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Abstract. This work uses a network of GPS stations over
Europe from which a homogenized integrated water vapor
(IWV) dataset has been retrieved, completed with colocated
temperature and precipitation measurements over specific
stations to (i) estimate the biases of six regional climate mod-
els over Europe in terms of humidity; (ii) understand their
origins; and (iii) finally assess the impact of these biases
on the frequency of occurrence of precipitation. The evalu-
ated simulations have been performed in the framework of
HYMEX/Med-CORDEX programs and cover the Mediter-
ranean area and part of Europe at horizontal resolutions of
50 to 12 km.

The analysis shows that models tend to overestimate the
low values of IWV and the use of the nudging technique
reduces the differences between GPS and simulated IWV.
Results suggest that physics of models mostly explain the
mean biases, while dynamics affects the variability. The land
surface–atmosphere exchanges affect the estimation of IWV
over most part of Europe, especially in summer. The lim-
itations of the models to represent these processes explain
part of their biases in IWV. However, models correctly sim-
ulate the dependance between IWV and temperature, and
specifically the deviation that this relationship experiences
regarding the Clausius–Clapeyron law after a critical value
of temperature (Tbreak). The high spatial variability of Tbreak

indicates that it has a strong dependence on local processes
which drive the local humidity sources. This explains why
the maximum values of IWV are not necessarily observed
over warmer areas, which are often dry areas.

Finally, it is shown over the SIRTA observatory (near
Paris) that the frequency of occurrence of light precipitation
is strongly conditioned by the biases in IWV and by the pre-
cision of the models to reproduce the distribution of IWV
as a function of the temperature. The results of the models
indicate that a similar dependence occurs in other areas of
Europe, especially where precipitation has a predominantly
convective character. According to the observations, for each
range of temperature, there is a critical value of IWV from
which precipitation starts to increase. The critical values and
the probability of exceeding them are simulated with a bias
that depends on the model. Those models, which generally
present light precipitation too often, show lower critical val-
ues and higher probability of exceeding them.

1 Introduction

Humidity plays a major role in the water and energy cycles
due to its strong radiative effect associated with a positive
feedback on climate (Randall et al., 2007) and its impor-
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tance to control precipitation and particularly extreme ones
(Held and Soden, 2006; Neelin et al., 2009; Sahany et al.,
2012). Trends and variability of humidity and precipitation
are strongly correlated (Trenberth et al., 2003; Zhang et al.,
2013) and several studies have revealed that the rate of in-
crease in daily extreme precipitation is highly connected with
the warming following the Clausius–Clapeyron (C-C) rela-
tion (Allen and Ingram, 2002; Pall et al., 2007; Kharin et
al., 2007). This rate of precipitation is indeed affected by
the humidity content of the atmosphere (integrated water
vapor, IWV), which rises as the climate warms (e.g., Tren-
berth, 2011). Nevertheless, dynamical processes (O’Gorman
and Schneider, 2009; Sugiyama et al., 2010; Singleton and
Toumi, 2013; Muller, 2013; Drobinski et al., 2016), lack of
humidity sources leading to a decrease in relative humidity
(RH; Drobinski et al., 2018), or low or high precipitation effi-
ciency (Drobinski et al., 2016; Trenberth et al., 2003) can ex-
plain the deviation from C-C rate locally. Humidity variabil-
ity at regional scale – and not only at the surface – thus needs
to be assessed to better anticipate the precipitation change,
and more specifically the rate of heavy precipitation, which
are not well estimated by global models (e.g., Allan and So-
den, 2008).

Another aspect that links IWV and precipitation concerns
the triggering of precipitation and thus the frequency of
occurrence of precipitation: Holloway and Neelin (2009)
showed that precipitation over the tropical oceans is strongly
sensitive to free-tropospheric humidity even more than sur-
face humidity, and Neelin et al. (2009) and Sahany et
al. (2012) further conclude that there exists a threshold of
IWV, which depends on the mean tropospheric temperature,
over which precipitation starts to increase significantly. They
also showed that this critical value of IWV does not corre-
spond to the saturation value when temperature increases,
i.e., that at higher temperature, deep convection occurs at
a lower value of relative humidity. This means that IWV is
a relevant parameter to measure over long-term periods, at
high temporal resolution and at the regional scale in order
to establish the relationship between IWV–precipitation and
temperature and monitor its possible evolution. Models still
have strong difficulties in adequately simulating the water
cycle (Trenberth et al., 2003; Flato et al., 2013), and often
presents the “too often too light precipitation” problem (e.g.,
Sun et al., 2006; Panthou et al., 2016). A better knowledge of
the IWV–precipitation relationship would be a help to better
constrain models.

Up to now, very few long-term (> 15 years) and homoge-
neous datasets of water vapor measurements exist, even less
at subdaily timescales. These datasets are necessary to un-
derstand the humidity variability at regional scales at differ-
ent timescales. Besides, the colocation of such measurements
with independent measurements of precipitation and vertical
profiles of temperature provide a strong added value for bet-
ter climate understanding. Reanalyses are of course a good
tool to have these three parameters colocated over long-term

and at subdaily timescales; however, precipitation mostly re-
lies on the model physics. Moreover, Flato et al. (2013) have
shown that even in reanalyses, the relationship between the
IWV trend and the temperature trend presents differences be-
tween reanalyses and deviates from C-C over tropical oceans.

In this study, we make use of the Global Positioning Sys-
tem (GPS) IWV dataset that has been processed as done by
Parracho et al. (2018) and which provides IWV measure-
ments from over 100 European sites covering a period of
5 years or more. The GPS technique accurately measures
IWV (accuracy around 1–2 kg m−2 according to Bock et al.,
2005, 2013, and Ning et al., 2016) in all weather condi-
tions including rainy situations, which is an important as-
pect for our study (e.g., Wang et al., 2007). GPS measure-
ments have been successfully used to better understand at-
mospheric processes at high resolution (Bastin et al., 2005,
2007; Bock et al., 2008; Champollion et al., 2009). Here we
use a GPS IWV dataset to analyze the humidity biases in re-
gional climate models over Europe at interannual, seasonal
and daily timescales and to better understand the source of
errors in models. We also use GPS IWV measurements colo-
cated with precipitation and tropospheric temperature mea-
surements from the SIRTA observatory in France to consider
the relationships between these parameters. Note they have
not yet been considered outside the tropics. We compare ob-
servations and regional models output at the site level and
extend the analysis of models to other locations over Europe.

The paper is organized as follows: Sect. 2 presents the ob-
servational datasets and the different simulations used in this
study. Section 3 describes the methodology to compare ob-
servations and models. In Sect. 4, the ability of models to
reproduce the mean value of humidity and its variability over
Europe at different timescales is evaluated. The influence of
dynamical and physical processes is discussed, and a special
focus on the scaling of IWV with temperature is developed.
In Sect. 5, the issue of how much a bias in IWV can enhance
the problem of “too often too light precipitation” behavior
of models is raised by considering the relationship between
mean tropospheric temperature, IWV and precipitation in the
different models and observations over the SIRTA supersite
in France. Then, by considering other stations across Europe,
the generalization of this relationship is assessed. Finally, a
conclusion is given in Sect. 6.

2 Material

2.1 GPS IWV data

The GPS dataset used in this study is based on homo-
geneously reprocessed GPS delay data produced by the
NASA’s Jet Propulsion Laboratory in the framework of the
first International GNSS Service (IGS) reprocessing cam-
paign. The data cover the period from January 1995 to
May 2011 and include more than 400 stations globally. For
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Figure 1. Mean values of IWV in winter (a) and summer (b) re-
trieved from GPS network. Note that color scales are different be-
tween winter and summer. Circles indicate stations with more than
10 years of observations between 1995 and 2008 and squares indi-
cate stations with 5 to 10 years of observations. SIRTA observatory
is shown by the black triangle. Black diamonds indicate the location
of stations considered in Sect. 5.2. Topography higher than 500 m
above sea level is shaded in grey.

the present study, the delay data were screened and con-
verted into 6-hourly IWV estimates as described in Parracho
et al. (2018). Then, daily values are computed using this 6-
hourly dataset. The dataset was restricted to the period from
January 1995 to December 2008 and includes 95 GPS sta-
tions over Europe as shown in Fig. 1. It represents many more
stations than in the study of Parracho et al. (2018) because for
the purpose of their study which estimates IWV trends, they
restricted their selection to stations with only small gaps over
the 15-year period from 1995 to 2010. Here, only stations
with less than 5 years of observations are not considered in
the evaluation of model humidity bias.

2.2 Observations at SIRTA

This study also uses observations collected at the SIRTA
atmospheric observatory, located 20 km southwest of Paris
(48.7◦ N, 2.2◦ E at 160 m of altitude; black triangle in Fig. 1),
from 2003 (Haeffelin et al., 2005). This observatory has col-
lected many observations, which are now synthesized into
the so-called “SIRTA-ReOBS dataset” described in Chiriaco
et al. (2018a) and used in Chiriaco et al. (2014) and Bastin
et al. (2018). After many steps of data quality control and

harmonization, the “SIRTA-ReOBS” file contains hourly av-
erages of more than 50 variables at this site. The sample of
data varies from one variable to another. Among these vari-
ables, the IWV retrieved from GPS measurement since 2008
and the precipitation rate from a single rain gauge from 2003
to the present are available. A regional-scale precipitation
estimate, deduced from the measurements of other Météo-
France rain gauges located around Paris area, is also pro-
vided.

The Météo-France COMEPHORE (“COmbinaison en vue
de la Meilleure Estimation de la Precipitation HOraiRE”)
product is used to allow a fairer intercomparison between
models and observations than the single rain gauge (Chen
and Knutson, 2008): it is an hourly reanalysis of precipita-
tion by merging radar data and rain gauges over France at
1km× 1km resolution (more details in Fumière et al., 2019;
see also Laurantin et al., 2012). From this product, we can
have a better knowledge of the average precipitation rate over
a model grid of 50km×50km or higher resolution. However,
this product only covers the period 1997–2007 (at the time
of this study) and is not concomitant with the IWV dataset
over SIRTA. Despite this, a comparison has been made be-
tween the statistics of the different datasets when possible
(see Sect. 3.2).

The Météo-France radiosoundings, launched twice a day
from Trappes (near 00:00 and 12:00 UTC), 15 km to the west
of SIRTA, are also used to compute the mean tropospheric
temperature (more details in Sect. 3).

2.3 Med-CORDEX simulations

The list of regional climate models (RCMs) and details about
the settings are given in Table 1. All the simulations use
the 6-hourly European Center for Medium-Range Weather
Forecast (ECMWF) reanalyses ERA-Interim (Dee et al.,
2011) as RCM boundary conditions. They cover at least the
period 1989–2008 as initially recommended in the MED-
CORDEX project (Ruti et al., 2015). For LMDZ, which is
a global model with regional zoom capability, temperature,
wind speed and specific humidity are nudged towards the
ERA-Interim fields outside the MED-CORDEX domain. It
must be noted that the mesh of LMDZ is not regular within
the zoom region and the resolution varies between 50 and
30 km. All other RCMs are forced at the boundaries using
3-dimensional re-analyses of wind, humidity, temperature or
potential temperature, and geopotential height. For CCLM,
cloud ice and liquid water are additionally prescribed at the
domain boundaries. The IPSL WRF simulation uses nudging
at all scales within the domain for temperature, wind and hu-
midity above the planetary boundary layer (Salameh et al.,
2010; Omrani et al., 2013, 2015). The other models did not
use nudging in the Med-CORDEX domain.

Simulations used here were produced from five models
(ALADIN V5.2, Colin et al., 2010; CCLM, Rockel et al.,
2008; WRF V3.1.1, Skamarock et al., 2008; LMDZ V4,
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Hourdin et al., 2006; PROMES, Dominguez et al., 2010,
2013) with a horizontal resolution around 50 km (0.44◦ for
most models) on the MED-CORDEX domain. In the follow-
ing the simulations are referred to by the name of the mod-
eling group and resolution (see Table 1, first column). All
the models provide daily values of IWV, precipitation, 2 m
temperature and temperature at 850, 500 and 200 hPa.

2.4 Others datasets

The GPS observations are supplemented by the HadISD
v.2.0.1.2016 subdaily dataset of surface parameters (e.g.,
temperature, dew point temperature, wind, pressure; Dunn
et al., 2012). It is global and based on the Integrated Surface
Database (ISD) dataset from NOAA’s National Climatic Data
Center. Stations were selected on the basis of their length
of record and reporting frequency before they are passed
through a suite of quality control tests. It is a joint effort
from the MetOffice Hadley Center and the National Center
for Atmospheric research (NCAR).

3 Methods

To compare models and observations, we consider differ-
ences as the “model minus observation” results throughout
the paper.

3.1 Comparison between GPS dataset and model
outputs

Each modeling group has provided a file containing the grid-
ded IWV over the 1995–2008 period at daily resolution on
its native grid. The IWV is either computed online or offline
in the model. The offline computation can introduce some
errors due to vertical integration over the discretized vertical
grid. For each model, we extracted the value of IWV at the
closest grid point of GPS stations. We did it using the native
grid, and also after having regridded all the model outputs
to ERA-Interim (ERAI) grid, to have a fair comparison with
ERAI when necessary. The difference in altitude between the
GPS station and the closest grid point is difficult to take into
account and can introduce strong bias over complex terrain
(Hagemann et al., 2003; Wang and Zhang, 2009). As a conse-
quence, the stations where the difference in altitude is higher
than 500 m were removed from the analysis. Note the num-
ber of stations that are removed depends on each model since
the models do not use the same topography and the same
projection. Then, a linear correction is applied on model out-
puts to reduce the bias due to orography: for each model and
each month, we plotted the difference in the monthly aver-
aged IWV values between the model and GPS as a function
of the difference in altitude and we concluded that a linear
correction can be applied to take into account the difference
in altitude. For each different month, the slope of the linear
regression between these two differences is computed and
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Table 2. Values of linear regression slopes obtained for each model/each month when plotting IWVmod–IWVobs as a function of the
difference in altitudes between model and GPS at each station. The first figure is for native grid of the model and the second figure is for
model regridded to ERAI grid. It is expressed in 10−3 kg m−3.

CMCC50 CNRM50 IPSL50 LMD50 UCLM50

January −4.1/− 5.5 −5.8/− 5.6 −4.8/− 5.9 −4.5/− 5.1 −4.7/− 5.3
February −4.1/− 5.2 −5.3/− 5.3 −4.7/− 5.5 −4.5/− 5.1 −4.7/− 5.2
March −4.6/− 5.0 −5.4/− 5.2 −5.1/− 5.3 −4.9/− 4.8 −4.9/− 5.0
April −5.7/− 5.0 −5.6/− 5.0 −5.4/− 5.4 −5.8/− 4.8 −5.8/− 4.7
May −7.0/− 6.2 −7.0/− 6.2 −6.6/− 6.6 −7.0/− 6.2 −6.8/− 5.8
June −8.3/− 5.9 −7.6/− 6.6 −8.2/− 6.8 −7.5/− 6.1 −7.9/− 5.6
July −9.8/− 6.8 −8.9/− 7.7 −8.5/− 7.3 −8.2/− 6.7 −8.6/− 6.3
August −11.2/− 8.2 −8.2/− 8.5 −9.0/− 8.0 −8.6/− 7.5 −8.6/− 6.7
September −8.4/− 7.4 −7.6/− 7.9 −8.1/− 7.8 −7.2/− 6.9 −8.1/− 6.9
October −8.0/− 7.4 −7.7/− 7.6 −7.9/− 7.8 −7.2/− 7.0 −7.7/− 7.0
November −5.4/− 5.8 −6.2/− 6.1 −5.8/− 6.3 −5.7/− 5.7 −6.0/− 5.9
December −4.4/− 5.6 −5.8/− 5.8 −5.0/− 5.9 −4.9/− 5.3 −5.2/− 5.4

we apply the corresponding correction to IWV values of the
model. The values of the slope of the linear regression for
each model and each month are indicated in Table 2, both
for the native grid of the model and for the regridded out-
puts. Various evaluation metrics (Table 3) have been com-
puted with and without correction for these two grids. The
correction does not impact the variability scores (e.g., inter-
annual variability), but does affect the mean bias (not always
by an improvement) and slightly reduces the standard devia-
tion of the difference (Table 3). It does not affect the ranking
of performance between models.

Note that at SIRTA, the difference in altitude is weak and
results are thus not impacted by this problem.

3.2 Comparison with SIRTA observations

The following comparisons were made with SIRTA observa-
tions:

– Tropospheric temperature. To be as consistent as pos-
sible between model outputs and radiosoundings, the
mean tropospheric temperature corresponds here to the
daily average value of 2 m temperature, and temper-
atures at 850, 500 and 200 hPa. So we extracted the
temperature values at these pressure levels for each
radiosounding launched from Trappes (a few kilome-
ters away from SIRTA) and computed the mean tropo-
spheric temperature as the average of these four values.
Then, the daily mean is the average of the two daily
radiosoundings. The same method is applied to ERA-
Interim reanalysis to compute the mean tropospheric
temperature over the other European sites. The impact
of using ERA-Interim instead of radiosounding data has
been evaluated at SIRTA where both are available. Due
to the width of temperature bins considered in this study,
results are not sensitive to the use of one or another.

– Precipitation. The first step consists of comparing the
precipitation statistics obtained using the single rain
gauge located at SIRTA, from the closest grid point
(1km×1km) of COMEPHORE over the SIRTA and an
average of COMEPHORE over an area centered over
the SIRTA and covering 2500 km2 (i.e., a 50 km res-
olution model grid point). Figure 2 shows the mean
annual cycle of the frequency of occurrence of dif-
ferent light precipitation regimes. The annual cycle is
computed from 30-day means from January to De-
cember over the years 2004–2007, which is the com-
mon period of all datasets. The SIRTA rain gauge and
COMEPHORE product do not indicate the same fre-
quency of occurrence of nonprecipitating days, and very
light precipitation, but they show similar frequency of
occurrence for light precipitation which corresponds
mainly to large-scale precipitation. Note the different
values of the 50th percentile of precipitation when con-
sidering only precipitating days, which emphasize the
impact of heavy precipitation on the estimate of this in-
dex. The SIRTA rain gauge estimate is between the esti-
mate by COMEPHORE at the two different resolutions.
The difference between the frequency of occurrence
of nonprecipitating days (higher with COMEPHORE
at the closest grid point) and that of very light pre-
cipitation (higher with SIRTA rain gauge) likely come
from the coarse resolution of the coding of reflectivity
data of the radar used at low levels, which is a limit-
ing factor for the precise estimation of precipitation at
low rain rates (Laurentin et al., 2012). The difference is
stronger in winter than in summer. The average over a
50 km× 50 km grid cell shows a decrease in the number
of nonprecipitating days and an increase in the occur-
rence of very light precipitation: it is expected since the
probability that a system passes through a wider area is
higher but the total precipitation averaged over a wide
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Table 3. Mean bias and standard deviation (SD) in kilograms per meter (kg m−2) of the differences in IWV between models and GPS
observations using daily time resolution, and using the data obtained with the correction due to altitude difference or without it. Computation
has been done using models on their native grid, or bilinearly remapped on the ERA-Interim grid. The rightmost column indicates the
minimum and maximum values of the correlation of the interannual variability of monthly GPS anomalies and model anomalies (one
correlation computed by month).

Bias (daily) SD of difference (daily) Interannual correlation
(min/max)

uncorrected corrected uncorrected corrected

ERAI 0.57 0.61 1.87 1.30 0.92/0.99
LMD50 0.71 0.77 3.28 3.09 0.91/0.99
LMD50 grid ERAI 0.77 0.56 3.25 2.96 0.89/0.99
IPSL50 0.95 0.80 1.80 1.38 0.91/0.99
IPSL50 grid ERAI 0.94 0.76 1.92 1.44 0.97/0.99
CNRM50 1.35 1.11 3.35 3.10 0.77/0.98
CNRM50 grid ERAI 1.39 1.14 3.34 3.07 0.79/0.98
CMCC50 0.60 0.55 3.38 3.16 0.78/0.96
CMCC50 grid ERAI 0.59 0.52 3.30 3.05 0.79/0.98
UCLM50 1.81 1.56 3.62 3.47 0.80/0.98
UCLM50 grid ERAI 1.71 1.52 4.30 4.16 0.84/0.97

area is often much weaker as the strongest precipitation
rates are generally localized.

Table 4 presents an estimate of the frequencies of occur-
rence of nonprecipitating days, very light precipitation and
light precipitation for winter (Julian day 1 to 100) and sum-
mer (Julian day 151 to 251) when considering either the
common period of the two datasets (2004–2007) or the full
period of each dataset (i.e., 1997–2007 for COMEPHORE
and 2003–2015 for SIRTA rain gauge). The number of dry
days increases for the two estimations from COMEPHORE
when considering a longer period than the common period.
For ReOBS, the statistics remain similar for the two different
periods. However, when considering the most recent years
only, which will be used in the next section (2008–2015), the
number of dry days increases. The influence of the number
of years, the years considered and the products used to esti-
mate these frequencies of occurrences is generally small but
significant. Even though model errors are most of the time
beyond this uncertainty, it has to be kept in mind in the fol-
lowing analysis.

3.3 Method to establish the relationship between IWV
and precipitation as a function of tropospheric
temperature

The objective is to characterize how precipitation depends on
IWV for different ranges of mean tropospheric temperature.
To do that, we divided our datasets into four different bins
of temperature: the first bin is for temperature less than or
equal to 254.5 K, the second bin is for temperature between
254.5 and 258 K, the third one corresponds to temperature
between 258 and 262.5 K and the fourth one is for tempera-
ture higher than 262.5 K. This choice has been made to en-

sure a high number of samples in each bin of temperature to
proceed to the next step. In this way, the mean tropospheric
temperature of one bin is similar more or less 1 K for all the
datasets. Then, in each bin of temperature, the daily mean
precipitation rates are sorted according increasing values of
daily mean IWV. IWV bins are then defined such that they
contain an equal number of pairs of precipitation rates and
IWV (40 samples) to ensure a reasonable number of days
to compute the 50th quantile of precipitation, which indi-
cates if there are more precipitating days than nonprecipitat-
ing days. The range of each IWV bin is thus not constant but
allows the transition between mostly nonprecipitating days
and mostly precipitating days to be identified quite easily.
For each model and for observations, a critical value of IWV
(wc) is then determined for each different bin of tempera-
ture by using a very simple algorithm. This one identifies the
value(s) of IWV over which the 50th quantile of precipitation
is greater than 0.1 mm day−1. In some cases, two values are
obtained, which are represented by an error bar to indicate
the uncertainty of the estimate of this critical value.

4 Humidity biases in the Med-CORDEX simulations

4.1 Comparison with GPS dataset at regional scale

Figure 1 indicates the mean values of IWV retrieved from
GPS measurements in winter (Fig. 1a) and in summer
(Fig. 1b). In winter, higher values are observed along the
Atlantic and Mediterranean coasts while central and eastern
Europe exhibit very low values of IWV. In summer, there
are two different regimes: (i) north of 45◦ N showing a de-
crease in IWV values while going to Scandinavia, following
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Table 4. Occurrence (%) of nonprecipitating days (first number), very light precipitation (second number) and light precipitation (third
number) for different datasets (columns) computed over different years (rows) for two different periods of the year: W is for winter (Julian
day from 1 to 100) and S is for summer (Julian day from 151 to 251). Native grids are used.

REOBS COM01 COM50 LMD50 UCLM50 CMCC50 CNRM50 IPSL50

2004–2007 W 45/24/8 56/7/8 34/24/9 20/43/11 13/41/18 5/55/13 2/37/18 33/39/8
S 58/16/4 67/10/5 47/27/6 29/41/9 18/38/15 41/40/5 2/43/11 59/21/4

1989–1996 W – – – 24/40/11 12/41/17 7/56/10 1/42/14 35/38/7
S – – – 36/42/6 22/38/16 49/35/4 0/48/8 65/20/4

1995–2002 W – – – 23/38/10 23/34/14 7/53/11 1/42/14 36/35/8
S – – – 33/41/7 24/36/15 45/37/4 1/45/9 62/20/4

2001–2008 W – – – 23/28/11 14/37/17 6/54/13 2/37/16 35/37/8
S – – – 31/40/7 16/41/15 42/38/5 1/44/10 62/19/4

1989–2008 W – – – 24/38/11 17/38/16 7/55/11 1/41/15 36/37/8
S – – – 33/42/6 22/38/15 45/37/4 0/46/9 62/21/4

1997–2007 W – 62/6/7 44/22/8 24/38/11 22/36/16 7/54/12 1/40/15 36/37/8
S – 69/8/5 53/21/6 31/40/7 23/37/14 44/37/4 1/45/9 61/21/4

2008–2015 W 53/17/6 – – – – – – –
S 63/13/5 – – – – – – –

2003–2015 W 47/18/6
S 57/13/4

the temperature gradient; (ii) around the Mediterranean, the
structure is more patchy with alternating low and high val-
ues. Most low values correspond to higher topography but
not systematically.

Table 3 shows the mean bias and the standard deviation
(SD) of ERA-Interim and RCMs’ IWV on their native grid
or regridded to ERAI grid, in comparison to GPS estimates.
Daily datasets are used to compute these statistics and ex-
actly the same sampling is used between models and ob-
servations. It shows that the mean bias ranges from 0.5 to
1.0 kg m−2 except for CNRM50 and UCLM50, for which the
biases are stronger (up to 1.8 kg m−2 for UCLM50 on its na-
tive grid). It is to be noted that the mean biases are generally
not better on the native grid (50 km resolution) than when re-
gridded on the ERAI grid (75 km resolution). The correction
of topography improves the comparison for all models but
ERAI and LMD50 on its native grid.

The standard deviation indicates a large spread around ob-
servations for all models (∼ 3.5 to 4.0 kg m−2), except IPSL
which is even better than ERA-Interim. The nudging towards
ERA-Interim used in this simulation likely explains this be-
havior. This large standard deviation, which is reduced when
using the corrected topography, does not mean that the model
is wrong in a climatological context, but it is the result of in-
ternal variability in the absence of nudging, generating devi-
ations from its driving data in the interior of the domain (e.g.,
Kida et al., 1991), partly compensated for by potential arti-
ficial flows created to achieve physical consistency with the
lateral boundary conditions (Becker et al., 2015; Omrani et

al., 2015). However, in the configuration of Med-CORDEX,
the domain is quite small and the jump of resolution between
lateral boundary conditions (75 km) and the RCM (50 km)
is also weak, so that we could have expected smaller differ-
ences between a model using nudging and a model not using
nudging (Matte et al., 2017).

To the first order, the IWV variability is dominated by
the seasonal cycle (shown in Fig. 1), which is underesti-
mated by models (not shown), and which explains part of the
model standard deviation: indeed, Fig. 3 shows the percent-
age of simulated daily mean IWV values which overestimate
GPS values at each station for the ensemble of the five mod-
els regridded to the ERAI grid, in winter and summer. Fig-
ure 3a and b present results without height correction, while
Fig. 3c and d are done with height-corrected data. In win-
ter, more than 70 % of values are overestimated over most
stations, with or without height corrections. In summer, this
percentage decreases appreciably in most stations and in al-
most half of them it reaches values below 50 % (Fig. 3b).
The use of height correction homogenizes the results in sum-
mer between stations and the very low or very high percent-
ages do not appear anymore when this correction is applied.
UCLM50 simulation is the moistest, especially in summer
(not shown), which explains its high standard deviation in
Table 3.

The IWV variability also comes from the interannual vari-
ability. For each month, we computed its anomaly by sub-
tracting the average value of the month over all the years. We
then computed the correlation between the anomalies of the
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Figure 2. Occurrence for 30-day periods from January to December
over the years 2004–2007 of (a) nonprecipitating days; (b) precip-
itation rates between 0 and 1 mm day−1; (c) precipitation rates be-
tween 1 and 2 mm day−1. (d) Value of the 50th quantile of precip-
itation (excluding nonprecipitating days). Each color corresponds
to a different model at 50 km resolution regridded to the LMD grid
(see legend for details). Black line is for observations at SIRTA su-
persite (ReOBS). Dashed black line is for COMEPHORE product at
1 km× 1 km resolution at the closest grid point of SIRTA (COM01)
and black line with squares is for COMEPHORE averaged over a
square of 50 km× 50 km around SIRTA (COM50).

GPS IWV estimates and those from the models. The min-
imum and maximum values of these correlations for each
model when all stations are considered are indicated in Ta-
ble 3 (last column). As indicated by these numbers that range
between 0.78 and 0.99, the interannual variability is captured
well by the model, which is not surprising since this variabil-
ity is mostly driven by large-scale advection of air masses
(all models use 6-hourly ERA-Interim parameters as lateral
boundary conditions). Note that the maximum correlation
is very high for all models, while the minimum values are
higher for ERAI, LMD50 and IPSL50 than for the three oth-
ers. This is mostly due to a specific month (not shown): in
January 1996, three models have an anomaly very different
from the observations and, as a consequence, the interannual
correlation for January goes down.

To conclude, the RCM configuration allows a reasonable
representation of the large-scale advection of air masses by
the models, which is an important driver of humidity within
the RCM domains (see also Trenberth et al., 2005). This is
further improved when the model is nudged towards reanal-
ysis, as in the IPSL model (Table 3).

Nevertheless RCM errors are significant, with a difficulty
in reproducing low values of IWV, generating a mean posi-
tive bias for all models. Most of the contribution of humidity
to the integrated water vapor comes from the surface, and the

interaction between environment and clouds and boundary
layer. Small-scale processes are thus important to reproduce
moisture sources and sinks (precipitation, mesoscale circula-
tions, evaporation and evapotranspiration, clouds and micro-
physics). To better understand these errors, we assess the link
between surface humidity and IWV at different timescales.
Figure 4 displays the monthly mean values of IWV versus
monthly mean values of 2 m specific humidity (Q2) averaged
over all stations where and when both IWV from GPS and Q2
from HadISD are available. Monthly means are computed if
at least 60 concomitant (both IWV from GPS and Q2 from
surface station) values are available (i.e., about two values
per day out of a possible four). A total of 3238 months are
obtained, spread over 42 different stations. The average num-
ber of stations per month is 19 with a maximum of 30 sta-
tions. Figure 4 shows that 2 m specific humidity is a very
good proxy for IWV at the monthly scale. All models but
IPSL have a similar relationship between the two variables to
the observed one (slope of 2.4× 103 kg m−2). However, for
a given surface humidity, IWV is generally overestimated by
models, especially for the driest conditions. The IPSL model
presents a different behavior: for low values of surface hu-
midity, IPSL shows the same bias as the other models, while
at higher Q2 values, its bias strongly increases, generating
a different regression slope than observations. IPSL com-
pensates its underestimation of surface humidity in summer
(Bastin et al., 2018) by a steeper slope. This compensation
may be the result of the use of nudging or it can be due to
a deep boundary layer so that the total humidity contained
within the boundary layer is similar to that of other models
(not possible to check that). Since the nudging is only used
above the boundary layer, and since most of the humidity is
contained within the boundary layer, there is little reason that
the nudging totally explains this compensation. It means that
for this model, Q2 is not a good proxy of total column humid-
ity, even at monthly scales. Note also that the spread between
models is a bit higher in summer than in winter, most prob-
ably because of more active boundary layers and increased
entrainment of humidity from the free troposphere at their
top. These processes will also affect the link between surface
humidity and IWV at scales shorter than a month.

Despite the strong correlation between the annual cycle of
Q2 and those of IWV, Q2 is not necessarily a good proxy for
IWV at other timescales or to tackle model biases (for in-
stance IPSL bias for surface humidity is strongly negative
while it is weak and slightly positive for IWV). While in
the wintertime, humidity variability mostly originates from
the air mass advection, summertime variability is mainly af-
fected by land–surface interactions and boundary layer pro-
cesses. Several studies have shown the existence of a large
spread in the representation of the surface fluxes and land–
atmosphere coupling strength between models over Europe,
due to the fact that Europe is a zone of transition between the
regime of “energy-limited” areas with low land–atmosphere
coupling strength and those of “oil-moisture-limited” areas
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Figure 3. Percentage of simulated daily mean IWV values which overestimate the GPS ones (a) in winter and (b) in summer. Simulated
values are taken from five models at 50 km resolution (LMD50, IPSL50, CNRM50, CMCC50, UCLM50) regridded to the ERAI grid. Panels
(c) and (d) are the same as (a) and (b) but for height-corrected values.

Table 5. Summertime interannual correlation between IWV and Q2 at GPS stations. In bold, the mean value for each model, followed by
min and max values. The other values in the table corresponds to the standard deviation of the difference in correlation between two models.

CMCC50 CNRM50 IPSL50 LMD50 UCLM50 ERAI

CMCC50 0.81/0.30/0.96 0.18 0.14 0.13 0.18 0.16
CNRM50 0.18 0.76/0.05/0.97 0.16 0.15 0.19 0.20
IPSL50 0.14 0.16 0.81/0.52/0.98 0.11 0.15 0.20
LMD50 0.13 0.15 0.11 0.83/0.43/0.96 0.13 0.16
UCLM50 0.18 0.19 0.15 0.13 0.76/0.24/0.96 0.21
ERAI 0.16 0.20 0.20 0.16 0.21 0.76/0.13/0.97

with high land–atmosphere coupling strength. The difficulty
to represent soil conditions and surface fluxes is then in-
creased (Cheruy et al., 2015; Boe and Terray, 2014; Fischer
et al., 2007; Knist et al., 2017). The interannual correlations
between IWV and Q2 summertime anomalies are indicated
for each model in Table 5, as averaged values over all GPS
stations and minimum and maximum values across all GPS
stations (an attempt was made for GPS IWV and HadISD
Q2 but there were too many missing values). For most sta-
tions, the correlation is higher than 0.5 with a mean value
around 0.8 for the five models. The standard deviation of the
difference between models is around 0.15, which reveals a
good agreement between them. Some stations, however, indi-
cate higher differences, as indicated by the minimum values
that strongly differs between models. IPSL50 and LMD50

models present strong correlation at all stations (r > 0.52 and
0.43, respectively) while it is very weak at some stations
for UCLM50, CNRM50 and ERAI. It can be explained by
a stronger availability of surface humidity in summer, and
then a weaker sensitivity of IWV to the surface moisture
availability. For the drier models (e.g., IPSL50), a dry in-
terannual anomaly of soil moisture will have an impact on
the surface evaporation and then on the IWV anomaly. On
the other hand, over areas where the advection of air masses
from the sea or ocean is a more important driver, the interan-
nual variability of the large-scale dynamics affects both IWV
and surface humidity more strongly than surface processes.
Depending on the area and on the model, Q2 and IWV thus
convey different but complementary information about the
model behavior.
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Figure 4. Monthly values of IWV as a function of monthly val-
ues of 2 m specific humidity (Q2) averaged over all stations where
and when both IWV from GPS and Q2 from HadISD are available.
Monthly means are computed if at least 60 coexisting values ex-
ist (i.e., about two values per day over a possible four). A total of
3238 months are obtained, spread over 42 different stations. The
average number of stations per month is 19 with a maximum of 30
stations). The color of circles corresponding to each model is indi-
cated on the legend. All model outputs have been regridded to the
ERAI grid. The first number indicates the slope of the regression
obtained when considering the same months than observations at
each station, while the second number is the slope of the regression
when considering all months at all grid points (only models).

4.2 Scaling of IWV with temperature

A way to check the behavior of models is to consider the
relationship between IWV and temperature. At global scale,
the scaling of IWV with temperature is expected to follow the
Clausius–Clapeyron (C-C) law, at a rate of about 6 % ◦C−1 to
7 % ◦C−1. At regional scale, this relationship deviates from
C-C due to the strong influence of dynamics (air mass advec-
tion) and moisture availability (e.g., Drobinski et al., 2016).
Figure 5a illustrates the scaling of IWV with temperature
over the SIRTA station, which is representative of most sta-
tions over Europe. For the lower temperature, the scaling
follows the C-C law. Above a critical temperature (Tbreak),
IWV stops increasing at this rate. This critical temperature,
defined as the temperature when the slope of the relation-
ship deviates from C-C, presents spatial variations that are
displayed in Fig. 5c for observations. For most stations, the
critical value is between 15 and 18 ◦C. It is higher for sta-
tions located around the Mediterranean Sea, the Black Sea or
at the eastern edge of the domain, in the Dnieper and Volga
basins. The IWV value corresponding to this critical temper-
ature (which is close to the maximum IWV value reached at

Figure 5. (a) IWV–T (2 m) relationship at SIRTA station from ob-
servations and models. Median values are plotted for observations
and models. The grey band represents the interval between the 20th
and 80th quantiles for observations. The black vertical dashed line
shows Tbreak, the black horizontal dashed line shows IWVbreak, and
the red slant dashed line shows C-C scaling. (b) Median values of
IWV and RH(2 m) as a function of T (2 m) at SIRTA from obser-
vations only. The vertical grey dashed lines indicate the values of
Tb1 and Tb2 (see Sect. 4). (c) Map of Tbreak at all the GPS stations.
(d) Map of IWVbreak at all the GPS stations.

each station) is more variable (Fig. 5d), due to a combined
effect of Tbreak value, orography and latitudinal differences.

Physically, Tbreak corresponds to the value when the rela-
tive humidity significantly decreases due to a lack of humid-
ity sources.

To determine the slope after Tbreak, we can approximate
the expression of IWV:

IWV(T )=
∫ z=TOA

z=0
ρv (T ,z)dz=−

1
g

∫ PTOA

Ps

Q(T,P )dP,

with Q the specific humidity at altitude z, ρv the density of
water vapor in kilograms per cubic meter (kg m−3), Ps the
surface pressure and PTOA the pressure at the top of the at-
mosphere (TOA).

As observed (e.g., Ruzmaikin et al., 2014), on average the
troposphere can be separated into two layers, one being the
boundary layer (BL) and the other one the free troposphere
(FT) – assuming constant humidity within the two layers,
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IWV can be expressed as follows:

IWV(T )≈
1
g
((Ps−PBL)×QBL (TBL)+ (PBL−PTOA)

×QFT (TFT)).

Ps is about 1000 hPa, PTOA between 0 and 10 hPa, and PBL
around 800–850 hPa, so that we can write the following:

(Ps−PBL)= α(PBL−PTOA)∼= αPBL.

For an air mass at temperature T and specific humidity Q,
we can write Q(T )=RH×Qs(T ), with subscript s for satu-
ration and RH for relative humidity, which gives the follow-
ing:

IWV(T )≈
1
g
(αPBL×RHBL×Qs (TBL)+PBL×RHFT

×Qs (TFT)) . (1)

With our simplified profile in two layers, we haveQs(TFT)≈

αQs(TBL) if we consider that TBL is around 280–290 K (Qs
then ranges between ∼ 6 and ∼ 12 g kg−1 according to the
August–Magnus–Roche formula) and TFT around 260 K (for
T < 260 K, the value of T does not affect the value of Qs

much since it has nearly reached its minimum value, being
inferior to 2 g kg−1).

RHFT can approximately be considered as a constant,
close to 30 % in average over Europe (Ruzmaikin et al.,
2014)

Equation (1) can thus be approximated by the following:

IWV(T )≈
α

g
PBL (RHBL+RHFT)×Qs(TBL).

And finally, by differentiation we obtain Eq. (2):

1
IWV

∂IWV
∂T

≈
1
Qs

BL

∂Qs
BL

∂T
+

1
RHBL+RHFT

∂RHBL

∂T
. (2)

The first term of the right-hand side (RHS) of Eq. (2) is the
variation in the water-holding capacity of the atmosphere at
temperature T and is thus the Clausius–Clapeyron rate (∼
7 % C◦−1 at 25 ◦C).

At temperatures lower than Tbreak, RH is nearly constant,
so that the second term of RHS of Eq. (2) is close to zero
and the slope of IWV as a function of temperature follows
C-C. According to Eq. (2), the deviation of the slope from
C-C after Tbreak should correspond more or less to the rate of
RH decrease, which depends on the considered station. Fig-
ure 5b shows RH and IWV as a function of T for SIRTA ob-
servations. RH starts to decrease significantly at T ∼ 13 ◦C
(hereafter called Tb1), while the IWV curve is deflected at
T ∼ 16 ◦C (hereafter called Tb2). Table 6 indicates the val-
ues of the left-hand-side term of Eq. (2) and the second term
of the right-hand side of Eq. (2) before Tb1 (at 10 ◦C) and
after Tb2 (at 20 ◦C). In spite of the important approximations

done to obtain Eq. (2), the RH variations in the boundary
layer thus explain to the first order the scaling of IWV with
T . The determination of humidity sources that explain the
RH variability are thus crucial.

Figure 5a indicates that despite the bias at low tempera-
ture, models generally capture the deviation from C-C and
the IWV maximum value that is reached at high tempera-
ture, except for the UCLM model for which IWV contin-
ues to increase slightly with T . Note that the model slopes
at low T are a bit lower than that of the C-C law and that
derived from the observations. They are also often slightly
different above the critical value, indicating some difficul-
ties in simulating the relative humidity decrease. Figure 6a
shows the model ensemble mean of the scaling at the SIRTA
station. It confirms that the deviation from C-C exists but
the transition is smoother in the models than in the obser-
vations which makes the estimate of Tbreak more uncertain at
this station. However, some stations show more abrupt transi-
tions (not shown). For the ensemble, due to the smooth tran-
sition, Tbreak is thus defined as the temperature value when
IWV stops increasing (i.e., when it reaches its hiatus value).
Figure 6b and c indicate the model ensemble mean value of
Tbreak and the corresponding IWVbreak. The models capture
the spatial pattern of Tbreak, especially the higher values close
to the Mediterranean, the Black Sea and in the eastern edge
of the domain, but tend to overestimate it compared to the
observations (Fig. 5c) but as already said, the uncertainty on
the Tbreak estimate is quite high. The maximum value of IWV
is also generally well simulated by the models, except over
the northern part of the domain where the UCLM50 simula-
tion does not always capture this break (as seen in Fig. 5a),
indicating an overestimation of relative humidity.

The link between the IWV and RH evolutions for the
model ensemble is shown in Fig. 6a. Once again, the tran-
sition from one regime to another is smoother than for ob-
servations (Fig. 5b), but the decrease in RH starts around the
same range of temperature as for the transition of IWV–T re-
lationship. Table 6 confirms that in model RH variations in
the boundary layer also explain to a good degree the scaling
of IWV with T .

In conclusion to this section, models tend to overestimate
low values of IWV. Although they generally capture the IWV
scaling with temperature well, small-scale processes also ex-
plain part of the standard deviation (not only induced by the
deviations from driving data) when considering the differ-
ences with GPS IWV data. In the next section, we consider
the impact of these humidity biases in models of light pre-
cipitation occurrence.

www.atmos-chem-phys.net/19/1471/2019/ Atmos. Chem. Phys., 19, 1471–1490, 2019



1482 S. Bastin et al.: Impact of humidity biases on light precipitation occurrence

Table 6. Values of the left-hand side (LHS), second term of the right-hand side (RHS) and total RHS of Eq. (2) computed for the SIRTA site
for two different temperatures (10 and 20 ◦C), according to Fig. 5d for observations and Fig. 6a for models.

10 ◦C 20 ◦C

LHS RHS, term 2 RHS total LHS RHS, term 2 RHS total

OBS IWV ∼
15 kg m−2

Slope=
1 kg m−2 ◦C−1

Value
= 6.6 % ◦C−1

RH ∼ 85 %+ 30 %
Slope =−0.8 % ◦C−1

Value =−0.7 % ◦C−1

6.6–0.7=
5.9 % ◦C−1

IWV ∼
23 kg m−2

Slope =

0.5 kg m−2 ◦C−1

Value
= 2.2 % ◦C−1

RH ∼ 60%+ 30 %
Slope =
−3 % ◦C−1

Value =
−3.3 % ◦C−1

6.2–3.3=
2.9 % ◦C−1

IPSL50 IWV ∼
15 kg m−2

Slope =
0.8 kg m−2 ◦C−1

Value
= 5.2 % ◦C−1

RH ∼ 80 %+ 30 %
Slope =
−0.8 % ◦C−1

Value =−0.7 % ◦C−1

6.6–0.7=
5.9 % ◦C−1

IWV ∼
22 kg m−2

Slope =
0.2 kg m−2 ◦C−1

Value
= 1.1 % ◦C−1

RH ∼ 47 %+30 %
Slope =
−3 % ◦C−1

Value =
−3.9 % ◦C−1

6.2–3.9=
2.3 % ◦C−1

Model
ensemble

IWV ∼
16.5 kg m−2

Slope =
1 kg m−2 ◦C−1

Value
= 6.1 % ◦C−1

RH ∼ 90 %+30 %
Slope =
−0.6 % ◦C−1

Value =−0.5 % ◦C−1

6.6–0.5=
6.1 % ◦C−1

IWV ∼
25 kg m−2

Slope =
0.4 kg m−2 ◦C−1

Value
= 1.6 % ◦C−1

RH ∼ 70%+ 30 %
Slope =
−4 % ◦C−1

Value =−4 % ◦C−1

6.2–4=
2.2 % ◦C−1

5 Impact of model biases on light precipitation

5.1 Over SIRTA

Figure 7 displays the 50th percentile of precipitation (com-
puted including days without precipitation) as a function of
IWV for four different bins of mean tropospheric tempera-
ture for both observations and the models (see Sect. 3 for
the details of the methodology). The observations are con-
sidered for the period 2008–2015 and the different models
for the period 2001–2008 (i.e., the same number of years,
despite the time shift). For all these datasets, there exists
a critical value of IWV, wc, over which precipitation starts
to increase. The values of these critical values are deter-
mined from Fig. 7 following the methodology indicated in
Sect. 3.3. The critical value depends on temperature (it in-
creases with temperature) and on the models, as shown in
Fig. 8a. UCLM50 presents lower critical values of IWV than
observations at all temperatures, and also CNRM50 at high
temperatures. This means that in these models the precipi-
tation begins in a drier atmosphere than that which begins
to produce rain in the observations. On the contrary, for
CMCC50, at high temperature, the atmosphere needs to be
as wet or wetter than what is observed to trigger precipita-
tion. IPSL50 and LMD50 present similar values than obser-
vations for this critical value. CNRM50 and UCLM50 are the
two models, which present light precipitation too often and
not enough days without precipitation (Fig. 2).

The second reason for the high frequency of occurrence
of very light precipitation in these models is that the prob-
ability of exceeding this critical value of IWV is strongly
overestimated in these two models in comparison with ob-
servations (Fig. 8b). Statistically speaking, it means that the
models that are too humid have a positive bias in light precip-
itation. For CMCC, the dipole between winter and summer
observed in the estimate of nonprecipitating days is also ob-
served here: though the critical value of IWV is correct at
low and moderate T , the probability of exceeding it is too
strong, i.e., typically during winter, which explains why it
rains too much during winter, while it is not the case dur-
ing summer, with very low probability of exceeding the high
critical value of IWV. IPSL model is dry both in terms of hu-
midity and precipitation, and LMD50 follows observations
but with a slightly higher probability of exceeding the criti-
cal value. It is also important to note that the underestimation
of nonprecipitating days for all models in winter is consis-
tent with the systematic overestimation of low values of IWV
(Figs. 3, 4, 5).

In addition to the period 2001–2008 discussed above, we
tested two other 8-year periods (1989–1996 and 1995–2002)
and the entire period (1989–2008) to assess the influence of
the considered period on the results. Figure S1 in the Supple-
ment and Table 7 show that results are rather robust among
models and periods, though some uncertainty exists in both
wc and the probability of exceeding it. The maximum rela-
tive variability in wc for one model is around 25 %, which is
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Table 7. Period for which the maximum value of the temperature bin (T ) and the critical value of IWV (wc) is reached. Period 1 is for 1989–
1996, P2 for 1995–2002 and P3 for 2001–2008. The second number in the column of wc corresponds to the maximum relative variability of
IWV computed as ((max(wc)-min(wc))/mean(wc)) for each temperature bin and each model.

Bin1-253 K Bin2-257K Bin3-261K Bin4-264K

T wc T wc T wc T wc

IPSL50 P1 P1/7 % P3 P3/10 % P3 P2/11 % P3 P1/9 %
CMCC50 P1 P3/15 % P3 P2/7 % P3 P1/15 % P3 P1/6 %
LMD50 P1 P1/22 % P3 P3/5 % P3 P3/17 % P3 P3/19 %
CNRM50 P1 P1/20 % P3 P3/7 % P3 P3/8 % P3 P2/16 %
UCLM50 P1 P1/4 % P3 P2/11 % P3 P3/6 % P3 P3/24 %

Figure 6. (a) Scaling of IWV (black) and RH (blue) with temper-
ature for the model ensemble at SIRTA station. Solid lines are for
quantile 50 and dashed lines are for quantiles 20 and 80 of the dis-
tributions. The red slant dashed line shows C-C scaling. Panels (b)
and (c) are as in Fig. 5c, d but for the model ensemble.

small compared to the maximum difference when consider-
ing all values from all models that is 58 % for bin 1 (253 K),
73 % for bin 2 (257 K), 63 % for bin 3 (261 K) and 64 % for
bin 4 (264 K). The warming of the tropospheric temperature
due to climate change is also visible in Fig. S1 and in Table 7
since for all models and for the three warmer temperature
bins, the warmer temperature is obtained during the most
recent period (2001–2008; i.e., period 3). On the contrary,
lower temperatures (first bin) tend to decrease, indicating a
tendency of the distribution to become wider. We can note
that due to the variability of the critical value of IWV and

the variability of T inside each bin, the maximum value of
wc inside each bin is not always obtained during the period
of maximum temperature. For the first bin, four models out
of six indicate a higher value of wc during the first period,
which is the warmer for this bin. For the other three bins, the
maximum temperature is obtained for all six models during
the most recent period, i.e., period 3 (100 % of values), while
this period gets only 39 % (7 out of 18 cases) of maximum
wc values, and the three other periods represent about 20 %
each.

5.2 Generalization

To have an idea of the models’ behavior over other parts of
Europe, several other stations are considered in this section.
Their locations are shown in Fig. 1b by black diamonds and
details are given in Table 8. Except for Marseille located in
the south of France where the COMEPHORE product asso-
ciated with GPS has been used, the model outputs are not
compared with observations for the other stations. Figure 9
displays the occurrence of nonprecipitating days for the dif-
ferent models and from the COMEPHORE product at the
station location when available (over France), wc values as
a function of temperature and the percentage of IWV values
that exceed wc as a function of temperature. The observed
frequency of occurrence of nonprecipitating days is slightly
higher in Marseille, located in the dry southern France, than
in the northern part of France (SIRTA). Most of the models
(except CNRM50) overestimate this north–south gradient.
For instance, for UCLM50, the frequency is between 80 %
and 90 % at Marseille, while it is around 15 % at SIRTA.
Several other characteristics of the models’ behavior do not
depend much on the station: CNRM50 always simulates less
occurrence of nonprecipitating days than other models and
simulates a rather flat annual cycle; the annual cycle simu-
lated by CMCC50 is always very intense, with a much higher
frequency of occurrence of nonprecipitating days in summer
than in winter, and IPSL is always the model with the highest
frequency of occurrence of nonprecipitating days; UCLM50
and LMD50 are between CNRM50 and IPSL50, with a ten-
dency to simulate many days with very light precipitation
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Figure 7. The 50th quantile of precipitation as a function of IWV for four different bins of tropospheric temperature at 48.7◦ N, 2.2◦ E
(SIRTA). (a) SIRTA-ReOBS observations. (b) CMCC50. (c) IPSL50. (d) LMD50. (e) CNRM50. (f) UCLM50. Observations are analyzed
for the period 2008–2015, and models for the period 2001–2008. The values of T indicated in the legends correspond to the mean values in
the bins that have been chosen as indicated in the text.

at the northern stations (Figs. 2 and 9g, m) but not at the
southern ones (Fig. 9a, d). In the eastern part of the domain
(Fig. 9j), the annual cycle of precipitation simulated by mod-
els is a bit different than elsewhere, with two drier periods in
spring and fall.

To relate these characteristics to temperature and humid-
ity, we reproduced the analysis done at SIRTA. The value
of the critical value of IWV over which precipitation starts
to increase is generally similar among models, despite in-
creasing dispersion with temperature. This value depends on
the stations, indicating the influence of local specificities in
the estimation of this relationship. For instance, UCLM50,

which is the model with the most important difference be-
tween southern and northern stations for the annual cycle of
dry days, also indicates strong differences in thewc for a sim-
ilar temperature, with a critical value around 25 kg m−2 in
Marseille for a tropospheric temperature of 260 K (Fig. 9b),
while it is ∼ 12 kg m−2 in the Netherlands (Fig. 9n). The na-
ture of precipitation, more or less convective, likely explains
these differences. The probability of exceeding the critical
value is the most discriminant parameter between models and
between seasons. Results are robust and confirm the impor-
tance of the relationship between temperature, IWV and light
precipitation: for a given bin of temperature if the model is
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Table 8. Latitude/longitude/altitude (◦/◦/m) of the closest grid point of each model for the GPS stations used.

LMD50 CNRM50 UCLM50 CMCC50 IPSL50

SIRTA 48.7/2.3/99 48.6/2.1/125 48.6/2.5/84 48.5/2.1/123 48.7/2.6/103
48.7/2.2/156
Marseille 43.3/5.4/132 43.5/5.1/35 43.1/5.6/0 43.2/5.5/112 43.1/5.6/61
43.3/5.4/12
Madrid 40.3/−4.4/731 40.5/−4.2/1130 40.4/−4.2/759 40.5/−4.5/922 40.4/−4.2/750
40.4/− 4.2/777
Dresden 51.1/13.7/228 51.1/13.8/177 51.1/13.9/256 50.9/14.0/277 51.1/14.0/273
51.0/13.0/160
Kootwijk 52.0/5.8/17 52.2/5.8/32 52.2/5.5/15 52.1/5.9/22 52.1/6.1/13
52.2/5.8/53
Poltava 49.6/34.6/125 49.7/34.5/145 49.8/34.6/132 49.8/34.6/132 49.4/34.8/118
49.6/34.5/160

Figure 8. (a) Critical value of IWV at 48.7◦ N, 2.8◦ E over which
50th quantile precipitation significantly increases as a function of
the mean tropospheric temperature. Each color corresponds to a
different model (see legend for details). The period considered is
2001–2008. Solid black line is for observations from the SIRTA-
ReOBS dataset between 2008 and 2015 and dashed black line is for
SIRTA-ReOBS with ERA-Interim tropospheric temperature instead
of tropospheric temperature from radiosoundings. (b) Probability of
IWV exceeding the critical value for each dataset.

too humid (higher probability of exceeding the threshold), it
rains too often.

6 Conclusions

This work uses GPS integrated water vapor measurements
associated with temperature and precipitation measurements

to (i) estimate the biases of six regional climate models over
Europe in terms of humidity; (ii) understand their origins;
and (iii) finally assess the impact of these biases on the oc-
currence of precipitation.

The first part of the study aimed at evaluating the mean
bias and standard deviations of IWV in models compared
to GPS measurements at interannual, seasonal and daily
timescales. An interesting result is that all models overes-
timate the lower values of IWV (nighttime, wintertime) at
all stations. The spread among models is increased during
summertime. Our analysis suggests that the model physics
mostly explain the mean biases, while dynamics affects the
variability. The use of nudging towards reanalyses thus im-
proves the representation of the large-scale advection of air
masses and reduces the standard deviation of differences be-
tween GPS retrieved IWV values and simulated ones. The
land surface–atmosphere interactions are crucial in the esti-
mation of IWV over most part of Europe, especially in sum-
mer, and explain part of the mean biases. However, the rela-
tionship between IWV and temperature, which deviates from
the Clausius–Clapeyron law after a critical value of tempera-
ture, is generally well captured by models. This critical tem-
perature presents a spatial variability since it corresponds to
the value when relative humidity starts to decrease. It is thus
strongly dependent on local processes which drive the local
humidity sources (from evaporation and advection). This ex-
plains why the maximum values of IWV are not necessarily
observed over warmer areas, which often corresponds to dry
areas, where a soil-moisture-limited regime is dominant.

The improvement in humidity representation may also
help in the representation of precipitation distribution. In-
deed, in the second part of this study, it is shown that the
biases in IWV and most importantly IWV’s distributions as
a function of temperature strongly impact the occurrence of
light precipitation over France, and most generally over areas
where convection is the main process of precipitation trigger-
ing. For each range of mean tropospheric temperature, there
exists a critical value of IWV over which a pickup in precipi-
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Figure 9. (a, d, g, j, m) Annual cycle of occurrence of nonprecipitating days for the different models and COMEPHORE in black in panel
(a) (same legend as Fig. 8 for models). (b, e, h, k, n) Value of wc (maximum value) as a function of tropospheric temperature. (c, f, i, l,
o) Probability of exceeding wc value. First row is for the station located in southern France (Marseille), second row for the one located in
central Spain (Madrid), third row for the station in eastern Germany (Dresden), fourth row in Ukraine, and fifth row in the Netherlands (see
Table 8 and Fig. 1 for details on the locations of the stations).

tation occurs. This is observed and simulated by models, but
the critical values and the probability of exceeding them vary
between models and observations. Models which present
light precipitation too often generally show lower critical val-
ues and higher probability of exceeding them. Thus, a bet-
ter knowledge and representation of the triggering thresh-
olds of precipitation and of their variability should poten-
tially help to improve the representation of the whole precip-
itation distribution in models. The ensemble of simulations
with implicit and explicit convection that will be performed
in the framework of the Flagship Pilot Studies’ convective-
permitting climate simulation of the CORDEX project will
allow us to assess the sensitivity of precipitation triggering
and distribution to the model resolution. Issues that will be
explored in more detail following this work will be the role of
humidity in (i) the triggering of precipitation in simulations
at different resolution, (ii) the low precipitation rates (precip-
itation efficiency) and (iii) the impact of too-easy triggering
in the entire precipitation distribution.
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