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Abstract The unprecedented detail of measurements by the four Magnetospheric Multiscale (MMS)
spacecraft enable deeper investigation of quasi‐perpendicular collisionless shocks. We compare shock
normals, planarities, and Normal Incidence Frame cross‐shock potentials determined from electric field
measurements and proxies, for a subcritical interplanetary shock and a supercritical bow shock. The
subcritical shock's cross‐shock potential was 26±6 V. The shock scale was 33 km, too short to allow
comparison with proxies from ion moments. Proxies from electron moments provided potential estimates of
40±5 V. Shock normals from magnetic field minimum variance analysis were nearly identical, indicating a
planar front. The supercritical shock's cross‐shock potential was estimated to be from 290 to 440 V from
the different spacecraft measurements, with shock scale 120 km. Reflected ions contaminated the ion‐based
proxies upstream, whereas electron‐based proxies yielded reasonable estimates of 250±50 V. Shock normals
from electric field maximum variance analysis differed, indicating a rippled front.

Plain Language Summary An important problem in shock physics is understanding how the
incoming plasma flow is thermalized across the shock. The role of the cross‐shock electric field has not
been well studied. We compare measurements and implicit estimates of cross‐shock potential for a
quasi‐perpendicular weak (lowMach) shock and a quasi‐perpendicular strong (moderate/high Mach) shock
using data from the four Magnetospheric Multiscale satellites. The weak shock had lower cross‐shock
potential in the Normal Incidence Frame (about 30 V) than the strong shock (about 300 V). We also
estimated the potential deduced from ion and electron data. Electron‐based estimates agreed reasonably well
with the measurements, but ion‐based estimates encountered problems. The weak shock was too short
compared to the ion data sampling period, while the strong shock reflected ions back into the upstream flow.
Data from individual spacecraft indicated that the surface of the strong shock was not flat but rippled, one
reason why its measured potential showed such a broad range.

1. Introduction

The electric cross‐shock potential is an important element of shock structure, influencing energy
redistribution at the shock front (Zank et al., 1996). The potential difference, its distribution across the
shock, and the scale of its variation are of primary importance for understanding physical processes in
shocks. Goodrich and Scudder (2016) were the first to point out the dependence of potential field on the
reference frame and to highlight the role of the potential in the formation of flattop and beam‐like
characteristics of the electron distribution.

Collisionless shocks have been studied for over 60 years, and many satellites have collected in situ
measurements of interplanetary (IP) shocks and Earth's bow shock (International Sun‐Earth Explorer
(ISEE), Sckopke et al., 2010; Cluster and Time History of Events and Macroscale Interactions during
Substorms (THEMIS), Hobara et al., 2010; Polar, Hull et al., 2006; Wind, Wilson et al., 2012). Significant pro-
gress has been made in understanding the mechanisms of energy transformation from the directed ion flow
to the thermal and suprathermal populations (see reviews by Bale et al., 2005; Krasnoselskikh et al., 2013,
and references therein). The structure of the magnetic field shock front; evolution of ion and electron
distribution functions; and characteristics of waves upstream, inside, and downstream of the shock have
been reported in numerous publications (Krasnoselskikh et al., 2013). However, there are only a few
publications devoted to measurements of electric field and electrostatic potential across the shock (Bale
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et al., 2008; Bale & Mozer, 2007; M. Balikhin et al., 2005; M. A. Balikhin et al., 2002; Dimmock et al., 2011,
2012; Formisano, 1982; Heppner et al., 1984; Hobara et al., 1978; Scudder, Mangeney, Lacombe, Harvey,
Aggson, Anderson, et al., 1986; Scudder, Mangeney, Lacombe, Harvey, & Aggson, 1986; Scudder,
Mangeney, Lacombe, Harvey, Wu, et al., 1986; Walker et al., 2004; Wygant et al., 1987). One reason for
the scarcity of electric field data is associated with the difficulty of the measurement.

Three methods to handle measurements of the electric field were discussed by Dimmock et al. (2011). The
first is to neglect the effects of the spin‐axis component by projecting the spin‐plane measurements onto
the shock normal. This allows evaluation of the field and electrostatic potential when the rotation axis is
close to the magnetic field direction. Two other techniques rely on reconstructing the spin‐axis component
based on assumptions about the electric field structure.

The second technique requires that the electric field component parallel to the magnetic field is zero. In con-
trast, the third technique supposes that the Normal Incidence Frame (NIF) electric field consists of only two
contributions: one from v × B, which is supposed to be constant along the shock crossing, and the other from
the electric field along the shock normal. The shock is assumed both planar and stationary, implying that
only the magnetic field component perpendicular to the shock normal (i.e., B × n) contributes to v × B, lead-
ing to the requirement E · (B × n) = 0. Dimmock et al. (2011) applied all three techniques to a single shock
and reached the surprising conclusion that the different techniques yielded similar values of the potential.

There is also an indirect approach for evaluating the electrostatic potential, based on a theoretical hydrody-
namic description of the shock, assuming planarity, stationarity, and no reflected ions. These assumptions
are suitable for subcritical, low‐Mach shocks. With the additional assumption that the shock transition is
smaller than the ion inertial length, in agreement with statistical studies by Hobara et al. (2010) and
Mazelle et al. (2010), one can derive simplified proxies for the potential. These proxies are based on ion decel-
eration, which is mainly determined by the potential in the NIF. Another proxy may be found from a sim-
plified description of electron dynamics, neglecting the electron mass.

Hereafter we discuss two high‐beta, quasi‐perpendicular shocks with multipoint observations from the
Magnetospheric Multiscale (MMS) mission. MMS is a four‐spacecraft constellation, flying in a tetrahedral
formation with typical separation distances of tens of kilometers (Fuselier et al., 2016). The primary science
goal of MMS is to investigate reconnection processes, but the wealth of data provides ample material for the
study of other space plasma phenomena. One of our events of interest is a planar IP shock with low Mach
number, and the other is a rippled bow shock crossing with moderate Mach number. For both events, we
compare the cross‐shock potential profiles obtained from the measurements to proxies computed from the
magnetic field data and particle moments.

2. Characteristic Parameters and Data Overview

Collisionless shocks in space plasma are characterized by several parameters, computed upstream of the
shock, that determine their scales and general behavior:

1. the angle θBn of the shock normal relative to the background magnetic field;
2. magnetosonic Mach number MF, the ratio of the flow speed to the characteristic speed of fast magneto-

sonic waves propagating at angle θBn relative to the background magnetic field;
3. ion and electron β, the ratio of particle pressure to magnetic field pressure; and
4. the ratio of the Alfvén speed vA to the speed of light c, vA/c = Ωi/ωi , where Ωi and ωi are the ion gyrofre-

quency and plasma frequency, respectively.

These parameters form the basis of shock classification. In particular, shocks are divided into two main
groups: quasi‐perpendicular (60° < θBn < 90°), quasi‐parallel (θBn < 40°), and intermediate (θBn between
these extremes). A shock may be considered fully perpendicular if cos(θBn) is less than the ratio of electron
to ion mass. These limits are not precisely determined. Rather, they are based on the trajectories of particles
reflected from the shock front. In quasi‐parallel shocks, the reflected particles can infiltrate the upstream
flow, whereas in quasi‐perpendicular shocks they return to the shock front and eventually cross it.

We present two shocks observed by the four MMS spacecraft: an IP shock with low Mach number observed
on 8 January 2018 and the other is a bow shock crossing with moderate Mach number on 2 November 2017.
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Magnetic field measurements were obtained from the Fluxgate Magnetometer (FGM; Torbert et al., 2016),
and particle data come from the Fast Plasma Investigation (Pollock et al., 2016). While we have performed
the analysis using velocity data from both ions and electrons, we ultimately chose the electron velocity
because it is more accurately measured in the solar wind. We used spin‐plane electric field measurements
(Lindqvist et al., 2016) from three of the MMS spacecraft: MMS 1, 2, and 3. The third component of the elec-
tric field was reconstructed fromE · B= 0 orENIF · (B×n)= 0 (Dimmock et al., 2011). Additional analysis of
the IP shock utilizes magnetic field measurements from the FGMs (Auster et al., 2008) on board the two
ARTEMIS spacecraft (Angelopoulos, 2011).

No cleaning or filtering was applied to the magnetic field data. The IP shock electron velocity data were suf-
ficiently clean, but the electron velocity data for the bow shock crossing were subjected to low‐pass filtering
to remove high‐frequency fluctuations.

Offsets were applied to the electric field components such that each agreed overall with the features of the
solar wind v × B. This electric field data were later used to calculate the cross‐shock potentials. We also
obtained shock normals from the bow shock electric fields after band‐pass filtering.

Oscillations in the form of precursor whistlers and statistical fluctuations in the ion moments are present in
the data of both shocks before and after the ramp. Whistlers do not impact the shock geometry, and any
effect they have on electrostatic potential occurs outside the ramp. Ion moment fluctuations surrounding
the IP shock and preceding the bow shock crossing are most probably spacecraft orientation effects caused
by the nonspecific Fast Plasma Investigationmeasurement regime in the solar wind. The periodic spikes visi-
ble in the IP shock electric field fortunately land on either side of the ramp (the spikes are due to wake effects,
which can be mitigated by the algorithm of (Eriksson et al., 2007); see the dotted trace in Figure 1c). Finally,
in order to shift the electric field from the spacecraft frame to the NI frame, the shock‐tangential components
of the transformation velocity are obtained from averages of the upstream electron velocity data, which has
better statistics in the solar wind and should minimize the effect of oscillations.

2.1. IP shock

An IP shock swept past all fourMMS spacecraft simultaneously on 8 January 2018/06:41:11, while the space-
craft were separated by 15–24 km at [4.3, 22.7, −0.6] (Geocentric Solar Magnetic (GSM) coordinates in RE).
An overview of the data is shown in Figures 1a–1f. (Additional plot of magnetic field components and
detailed table of average plasma parameters are included in the supporting information). The IP shock
had θBn = (69 ± 2)°, βi = 2.8 ± 0.4, βe = 2.29 ± 0.02, Alfvén ratio (1.34 ± 0.01) × 10−4, and MF = 1.1 ± 0.1.
(However, the upstream ion temperature is likely overestimated by MMS. Ion temperature data from
Wind is more reliable and instead yields βi = 0.3 ± 0.1 and MF = 1.5 ± 0.2, close to the subcritical value.)

We determined the shock normal in two ways: minimum variance analysis (MVA) and timing analysis of the
data from the four satellites. MVA was performed on the magnetic field data from each spacecraft (8 January
2018/06:41:07.5–14.5). AllMVA shock normalswerewithin 10° of the timing analysis shock normal and nearly
identical (in the context of the error cone) to each other (see supporting information for details). The second
direction of the full set of basis vectors was obtained by projecting the MMS3 average upstreammagnetic field
onto the plane perpendicular to the shock normal, while the third direction completed the right‐handed set.

2.2. Bow Shock Crossing

MMS passed from the solar wind through the bow shock around 04:26:46 on 2 November 2017. At this time,
the spacecraft were separated by 23–30 km at [24.2, 1.7, 7.0] (GSM coordinates in RE). An overview of the data
is shown in Figures 1g–1l. All four spacecraft passed together through the ramp. (See plot of magnetic field
components and detailed table of average plasma parameters in the supporting information). The bow shock
crossing had θBn= (85 ± 5)°, βi= 1.4 ± 0.2, βe=1.4 ± 0.1, Alfvén ratio (2.1 ± 0.1) × 10−4, andMF= 2.13 ± 0.04.

To estimate the local geometry of the shock surface, maximum variance analysis was performed on the
band‐pass‐filtered electric field data from each spacecraft during the ramp. The results showed significant
deviation from the timing analysis normal, presumably indicating that the shock surface is rippled. MVA
on the magnetic field data was unsuccessful (the intermediate and minimum variance components were
comparable) because of the significant thickness of the shock structure and strong perturbations in the
upstream magnetic field (see supporting information for details).
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We opted to use the timing analysis shock normal, with the full set of basis vectors defined in the sameway as
for the IP shock. The MMS3 upstream magnetic field provided the second direction of the MVA coordinate
system because theMMS3 individual shock normal agreedwell with the timing analysis result. Themagnetic
field, filtered electron velocity, and unfiltered electric field data were all rotated into this coordinate system.

3. Cross‐Shock Potential
3.1. Estimating the Cross‐Shock Potential From Electric Field Measurements

The cross‐shock potential was estimated first in the NIF, where the shock front is at rest and the upstream
bulk flow is normal to the shock. The shock velocity becomes the shock normal component of the transfor-
mation velocity, while the components tangent to the shock surface are the average components of the
upstream electron velocity. The electron velocity and electric field transform accordingly:

vNI ¼ vMVA−vT;NI ;

ENI ¼ EMVA þ vT;NI×B;

where vT, NI is the constant transformation velocity and the electric field is unfiltered.

We integrated the shock normal component of the electric field over the ramp, obtaining cross‐shock poten-
tials for both shocks (see Table S5 in the supporting information for details). Two reconstructions of the

Figure 1. Summary of MMS3 data for (a–f) interplanetary shock on 8 January 2018 and (g–l) bow shock crossing on 2 November 2017. (a, g) Magnetic field (GSM).
(b, h) Electron velocity (GSM). (c, i) Electric field (GSM). (d, j) Ion and electron densities. (e, k) Ion energy flux. (f, l) Electron energy flux. MMS =Magnetospheric
Multiscale; FGM = Fluxgate Magnetometer.
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MMS3 electric field were applied: E · B = 0 and ENIF · (B × n) = 0 (Dimmock et al., 2011), although strictly
speaking the latter is only expected to be valid for low‐Mach shocks. However, even for the IP shock, the sec-
ond reconstruction was hindered by the shock geometry: because the magnetic field is often aligned with the
spacecraft axis, solving for the electric field axial component can lead to division by numbers near zero.
Unrealistically large fluctuations are the result, with a cross‐shock potential at least twice as large as the
value obtained by assuming E · B = 0. Thus, while the technique is theoretically well justified (Dimmock
et al., 2011), we found it inapplicable in our study, yielding unrealistic electric field magnitudes due to the
natural constraints of the inversion procedure. Therefore, we only show the potentials from E · B = 0.

We also attempted to transform the data from the spacecraft frame to the HT frame, using the procedure out-
lined in section 9.3.1 of Khrabrov and Sonnerup (1998). While this transformation minimizes the motional
electric field in the upstream region, in the shock ramp the potential due to the motional electric field
exceeds the potential of the measured electric field, and we did not pursue the transformation further.
However, examination of the magnetic field‐aligned electron distributions can often provide an alternative
estimate of the HT frame potential (Lefebvre et al., 2007).

3.2. Potential Proxies From Moments and Magnetic Field

We computed four proxies of the electric potential (Gedalin & Balikhin, 2004):
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In the above equations, Φv is derived from ion velocity, Φn from ion density, ΦP from balancing thermal and
magnetic pressures, andΦe from the electron equation of motion. Thus, vi is ion velocity along the shock nor-
mal, ni is ion density, Pi is ion thermal pressure, Pe is electron thermal pressure, B is magnetic field magni-
tude, mi is ion mass, e is positive elementary charge, and Bx and By are the magnetic field components
perpendicular to the shock normal. Averaged quantities 〈Xup〉 are computed upstream.

3.3. IP Shock

Timing analysis provided a shock velocity of (330 ± 30) km/s in the spacecraft frame. The shock ramp passed
over MMS3 in 0.1 s. From this, we found the length of the shock crossing to be (33 ± 3) km, smaller than the
ion inertial length of about (69 ± 1) km.

Figures 2a–2d shows theMMS3 proxies and potential (similar plots for MMS1 andMMS2 are available in the
supporting information). The reflected ions (accelerated to ~3–7 keV) seen upstream in Figure 1e comprise
less than 0.05 of the total ion density and thus do not spoil the ion proxies. Their density slowly decays in the
upstream direction, and reflected ions are seen at distances up to 8 RE ahead of the shock. This indicates a
large‐scale planarity of the IP shock. The IP shock velocity and planar geometry were confirmed on the large
scale (~60 RE) by ARTEMIS (THB and THC spacecraft) measurements in a vicinity of the Moon. THB was at
[−8.9, −57.1, 4.2] (Geocentric Solar Ecliptic (GSE) coordinates in RE) and observed the IP shock crossing at
06:50:09 (see Figure S4 in the supporting information). THC was at [−7.1, −58.8, 4.5] and observed the IP
shock crossing at 06:49:53.

The extreme brevity of the shock crossing prevents us from drawing conclusions about the proxies depen-
dent upon ion moments, which have a sampling period similar to the ramp observation. The proxy in
Figure 2c depends only on electron moments and shows a flat approach to and smooth increase during
the ramp, on the order of (42 ± 10) V. The observed NIF potential in Figure 2d is roughly (24 ± 6) V for
MMS3. A similar trend is apparent for MMS1 and MMS2 (see Table S5 in the supporting information).
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Figure 2. MMS3 magnetic field magnitude, potential proxies, and cross‐shock potential for (a–d) interplanetary shock on 8 January 2018 and (e–h) bow shock
crossing on 2 November 2017. The ramp is marked by vertical lines through all panels. (a, e) Magnetic field magnitude. (b, f) Potential proxies that depend on
ionmoments:Φv from ion velocity (blue),Φn from ion density (green), andΦP from pressure balance (red). Note thatΦP depends on the pressure due to electrons as
well as ions. (c, g) Potential proxy that does not depend on ion moments: Φe from electron equation of motion. (d, h) Cross‐shock potential in NIF. Error bars for
all points are shown in (c) and (d). For the sake of visual clarity, error bars for only one fifth of the points in (g) and (h) are shown. MMS = Magnetospheric
Multiscale; NIF = Normal Incidence Frame.

Figure 3. The MMS3 ion distributions in energy and azimuthal angle for (a) interplanetary shock crossing on 8 January
2018 and (b) bow shock crossing on 2 November 2017. Time ranges shown are upstream (left), spanning the interpla
netary shock ramp or just preceding the bow shock ramp (center), and downstream (right). MMS = Magnetospheric
Multiscale.
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3.4. Bow Shock

The NIF potentials varied between 290 and 440 V for the different space-
craft measurements (see Table S5 in the supporting information). The
field‐aligned electron distributions allowed estimation of the HT frame
potential: the width of the flattop downstream corresponded to a potential
of about (150 ± 20) V.

The shock velocity from timing analysis was (60 ± 10) km/s in the space-
craft frame, and the ramp passed over MMS3 in approximately 2 s giving
an approximate shock length of (120 ± 20) km. Although this is larger
than the ion inertial length of about (65 ± 1) km, we computed potential
proxies for this event as well. Before discussing the proxies, it is important
to point out some features of the ion distributions. Figure 3b shows ion
distributions measured by MMS3 at the bow shock, with two slices before
(upstream) and one slice after (downstream) the shock ramp. The coordi-
nate system is centered on the spacecraft. The ions are effectively demag-
netized and their motion is stable with respect to the spacecraft. All polar
angles have been combined; the angular position in the plot represents
azimuthal angle in the spin plane.

In the far‐upstream distribution of Figure 3b, the solar wind is visible as a
concentrated beam in energy and angle. The near‐upstream distribution,
showing a time range shortly before the ramp, shows not only the loca-
lized solar wind beam but also a lower‐energy population traveling in
the opposite direction with large angular spread. These are ions reflected
from the positive electrostatic potential in the shock front. In the down-
stream plot, ions are observed at all angles and lower energies, indicating
that they have been decelerated while passing through the ramp.

For comparison, the ion distributions from the IP shock are plotted in Figure 3a. The lowest available energy
bin for the IP shock distributions was around 200 eV because the four spacecraft were operating in solar
wind mode. The time ranges shown are upstream, spanning the ramp, and downstream. No clear indication
of reflected ions is seen, but the energy cutoff may introduce some uncertainty.

Figures 2e–2h shows the proxies and potential from MMS3 for the bow shock crossing. (Similar plots for
MMS1 and MMS2 are available in the supporting information). The detrimental influence of reflected
ions during 04:26:41–44 is clearly visible as enhancements in the potential proxies of Figure 2f, all of
which depend on ion moments. The pressure balance proxy, which depends upon both ions and
electrons and is displayed with the ion proxies in Figure 2f, is also significantly disturbed downstream
of the shock. This is due to downstream electrons reflecting off the shock ramp. In contrast, the proxy
determined by the electron equation of motion in Figure 2g shows a flat approach to the ramp and a
smooth increase on the order of (250 ± 60) V. The observed NIF potential in Figure 2h is roughly
(290 ± 30) V.

4. Discussion and Conclusions

The most striking difference between the low and high Mach number shocks was the geometry of the shock
surface. The low Mach number IP shock was almost planar on the scale of the MMS interspacecraft separa-
tion, with the individual normals deviating from the timing normal by less than 10°. In contrast, the high
Mach number bow shock exhibited a perturbed surface that was rippled on the scale of the MMS spacecraft
configuration. Individual normals deviated from the timing analysis normal by up to 30°. This is presumably
a typical feature of high Mach number shocks, in agreement with several past modeling studies of shocks
(Burgess, 2006; Burgess & Scholer, 2007; Lowe & Burgess, 2003; Ofman & Gedalin, 2013a, 2013b; Winske
& Quest, 1988) as well as observations reported by (Johlander et al., 2016). In particular, Ofman and
Gedalin (2013a, 2013b) discussed the deviation of the shock normal due to rippling, based on their 2‐D
hybrid simulation study. The geometry of our observations is sketched in Figure 4, which shows the bow

Figure 4. Shock geometry. The shock normal vectors from minimum var-
iance analysis of electric field data are shown for MMS1–MMS4; the
shaded surface is a sketch reconciling the shock normals by means of a
rippled front. The dominant magnetic field direction approximately coin-
cides with GSM Z. The MMS4 shock normal is estimated from spin rate
electric field data. MMS = Magnetospheric Multiscale.
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shock surface, with the electric field MVA normal in red at each spacecraft. A ripple in the shock surface
helps reconcile the individual normals.

To conclude, we present the results of a comparative study of two quasi‐perpendicular collisionless shocks in
the solar wind, with low (IP shock) and high (bow shock) Mach number:

1. The cross‐shock NIF potential from electric field measurements is 24–28 V for the IP shock (with 41–42 V
from the electron proxies), and 290–440 V for the bow shock (with 240–260 V from the electron proxies).

2. The ion proxies cannot be used for high Mach number shocks because the ion moments are spoiled by
reflected ions before and during the ramp.

3. The lowMach number IP shock surface was almost planar on the scale of the MMS spacecraft configura-
tion as well as on the scale of the MMS and ARTEMIS separation distance (~20 RE).

4. The high Mach number bow shock surface was rippled on the scale of the MMS spacecraft configuration,
in agreement with the results of Burgess (2006), Burgess and Scholer (2007), Lowe and Burgess (2003),
Ofman and Gedalin (2013a, 2013b), and Winske and Quest (1988) and the observations of Johlander
et al. (2016).
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