Electronic supplementary information

Figure S1 The first order decay rate of SF_{6} in the chamber

Figure S2 Calibration curve for each alkane from FTIR by plotting the integrated absorbance against known mixing ratio of the hydrocarbon (ppmv).

Figure S3. Experimental and simulated $\mathrm{NO}_{3}, \mathrm{~N}_{2} \mathrm{O}_{5}$ and NO_{2} concentration profiles versus reaction time. Measured $\mathrm{NO}_{3}(\boldsymbol{\Delta}), \mathrm{N}_{2} \mathrm{O}_{5}(\bullet)$ and $\mathrm{NO}_{2}(\bullet)$ are shown along with their simulated temporal profiles $\left(-\mathrm{NO}_{3},-\mathrm{N}_{2} \mathrm{O}_{5},-\mathrm{NO}_{2}\right)$. Also shown is NO_{2} concentration calculated from the Keq and the observed of $\mathrm{N}_{2} \mathrm{O}_{5}$ and NO_{3} concentrations (\mathbf{O}). Top panel: 0 ppmv $\mathrm{C}_{2} \mathrm{H}_{6}$. Middle panel: 1106 ppmv $\mathrm{C}_{2} \mathrm{H}_{6}$ and secondary reactions not included, yields a value of $\mathrm{k}_{2}=7.60 \times 10^{-19}$ molecule $\mathrm{cm}^{3} \mathrm{~s}^{-1}$. Bottom panel: 1106 ppmv $\mathrm{C}_{2} \mathrm{H}_{6}$ with secondary reactions included (see Table 1), yields a value of $\mathrm{k}_{2}=4.23 \times 10^{-19}$ molecule $\mathrm{cm}^{-1} \mathrm{~s}^{-1}$.

Figure $\mathrm{S}_{4} \mathrm{NO}_{3}$ and $\mathrm{N}_{2} \mathrm{O}_{5}$ profiles from chamber experiment cyclopentane reacting with NO_{3} radicals (The blue bar indicates the time at which cyclopentane was injected into the chamber and the time it took for complete mixing.). Two separate reaction periods are noted in the figure. Fitting the observed profile within these two periods yielded the same value for the rate coefficient.

Figure S5. Experimental and simulated $\mathrm{NO}_{3}, \mathrm{~N}_{2} \mathrm{O}_{5}$ and NO_{2} concentration profiles versus reaction time. Measured $\mathrm{NO}_{3}(\star), \mathrm{N}_{2} \mathrm{O}_{5}(\bullet)$ and $\mathrm{NO}_{2}(\bullet)$ are shown along with their simulated temporal profiles $\left(-\mathrm{NO}_{3},-\mathrm{N}_{2} \mathrm{O}_{5},-\mathrm{NO}_{2}\right)$. Also shown is NO_{2} concentration calculated from the Keq and the observed of $\mathrm{N}_{2} \mathrm{O}_{5}$ and NO_{3} concentrations (\mathbf{O}). Top panel: $0 \mathrm{ppmv} \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$. Middle panel: $19.72 \mathrm{ppmv} \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$ and secondary reactions not included, yields a value of $\mathrm{k}_{4}=3.10 \times$ 10^{-17} molecule ${ }^{-1} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. Bottom panel: $19.72 \mathrm{ppmv} \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$ with secondary reactions included (see Table 1), yields a value of $\mathrm{k}_{4}=1.35 \times 10^{-17}$ molecule $^{-1} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.

Figure S6. Experimental and simulated $\mathrm{NO}_{3}, \mathrm{~N}_{2} \mathrm{O}_{5}$ and NO_{2} concentration profiles versus reaction time. Measured $\mathrm{NO}_{3}(\star), \mathrm{N}_{2} \mathrm{O}_{5}(\bullet)$ and $\mathrm{NO}_{2}(\bullet)$ are shown along with their simulated temporal profiles $\left(-\mathrm{NO}_{3},-\mathrm{N}_{2} \mathrm{O}_{5},-\mathrm{NO}_{2}\right)$. Also shown is NO_{2} concentration calculated from the Keq and the observed of $\mathrm{N}_{2} \mathrm{O}_{5}$ and NO_{3} concentrations (\mathbf{O}). Top panel: 0 ppmv iso- $\mathrm{C}_{4} \mathrm{H}_{10}$. Middle panel: 19.72 ppmv iso- $\mathrm{C}_{4} \mathrm{H}_{10}$ and secondary reactions not included, yields a value of $\mathrm{k}_{5}=1.40 \times$ 10^{-16} molecule ${ }^{-1} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. Bottom panel: 19.72 ppmv iso- $\mathrm{C}_{4} \mathrm{H}_{10}$ with secondary reactions included (see Table 1), yields a value of $\mathrm{k}_{5}=8.21 \times 10^{-17}$ molecule $^{-1} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.

Figure S7. Experimental and simulated $\mathrm{NO}_{3}, \mathrm{~N}_{2} \mathrm{O}_{5}$ and NO_{2} concentration profiles versus reaction time. Measured $\mathrm{NO}_{3}(\boldsymbol{\star}), \mathrm{N}_{2} \mathrm{O}_{5}(\bullet)$ and $\mathrm{NO}_{2}(\bullet)$ are shown along with their simulated temporal profiles $\left(-\mathrm{NO}_{3},-\mathrm{N}_{2} \mathrm{O}_{5},-\mathrm{NO}_{2}\right)$. Also shown is NO_{2} concentration calculated from the Keq and the observed of $\mathrm{N}_{2} \mathrm{O}_{5}$ and NO_{3} concentrations (\mathbf{O}). Top panel: $0 \mathrm{ppmv} 2,3$-dimethy butane. Middle panel: 0.38 ppmv 2,3-dimethy butane and secondary reactions not included, yields a value of $\mathrm{k}_{6}=1.25 \times$ 10^{-15} molecule $\mathrm{cm}^{3} \mathrm{~s}^{-1}$. Bottom panel: $0.38 \mathrm{ppmv} 2,3$-dimethy butane with secondary reactions included (see Table 1), yields a value of $\mathrm{k}_{6}=6.32 \times 10^{-16}$ molecule $^{-1} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.

Figure S8. Experimental and simulated $\mathrm{NO}_{3}, \mathrm{~N}_{2} \mathrm{O}_{5}$ and NO_{2} concentration profiles versus reaction time. Measured $\mathrm{NO}_{3}(\star), \mathrm{N}_{2} \mathrm{O}_{5}(\bullet)$ and $\mathrm{NO}_{2}(\bullet)$ are shown along with their simulated temporal profiles $\left(-\mathrm{NO}_{3},-\mathrm{N}_{2} \mathrm{O}_{5},-\mathrm{NO}_{2}\right)$. Also shown is NO_{2} concentration calculated from the Keq and the observed of $\mathrm{N}_{2} \mathrm{O}_{5}$ and NO_{3} concentrations (\mathbf{O}). Top panel: 0 ppmv cyclopentane. Middle panel: 0.63 ppmv cyclopentane and secondary reactions not included, yields a value of $\mathrm{k}_{7}=2.60 \times$ 10^{-16} molecule ${ }^{-1} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. Bottom panel: 0.63 ppmv cyclopentane with secondary reactions included (see Table 1), yields a value of $\mathrm{k}_{7}=1.29 \times 10^{-16}$ molecule $^{-1} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.

Figure S9. Experimental and simulated $\mathrm{NO}_{3}, \mathrm{~N}_{2} \mathrm{O}_{5}$ and NO_{2} concentration profiles versus reaction time. Measured $\mathrm{NO}_{3}(\star), \mathrm{N}_{2} \mathrm{O}_{5}(\bullet)$ and $\mathrm{NO}_{2}(\bullet)$ are shown along with their simulated temporal profiles $\left(-\mathrm{NO}_{3},-\mathrm{N}_{2} \mathrm{O}_{5},-\mathrm{NO}_{2}\right)$. Also shown is NO_{2} concentration calculated from the Keq and the observed of $\mathrm{N}_{2} \mathrm{O}_{5}$ and NO_{3} concentrations (\mathbf{O}). Top panel: 0 ppmv cyclohexane. Middle panel: 1.54 ppmv cyclohexane and secondary reactions not included, yields a value of $\mathrm{k}_{8}=2.50 \times$ 10^{-16} molecule ${ }^{-1} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. Bottom panel: 1.54 ppmv cyclohexane with secondary reactions included (see Table 1), yields a value of $\mathrm{k}_{8}=1.27 \times 10^{-16}$ molecule $^{-1} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.

Table S 1 : Reactions of the products of the NO_{3} reaction with alkanes and reactive
impurities in the presence of O_{2} and nitrogen oxides those were included in simulating the temporal profiles of NO_{3} and $\mathrm{N}_{2} \mathrm{O}_{5}$.

Reaction	Rate coefficients $298 \mathrm{~K}, 1$ bar air $\left(\mathrm{cm}^{3}\right.$ molecule $^{-1} \mathrm{~s}^{-1}$ or s$\left.^{-1}\right)$	Reference
alkane $+\mathrm{NO}_{3} \xrightarrow{\mathrm{k}_{x}} \mathrm{R}_{1}+\mathrm{HNO}_{3}$	$\mathrm{k}_{\mathrm{x}}\left(\mathrm{k}_{1}-\mathrm{k}_{8}\right)$	This work
$\mathrm{N}_{2} \mathrm{O}_{5} \xrightarrow{\mathrm{k}_{9}} \mathrm{NO}_{3}+\mathrm{NO}_{2}$	0.0369	a
$\mathrm{NO}_{3}+\mathrm{NO}_{2} \xrightarrow{\mathrm{k}_{10}} \mathrm{~N}_{2} \mathrm{O}_{5}$	1.35×10^{-12}	a
$\mathrm{NO}_{3} \xrightarrow{\mathrm{k}_{11}}$ loss	k_{11}	b
$\mathrm{N}_{2} \mathrm{O}_{5} \xrightarrow{\mathrm{k}_{12}}$ loss	k_{12}	b
$\mathrm{R}_{1}+\mathrm{O}_{2} \xrightarrow{\mathrm{k}_{13}} \mathrm{R}_{1} \mathrm{O}_{2}$	10^{-11}	c
$\mathrm{R}_{1} \mathrm{O}_{2}+\mathrm{NO}_{3} \xrightarrow{\mathrm{k}_{14}} \mathrm{R}_{1} \mathrm{O}+\mathrm{NO}_{2}$		
$\mathrm{R}_{1}: \mathrm{CH}_{3}$	1.2×10^{-12}	d
R_{1} : $\mathrm{C}_{2} \mathrm{H}_{5}$ and other alkyl radical	2.3×10^{-12}	e
$\mathrm{R}_{1} \mathrm{O}_{2}+\mathrm{R}_{1} \mathrm{O}_{2} \xrightarrow{\mathrm{k}_{15}} 2 \mathrm{R}_{1} \mathrm{O}$		
$\mathrm{R}_{1}: \mathrm{CH}_{3}$	3.5×10^{-13}	f
$\mathrm{R}_{1}: \mathrm{C}_{2} \mathrm{H}_{5}$	7.6×10^{-14}	f
$\mathrm{R}_{1}: \mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	3×10^{-13}	f
$\mathrm{R}_{1}: \mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7}$	1×10^{-15}	f
R_{1} : s-C $\mathrm{C}_{4} \mathrm{H}_{9}$	2.5×10^{-13}	g
R_{1} : $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}$	6.7×10^{-15}	g
R_{1} : cycle- $\mathrm{C}_{6} \mathrm{H}_{5}$	2.5×10^{-13}	g
$\mathrm{R}_{1} \mathrm{O}_{2}+\mathrm{NO}_{2} \xrightarrow{\mathrm{k}_{16}} \mathrm{R}_{1} \mathrm{O}_{2} \mathrm{NO}_{2}$		
$\mathrm{R}_{1}: \mathrm{CH}_{3}$	4.0×10^{-12}	c
$\mathrm{R}_{1}: \mathrm{C}_{2} \mathrm{H}_{5}$ and other alkyl radical	5.1×10^{-12}	c
$\mathrm{R}_{1} \mathrm{O}_{2} \mathrm{NO}_{2} \xrightarrow{\mathrm{k}_{17}} \mathrm{R}_{1} \mathrm{O}_{2}+\mathrm{NO}_{2}$		
$\mathrm{R}_{1}: \mathrm{CH}_{3}$	1.5	c
R_{1} : $\mathrm{C}_{2} \mathrm{H}_{5}$ and other alkyl radical	3.4	c
$\mathrm{R}_{1} \mathrm{O}+\mathrm{O}_{2} \xrightarrow{\mathrm{k}_{18}} \mathrm{R}_{2} \mathrm{CHO}+\mathrm{HO}_{2}$	7.14×10^{-14}	g

$\mathrm{R}_{1} \mathrm{O}_{2}+\mathrm{HO}_{2} \xrightarrow{\mathrm{k}_{19}} \mathrm{R}_{1} \mathrm{OOH}+\mathrm{O}_{2}$		
$\mathrm{R}_{1}: \mathrm{CH}_{3}$	5.2×10^{-12}	f
$\mathrm{R}_{1}: \mathrm{C}_{2} \mathrm{H}_{5}$	7.97×10^{-12}	g
R_{1} : $\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7}$	1.19×10^{-11}	g
R_{1} : s-C $\mathrm{C}_{4} \mathrm{H}_{9}$	1.43×10^{-11}	g
R_{1} : $\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}$	1.43×10^{-11}	g
R_{1} : $\mathrm{C}_{6} \mathrm{H}_{13}$	1.76×10^{-11}	g
R_{1} : cycle- $\mathrm{C}_{6} \mathrm{H}_{11}$	1.76×10^{-11}	g
$\mathrm{R}_{2} \mathrm{CHO}+\mathrm{NO}_{3} \xrightarrow{\mathrm{k}_{20}} \mathrm{R}_{3} \mathrm{COOO}+\mathrm{HNO}_{3}$		
R_{3} : H	5.5×10^{-16}	f
$\mathrm{R}_{3}: \mathrm{CH}_{3}$ and other alkyl radical	2.7×10^{-15}	f
$\mathrm{HO}_{2}+\mathrm{NO}_{3} \xrightarrow{\mathrm{k}_{21}} \mathrm{OH}+\mathrm{NO}_{2}+\mathrm{O}_{2}$	4×10^{-12}	f
$\mathrm{OH}+\mathrm{NO}_{3} \xrightarrow{\mathrm{k}_{22}} \mathrm{HO}_{2}+\mathrm{NO}_{2}$	2×10^{-11}	f
$\mathrm{NO}_{2}+\mathrm{OH} \xrightarrow{\mathrm{k}_{23}} \mathrm{HONO}_{2} / \mathrm{HOONO}$	6.5×10^{-11}	f
alkene $+\mathrm{NO}_{3} \xrightarrow{\mathrm{k}_{24}} \mathrm{R}_{4} \mathrm{O}_{2}$		
alkene: propene	9.5×10^{-15}	f
$\mathrm{R}_{4} \mathrm{O}_{2}+\mathrm{NO}_{3} \xrightarrow{\mathrm{k}_{25}} \mathrm{R}_{4} \mathrm{O}+\mathrm{NO}_{2}$	2.3×10^{-12}	f
$\mathrm{R}_{4} \mathrm{O}_{2}+\mathrm{R}_{1} \mathrm{O}_{2} \xrightarrow{\mathrm{k}_{26}} \mathrm{R}_{4} \mathrm{O}+\mathrm{R}_{5} \mathrm{OH}+\mathrm{R}_{5} \mathrm{CHO}$	4.0×10^{-14}	f
$\mathrm{R}_{4} \mathrm{O}_{2}+\mathrm{R}_{4} \mathrm{O}_{2} \xrightarrow{\mathrm{k}_{27}} \mathrm{R}_{4} \mathrm{O}+\mathrm{R}_{5} \mathrm{OH}+\mathrm{R}_{5} \mathrm{CHO}$	4.0×10^{-14}	f
$\mathrm{R}_{4} \mathrm{O}+\mathrm{O}_{2} \xrightarrow{\mathrm{k}_{28}} \mathrm{R}_{5} \mathrm{CHO}+\mathrm{HO}_{2}$	7.14×10^{-14}	g

a. J. Burkholder, S. Sander, J. Abbatt, J. Barker, R. Huie, C. Kolb, M. Kurylo, V. Orkin, D. Wilmouth and P. Wine, Nasa panel for data evaluation technical report, 2015.
b. (Derived from the first period of the experiments: observation in the absence of alkanes)
c. R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi and J. Troe, Atmos. Chem. Phys., 2004, 4, 1461-1738.
d. V. Daele, G. Laverdet, G. Le Bras and G. Poulet, J. Phys. Chem., 1995, 99, 1470-1477.
e. A. Ray, V. Daële, I. Vassalli, G. Poulet and G. Le Bras, J. Phys. Chem., 1996, 100, 5737-5744. S.

Vaughan, C. E. Canosa-Mas, C. Pfrang, D. E. Shallcross, L. Watson and R. P. Wayne, Phys Chem Chem Phys, 2006, 8, 3749-3760.
f. R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, J. Troe and I. Subcommittee, Atmos Chem Phys, 2006, 6, 3625-4055.
g. M. E. Jenkin, S. M. Saunders and M. J. Pilling, Atmos. Environ., 1997, 31, 81-104.

Table S2 The specification of each alkane

	$\begin{gathered} \mathrm{N}_{2} \\ \text { (ppmv } \end{gathered}$	$\begin{gathered} \mathrm{O}_{2} \\ \text { (ppmv } \end{gathered}$	$\begin{array}{\|c} \mathrm{H}_{2} \mathrm{O} \\ (\mathrm{ppmv} \end{array}$	$\begin{gathered} \mathrm{H}_{2} \\ \text { (ppmv } \end{gathered}$	$\begin{gathered} \mathrm{CO}_{2} \\ \text { (ppmv } \end{gathered}$	$\begin{aligned} & \mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{m}^{*}} \\ & (\mathrm{ppmv} \end{aligned}$	$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{m} * *}$ (ppmv
$\begin{gathered} \text { Methane } \\ (\geqslant 99.995 \%) \end{gathered}$	$\leqslant 15$	$\leqslant 5$	$\leqslant 5$	$\leqslant 1$	$\leqslant 1$	$\begin{gathered} \leqslant 20 \\ \left(\mathrm{C}_{2} \mathrm{H}_{6} \leqslant 15\right) \end{gathered}$	$\leqslant 20$
$\begin{gathered} \text { Ethane } \\ (\geqslant 99.995 \%) \end{gathered}$	$\leqslant 15$	$\leqslant 3$	$\leqslant 3$	$\leqslant 5$	$\leqslant 1$	$\begin{gathered} \leqslant 20 \\ \left(\mathrm{C}_{2} \mathrm{H}_{4} \leqslant 15\right) \end{gathered}$	$\leqslant 20$
$\begin{gathered} \text { Propane } \\ (\geqslant 99.95 \%) \end{gathered}$	$\leqslant 40$	$\leqslant 10$	$\leqslant 5$	$\leqslant 40$	$\leqslant 5$	$\begin{gathered} \leqslant 200 \\ \left(\mathrm{C}_{3} \mathrm{H}_{6} \leqslant 200\right) \end{gathered}$	$\begin{gathered} \mathrm{C}_{3} \mathrm{H}_{6} \end{gathered} \leqslant \begin{gathered} 50 \\ \mathrm{C}_{4} \mathrm{H}_{8} \end{gathered} \leqslant$
$\begin{gathered} \text { n-butane } \\ (\geqslant 99.95 \%) \end{gathered}$	$\leqslant 40$	$\leqslant 10$	$\leqslant 5$	$\leqslant 40$	$\leqslant 5$	$\leqslant 400$	$\begin{gathered} \mathrm{C}_{3} \mathrm{H}_{6} \leqslant \\ 20 \\ \mathrm{C}_{4} \mathrm{H}_{8} \leqslant \\ 20 \\ \hline \end{gathered}$
iso-butane $(\geqslant 99.95 \%)$	$\leqslant 40$	$\leqslant 10$	$\leqslant 5$	$\leqslant 40$	$\leqslant 5$	$\leqslant 400$	$\begin{gathered} \mathrm{C}_{3} \mathrm{H}_{6} \leqslant \\ 20 \\ \mathrm{C}_{4} \mathrm{H}_{8} \leqslant \\ 20 \end{gathered}$
$\begin{gathered} \text { 2,3-dimethy } \\ \text { butane } \\ (\geqslant 99.5 \%) \end{gathered}$							$\leqslant 20$
Cyclopentane $(\geqslant 99 \%)$						Cyclopentene $\leqslant 500$	$\leqslant 50$
Cyclohexane $(\geqslant 99.5 \%)$			$\leqslant 200$				$\leqslant 20$

* This is the quoted levels of total hydrocarbon impurities in the sample from the vendor supplied.

We assumed that the hydrocarbons could be olefins in assessing some of our measured rate coefficients.
** The impurities in these samples are quantified using a GC-MS, the detection limit of the GC-MS for olefins in alkanes is 20 ppmv .

Table S3. The rate coefficient of NO_{3} radical with ethene derived from absolute method by fitting the observed profiles of NO_{3} and $\mathrm{N}_{2} \mathrm{O}_{5}$ to a least squares algorthm.

Compound	Initial mixing ratio of reactants in the chamber				$\mathrm{k}_{\text {ethene }}{ }^{\text {a }}$	$\mathrm{k}_{\text {ethene }}{ }^{\mathrm{b}}$ incl. systematic errors
	$\begin{aligned} & \mathrm{VOC} \\ & (\mathrm{ppmv}) \end{aligned}$	$\begin{gathered} \mathrm{NO}_{3} \\ \text { (ppbv) } \end{gathered}$	$\begin{aligned} & \mathrm{N}_{2} \mathrm{O}_{5} \\ & \text { (ppbv) } \end{aligned}$	$\begin{gathered} \mathrm{NO}_{2} \\ \text { (ppbv) } \end{gathered}$	$\left(\mathrm{cm}^{3}\right.$ molecule $\left.{ }^{-1} \mathrm{~s}^{-1}\right)$	
ethene	3.48	0.48	16.16	33.79	2.71×10^{-16}	
	6.00	0.59	13.61	23.17	2.26×10^{-16}	
	4.49	0.97	17.76	17.68	2.31×10^{-16}	
				Mean average	$(2.4 \pm 0.5) \times 10^{-16}$	$\begin{gathered} (2.4 \pm 0.6) \times 10^{-} \\ 16 \end{gathered}$

${ }^{\text {a }}$ Quoted error is at the 95% confidence level and is a measure of the precision of our measurements.
It includes Student t-distribution contribution due to the limited number of measurements.
${ }^{\mathrm{b}}$ The quoted errors include estimated systematic errors as described in the text.

