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Abstract

Soil pollution by metal(loid)s is one of the moggrsficant problems in Europe. To remediate and
potentially rehabilitate these contaminated spégtoremediation procedures are being put intogylac
often using amendments to help offset the extreoneliions of such soils. The aim of this study was
to define the best amendment to use on the fidltk Was done by studying how the addition of three
different amendments (biochar, compost and irot),galone or in combination, could affect: (i) soil
physico-chemical properties, (Balix viminalisgrowth, and (iii) metal(loid) stabilization. A G#ay-
mesocosm study was thus set up using a former tagiosol, the three amendments applied alone
or combined, ané. viminaliscuttings. The results showed that biochar anddarpost improved the
soil fertility and the soil pore water charactadst with reductions of acidity, metal(loid) mokyliand
toxicity, while iron grit amendment presented nagaeffects on such parameters. Such ameliorations
allowed better plant growth and higher biomass pectidn. In addition, stress indicators (leaf pigmen
content and root guaiacol peroxidase activity) stabwa reduction in plant stress following biochar
and/or compost application. Finally, among theed#ht treatments, the use of compost or a biochar-
compost combination showed better results in tesmsnprovement of soil conditions, increase in
plant growth and reduced translocation of metaljlitowards upper parts, making these two

treatments a valuable option for a field trial.

Keywords: biochar, compost, iron grit, metal(loidphytomanagemen$alix viminalis
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Highlights

Biochar and compost amendments, alone or combimgaoved soil fertility
The dose application of iron grit had negative @Hen plant growth
Biochar and/or compost amendments improved the throfSalix viminalis

Metal(loid)s were mainly accumulated in roots witv translocation to upper parts

Abbreviations

DOC = dissolved organic carbon
DW = dry weight

EC = electrical conductivity
GPOD = guaiacol peroxidase
OM = organic matter

SOM = soil organic matter

SPW = soil pore water

WHC = water holding capacity

1 Introduction

Soil pollution is an important issue in Europe, ethhas three million possibly polluted sites (Ktali

et al. 2016). The majority of these sites (aroub@tB are polluted by metal(loid)s (Panagos et al.
2013), which is why metal(loid)s are one of theheighajor threats to European soils (Kidd et al.
2015). Metal(loid) soil pollution, coming from am@pogenic activitiesj.e mining and smelting
activities, agricultural use of fertilizers, induat and commercial activities, transports (Khagidal.
2016, Panagos et al. 2013), has adverse effectsotinthe environment (loss of biodiversity and
ecosystemic functions) and human health (cancterfarence with enzyme activity) (Hughes 2002,
Sharma and Agrawal 2005).

Consequently, metal(loid) polluted soils need tadiaediated. One of the techniques used nowadays
for soil rehabilitation is phytoremediation, whiéh the use of green plants and their associated
microorganisms to lower the toxic effects of thesimnmental contaminants (Khalid et al. 2016).
Phytoremediation has many advantages comparecdhteotional physical and chemical remediation
techniques. It is a low cost and environmentaligridly technique that is well accepted by the pmubli
(Paz-Ferreiro et al. 2014). Furthermore, it restdlee biodiversity and the soil functions. Differen
strategies exist in phytoremediation, dependingtlo® goals and soil pollution type. However,
phytostabilization is most suited for large highdgntaminated areas needing rapid rehabilitation
(Gomes et al. 2016). It relies on the introductidrplants which can stabilize pollutants at thetro

zone (roots and rhizosphere) by accumulation aripitation, thus reducing contaminant mobility and

2



75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

bioavailability (Mahar et al. 2016). Moreover, thegetation cover prevents wind erosion and water
leaching.

Different plant species can be used in phytorentiedizand the choice of the best species is a key
parameter for successful phytoremediation. Willoges are suitable candidates for phytostabilization
(Chen et al. 2014), as they are fast growing plants produce a large biomass associated to a deep
and wide root system (Marmiroli et al. 2011). Tloewy also tolerate metal(loid) stress and accumulate
substantial amounts of metal(loid)s in their tissue€or instance, Kacalkova et al. (2014) showet tha
different willow and poplar clones exhibited nornggbwth on a copper contaminated soil, while a
study previously done by our team showed thalix viminalisL. was able to survive, albeit with
reduced growth, on a multi-contaminated mine sigh(un et al. 2017). Moreoves, viminalisandS.
purpurea were able to accumulate high amounts of As, Pb S&hdwhen grown on a multi-
contaminated site (Bart et al. 2016).

However, the difficult conditions encountered imsopolluted soils, such as extreme pH, low nutrient
contents and high metal(loid) concentrations, mékeifficult to establish a vegetation cover.
Therefore, in such context, phytoremediation itetian requires the application of amendments to
improve soil physico-chemical properties, to allgant growth (Galende et al. 2014). One
amendment gathering attention for assisted phyted@tion in recent decades is biochar. It is a
porous, carbon rich material obtained from the |ygie of biomass under low oxygen conditions
(Barrow 2012, Paz-Ferreiro et al. 2014). It is eletarized by an alkaline pH, a high cation exchange
capacity, a large surface area and a high watelifgpcapacity (WHC) (Ding et al. 2017, Lee et al.
2013, Paz-Ferreiro et al. 2014). Biochar is maméde up of carbon (between 29 and 90 % (Cha et al.
2016)), hydrogen, oxygen, nitrogen and sulfur, all as other trace elements (Tan et al. 2017). Such
properties make biochar a good conditioner to imprthe soil's physico-chemical properties, thus
making plant growth possible (Rizwan et al. 20M@reover, its large surface area and high amounts
of oxygen containing functional groups enable barcto sorb metal(loid)s, reducing their solubility
and mobility (Ding et al. 2017, Paz-Ferreiro et2f114). However, biochar’'s available nutrient level
are sometimes low (Fischer and Glaser 2012), wimehans they may need to be provided by another
amendment, such as compost. Compost is the praxfuconversion and reclamation of organic
materials by microbial degradation (Huang et all®0 It is rich in humus substances and
microorganisms, and contains large amounts of platitents (N, P, K, Ca, Mg, S) and other essential
trace elements (Fischer and Glaser 2012). In aaditi improving soil fertility (Alvarenga et al. 28,
Gil-Loaiza et al. 2016), compost has the potertiakorb metal(loid)s (Fischer and Glaser 2012,
Huang et al. 2016). However, although biochar adpost soil application showed (i) improvements
in soil conditions (Agegnehu et al .2016; Hmid e2815), as well as (ii) soil cationic metals sap
(Hmid et al. 2015; Nie et al. 2018), they are lef&ient in stabilizing metal anion such as arseni
and can even increase its mobility sometimes, dumil pH increase (Beesley et al. 2011). This can

be problematic in multi-contaminated soils pollutgdboth cationic and anionic metal(loid)s. On the
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contrary, iron amendments, such as iron grit, Hasen shown to reduce As mobility and soil pore
water concentrations efficiently (Kumpiene et a08), due to As adsorption on iron hydroxides
(Miretzkly and Cirelli 2010).

Therefore, in multi-contaminated soils, the bedutsin may be to combine different amendments.
Indeed, Ruttens et al. (2006) showed that usingpesinin combination to cyclonic ashes and steel
shots permitted to immobilize the metal(loid)s gsdifferent mechanisms and on different binding

sites. We hypothesized that the association of dwthree amendments with contrasting properties
would lead to an increased improvement in soil deyts and plant growth compared to the

application of single amendments. Indeed, throbgir diverse properties and positive effects oh soi

the different amendments should complement eadtr.o@onsequently, the aim of this study was to
evaluate the effects of adding three different ainmmts (biochar, compost and iron grit) to an As
and Pb contaminated soil, and select an amendmenta@mbination of amendments showing the best
results. The amendments were added to the sodrealbne or combined, in order to study the effects
on: (i) the soil physico-chemical properties, 8i)viminalisgrowth and metal(loid) compartmentation,

and (iii) metal(loid) soil stabilization.

2 Material and Methods

2.1 Study site

A former silver-lead extraction mine site located Pontgibaud was studied. The contaminated
disbursed and crushed technosol covers 15 ha.riines history, soil sampling and properties were
described in previous works (Lebrun et al. 2018a,I addition, soil total CHNS contents were
determined and gave the following results: C 0.1108 %, H 0.22 £ 0.00 %, N 0.09 + 0.02 % and S
0.87 £ 0.14 %.

2.2 Amendments

Three amendments were applied to the mine contaedrsoil: a commercial biochar, a commercial
compost and industrial iron grit.

The first amendment was biochar, provided by LebGaerie (Crissey, France). It was obtained by the
slow pyrolysis of hardwood biomag@uercus sp.Carpinus spandFagus sp. at 500 °C (residence
time: 3 h, heating rate: 2.5 °C.rifjp followed by a sieving to obtain a particle skestween 0.2 and
0.4 mm. This biochar had already been used in @que study by Lebrun et al. (2018a), together
with three other biochars obtained from the sameddtck but presenting different particle sizes (in
0.1 mm, 0.2 -0.4 mm, 0.5 -1 mm, 1 — 2.5 mm). Basethe results of this previous study, the 0.2 —
0.4 mm particle size biochar was selected as #vellaa better ability to increase soil fertility apt
growth and metal(loid) stabilization than the cearbiochars. Moreover, compared to the finest
biochar (inf. 0.1 mm), the 0.2 — 0.4 mm biochartiphe size had a lower risk of leaching, making it

more suitable for a possible field application. T@char characteristics, and the methods usethéor
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characterization are described in Table S1. Therskamendment used was a commercial compost,
made from manure of different animal origins (horsew, pig, chicken) and vegetable materials
(compost KB, Scotts, France). The compost was egpllirectly, without sieving. Compost
characteristics are described in Table S1. Thealmgindment used was iron grit, an industrial produc
used as an angular abrasive in the paint industagle up of 97 % iron in addition to other mineral
elements (C, Mn, Si, P and S) in low concentratiams sieved to 0.5 mm. pH and EC were 7.64 +
0.33 and 110 + 36 uS.chrespectively (determined using the method desdritn Lebrun et al.
2018a).

2.3 Experimental design

A mesocosm experiment was set up using the follgwiven treatments: (i) unamended Pontgibaud
technosol (P), (ii) Pontgibaud amended with 5% hémo(w/w) (PB), (iii) Pontgibaud amended with
5% compost (w/w) (PC), (iv) Pontgibaud amended with% iron grit (w/w) (PI), (v) Pontgibaud
amended with 5% biochar (w/w) and 5% compost (WRBC), (vi) Pontgibaud amended with 5%
biochar (w/w) and 1.5% iron grit (w/w) (PBI) andijWwontgibaud amended with 5% biochar (w/w),
5% compost (w/w) and 1.5% iron grit (w/w) (PBCl)m&ndment application doses were chosen
based on previous studies (Codling and Dao 2007g Eeal. 2016; Lebrun et al. 2018a; Ruttens et al.
2006). These different mixtures were put into 2hstic pots (1.8 kg) (n=19), and one non-rooted
cutting of S. viminalisL. was placed in 14 pots, while five pots wereuetvegetated. The plants were
watered every two days and grown for 69 days inreemhouse with the following conditions:
temperature 22 + 2 °C, light intensity 800 umdl.&t, photoperiod 16 h and irrigation was provided
every two days based on the water lost throughatwapspiration.

2.4 Substrate analyses

After the mixtures were prepared, the differentsttdtes were analyzed for WHC, as described in
Lebrun et al. (2018a). In addition, three simplé&aotions were performed: the first one using aqua-
regia (3 mL HCI + 6 mL HNE) digestion, which corresponded to the pseudo-tdtlFe and Pb
concentrations. The second one determined the,@x@hctable As, Fe and Pb fractions, while the
last one determined the NNIOs-extractable fractions, both according to the meétlescribed in
Pueyo et al. (2004): 0.01 M CaQl:10 solid:liquid ratio) or 1 M NENO; (2:5 solid:liquid ratio).
After the different digestions, As, Fe and Pb comicgions were measured by Inductively Coupled
Plasma Atomic Emission Spectroscopy (ICP-AES) (WAl 2, HORIBA, Labcompare, San
Francisco, USA). A calibration of the apparatus dase before each analysis sequence.

After plant growth (T69), soil samples were takeonf non-vegetated pots (corresponding to bulk
soil) and vegetated pots (corresponding to rhizespkoil) by shaking the roots into a plastic bag t

remove the soil attached to them. Soil organic enatEOM) contents were determined on these
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samples by the loss-on-ignition method at 600°@hgua muffle furnace (Nabertherm L9/11/C6, GS,
Geprufte Siderheit, Germany).

2.5 Soil pore water (SPW) sampling and analysis

SPWs were sampled twice during the experiment:rbafee introduction of cuttings, corresponding to
TO, and before plant harvest, corresponding to T&mpling was performed using soil moisture
samplers (Rhizon) (model MOM, Rhizosphere ReseBrdducts, Wageningen, The Netherlands), as
described in Lebrun et al. (2017). SPW samplesi{PPwere used directly to measure pH (pHmeter,
FE20/EL20, Mettler-Toledo AG2007), and EC (conduetier SOLEA, Tacussel electronique, Lyon,
France), and to realize a toxicity test (Qu et28ll3). This test was performed on microplates using
Photobacterium phosphoreus0 uL of SPW sample was mixed with 50 uL of phadp buffer (100
mM, pH 7.0) and 50 pL of bacterial suspensiog{A 1). The microplate was covered and incubated
at room temperature for 30 min, the luminescence maasured in a luminometer (PolarStar Omega,
BMG Labtech). Relative luminescence was calculatsihg Pontgibaud treatment (P) at TO as the
reference, and using the following equation:

luminescence of the sample

(i) Relative luminescence = .
luminescence of the reference

Finally, As, Fe and Pb concentrations in SPW weterthined after acidification (83.3 uL HN@® a
5 mL sample) by ICP-AES.

2.6 Plant analysis

2.6.1 Leaf measurements

After 69 days of growth, leaf pigment (chlorophyllavonoids and anthocyanins) contents were
measured using a mobile sensor clip (DUALEX SCIENTI™ FORCE A) (Cerovic et al. 2012) on
the three last mature leaves. At harvest time ang@dch plant, all leaves were photographed, amd th

images were used to determine total leaf surfaee asing ImageJ software.

2.6.2 Root analysis

At the end of the experiment time course, root gl peroxidase (GPOD) activity was determined
on three plants per treatment as follows: for theyme extraction, 1 g of fresh root was crushed in
12.5 mL buffer (Tris-HCI 0.05 M, EDTA 0.01 M, Mg£0.003 M, pH 7.0) in an ice-cold mortar and
centrifuged twice (5000 x g, 15 min, 4 °C). Theauyatant, corresponding to the enzyme extract, was
collected and stored at -20 °C until further anialys

Guaiacol peroxidase activity measurement was addpien Marchand et al. (2016). It was performed
in microplates by adding 150 pL phosphate buffeBF0M, pH 6.1), 60 pL kD, (1 %), 60 pL

guaiacol (80 mM) and 30 pL of enzyme extract toieroplate. The reaction was started by adding the



220 enzyme extract, and the increase in absorbanc®Cah® was assessed for 1 min and 30 sec. The
221  activity was calculated using= 26.6 mM".cni® and expressed as the quantity of guaiacol tramsfdr
222 in one second. The total protein quantity of theyeme extract was measured according to the
223 Bradford method (Bradford, 1976) using SAB as stadd
224
225  2.6.3 Organ dry weight and metal(loid) distribugson
226 At the end of the experiment, newly formed orgdeaves, stems and roots) were harvested separately
227 and dried at 60 °C for 72 h to determine their drgight (DW). Metal(loid) (As, Fe and Pb)
228  concentrations were then determined by ICP-AESpraoeg to Bart et al. (2016). Finally, total
229  metal(loid) organ contents were calculated usimgithiowing equation:

(ii) Metal(loid) quantity = [metal(loid)]organ x DWorgan
230
231 2.7 Statistical analyses
232 The data were analyzed statistically using the fRveme version 3.1.2 (R Development Core Team,
233 2009). The treatments were compared two at a tiyneesting the normality and homoscedasticity,
234 using the Shapiro test and the Bartlett test rdambg. Next, the means were compared using a
235 Student test for normal data or a Wilcox test fonimormal data. In addition, for the soil pore wate
236  parameters, the time and plant effects were andlyzag an Anova test for normal data or a Kruskal
237  test for non-normal data, followed by a post-hat,t€ukeyHSD or Pairwise.wilcox, respectively. The
238  difference was considered significant at p < 0.Bbally, Pearson correlation coefficients were
239 calculated between the different parameters, with dignificant ones (p < 0.05) being cited in the
240  following section.
241
242 3 Results and Discussion
243
244 3.1 Substrate characteristics
245  3.1.1 Soil physico-chemical properties
246  The unamended Pontgibaud technosol presented Wld® of about 29.80 % (Table 1). Apart from
247  for the iron treatment alone (PI), which led tdighg but significant decrease of the soil WHC,thk
248  other amendment treatments improved the soil WHGcH&ar and compost amendments increased
249  soil WHC, with their combination (PBC) leading tbet highest WHC increase, which was also
250 observed by Liu et al. (2012). Such results cowdddbe to (i) the high WHC of the amendments
251  (Akhtar et al. 2014), which values in our experitnerre 183 % and 299 % for biochar and compost
252 respectively, this can be explained by the biogwpus structure, hydrophobicity and high surface
253  area (Molnar et al. 2016), and (ii) compost improeat of the soil structure by increasing the micro-

254  and macro-porosity (Celik et al. 2014). Furthermaa WHC variations can also been explained by
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the increase of soil organic matter content, aarticgmatter (OM) can absorb water and improve the
soil pore system, leading to a better soil striectetention (Giusquiani et al. 1995).

Moreover, the intensity of the increase in WHC wiflochar and compost amendments (PB, PBC)
was lowered when iron-grit was added with the oigamaterial (PBI and PBCI). Such observation
has not been previously described, but could bé&ered by the fact that iron grit is known for bgin

unable to retain water, contrary to biochar and pash

SOM content (Table 1) is an important parameter doif quality, as it can improve biological,
physical and chemical soil conditions (Fischer &ldser 2012). It was determined at the end of the
experiment, in both bulk and rhizosphere soils, fridwed the same trend in both cases. SOM of
P0% substrates was 2.60 % in bulk soil and 2.5In%hizosphere soil and increased with all the
amendments. The lowest increase was observed hdgtirdn amendment alone (2.97 % in bulk and
2.94 % in rhizosphere soil), while the highest fi@sd with the combination biochar-compost (7.28
% in bulk and 8.31 % in the rhizosphere) and biocmanpost-iron (7.84 % in bulk and 7.81 % in the
rhizosphere). Previous studies showed an increaS®©M after biochar or compost amendment, and
attributed this to amendment composition, as biochenainly made up of organic fractions (Janus et
al. 2015), and compost contains large amounts of (@%). In addition, such improvement can be
due to the fact that the diverse amendments, bipclaapost and iron grit, application could have
increase the microorganism diversity and activityys inducing a transformation of the organic
matter. Furthermore, it should be noted that SOntext did not differ between bulk and rhizosphere
soils, indicating that plant growth had no effect®0M content.

3.1.2 Soil metal(loid) concentrations and availéibs

Non-amended Pontgibaud technosol presented higlipsetal concentrations of As (1.06 g'gFe
(6.32 g.kg@) and Pb (23.39 g.ky (Table 2). Decreases of pseudo-total As, Pb anddRcentrations
were observed when applying biochar and/or compebkich can be ascribed to a dilution effect
caused by the addition of the amendments. Wheir@asamendment application increased pseudo-

total Fe concentrations, as observed by Galdamas @017).

Pseudo-total metal(loid) concentrations providermfation about the total levels of the contaminants
present in the soil. However, parts of these coimtants are bound to fractions, such as oxides and
OM, and therefore are not immediately mobilizabtel &ioavailable for living organisms present in
soil (Tessier et al. 1979). However, single extoas performed using salise CaCl representing the
mobilizable fraction, and NiNO; corresponding to the exchangeable fraction, giferimation about
the quantity of metal(loid)s present in the sodittban potentially be mobilized and thus preseigia

for the environment (Gupta et al. 1996).



291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

CaChb- and NHNOs-extractable As, Fe and Pb concentrations were nhmwebr than pseudo-total
concentrations, for all three metal(loid)s in aktatments (Table 2). This could be related to the
previous aging of the studied soil (P), which dases metal(loid) mobility (Montiel-Rozas et al.
2015). Indeed, in their study, Lu et al. (2009)w&d that Cu mobility decreased with aging and
attributed this to a Cu diffusion and sequestratmwards the soil micro- and meso-pores.

Regarding amendment effects on extractable fragtidacreases in metal(loid) concentrations were
observed in several cases (Table 2). More speltyficaompared to P0%, extractable As decreased
with treatments containing biochar or iron, exteht¢ Fe decreased with the biochar treatments while
extractable Pb decreased with all amendments exweptalone, with the highest decrease observed
with compost alone. Moreover, NNO; extractions were more sensitive to the amendminais
CaCl, extractions. One of the explanations for such efszs of extractable metal(loid)s could be an
adsorption and complexion of metal cations ontoaitmendment’s surface (Lu et al. 2017), as well as
the pH increase induced by amendment applicatidver{g et al. 2013) for the positively charged
metals (Pb and Fe). Indeed, an increase in sodlpblincreases the number of negative charge®in th
soil, which promotes electrostatic interactiongwgbsitively charged metals, and thus decreasés the
mobility (Lu et al. 2017). Such soil pH influencen anetalCaGt and NHNOs-extractable
concentrations was reported in Table S2. Significarrelations between SPW pH (at TO) and GacCl
or NH;NOs-extractable values were: -0.44 for Fe-Ga&tractable concentrations (p-value < 0.01), -
0.76 for Pb-CaGlextractable concentrations (p-value < 0.001), 20fdr Fe-NHNOs-extractable
concentrations (p-value < 0.05) and -0.85 for PhiNBs-extractable concentrations (p-value <
0.001).

3.2 Soil pore water (SPW) physico-chemical properties

3.2.1 SPW pH

At the beginning of the experiment (T0O), Pontgib&RW presented an acidic pH of 3.74 (Table 3).
All the amendments, whether alone or in combinatinoreased SPW pH (Table 3). The highest pH
rise was observed for the PBC treatment (pH 7.80jle the amendments with biochar (PB) and
biochar-compost-iron (PBCI) led to lower pH increagwith no significant difference between them),
with pH values of 6.73 and 6.68, respectively. P 5.66) and PC (pH 5.53) conditions showed
similar SPW pH increases, while iron amendmentaliouced the lowest increase (pH 4.38) of all
treatments. After 67 days, SPW of the P0% subsivatestill acid, in both unvegetated (pH 3.66) and
vegetated pots (pH 3.78). SPW pH was higher in potgaining amendments, compared to P0%,
although the order of increase differed betweeregatated and vegetated conditions. In unvegetated
pots, the highest SPW pH increases compared to€er@ wbserved for the PBC treatment (pH 7.93),
followed by PB (pH 7.43), PC (pH 7.06), PBC (pH 3,7PBI (pH 3.98) and PI (pH 3.69). In
vegetated pots, PBC treatment again showed thess$tighPW pH rise (pH 7.83) then SPW pH
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decreased in the order PB (pH 7.47), PC (pH 7.08)RBCI (pH 6.37). After 67 days of plant growth,
pots amended with iron and biochar-iron did nonhsigantly differ from P0% treatment in terms of
SPW pH. Such results were consistent with previessarches. Biochar addition increases SPW pH
by a liming effect due to its alkaline nature (pt9& (Houben et al. 2013, Lebrun et al. 2017) and
induced by several mechanisms: (i) the dissolubbrmetal oxides, hydroxides and carbonates
(Houben and Sonnet 2015) and (ii) the presence@® Gnd O functional groups on the biochar
surface that can bind to'"HHouben and Sonnet 2015). Regarding compost, Biv# BH increase can
be attributed to: (i) the pH of the compost itqglH 7.53) (Montiel-Rozas et al. 2015), (ii) a pmoto
consumption (Madejon et al. 2014) and (iii) the iadd of soluble cations such as Ca, Mg and K
(Fischer and Glaser 2012, Liu et al. 2012). Finaliger iron incorporation to soil, Eean corrode,
consuming protons, which increases pH (Qiao 2l8).

After 67 days, for treatments PB, PC, PBC, a phiease was observed compared to SPW pH values
measured at TO, with no difference between vegdtated non-vegetated conditions. This can be
explained by the oxidation of biochar after itsdrmoration into soil, which induces the formatidn o
oxygen-containing functional groups and increases rtumber of negative charges on the biochar
surface. Both functional groups and negative clacg® bind Hions and therefore increase SPW pH
(Cheng et al. 2008). On the contrary, SPW pH of Rheand PBI treatments decreased with time,
showing a higher decrease with plant growth forRhéreatment (pH 4.00 in T63alix compared to

pH 3.69 in T678aliX), and no plant effect for PBI SPW pH at T67. Wiven is added to the soil, as
is the case with biochar, it oxidizes with time,igfhcauses a solil acidification, as one mole aofi iro
oxidized led to the formation of two moles of lnd thus to a pH decrease (Miretzky and Cirelli
2010).

3.2.2 SPW electrical conductivity (EC)

SPW EC of P0% treatment was low at TO (222 pS)difiable 3) and increased with all amendments,
except for iron alone (Table 3). The highest SPWiktCease was observed with biochar-compost (x
9.8), followed by compost alone (x 8.5), biochampost-iron (x 7.9), biochar alone (x 4.8) and
biochar-iron (x 3.3), which induced the lowest gase. After 67 days, P0% treatment presented a
SPW EC of 547 pS.chin non-vegetated pots and 622 pS'dm pots withS. viminalisplants. The
order of SPW EC increase with the different amenusjealone or combined, differed between non-
vegetated pots and the vegetated conditions. laildat the end of all treatments, in non-vegetated
substrates, the highest rise was observed for &idobn (2367 pS.cil), biochar-compost-iron (2302
uS.cmb), and biochar (2261 uS.éntreatments, with no significant difference betwebose three
conditions. The addition of biochar and compost loimed induced a 3.5-fold increase, while the
addition of iron and compost alone increased SPWb¥B.1 and 2.5-fold, respectively. In vegetated
pots, at the same date, SPW EC increase follonedridter PBCI (3109 uS.ct PBC (3058 pS.cm

1), PC (2685 uS.ci), PB (2685 uS.cif), PBI (2490 puS.ci) and Pl (1665 pS.ch). The evolution
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of SPW EC with time showed that it increased in @lhditions except PBC. In PBCI and PC
substrates, the increase was only significant geteted pots; in P, Pl and PBI treatments, theie wa
no significant difference between the vegetatedramdvegetated conditions, while the SPW EC rise
in PB was higher with plants compared to the noget@ed pots. Biochar can raise SPW EC through:
(i) ash accretion (Nigussie et al. 2012) and (i§sdlution of salts and nutrient leaching due to pH
increase (Janus et al. 2015, Lomaglio et al. 20d6jnpost effect on SPW EC can be attributed to: (i)
the elevated compost EC (3419.67 pS.cfiRossini-Oliva et al. 2017) and probably, as dbsd in
Eigenberg et al. (2002) (ii) the mineralizationMfcontained in compost. Finally, the application of
iron alone did not increase SPW EC at TO (261 u%.ciHowerver, SPW EC in Pl increased with
time (1720 pS.cfhin non-vegetated pots and 1665 puStamith plants), At the end of the experiment,
SPW EC in PI substrates was higher than in P0% ddm be explained by the iron oxidation.

3.2.3 SPW metal(loid) concentrations

At the beginning of the experiment (TO) SPW As @nications were below detection limit in five of
the seven treatmentse P0%, PB, PIl, PBI and PBCI (Table 3). However i treatments using
compost (PC and PBC), SPW As concentrations shoavestight but significantly higher value
compared to P, with values of 0.06 mg.and 0.02 mg.L, respectively (Table 3). At the end of the
experiment, in non-vegetated pots, SPW As condémrin P0% was 0.01 mg, and only increased
when P was amended with compost and biochar + csimglobowing a 77-fold and 20-fold increase,
respectively. Finally, in vegetated pots at T67, BW presented a lower As concentration, while
SPW As concentrations for Pl, PBC and PC showed3aold, 4.7-fold and 18-fold increase,
respectively, compared to Pontgibaud [#g](0.03 mg.L"). Regarding the evolution of SPW As
concentrations with time, an increase was obsermedll treatments, except for PBCI, with no
difference between vegetated and non-vegetatedtmored Similar SPW As concentration increases
have been observed in previous studies (Clemens. €010, Lebrun et al. 2018b) and could be
attributed to the ability of compost to releasesdiged organic compounds which can interact with As
and dissolve it into the soil solution (Lebrun et2918b). Another explanation for the change iMWSP
As concentration in response to amendments coulsHW pH. Indeed, Beesley et al. (2013) showed
that As concentration increase in SPW was due fiHarise which favored phosphorus in the

competition with As for binding sites.

SPW Fe concentration was low in P0% at TO (0.05.fg(Table 3) and only increased with iron
amendments, alone or combined with biochar and ostnffhe Fe concentration increase was higher
when iron was applied alone to P0% (20.06 rityy.tompared to PBI (2.70 mg*). and PBCI (0.10
mg.L™") (Table 3). This increase is explained by the @aidiof Fe to SPW, which is released by iron
grit. At the end of the experiment, Fe SPW conegiuns in P were 0.04 mg*and 1.13 mg.tt in

vegetated and non-vegetated pots, respectivelyn Iguit amendment increased SPW Fe
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concentrations, although it was only significant fl and PBI in non-vegetated pots. Finally, in
unvegetated pots, the addition of biochar-compestehsed SPW Fe concentration to non-detectable
levels, and in pots with plants, biochar additi@nd to a lesser extent the biochar-compost
amendment, decreased SPW Fe concentrations. T¢rsagde is consistent with the ability of biochar
to immobilize metallic cations through the formatiof metal hydroxides, carbonate and phosphate
precipitates, and by electrostatic interaction KRatr al. 2011), which can also explain the smaller
increase in SPW Fe concentrations at TO in PBIRB@I compared to Pl. Moreover, as Fe is a cation,
it tends to be immobilized with increasing pH, whiwas observed with the biochar amendment. This
hypothesis was confirmed by the significantly loegative correlations between SPW pH and SPW
Fe concentrations at TO (r = -0.44, p-value < 0)00b7-Salix (r = -0.4, p-value < 0.05) and
T67+Salix (r = -0.33, p-value < 0.05) (Table S2). Finally six out of the seven treatmerits,P, PB,

PC, PI, PBI and PBCI, SPW Fe concentrations inegasth time. There was a significant difference
between vegetated and non-vegetated pots for PBhvehowed higher SPW Fe concentrations in
non-vegetated pots compared to the vegetated tmB$.and PBI treatments, there was no significant
difference between vegetated and non-vegetatedwdaseas in P0%, PC, and PBCI treatments, the

SPW Fe concentration increase was only signifitamtegetated pots.

At TO, Pb concentration was very high in Pontgib&RIWV, 14.96 mg.t on average (Table 3). Iron
application to P led to a 50 % decrease in SPWdRbemtrations while in treatments PBI, PC and PB,
SPW Pb concentrations were 89 %, 90 % and 96 %rl@ampared to P, respectively, with no
significant difference between the three treatméhédble 3). Finally, a 98 % and a 99 % decrease in
SPW Pb concentrations was observed with biochaposimand biochar-compost-iron amendments,
respectively, compared to P0%. At T67, SPW Pb autnatton was 8.10 mg:Lin non-vegetated pots
and 7.26 mg.L in vegetated pots. Concentrations were decreagbdalthe different amendments.

In non-vegetated pots, the lowest Pb concentratsmnease was observed when applying biochar-iron
(79 % decrease) and iron alone (77 % decreasd), matsignificant difference between those two
treatments. Biochar-compost-iron and biochar amemdsn also showed drops in SPW Pb
concentration, by 91 % and 93 %, respectively. I§inthe application of compost alone showed a
higher Pb concentration decrease (99 %) than thkcapion of both biochar and compost (98 %). The
pattern for this decrease in the vegetated pots diffsrent from that observed in non-vegetated
conditions. Indeed, in the vegetated pots, the $bwlecrease was observed with the iron amendment
alone (69 %), followed by biochar-iron (77 %), camapalone (90 %), biochar alone (91 %), biochar-
compost-iron (92 %) and finally the combinationbddchar and compost led to the highest SPW Pb
concentration decrease (97 %). No significant ceangsPW Pb concentration was observed between
TO and T67 (with or without plants) in PB, PBC &Pl treatments. In P0% and PI substrates, SPW
Pb concentrations were lower at T67 compared towith no difference between unvegetated and

vegetated conditions, while SPW Pb concentratiamedese was only observed in non-vegetated pots
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for PC treatment, compared to TO. Finally, a sligictease in SPW Pb concentration with time was
observed for the PBCI treatment. The capacity efttiree different amendments, biochar, compost
and iron grit, to decrease SPW Pb concentratiorss bdeen shown in previous studies. Indeed,
Lomaglio et al. (2016) explained the 70 % decrezszserved in SPW Pb concentration following a
pinewood biochar addition to a mining soil by thregpitation of Pb on phosphates and carbonates
present in the biochar. Moreover, Pb can sorb dmbchar surfaces (Park et al. 2011) through
interactions with oxygen functional groups (Jiangake 2012). Concerning compost, in their review,
Huang et al. (2016) showed that it potentially labiosorbent role on the metal(loid)s due to humic
substances which contain many organic functionaligs. For iron grit, when incorporated into the
soil, its oxidation formed iron oxides, which hatlee capacity to sorb Pb (Houben et al. 2012).
Finally, like iron, Pb is a metallic cation in stbn; therefore, at pH > 6 it can form hydroxide
precipitates and complexes with OM, which decreiésemobility and solubility (Oustriere et al.
2017). The important role of pH on Pb mobility ahds SPW Pb concentrations was corroborated by
the negative correlations between SPW pH and Pb S&Wentrations at TO (r = -0.87, p-value <
0.001), T67salix(r = -0.63, p-value < 0.001) and T&&dlix (r = -0.64, p-value < 0.001) (Table S2).

3.2.4 SPW toxicity

SPW metal(loid) concentrations give informationthe total amount of metal(loid)s present in the
soil solution, and which are therefore susceptibleeing leached into underground water. However,
some of these metal(loid)s can be complexed wiisalved organic carbon (DOC) for instance,
which can diminish their plant uptake potential alogver their toxicity towards the different
organisms present in the environment. Therefore SBW toxicity needs to be evaluated. To assess
the SPW toxicity, a toxicity test usirfg. phosphoreumwvas performed. SPW relative luminescence
was calculated and compared to a reference (PO¥®)atonsidered as 1. A relative luminescence
above 1 showed a lower toxicity compared to theregfce, while a value below 1 showed a higher
toxicity. At the beginning of the experiment (T@o change of SPW toxicity was observed in any
amended treatments compared to P (Table S3). dhld be due to the short time between the mixing
of the substrates and the SPW sampling. After 6/&,da both non-vegetated and vegetated pots,
SPW toxicity decreased compared to P with all ammarnds, except with iron alone (0.80 for T67-
Sali¥). Such results were consistent with the capadibiachar to immobilize metal(loid)s (Koltowski

et al. 2017), and to reduce the genotoxicity oftaorinated soils (Rees et al. 2017). In 2014, Bgesle
et al. showed that compost induced the formatioD©fC-metal(loid) complexes, reducing the free
metal(loid) contents by 50 % in SPW. Moreover, tiesults showed that even though compost
application increased As SPW concentrations, iticed the overall SPW toxicity, showing that As
mobilization from the soil could have happened tiglo complexion with DOC, thus preventing its
toxicity towardsP. phosphoreumand probably towards plants too. Finally, theréase in SPW

toxicity observed with the application of iron atoean be explained by the toxicity of iron itself.
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Regarding the evolution of SPW toxicity with timep change was observed for Pl whereas the
toxicity decreased after 67 days compared to T®@%0, PBI and PBCI, with no plant effect. Finally,
the reduction in SPW toxicity for PB, PC and PB@pared to TO was higher with plant growth.

3.3 Plant growth measurements

3.3.1 Leaf surface area

Plants grown on unamended P0% soil presented ldé¢afaarea of 151.80 cm2.plan(Table 4). The
amendment with iron alone decreased the total ek by 2.3-fold, while the biochar-iron
combination amendment had no effect. The plantsvigron the other four treatmeniss PB, PC,
PBC and PBCI, presented a higher total leaf ared7@t64 cm2.plaf, 425.99 cm2.plaft 393.00
cmz.plant and 298.24 cm?2.plaht respectively, compared to P. Similar results hlaeen observed
using organic waste amendment on a sandy loam ¢Babiaet al. 2004) and two different biochars
(woodchip biochar and olive tree pruning biocharaadisused Cu mine (Brennan et al. 2014).

The increase in total leaf area observed with l@pb@nd compost amendments, alone or combined,
can be explained by the improvement in the soikpotchemical characteristics. Indeed, as shown in
the previous sections, biochar and compost amengnieduced: (i) an increase in soil WHC and
SOM (Table 1), (i) an increase in SPW pH and E@b(€ 3), (iii) a decrease in SPW metal(loid)
concentrations (Table 3) and (iv) a toxicity reduet(Table S3). The decrease observed with the iron
grit amendment could be due to the toxic effecEef as shown in the. phosphoreuntoxicity test
(Table S3).

3.3.2 Organ dry weight (DW)

Plants presented a low growth on P0% soil, with l&t@m and root DWs of 0.57 g, 0.17 g and 0.23 g,
respectively (Fig. 1). Plant growth was increasét the different amendments, except when iron and
biochar-iron were applied. Indeed, on the PI salbstronly root DW (0.39 g) was higher compared to
P, while on PBI, roots presented a lower DW (0.)6&agmpared to P roots. For all three organs
(leaves, stem and roots), the highest increaseolssrved for PC and PBC, with DW increases of
3.3-fold, 6.8-fold and 4.4-fold for PC and 3-foli,1-fold and 4.3-fold for PBC, respectively. When
grown on the PB treatment, plants presented a $¢&ifh and root DW of 1.48 g, 0.81 g and 0.65 g,
respectively, which were not significantly diffetedn the organ DW of plants grown on PBCI (leaves
1.42 g, stem 0.79 g and roots 1.02 g). Such impnewts can be attributed to an improvement in the
soil conditions (Abbas et al. 2018), as shown i@ finevious sections: (i) a supply or increase of
availability of nutrients (Kottowski et al. 2017(jj) a supply of organic matter (Walter and Bernal
2008) (Table 1) and (ii) a decrease in metal(I&BW concentrations and extractable fractions (Park
et al. 2011, Zheng et al. 2013) (Table 2, TabldR&garding the reduction of plant growth induced by

the iron grit amendment, as well as for leaf patansethis could be explained by the iron toxicity.
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3.4 Plant metal(loid) accumulation and repartition

3.4.1 Metal(loid) concentrations

Leaf As concentration in plants grown on P0% wa® @ng.kg" (Fig 2A) and only increased when the
iron amendment was applied alone, causing a 7risddin As concentrations. Stem As concentrations
were low in all conditions and not affected by tddferent amendments. Finally, root As
concentration was 818.74 mgkdn P plants and decreased with biochar, biocherpost and
biochar-compost-iron amendments, with As conceommatof 613.17 mg.ky 606.87 mg.kg and
604.46 mg.kd, respectively. This decrease can be explained dijution effect (Abbas et al. 2018).
Indeed, root DW was higher in these treatments emetpto P0%. Finally, it can be noted that even
though compost application increased As concentratiin SPW, it induced low root As
concentrations, associated to a low translocataratds aboveground parts, which could indicate that
the solubilized form of As was not, or was poodyailable for plant translocation in the plantuiss

Leaf, stem and root Fe concentrations were 90.1(kghg 29.37 mg.kg and 4983.92 mg.ky
respectively in plants grown on P (Fig 2C). Le&éns and root Fe concentrations increased when the
iron amendment was applied, alone or combined kittkhar and compost. This can be attributed to
Fe supply by iron grit, as shown in the pseudottated SPW concentration measurements. The
amendment of P by biochar and/or compost decre@setbncentrations in leaves and roots, which
could be due to their ability to sorb metal cationsoil (Hmid et al. 2015) as shown by the saihgie
extraction results and SPW concentrations (TableaBle 3).

Organ Pb concentrations in plants grown on unamemi®o were 54.68 mg.Kgin leaves, 80.65
mg.kg' in stem and 11784.31 mg:kdn roots (Fig. 2E). The application of iron, alomecombined
with biochar, increased Pb concentrations in leawwem and roots. More specifically, Pb
concentrations were 3 times higher in Pl and PBVés, 2.7 times higher in PBI stems and 1.6 times
higher in PI roots, compared to Pb concentrationB plants. This increase in Pb concentration was
surprising, as simple extractions (Ca@hd NHNO;) and SPW measurements showed a decrease in
Pb concentrations with the iron grit amendment ([@&h Table 3). However, this increase could be
related to the fact that organ DW was low and timesmetal(loid)s were more concentrated. Finally,
the application of biochar and/or compost onlytied decrease in Pb concentrations in roots but did
not affect leaf and stem Pb concentrations. Indesat, Pb concentrations were 8518.46 mg.kor

PB, 6260.11 mg.k§for PC and 7054.65 mg.Rgor PBC. Such a decrease can be explained by the
immobilization of Pb by biochar and compost as waslia dilution effect induced by a higher root DW
(Park et al. 2011).

Finally, it can be noted that for the three metédi)s, As, Fe and Pb, concentrations were muchehigh
in roots compared to leaves and stems. A higharmaglation of metal(loid)s in the roots, associated
with a low translocation towards upper parts, hasnbobserved in previous studies (Beesley et al.

2013, Puckett et al. 2012). Roots are in directaxinwith the soil contaminants, which makes them
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the primary adsorption and absorption site for imietas (Wang et al. 2014). Following their entry
into the roots, metal(loid)s can bind to ion exdeable sites on cell walls (Wang et al. 2014) and
could be blocked by the Casparian strip (Wang et2@ll4). Such root to aerial part restriction
transport will protect the photosynthetic and metigbplant apparatus (Borisev et al. 2008). These

mechanisms have been demonstrated to be protestative traits (Chen et al. 2014)

3.4.2 Metal(loid) quantities

Metal(loid) quantities were calculated based oranrBW and organ metal(loid) concentrations. The
results showed that leaf, stem and root As quastiti P0% plants were 0.51 pg, 0.21 pug and 157.21
Mg, respectively (Fig. 2B). The only amendmentatften organ As quantity was an increase observed
in roots of plants grown on PC (x 4.6), PBC (x &8) PBCI (x 4.3).

Leaf Fe quantity in PO% plants was 50.17 pug anckased in the order PBC (103.30 pg), PC (106.34
Kg), PBI (167.50 ug) and Pl (186.26 ug), whiletenss, Fe quantity was 6.16 ug in P0% plants and
increased with the three amendments using iron. (Eig). Finally, roots of plants grown on P
contained 918.06 ug of Fe, this Fe quantity inadda the order PBCI (21832.49 ug), Pl (8464.03
Kg), PBI (5674.11 ug), PC (3694.88 ug) and PBCR3HLUQ).

Pb quantity in leaves of P0% plants was low (3@ (Fig. 2F) and increased with biochar-compost
(78.92 ug) and biochar-compost-iron amendment887@g). Regarding the stems, all amendments,
except iron alone, increased Pb quantity in theoRBC (70.12 ug), PC (59.22 ug), PB (45.87 ug),
PBI (36.40 pg) and PBCI (33.44 pg) compared to @14 pg). Finally, roots of P plants presented
2486.14 pg of Pb, and the four treatments PC, BIC Rnd PBCI induced an increase in Pb
accumulation corresponding to a final Pb quantity6622.08 pg, 6405.50 pg, 6609.28 pg and
11210.80 pg, respectively.

Such data showed that the quantities of metal@oeXtracted by the aerial parts $lix viminalis
from the soil after 69 days of growth were low, wing that theS. viminalisspecies would be more

suitable for phytostabilization strategies overtpkytraction in this case.

3.5 Stress indicators

3.5.1 Leaf pigments

Leaves of plants grown on Pontgibaud technosoleptesl 25.88 pg.cfof chlorophyll (Fig. 3A).
Iron amendment alone did not affect chlorophyll tem, while biochar-iron application induced a
slight decrease in leaf chlorophyll content, dowen22.23 pg.cii. The other four amendment
treatments decreased leaf chlorophyll content, withigher decrease observed with biochar and/or
compost. Indeed, leaf chlorophyll contents weré7a51g.cnf, 15.65 pg.cii and 15.87 pg.ctin
leaves of plants grown on PB, PC and PBC substnagsgectively. This chlorophyll content decrease
had been observed by Sorrenti et al. (2016) whibatéd it to (i) a pH rise, which reduced Fe

transport to plant cells and (ii) a sorption orgipéation of Fe on biochar surface. However, bl

16



587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

be noted that such a decrease in leaf chloroplyitent could be due to a dilution effect, as plants
presented a higher total surface area with bioahdrcompost amendments. This was supported by
the negative correlation between the leaf chlordgtontent and the total leaf surface area (r 60.
p-value < 0.001) (Table S2). Indeed, when congidetihe chlorophyll content and the total surface
area to calculate the average chlorophyll contenfptant, a different trend was observed. The lowes
chlorophyll content was found in PI plants (1578 29), followed by PBI plants (2705.61 pg), P
plants (3928.58 ug), PBCI plants (5272.88 ug), RBtp (5962.94 ug), PBC plants (6236.91 pg) and
PC plants (6666.74 pg). This increase in total rdgbyll content induced by compost and biochar
could be due to the reduction of the metal(loidjdiby (Abbas et al. 2018).

Leaf flavonoid levels in P0% plants were 0.39 ud¢.camd were not affected by biochar and iron
amendments alone or the combination of the threendments (PBCI), whereas it decreased with
biochar-iron associated application (0.30 pgerFig. 3B). The addition of compost, alone or in
combination with biochar, increased flavonoid conti leaves to similar levels, 0.49 pg:trand
0.47 pg.crif, respectively.

Leaf anthocyanin content was low for P0% plant©40a.u) (Fig. 3C) and increased with all
amendment applications in the order PI (0.06 &8),(0.08 a.u), PB (0.10 a.u), PC (0.10 a.u), PBCI
(0.11 a.u) and PBC (0.11 a.u).

These pigment (chlorophyll, anthocyanin and flawudhoontent increases could be explained by the
reduction in metal(loid) toxicity, as shown by thal and SPW analysis (Table 2, Table 3, Table S3).
Indeed, it is known that metal(loid)s can limit thiesynthesis of pigments (Akula and Ravishankar
2011) through: (i) lipid peroxidation, which altetke membrane permeability and chloroplast
ultrastructure (MacFarlane and Burchett 2001), @hcdompetition with essential elements required

for pigment synthesis (Bajguz 2011).

3.5.2 Root guaiacol peroxidase (GPOD) activity

Guaiacol peroxidase is considered as a biomarkernfetal(loid) stress in plants. Indeed, as
demonstrated by Marchand et al. (2016), its agtipiesents a positive dose effect relationship with
increasing metal(loid) exposure.

In this study, roots of P0% plants presented aaguhiperoxidase (GPOD) activity of 43.63 mol.L
! sec’.mg’ protein (Fig. 4). The application of iron and biac-iron to P had no effect on root GPOD
activity, while the other treatments decreaseddtivity. More precisely, root GPOD activities were
34.66 mol.I*.sec".mg*" protein, 25.68 mol.t.sec’.mg’ protein, 23.08 mol.t.se¢.mg* protein and
29.05 mol.I*.sec¢".mg* protein in PB, PC, PBC and PBCI treatments, resmey. This decrease in
root GPOD activity can indicate a lower metal(loiglress, which can be linked to the soail
immobilization of metal(loid)s, inducing a decredsemetal(loid) levels in the plants and thus a
reduction in cell stress. Consequently, defensenam@sms against this stress decreased (Hmid et al.

2015). This explanation was attested by the cdiogldbetween the root GPOD activity and the root
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metal(loid) quantities (As: r = - 0.48, p-value 08, Pb: r = - 0.43, p-value < 0.05) (Table S2).
Moreover, Marchand et al. (2016) observed a negatlationship between the root GPOD activity
and the root DW oP. australis which was also observed in this case (r = - Op4value < 0.01)
(Table S2).

4 Conclusion

A phytoremediation experiment was performed in mesm using an As and Pb contaminated
technosol complemented with three different amemdsyebiochar, compost and iron, alone or
combined, and usinds. viminalis as the phytoremediator plant. The results showetd the
amendment of Pontgibaud technosol improved theaswil SPW physico-chemical properties, such as
increasing the pH, and drastically decreasing tadability of soil Pb. Such ameliorations allowad
better plant growth and reduced the stress apptiglants. However, the iron amendment showed
toxic effects, probably due to a high dose apgticatTherefore, the initial hypothesis that combi
amendments would lead to better results than adalisiggle amendment is only partly true. Indeed,
the biochar-compost association tended to showtetsults than biochar or compost alone, however,
associating iron with biochar induced toxic effectsnpared to biochar alone and even compared to
non-amended Pontgibaud. In addition, the metallattumulations were higher in roots compared to
aboveground parts, allowing plant leaf metabolisrotgztion. Finally, the higher plant growth
associated to a low metal(loid) translocation taisanarvestable tissues observed with compost and
biochar-compost amendments showed that these eatntents are good options to be used in an
assisted phytostabilization process withviminalisplants. Indeed, in the field, the establishmerd of
vegetation cover, made possible by the additiceineéndments, can reduce the metal(loid) percolation
as well as the wind erosion, preventing the spadatbntamination to the environment. In addition,
the use of biochar in combination to compost walldw a longer time of effect without need to re-
applied the amendments. Moreover, both biocharcangpost have a positive environmental impact,
and even though their production from waste praxlugtstill expensive due to the recent market
opening, their economic and environmental costs sttt more efficient than the physical and
chemical remediation techniques used during previ®cades. However, this needs to be assessed in

field trial to verify such assumptions.
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Table 1. Soil water holding capacity (WHC, %) and soil organic matter cofe@M, %) of
Pontgibaud technosol (P) alorfe0%) and amended with 5% biochar (B), 5% compost (C) or
1.5% iron grit (1), alone or combined. WHC was determined at the beginning ofxiherienent
(TO), while SOM was determined on the bulk and the rhizospheric soils aftetag9 of Salix
viminalis growth Different letters by column indicate significant difference (p < 0.0% 8-5 £
SE). Plant effect was determined for each treatment between thabdlkhe rhizosphere soil (ns

= non-significant)

WHC (%) SOM (%)
Bulk soil Rhizospheric soil  Plant effect
P0% 29.80+0.47 b 2.60+0.07 a 2.51+0.03a ns
PB 40.11+£0.48¢ 6.37+0.24 ¢ 6.82+0.114d ns
PC 32.75+£0.49¢ 3.76 £ 0.24p 3.89+0.15¢ ns
Pl 28.11+0.38a 2.97 £0.05bp 2.94+0.02b ns
PBC 44,55 £ 2.06f 7.28 £0.30 cd 8.311£0.20e ns
PBI 36.83+0.26d 6.64 £ 0.08¢ 6.52+0.16 d ns
PBCI 40.61 £ 0.54 ef 7.84+0.26 d 7.81£0.20e ns




Table 2. As, Fe and Pb soil pseudo-total concentrationgy{gdoil), CaCh-extractable and NENOs-extractable concentrations (mgkgoil)
determined at the beginning of the experiment on Pontgikkackinosol (P) alon€”0%)and amended with 5% biochar (B), 5% compost (C
1.5% iron grit (1), alone or combined. Different lettdrg columnindicate significant difference (p < 0.05) (n= 3-5 + SE).

Pseudo-total concentrations

CaCl,-extractable concentrations

NH4NOs-extractable concentrations

P0%
PB
PC
PI

PBC

PBI

PBCI

[As](g.kg™ soil)
1.06 £ 0.02b
1.00 £ 0.02 ab
0.91+0.04 a
1.01 £ 0.05 ab
0.84+0.04 a
0.99+0.02a
0.85 +£0.06 ab

[Fel(g.kg™ soil)
6.321+0.11b
5.96 £0.10 ab
541+0.21a

23.251+4.34ab
497 +0.30a

20.09t2.41ab

14.41 + 2.66 ab

[Pb](mg.kg* soil)

2339+1.02¢
1893 £0.55b
18.88 £ 0.67b
18.42 +1.42 abc
16.42+0.30a
1890+ 0.44b
17.79 £ 2.41 abc

[As](mg.kg™ soil)

1134042 cd
0.45+0.07b

1.15+0.10d

0.69+0.07 ¢

0.53 £0.09 be

0.47 £ 0.13 abc
0.18+0.02a

[Fe](mg.kg? soil)

3.70+1.73 de
0.67 £0.32 bc
116 +0.34 cd
18.28 £3.79e
1.11+£0.31 be
11.40+7.70 e
0.00 £0.00 a

[Pb](mg.kg! soil)
503.19 £50.43d
294.13 £13.05¢
22.23+6.19a
506.54 +12.82d
28.11+£6.52a
302.57 £18.32 ¢
33.36+2.05b

[As](mg.kg™ soil)

0.24+£0.03 e
0.03 £0.00 a
0.30+0.05e
0.17+0.01d
0.05+0.01 ab
0.08+0.01¢
0.06 +£0.01 be

[Fe](mg.kg™ soil)

0.16 +0.06 c
0.02 +£0.02 ab
0.18 £ 0.20 be
16.14 +£2.89d
0.00 + 0.00 ab
0.05 + 0.06 be
0.00 +0.00 ab

[Pb](mg.kg* soil)
348.09 £ 7.56 €
83.91+4.65¢
550+1.63a
359.39+5.62e
10.47 + 2.88 ab
118.81+5.12d
18.83+6.74b




Table 3. Soil pore water physico-chemical characteristics d@tedmat the beginning (T0) and at the end of the experiment, in non-vegeta@ds4lix) and vegetated pots (T6%alix) on
Pontgibaud technosol (P) alofie0%)and amended with 5% biochar (B), 5% compost (C) or 1.5% iron grit (1), al®@84) or combined. EC = electrical conductivity (uSHmCapital letters
indicate significant difference between the 7 treatments for eawd tivhile minuscule letters indicate the difference between TO,36%-and T67-alix for each treatment (p < 0.05) (n =5-12 +
SE).

pH EC (uS.cm™) [As] (mg.L?) [Fe] (mg.L?) [Pb] (mg.L'})
Time effect Time effect Time effect Time effect Time effect
TO 3.74+£0.04 A a 222+ 12A a 0.00+0.00A a 0.05+0.04A a 14.96 £ 0.57 D b
P0% T67-Salix 3.66 +0.03 A a 547 +43 A b 0.01+0.01A b 0.04+0.02A a 8.10+0.53 E a
T67+Salix 3.78£0.06 A a 622 +39A b 0.03+0.01B b 1.13+0.52 CF b 726 +0.31E a
TO 6.73+0.09D a 1061+62C a 0.00+0.00A a 0.00+£0.00A a 0.53+0.098B a
PB T67-Salix 7.43+0.01D b 2261+ 107D b 0.03+0.02 AB b 0.13+0.06 A b 0.70+0.06 C a
T67+Salix 7.47 £0.04C b 2685 + 52 BCD c 0.00 £ 0.00 AC b 0.08 £ 0.04 AB b 0.65+0.04B a
TO 5.53+0.16 C a 1890 + 122 DE a 0.06+0.01C a 0.00+£0.00A a 1.49+0.26C b
PC T67-Salix 7.06+0.10C b 1374+1318B b 0.77+0.26 C b 0.10+0.10 AB ab 0.09+0.02A a
T67+Salix 7.03+0.03B b 2685 + 211 BCD b 0.54+£0.07D b 0.34 £0.20BC b 0.72 £ 0.70 CDF ab
TO 438+0.058B c 261+20A a 0.00+0.00A a 20.06 £1.42D a 7.73+0.36C b
PI T67-Salix 400+0.178B b 1720+ 471 BC b 0.02+0.01A b 213.02 £124.88 C b 1.85+0.18D a
T67+Salix 3.69+0.07A a 1665+ 490 B b 0.04 £ 0.03 AC b 265.25 + 158.98 F b 2.27+0.33D a
TO 7.30+0.06 E a 2172 +90E a 0.02+0.01B a 0.27 £0.28 A a 0.22+0.07A a
PBC T67-Salix 793+0.05E b 1940+ 151C a 0.20+0.09 BC b 0.00+0.008B a 0.17+0.028B a
T67+Salix 7.83+0.03D b 3858 £+ 602 C a 0.14+0.05C b 0.01 £ 0.02 AB a 0.20+0.05A a
TO 5.66+0.13C b 730+518B a 0.00+0.00A a 2.70+0.61C a 1.61+0.38C a
PBI T67-Salix 3.98+0.21B a 2367 £+ 238D b 0.02+0.01A b 99.12+39.36 C b 1.66+0.30D a
T67+Salix 3.83+0.13A a 2490 + 229 BC b 0.04 £ 0.01 AB b 73.32 £ 19.43 EF b 1.69+0.14CD a
TO 6.68 £ 0.08 D a 1763 +£47D a 0.00+0.00A 0.10+0.048B a 0.15+0.06 A a
PBCI T67-Salix 5.72+0.59C a 2302 +261D ab 0.00+0.00A 19.07 +8.41A ab 0.77+0.15¢C b
T67+Salix 6.37+0.44B a 3109 + 250 CD b 0.01 £0.01 AB 20.71+11.37F b 0.60 + 0.16 ABF b




Table 4. Salix viminalis leaf total area (cm2.plaf) determined
after 69 days of growth on Pontgibaud technosol (P) aléti®xo)
and amended with 5% biochar (B), 5% compost (C) or 1.5% iron
grit (1), alone or combined. Letters indicate significant difference
(p<0.05) (n=14 + SE).

Total leaf area (cm?2.plant™)

P0% 151.80 £ 36.87 b
PB 377.64 +20.88 cd
PC 425.99+21.94d
Pl 66.34 +8.74 a

PBC 393.00 + 60.55 cd
PBI 121.71 £ 31.86 ab

PBCI 298.24 + 35.65 ¢




Dry weight (g)

1.5-

P0% PB PC Pl PBC PBI PBCI

O leaves @stems Oroots

Fig 1. Salix viminalis organ (leaves, stems, roots) dry
weight (g) determined after 69 days of growth on
Pontgibaud technosol (P) aloieg0%)and amended
with 5% biochar (B), 5% compost (C) or 1.5% iron
grit (1), alone or combined. Letters indicate
significant differencebetween treatments for each
plant organ(p < 0.05) (n = 5-8t SE).
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Fig 2. Salix viminalis organ (leaves, stems, roots) metal(loid)
(As (A, B), Fe (C, D), Pb (E, F)) concentrations (mgdA,

C, E) and quantities (ng) (B, D, F) determined after 69 days
of growth on Pontgibaud technosol (P) alofie0%) and
amended with 5% biochar (B), 5% compost (C) or 1.5% iron
grit (1), alone or combined. Letters indicate significant
differencebetween treatments for each plant ordprx 0.05)

(n =5-8+ SE).
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Fig 3. Salix viminalis leaf pigment contents (chlorophyll (A), flavonoids
(B) and anthocyanins (C)) determined after 69 days of growth on
Pontgibaud technosol (P) alorie0%) and amended with 5% biochar
(B), 5% compost (C) or 1.5% iron grit (I), alone or combined. Letters

indicate significant difference (p < 0.05) (n = 345E).
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Fig 4. Salix viminalis root guaiacol peroxidase activity
(mol.L-t.sect.mg! protein) determined after 69 days of
growth on Pontgibaud technosol (P) aloiie0%) and
amended with 5% biochar (B), 5% compost (C) or 1.5%
iron grit (1), alone or combined. Letters indicate significant
difference (p < 0.05) (n = 3 SE).
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Highlights

Biochar and compost amendments, alone or combined, improved soil fertility
The dose application of iron grit had negative effects on plant growth
Biochar and/or compost amendments improved the growth of Salix viminalis

Metal (loid)s were mainly accumulated in roots with low transl ocation to upper parts



