities, and vacuum-dried for 15 minutes. Analytes were eluted with 10 mL of ACN/MeOH (90:10 v/v) fractioned in four portions (4 x 2.5 mL). Eluates were then transferred into glass tubes to be evaporated until the drop under N2 at a temperature of 30 °C. The residues were reconstituted with 0.5 mL of H2O/ACN (87:13 v/v) and 25 µL of an injection tracer solution (pentabromophenol; 10 mg/L) were then added. The mixtures were ultrasonicated for five minutes and then transferred to 2 mL glass vials. The 38 target compounds were analyzed by rapid resolution liquid chromatography coupled to tandem mass spectrometry (RRLC-MS/MS). The separation of the compounds was performed with an Agilent 1200 series system on an Xselect HSST3 column (2.1 mm x 100 mm; 2.5 µm; Waters). The column temperature was maintained at 40 °C. Mobile phase was composed of A) ultrapure water + 0.01% formic acid and B) acetonitrile + 0.01% formic acid and the flow rate was 0.4 mL/min.

Initial gradient was composed of 87% (A) -13% (B) during the first minute, followed by a linear gradient from 87% to 13% of A for one to ten minutes, then maintained at 13% (A) -87% (B) for five minutes and finally returning linearly to the initial gradient of 87% (A) -13% (B) for the last two minutes. Total run time was 17 minutes. Mass spectrometric
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detection was performed with a triple quadrupole mass spectrometer 6460 from Agilent

Technologies equipped with an electrospray ion (ESI) source operating simultaneously in positive and negative modes during the analysis. The gas flow was nitrogen and its temperature was set to 200 °C for a flow of 5 mL/min. The sheath gas was also nitrogen with a temperature of 380 °C and a flow of 11 mL/min. Capillary voltage was 4000 V either in positive or negative mode and nozzle voltage was set at 500 V. Nebulizer was set at 45 psi.

Quantification of each VPR of interest was performed in multiple reaction monitoring (MRM) mode. Masshunter software (Agilent) was used for instrument control, data acquisition and data analysis. The MS/MS parameters were optimized individually for each compound by Flow Injection Analysis, with standard solutions at 1 mg/L. Table S4 in Supplementary

Information describes the optimal MS/MS conditions and internal standards.

Quality control/Quality assurance of the VPRs analysis method

For each series of analyses, one blank and eight calibration solutions prepared in Evian® water were extracted under the same conditions as the samples. An internal calibration curve was then established in quadratic mode including seven or eight points depending on the compound within the range: limit of quantification (LOQ) -500 ng/L. Quadratic fit was used to compensate for the non-linearity of the instrument response over a wide working range.

Correlation coefficients of the quadratic calibration curves had to be superior or equal to 0.99.

The LOQ was determined as the minimum detectable amount of analyte with a signal-to-noise ratio of 10. LOQ was either 5 ng/L or 12.5 ng/L depending on the compound.

The MRM mode was used for the quantification. The most intensive and specific ion pairs, together with retention time, were used to identify the VPR of interest.

Quantitative analysis was based on peak area and was performed by internal standard calibration. A correction factor is applied to rectify the ionization (i.e. matrix effects). In order
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to do that, each sample was divided into two aliquots and one of them was spiked at 250 ng/L with the VPRs of interest to assess the matrix effects and to apply a correction factor.

The two MRM transitions were used for quantification: the two results were averaged, on condition that the difference between them was less than 10% in proportion to the lower result; the lower value was retained if the two results differed by more than 10%.

To compensate for the matrix effects that will differ greatly by water type the results of the standard addition are processed as follows and the following safety factors have been applied: If VPR concentration levels were beyond the calibration range, the sample was diluted and reanalyzed, and a dilution coefficient was applied to obtain the initial concentration.

•
The VPR recoveries were assessed at three concentration levels (LOQ, 100 ng/L and 500 ng/L) in six different environmental matrices (two surface waters, one groundwater and three tap waters). Table S5 in supplementary information summarizes the LOQs, recoveries, accuracies, relative standard deviations and uncertainties obtained for all compounds with the transition with the lowest performance. All parameters have been calculated according to the guidelines of NF T90-210 [START_REF] Afnor | NF F90-210 -Water quality -Protocol for the initial method performance assessment in a laboratory[END_REF] and NF ISO 11352 [START_REF] Afnor | NF ISO 11352 -Water quality -Estimation of measurement uncertainty based on validation and quality control data[END_REF]. At the LOQs, all
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recoveries were between 69% and 187% except for 14 VPRs (amoxicillin, cefquinome, clorsulon, dicyclanil, florfenicol, flumequine, lincomycin, neospiramycin, spiramycin, sulfamethazine, tilmicosin, toltrazuril, triclabendazole sulfone, tylosin) which were subject to important matrix effects. At 100 ng/L and 500 ng/L, all recoveries were between 59% and 156% except for four VPRs (amoxicillin, lincomycin, neospiramycin, tylosin).

Stanol analysis

Fecal stanols were extracted from filtered (0.7 μm glass fiber) water samples (1 L) by solid phase extraction and quantified by gas chromatography coupled to mass spectrometry using an internal calibration as described by [START_REF] Jeanneau | Influence of salinity and natural organic matter on the solid phase extraction of sterols and stanols: Application to the determination of the human sterol fingerprint in aqueous matrices[END_REF]. The procedure is described in detail in S6 in Supplementary information.

Escherichia coli (E. coli) analysis

Microbial fecal indicator E. coli in surface water samples was counted using microplate methods (EN ISO 9308-3 (Anonymous, 1999)) with a detection limit of 15 most probable number (MPN) per 100 mL of water sample. In groundwater, E. coli was counted using membrane methods (EN ISO 9308-1 (Anonymous, 2000)) with a detection limit of 1 colony forming unit (CFU) per 100 mL of water sample.

Dissolved organic carbon (DOC) analysis, daily flow rates and rainfall

The samples were filtered at 0.45 µm and the analysis was carried out by chemical oxidation according to standard NF EN-1484EN- (1997) ) on a Total Organic Carbon analyzer TOC-VWP (Shimadzu).

A C C E P T E D M A N U S C R I P T

14 Daily flowrates at the closest nested gauged watershed were collected on the website of the hydrological data bank (http://hydro.eaufrance.fr/). Daily flow rate in the ungauged sampling point were calculated with the surface ratio.

Rainfall in the 72 hours before sampling was collected after sampling on the website Meteo France (www.meteofrance.com/). The closest weather station to the water resources was chosen to gather the data.

RESULTS AND DISCUSSION

Veterinary pharmaceutical residues occurrence in water resources

In 32% of water resources samples at least one VPR was quantified (i.e. 34 out of the 105 samples analyzed), comprising 2 groundwaters and 32 surface waters. Quantified VPRs and their concentration levels are shown in Figure 1.

[ S5). On the other hand, the identification of
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compounds is ensured by the method's quality controls. In end, considering that this work is a first exploratory study in the region of Brittany, the data for these compounds was retained, however the quantitative results should be considered with caution, especially when close to the limit of quantification.

21 VPRs were never quantified in water resources during this study (13 antibiotics:

amoxicillin, ampicillin, cefquinome, chlortetracycline, doxycycline, enrofloxacin, erythromycin, marbofloxacin, oxalinic acid, sulfadimethoxine, spiramycin, tylosin; four antiparasitic drugs: clorsulon, dicyclanil, diazinon, flubendazole; the anticoccidian toltrazuril and its metabolites toltrazuril sulfone and toltrazuril sulfoxide; two anti-inflammatory drugs: dexamethasone, meloxicam). Among these 21 compounds not detected, some may have been degraded by freezing. As samples were frozen before analysis in sampling campaign (SC)1 and SC2, the conservation of VPRs during freezing was tested on two water samples (one surface water sample and one tap water sample) spiked with all compounds. At -20 °C, penicillins (amoxicillin and ampicillin) were completely degraded in less than two weeks in both matrices (data not shown). Tetracyclines (chlortetracycline, doxycycline and oxytetracycline) were completely degraded in tap water matrix within 48 hours (data not shown). According to Mompelat et al. [START_REF] Mompelat | Storage of natural water samples and preservation techniques for pharmaceutical quantification[END_REF] florfenicol, sulfadiazine and trimethoprim are stable in surface water samples when stored at -20°C during 56 days, while oxolinic acid is stable during 124 days. Another publication [START_REF] Fedorova | Storage effect on the analysis of pharmaceuticals and personal care products in wastewater[END_REF] studied the impact of storage of effluents of wastewater treatment plants at -18°C. Florfenicol and sulfadiazine remained stable after 120 days of storage, which is in agreement with Mompelat et al. [START_REF] Mompelat | Storage of natural water samples and preservation techniques for pharmaceutical quantification[END_REF]. On the other hand, oxolinic acid was stable until 60 days of storage only, and so were enrofloxacin, erythromycin, flumequine, oxytetracycline, sulfadimethoxine, sulfamethazine and trimethoprim. Doxycycline and ketoprofen remained stable for 7 days. Finally, Llorca et al. [START_REF] Llorca | Sample preservation for the analysis of antibiotics in water[END_REF] studied the impact of storage of
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purified water samples spiked with pharmaceuticals at -20°C. Erythromycin, tilmicosin, spiramycin, tylosin, chlortetracycline, oxytetracycline, doxycycline, flumequine, ampicillin, lincomycin, sulfadiazine were unstable after one week of storage. Enrofloxacin, marbofloxacin and oxolinic acid remained stable after 1 week of storage but were unstable (concentration levels <80%) after 2 weeks of storage. Sulfadimethoxine remained stable after 2 weeks of storage but were unstable (concentration levels <80%) after 12 weeks of storage.

Surprisingly, amoxicillin remained stable after 12 weeks of storage while β-lactams are known to be highly unstable in aquatic environment, and rapidly subjected to hydrolysis [START_REF] Braschi | Persistence and degradation of new β-lactam antibiotics in the soil and water environment[END_REF][START_REF] Mitchell | pH and temperature effects on the hydrolysis of three β-lactam antibiotics: Ampicillin, cefalotin and cefoxitin[END_REF]. Supplementary experiments are required to validate the conservation of compounds during freezing. Overall, concentration levels may have been underestimated.

In addition, VPRs consumption and VPRs behaviors in the environment have to be considered to interpret the results. The antiparasitic drugs dicyclanil and flubendazole were reported to be the least prescribed of the VPRs studied in Brittany, which may explain why they were not detected. Flubendazole is also reported to be subjected to hydrolysis [START_REF] Horvat | Analysis, occurrence and fate of anthelmintics and their transformation products in the environment[END_REF].

Other VPRs, such as the β-lactams amoxicillin, ampicillin and cefquinome may have been hydrolyzed in the aquatic [START_REF] Braschi | Persistence and degradation of new β-lactam antibiotics in the soil and water environment[END_REF][START_REF] Jiang | Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment[END_REF][START_REF] Li | Degradation Kinetics and Mechanism of Antibiotic Ceftiofur in Recycled Water Derived from a Beef Farm[END_REF][START_REF] Mitchell | pH and temperature effects on the hydrolysis of three β-lactam antibiotics: Ampicillin, cefalotin and cefoxitin[END_REF]. Besides, this study focuses on water phase, while VPRs are found in different all fractions of the aquatic environment (i.e. soluble fraction, colloidal fraction, particular fraction or sediment) [START_REF] Cheng | Seasonal variation and sediment-water exchange of antibiotics in a shallower large lake in North China[END_REF][START_REF] Li | The distribution of veterinary antibiotics in the river system in a livestock-producing region and interactions between different phases[END_REF][START_REF] Zhou | Occurrence, spatiotemporal distribution, mass balance and ecological risks of antibiotics in subtropical shallow Lake Taihu, China[END_REF]. Some antibiotics such as fluoroquinolones, macrolides and tetracyclines and also antiparasitic drugs as avermectins are known to have a strong binding capacity to sediment [START_REF] Dong | Antibiotics in water and sediments from Liao River in Jilin Province, China: occurrence, distribution, and risk assessment[END_REF]Li et al., 2017;[START_REF] Liebig | Environmental risk assessment of ivermectin: A case study[END_REF][START_REF] Luo | Occurrence and Transport of Tetracycline, Sulfonamide, Quinolone, and Macrolide Antibiotics in the Haihe River Basin, China[END_REF][START_REF] Yang | Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC-MS/MS[END_REF][START_REF] Zhou | Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China[END_REF]. Thus, VPRs belonging to these chemical families may occur in suspended particulate matter or sediment. Sediment constitutes an important sink but also a potential secondary source for
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VPRs, which can be released in water through sorption-desorption and re-suspension processes [START_REF] Cheng | Seasonal variation and sediment-water exchange of antibiotics in a shallower large lake in North China[END_REF][START_REF] Yang | Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC-MS/MS[END_REF][START_REF] Zhou | Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China[END_REF][START_REF] Zhou | Occurrence, spatiotemporal distribution, mass balance and ecological risks of antibiotics in subtropical shallow Lake Taihu, China[END_REF]. Other VPRs such as sulfonamides, trimethoprim, lincomycin and florfenicol, which were quantified during this study, tend to be distributed only in the aqueous phase phase [START_REF] Li | The distribution of veterinary antibiotics in the river system in a livestock-producing region and interactions between different phases[END_REF][START_REF] Zhou | Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China[END_REF].

Individual detection frequencies of VPRs in water resources were below 10% for all compounds (Figure 1). 82% of the quantified compounds had concentrations below 80 ng/L, 16% of VPR concentrations were between 100 ng/L and 1 µg/L and only the antibiotic sulfadiazine was quantified at a concentration above 1 µg/L. Among the five metabolites investigated, three were detected (neospiramycin, triclabendazole sulfone, triclabendazole sulfoxide). Among the 17 VPRs quantified in water resources in this study, 11 have been previously found in natural waters at similar concentrations (florfenicol, flumequine, flunixin, levamisole, ivermectin, oxytetracycline, sulfadiazine, sulfamethazine, tilmicosin, trimethoprim, triclabendazole) [START_REF] Charuaud | Veterinary pharmaceutical residues from natural water to tap water: Sales, occurrence and fate[END_REF][START_REF] Sinclair | Assessment and management of inputs of veterinary medicines from the farmyard 102[END_REF]. For example, sulfadiazine (from 508 ng/L to 2946 ng/L in this study) was quantified in surface water up to 2313 ng/L in the Llobregat River in Spain [START_REF] Iglesias | Detection of veterinary drug residues in surface waters collected nearby farming areas in Galicia, North of Spain[END_REF] and florfenicol (from 7 ng/L to 930 ng/L in this study) was quantified in South Korea up to 340 ng/L [START_REF] Kim | Effect of runoff discharge on the environmental levels of 13 veterinary antibiotics: A case study of Han River and Kyungahn Stream, South Korea[END_REF] and in China up to 930 ng/L [START_REF] Zhou | Occurrence, spatiotemporal distribution, mass balance and ecological risks of antibiotics in subtropical shallow Lake Taihu, China[END_REF]. On the other hand, sulfadiazine and trimethoprim were quantified at lower concentrations in the other study performed in Brittany [START_REF] Jaffrézic | Veterinary pharmaceutical contamination in mixed land use watersheds: from agricultural headwater to water monitoring watershed[END_REF], with sulfadiazine ranging from 15 ng/L to 35 ng/L and trimethoprim ranging from 3 ng/L to 23 ng/L. However, flunixin (from 35 to 1450 ng/L), flumequine (from 1 ng/L to 143 ng/L) and lincomycin (from 6 ng/L to 163 ng/L) concentrations were higher in Jaffrézic et al. [START_REF] Jaffrézic | Veterinary pharmaceutical contamination in mixed land use watersheds: from agricultural headwater to water monitoring watershed[END_REF].

To our knowledge, this study is the first to provide data on the occurrence in natural waters of the antiparasitic drug eprinomectin (7 ng/L to 45 ng/L) and of the following three metabolites: neospiramycin (24 ng/L), metabolite of the antibiotic spiramycin, triclabendazole sulfone (9 ng/L) and triclabendazole sulfoxide (6 ng/L to 8 ng/L) which are metabolites of the antiparasitic drug triclabendazole.

Table S8 in Supplementary Information provides the VPRs quantified per site, as well as the corresponding concentration ranges. No VPRs were quantified in seven of the 25 sites studied. The largest number of VPRs quantified on a single site was nine (site L). One or two VPRs were quantified in 11 sites, but VPRs exclusively used in veterinary medicine were quantified in only three sites. These three sites (B, I and U) have very different characteristics:

two are surface waters (one river and one dam) and the other is a 20 meter depth groundwater.

The main livestock is poultry on two sites (B and I) and cattle on the other site (U).

Tilmicosin and flunixin were quantified on site U, which is consistent with the main livestock as these compounds can be administered to cattle. Eprinomectin, ivermectin and triclabendazole sulfoxide were quantified on site I, although these VPRs are not administered to poultry. Nevertheless, swine and cattle can be found in the watershed even if poultry is the major livestock. Sites U and B showed the presence of VPRs in only one sampling campaign, respectively SC2 (spreading time) and SC3 (low-water period). On site I, VPRs were quantified during both SC2 and SC3.

Associated fecal contamination in water resources

Fecal contamination in water resources

Among the 34 natural water samples with quantified VPRs, 88% presented associated fecal contamination, consistent with E. coli.

The origin of the fecal contamination identified with fecal stanols was combined with the source of fecal contamination obtained from pharmaceutical residues to obtain the overall sources of fecal contamination of the sample. Among the 34 samples of water resources with quantified VPRs, 62% of fecal contaminations had a mixed origin, i.e. both human and animal; 35% were of animal origin and 3% were of human origin only. Thus, 97% of the samples showed fecal contamination totally or partly attributed to an animal source.

Determination of origin of mixed-use compounds in water resources

Mixed-use pharmaceuticals were quantified in twelve samples of water resources (35% of the samples with VPRs quantified). The sources of fecal contamination of these 12 samples are described in Table 2.

[Table 2]

Nine samples had a mixed overall fecal contamination, thus the source of contamination for the mixed-use VPR in the samples could not be differentiated either with fecal stanols or pharmaceuticals. The antiparasitic drug levamisole was once linked to a human origin due to the presence of carbamazepine in the sample. The VPR contamination of two samples was attributed to an animal origin and more specifically to cattle. Oxytetracycline and trimethoprim were quantified in sample A. Sulfadiazine, trimethoprim and neospiramycin (spiramycin metabolite) were quantified in sample G. The bovine origin of the contamination is plausible as all these compounds are administered to cattle. Primary livestock is aquaculture on site G and both aquaculture and poultry on site A. Sulfadiazine, oxytetracycline and trimethoprim are compounds that are administered in aquaculture. Spiramycin (the parent compound of neospiramycin) is administered to swine, cattle and poultry. In addition to aquaculture activities, there are also cattle, pig and poultry farms near to site G, thus the quantification of neospiramycin is consistent with the livestock types.

The results obtained with the two kinds of marker in this study (i.e. stanols and pharmaceuticals) were classified into the following groups according to Jardé et al. [START_REF] Jardé | Application of a microbial source tracking based on bacterial and chemical markers in headwater and coastal catchments[END_REF]:
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Group 1: both markers had the same source of fecal contamination (either a single source or a combination of sources)

Group 2: one marker assigned a source of fecal contamination (either a single source or a combination of sources) while the second marker did not provide a source of fecal contamination Group 3: the two markers gave different assignments (no common source attributed between stanols and pharmaceuticals)

Group 4: none of the markers was detected or quantified.

Among the 12 samples of water resources in which mixed-used VPRs were quantified, half were attributed to group 1 (n=6) and the other half to group 2 (n=6). No samples with quantified VPRs were attributed to group 3 or group 4, with the result that 100% of the fecal contamination of the samples was assumed to be properly assigned.

Within group 1, three scenarios were observed. In the first, pharmaceuticals showed a mixed source of fecal contamination of the samples and stanols showed an animal source of fecal contamination. This was observed in three samples. In the second scenario, both markers showed a mixed fecal contamination of the sample (n=2). In the last scenario, stanols showed a mixed source of contamination and pharmaceuticals an animal source of fecal contamination (n=1). In these six samples, E. coli concentrations were between 77/100 mL and 490/100 mL.

Within group 2, the absence of source was mostly due to pharmaceuticals (four samples out of six). Samples from site A (SC1), G (SC3) and Z (SC1) were surface water. The quantified E. coli concentrations were respectively 260/100 mL, 210/100 mL and 30/100 mL. Sample from site O (SC5) was a groundwater and E. coli was quantified at 20 CFU/100 mL.

Pharmaceutical markers were composed of two compounds exclusively used in human medicine (carbamazepine, diclofenac) and of 14 compounds exclusively used in veterinary
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21 medicine in France. However, other pharmaceutical residues not analyzed in this study may have been present in these samples. In the two other samples (R during SC1 and Y during SC2), fecal stanols did not provide a source of fecal contamination. In these samples the associated E. coli concentrations were 15/100 mL (R in SC1) and 292 /100 mL (Y in SC2).

The low concentration level of E. coli in sample R could be linked to an old fecal contamination, explaining the difficulty in identifying the origin of fecal contamination. In addition, site Y has poultry and swine as primary livestock types and the fecal stanol fingerprinting used in this study cannot identify fecal contamination from poultry.

Seasonal variations and factors influencing occurrence in water resources

Table 3 summarizes the results of VPR occurrence during the five sampling campaigns. It also summarizes the minimum and maximum DOC concentrations, E. coli concentrations, and daily flow rates.

[Table 3]

The two campaigns performed during spreading periods are those with both the highest (SC2; 53%) and lowest (SC5; 19%) percentage of samples with at least one quantified VPR. The highest diversity of compounds was observed during SC3, the low-water period campaign with ten VPRs quantified. On the other hand, the lowest diversity of VPRs was observed during SC5, with three VPRs quantified. VPRs were quantified in site Y in all sampling campaigns (four sampling campaigns were performed on this site). VPRs were quantified in site L in four out of five sampling campaigns and in site G in three out of the five sampling campaigns. VPRs occurred in eight sites in two out of the five sampling campaigns and in six sites in one of the five sampling campaigns.

Figure 2 presents the results of fecal contamination parameters (E. coli, enterococci) as well as DOC, daily flow rate and rainfall 72 hours before sampling over the five sampling
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campaigns, on all sites. The daily flow rate was unavailable for some dams and for the two groundwaters.

[Figure 2]

With regard to fecal contamination, the campaigns conducted during spreading periods (SC2 and SC5) have higher mean values of E. coli concentrations. However, the samples in which VPRs were quantified are not necessarily samples with the highest E. coli concentrations. As the contribution of fecal contamination in the water resources is expressed with E. coli concentrations, it can be concluded that, in this study, there is no evident relationship between recent fecal contamination and the occurrence of VPRs. The amounts of DOC are relatively similar between the five sampling campaigns. Mean values are between 4.7 mg/L and 5.8 mg/L. The samples in which VPRs were identified are distributed relatively homogeneously with respect to the average DOC values. A trend only emerges in SC2, with a majority of positive samples having lower DOC amounts below the average DOC value. This may be explained by a transfer of VPRs from soil to water during the first post-spreading rainfall events before the increase in organic matter concentrations in water resources. Daily flow rates of water resources showed variations between the sampling campaigns. SC4 has the highest daily flow rates and SC3 has the lowest. This is in accordance with the hydrological periods of sampling, i.e. high water for SC4 and low water for SC3. The differences in VPR concentration levels between sampling campaigns shown in Table 3 may be explained in part by daily flow rates. High daily flow rates in SC4 correspond to a high water regime that may have caused a dilution phenomenon and the low daily flow rate in SC3 corresponds to low water that may have led to a concentration phenomenon.

Finally, rainfall events in the 72 hours before sampling were observed as these events can indicate an easier soil-to-water transfer by runoff. Overall, higher rainfall was observed for samples collected during the spreading periods (SC2 and SC5) with mean rainfall values two
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or three times superior to mean rainfalls during SC1, SC3 and SC4. These two campaigns (i.e.

SC2 and SC5) seem to have been conducted under suitable conditions for transfer processes.

However, unlike SC2, SC5 exhibited a low occurrence of VPRs. This difference can be explained in part by daily flow rates, as the mean daily flow rate in SC5 was 3.5 times higher than that during SC2, resulting in an increased dilution phenomenon in SC5. When considering the samples in which VPRs were quantified, most of them were collected after rainfall events superior to the mean rainfall values during both SC2 and SC3. Although SC3

was carried out at a different time from spreading, heavy rains can remobilize VPRs previously stored in the soils or in the sediments. In the context of this large-scale study with catchments of various characteristics and because of the low-frequency sampling strategy, it appears difficult to determine precisely the factors impacting the occurrence of VPRs.

These conclusions must be considered with caution as the sampling strategy consists in grab sampling. Indeed, concentrations in the water phase fluctuate over time with varying amplitudes and frequencies. A grab sampling strategy does not take these fluctuations into account and it is therefore possible to miss a concentration peak or, on the contrary, to overestimate the levels of concentrations over a period of time. Nevertheless, for this first exploratory study, point sampling was chosen for logistical considerations and to allow sampling of a larger number of sites. Next steps in the study should include other sampling strategies such as average sampling (i.e. with an accumulation of successive samples at defined frequencies over a defined period of time in order to obtain a composite sample representative of this period) or passive sampling which allow in situ and integrative sampling of contaminants.

Veterinary pharmaceutical residues occurrence in tap water
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At least one VPR was quantified in 20% of tap water samples (i.e. 19 samples). On all data expected, 6.4% of the data were invalidated for non-compliance with the quality assurance criteria. Figure 1 shows the quantified VPRs and their concentration levels in tap waters.

Twelve VPRs were quantified in tap waters, including ten compounds exclusively used in To our knowledge, only four studies have reported VPR occurrence in tap water as mentioned in [START_REF] Charuaud | Veterinary pharmaceutical residues from natural water to tap water: Sales, occurrence and fate[END_REF]. Florfenicol was detected (<50 ng/L) in a French national study (Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, 2011), while it is reported in this study at significant concentrations (from 18 to 211 ng/L).

These concentrations demonstrate that florfenicol is probably not completely removed in the treatment processes used in the studied DWTPs, whereas a previous study on a full-scale DWTP showed a removal rate of more than 90% after the chlorination and filtration steps, and in the end an absence of the molecule in the water of the distribution system [START_REF] Azzouz | Influence of seasonal climate differences on the pharmaceutical, hormone and personal care product removal efficiency of a drinking water treatment plant[END_REF]. This difference is unexpected as the tap waters with florfenicol at concentrations superior to 100 ng/L come from two DWTPs (G and J) both equipped with advanced treatments while the DWTP studied by [START_REF] Azzouz | Influence of seasonal climate differences on the pharmaceutical, hormone and personal care product removal efficiency of a drinking water treatment plant[END_REF] was composed of a pre-oxidation followed by classical clarification and disinfection steps. DWTP
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G was composed of a clarification process combined with powder activated carbon, ultrafiltration and disinfection. DWTP J was composed of a pre-ozonation step followed by clarification with granular activated carbon filtration, post-ozonation and disinfection. Thus, advanced processes such as ozonation, activated carbon and ultrafiltration are not always effective in achieving complete removal of florfenicol. The antibiotic tylosin was quantified in three studies with concentrations ranging between 4 and 20 ng/L (Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, 2011; [START_REF] Leung | Pharmaceuticals in Tap Water: Human Health Risk Assessment and Proposed Monitoring Framework in China[END_REF][START_REF] Ye | Trace Analysis of Trimethoprim and Sulfonamide, Macrolide, Quinolone, and Tetracycline Antibiotics in Chlorinated Drinking Water Using Liquid Chromatography Electrospray Tandem Mass Spectrometry[END_REF] and the anti-inflammatory drug ketoprofen was quantified at 3 ng/L in another

French study [START_REF] Togola | Multi-residue analysis of pharmaceutical compounds in aqueous samples[END_REF]. The concentration levels found in this study were similar to those in the literature. The antiparasitic drugs (eprinomectin, ivermectin, toltrazuril, toltrazuril sulfone, triclabendazole, triclabendazole sulfone and triclabendazole sulfoxide)

quantified in this study have never been reported before in the literature.

Among the 23 DWTPs studied, nine (i.e. 39%) showed at least one occurrence of VPR in tap water. VPRs were quantified in the tap samples originating from DWTP L in three sampling campaigns out of five (SC1, SC2 and SC4), with a total of seven VPRs quantified (eprinomectin, ketoprofen, toltrazuril, triclabendazole, triclabendazole sulfone and triclabendazole sulfoxide twice). DWTP L was composed of a clarification process (coagulation flocculation and filtration) with occasional use of powder activated carbon if needed, followed by ozonation and disinfection by chloration. The higher occurrence in the DWTP L may be related to the treatment processes, as activated carbon is not used constantly but only as a crisis reagent to deal with specific events of contamination. Besides, this occurrence may also be due to the location of the DWTP. DWTP L is located next to a pig farm, as well as cattle in pastures. In addition, the watercourse concerned is subjected to fish farming activities. Site L was also the site with the higher occurrence of VPRs in the resources.

A C C E P T E D M A N U S C R I P T

For SC1, SC3, SC4 and SC5, VPRs were quantified in less than 20% of tap water samples.

However, in SC2, VPRs occurred in 65% of tap water samples. Fewer VPRs were quantified in tap water than in water resources and at lower concentrations thanks to the treatments applied in the DWTPs.

Antibiotics had lower detection frequencies in tap water than in water resources. The processes applied in DWTPs allow a partial removal of VPRs, as has already been observed in the literature [START_REF] Boleda | Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments[END_REF][START_REF] Liu | Removal of typical antibiotics in the advanced treatment process of productive drinking water[END_REF][START_REF] Stackelberg | Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds[END_REF]. However, the opposite phenomenon was observed for the antiparasitic drugs toltrazuril and triclabendazole and also for their metabolites. These metabolites may have been generated during the treatment processes from the parent compound. For example, triclabendazole sulfoxide and triclabendazole sulfone result from oxidative reactions occurring in the animal [START_REF] Moreno | Time-course and accumulation of triclabendazole and its metabolites in bile, liver tissues and flukes collected from treated sheep[END_REF]. Oxidation processes are also used in water treatment for example with ozonation, and especially during pre-oxidation (with higher concentration of ozone and longer time contact).

Thus, triclabendazole sulfoxide and sulfone metabolite may have been produced during the ozonation step. As this is the first data on antiparasitic drugs in tap water, further investigation in the future is required in order to understand this phenomenon.

CONCLUSION

On the basis of a prioritization work [START_REF] Charuaud | Prioritisation of veterinary pharmaceuticals prior to a monitoring campaign: Case of Brittany, an intensive husbandry area[END_REF], a specific method of analysis Nevertheless, some of the results deserve to be considered for future work. One example is the exclusively veterinary antibiotic florfenicol, which was found in tap water at concentrations above 100 ng/L and shows certain persistence against the advanced treatment processes applied in drinking water treatment plants. Another example is antiparasitic drugs, which were also found despite the literature containing no data on their occurrence in tap water. Although the concentrations are lower than that of florfenicol, more interest should be given to this subject in the future.

The combined use of fecal stanols and specific human or specific veterinary pharmaceutical residues established a proper fecal contamination source for 70% of the water resource samples. However, a majority of the samples had a mixed overall fecal contamination, thus the individual source of contamination for the mixed-use VPR(s) in the samples could not be identified with the Toolbox.

Finally, this is a first study conducted at the regional scale of Brittany and understanding the factors influencing water resource contamination by VPRs requires further investigation.

Future studies should work on a more restricted scale with a high-frequency sampling strategy to take better account of the specificities of the site(s). Indeed, the catchments present great disparities (resources on rivers, on reservoirs with medium or long storage times, etc.) that require different approaches.
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 38 VPRs include several therapeutic classes such as antibiotics(21: amoxicillin, ampicillin, cefquinome, chlortetracycline, doxycycline, enrofloxacin, erythromycin, florfenicol, flumequine, lincomycin, marbofloxacin, neospiramycin, oxolinic acid, oxytetracycline, spiramycin, sulfadiazine, sulfadimethoxine, sulfamethazine, tilmicosin, trimethoprim, tylosin), antiparasitic drugs (10: clorsulon, diazinon, dicyclanil, eprinomectin, flubendazole, ivermectin, levamisole, triclabendazole, triclabendazole sulfone, triclabendazole sulfoxide), anticoccidians (3: toltrazuril, toltrazuril sulfone, toltrazuril sulfoxide) and anti-inflammatory drugs (4: dexamethasone, flunixin, ketoprofen, meloxicam). Among these 38 residues, five are metabolites (neospiramycin, toltrazuril sulfone, toltrazuril sulfoxide, triclabendazole sulfone, triclabendazole sulfoxide). Moreover, carbamazepine and diclofenac were integrated into the method as tracers for inputs of human medicine. Chemical structures of VPRs and their physico-chemical properties are described in Table

  If addition is found between 50 and 150% (i.e. between 125 and 375 ng/L), quantification is done by standard additions • If addition is found between 20 and 50% (i.e. between 50 and 125 ng/L), quantification is done by standard additions and limit of quantification is multiplied by 2 • If addition is found between 10 and 20% (i.e. between 25 and 50 ng/L), quantification is done by standard additions and limit of quantification is multiplied by 4 • If addition is found below 10 % (below 25ng/L), the result is invalidated Besides, the signals of the injection tracer (pentabromophenol) and the internal extraction standards are checked (these signals must be included between +/-50% compared to the signals obtained in the calibration curve).

Figure 1 ]

 1 Seventeen out of 38 VPRs were quantified. Nine antibiotics were quantified (florfenicol, flumequine, lincomycin, neospiramycin, oxytetracycline, sulfadiazine, sulfamethazine, tilmicosin, trimethoprim), six antiparasitic drugs (eprinomectin, ivermectin, levamisole, triclabendazole, triclabendazole sulfone, triclabendazole sulfoxide) and two anti-inflammatory drugs (flunixin, ketoprofen). Among these compounds, eight are mixed-use compounds (flumequine, ketoprofen, levamisole, lincomycin, neospiramycin, oxytetracycline, sulfadiazine, trimethoprim) and nine are only used in veterinary medicine (eprinomectin, florfenicol, flunixin, ivermectin, sulfamethazine, tilmicosin, triclabendazole, triclabendazole sulfone, triclabendazole sulfoxide). Some of the VPRs were quantified in water resources at concentration levels with significant differences in their recoveries, and high expanded relative uncertainties, such as flumequine lincomycin, neospiramycin, tilmicosin, eprinomectin and ivermectin (see Table

  veterinary medicine and two mixed-use compounds: the antibiotic sulfadiazine and the antiinflammatory drug ketoprofen. Within the ten veterinary specific compounds, seven are antiparasitic drugs (eprinomectin, ivermectin, toltrazuril, toltrazuril sulfone, triclabendazole, triclabendazole sulfone and triclabendazole sulfoxide) including three metabolites (toltrazuril sulfone, triclabendazole sulfone and triclabendazole sulfoxide), and two are antibiotics (florfenicol and tylosin). All detection frequencies are below 10%, ranging from 1% (toltrazuril sulfone, tylosin, ketoprofen) to 8% for triclabendazole sulfoxide. Concentration levels are inferior to 40 ng/L for all compounds, with the exception of florfenicol which was quantified at 159 ng/L and 211 ng/L.

  was developed to analyze the selected VPRs in water. Five sampling campaigns were conducted between 2017 and 2018. It should be noted that 2017 and 2018 were drier-thanaverage years in Brittany. According to the results of this study, Brittany's water resources are subject to contamination by residues of veterinary drugs (31% of the water resources samples contained at least one VPR). In addition, VPRs were quantified in 20% of the tap water samples collected from DWTPs. The population of Brittany may therefore be exposed toA C C E P T E DM A N U S C R I P T 27 these contaminants through tap water. These observations should be compared with the detection frequencies per compound which are all below 10% in both water resources and tap water.
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 12 Figure 1: Concentration levels of VPRs quantified in water resources and tap water (all sampling campaigns considered)

Figure 1 Figure 2
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Table 1 :

 1 Sampling periods and characteristics of the sampling campaigns

	Sampling campaign	Sampling Period	Characteristics
	1	march 2 nd -april 6 th 2017	Before animal manure spreading times
	2	may 2 nd -june 13 th 2017	During manure and slurry spreading times
	3	july 10 th -october 12 th 2017	Low-water period
	4	january 4 th -february 10 th 2018	High-water period
	5	may 2 nd -june 13 th 2018	During manure and slurry spreading times
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Table 2: Sources of fecal contamination in the samples with mixed-use compounds.

a The source of fecal contamination could not be attributed by the distribution of the stanols 
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