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Abstract

In planetary fluid cores, the density depends on temperature and chemical composition,
which diffuse at very different rates. This leads to various instabilities, bearing the name of
double-diffusive convection. We investigate rotating double-diffusive convection (RDDC) in
fluid spheres. We use the Boussinesq approximation with homogeneous internal thermal and
compositional source terms. We focus on the finger regime, in which the thermal gradient
is stabilising whereas the compositional one is destabilising. First, we perform a global lin-
ear stability analysis in spheres. The critical Rayleigh numbers drastically drop for stably
stratified fluids, yielding large-scale convective motions where local analyses predict stabil-
ity. We evidence the inviscid nature of this large-scale double-diffusive instability, enabling
the determination of the marginal stability curve at realistic planetary regimes. In particu-
lar, we show that in stably stratified spheres, the Rayleigh numbers Ra at the onset evolve
like Ra ∼ Ek−1, where Ek is the Ekman number. This differs from rotating convection in
unstably stratified spheres, for which Ra ∼ Ek−4/3. The domain of existence of inviscid
convection thus increases as Ek−1/3. Second, we perform nonlinear simulations. We find
a transition between two regimes of RDDC, controlled by the strength of the stratification.
Furthermore, far from the RDDC onset, we find a dominating equatorially anti-symmetric,
large-scale zonal flow slightly above the associated linear onset. Unexpectedly, a purely linear
mechanism can explain this phenomenon, even far from the instability onset, yielding a sym-
metry breaking of the nonlinear flow at saturation. For even stronger stable stratification, the
flow becomes mainly equatorially-symmetric and intense zonal jets develop. Finally, we apply
our results to the early Earth core. Double diffusion can reduce the critical Rayleigh number
by four decades for realistic core conditions. We suggest that the early Earth core was prone
to turbulent RDDC, with large-scale zonal flows.

1 Introduction

1.1 Geophysical context
Thermo-compositional convection stirs motions in the Earth’s core (Jones, 2015), that sustain large-scale
magnetic fields via dynamo action. The thermal part is generated by the super-adiabatic thermal gradient. It
mainly comes from the secular cooling of the core, driven by the heat extracted at the core-mantle boundary
(CMB). Additionally, because of this cooling, latent heat is released by the crystallisation of the inner core
(Verhoogen, 1961). Radioactive heat sources can also participate, although their contribution is debated
(e.g. Hirao et al., 2006; Bouhifd et al., 2007; Chidester et al., 2017). The compositional part is sustained
by the ejection of light elements into the fluid core, mainly due to the solidification of the inner core (e.g.
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Fearn & Loper, 1981). Currently, compositional buoyancy is expected to dominate over thermal buoyancy
(Braginsky & Roberts, 1995; Lister & Buffett, 1995; Buffett et al., 1996). Few models have considered
individual contributions of thermal and compositional buoyancies for the present dynamics of the core, by
using experiments (Cardin & Olson, 1992), asymptotic models (Busse, 2002; Simitev, 2011) or numerical
simulations (e.g. Glatzmaier & Roberts, 1996; Kutzner & Christensen, 2000; Hori et al., 2012; Bouffard,
2017).

The crystallisation of the inner core is a rather recent geophysical feature, initiated 1 Ga or 2 Ga ago
(Labrosse, 2015). However, the geodynamo is active since at least 3.45 Ga (Usui et al., 2009; Tarduno
et al., 2010), despite the absence of the main buoyancy source (crystallization of the inner core). Moreover,
driving the early geodynamo by thermal buoyancy alone requires large secular cooling rates (Gubbins
et al., 2003). Such fast cooling rates are problematic for most thermal histories (Labrosse, 2015), although
allowed by the large remaining uncertainties (e.g. Williams, 2018). Prior the inner core crystallization,
a large fraction of the core is expected to present a sub-adiabatic temperature (Nimmo, 2015; Labrosse,
2015), inhibiting (thermal) convective motions. Therefore, determining the origin of the fluid motions
sustaining the early geodynamo is elusive.

It has been suggested that light elements, dissolved during the core formation (e.g. Badro et al., 2015),
may have been exsolved due to the secular cooling (Buffett et al., 2000). The exsolution of buoyant mag-
nesium oxide would provide compositional buoyancy, notably prior to the nucleation of the inner core
(O’Rourke & Stevenson, 2016; Badro et al., 2016). This mechanism has been criticised, e.g. because the
magnesium solubility in the core depends not only on the temperature but also strongly on the oxygen con-
tent (Du et al., 2017). Moreover, this scenario requires a core formation at extremely high temperature to
incorporate a sufficient amount of magnesium. Instead, Hirose et al. (2017) advocated for top-down crys-
tallisation of silicon oxides, incorporated in the core via the metal-segregation processes in a deep magma
ocean at moderate temperatures. These non-standard mechanisms put forward the possibility to drive the
early geodynamo by double-diffusive convection.

1.2 Double-diffusive convection
Double-diffusive convection (DDC) refers to various buoyancy-driven instabilities, generated by two dif-
ferent components of buoyancy. For planetary cores, we refer to thermal and chemical buoyancies. The
two sources diffuse at different rates, with the thermal (fast) diffusivity κT and the chemical (slow) one
κC . Their ratio defines the dimensionless Lewis number L = κT /κC , which is expected to be at least 103

(Braginsky & Roberts, 1995) in planetary cores (see table 1).
DDC takes different forms, depending on the value of L and on the sign of the mean gradients of each

individual component of the density. Classical convection occurs when both thermal and compositional
gradients are destabilising. Then, we distinguish (i) the finger regime (Stern, 1960), when the chemical
gradient is unstable and the thermal one stable, and (ii) the semi-convection quadrant (Spiegel, 1969) with
a stabilising compositional gradient and a destabilising thermal one. Recently, double-diffusive effects have
been evidenced even with slightly stabilising thermal gradients, leading to finger convection for unstable
stratification (e.g. Kellner & Tilgner, 2014).

DDC has been mainly studied for oceanographic purposes (e.g. Schmitt, 1994; Radko, 2013). Appli-
cations has become also apparent in astrophysics (e.g. Garaud, 2018) or mantle physics (Hansen & Yuen,
1988, 1989, 1990). Rotational effects have been largely neglected in these works. Only a few studies
investigated rotating double-diffusive convection (RDDC), usually by considering rotational effects in lo-
cal Cartesian models. Under this assumption, rotation has essentially a stabilising effect (Acheson, 1980;
Pearlstein, 1981; Moll et al., 2017; Sengupta & Garaud, 2018). Yet, the relevance of these local models re-
mains elusive for rapidly rotating planetary cores. Indeed, a subtle interplay between the rapid rotation and
the bounded spherical geometry is expected for RDDC. Notably, Busse (2002) predicted asymptotically
the existence of double-diffusive convection at low Rayleigh numbers in rapidly rotating fluids cores, by
extending his reduced annulus model (Busse, 1970). Simitev (2011) did confirm these predictions numer-
ically in the annulus geometry. Finally, only few studies tackled RDDC in spherical geometries with both
unstable buoyancies (Glatzmaier & Roberts, 1996; Breuer et al., 2010; Trümper et al., 2012; Takahashi,
2014), and even fewer with antagonist gradients (Manglik et al., 2010; Net et al., 2012).
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Symbol Name Definition Earth (current) Stars
L Lewis κT /κC 104 103 − 107

Pr Prandtl ν/κT 0.01− 0.1 10−6

Sc Schmidt ν/κC 102 − 103 10−3 − 101

Ek Ekman ν/(ΩsR
2) 10−15 10−18

Table 1: Dimensionless numbers characterising diffusive effects and typical values in the Earth’s liquid core
(Braginsky & Roberts, 1995; Labrosse, 2015) and stably stratified stellar envelopes (Garaud et al., 2015).
Kinematic viscosity ν, thermal diffusivity κT , compositional diffusivity κC , planetary angular velocity Ωs
and radius R.

1.3 Computational methods
Simulations of RDDC in spherical geometry are computationally challenging. A major difficulty is to use
small enough values of κC for fixed values of κT , to probe the regime L� 1. This means that the spatial
resolution must be adequate, for simulating both the fine-scale compositional structures and the thermal
ones. In addition, planetary cores are generally rapidly rotating, as measured by the dimensionless Ekman
number Ek � 1 (table 1). Thus, RDDC must be investigated in the regime Ek � 1 simultaneously
with L � 1. Eulerian numerical methods cannot presently encompass this broad range of length (and
time) scales properly. Hence, computations are always performed for dimensionless parameters orders of
magnitude away from core values.

To circumvent these issues, a ”particle-in-cell” (PIC) method has been developed (Bouffard, 2017;
Bouffard et al., 2019). It models the compositional field in the limit L � 1 as a collection of advected
particles, while keeping an Eulerian description for velocity and temperature fields. While PIC methods
excel in the diffusionless limit κC = 0, they suffer from several drawbacks at finite values of L. For in-
stance, Bouffard et al. (2017) showed that the PIC approach currently does not compare well with proposed
benchmarks of RDDC in spherical geometry (Breuer et al., 2010), obtained at finite values of L. Finally,
even if mixing Eulerian and PIC methods may be desirable for initial value problems, this approach pre-
vents from efficiently finding the instability onset. In contrast, the determination of the onset with Eulerian
methods reduces to eigenvalue problems, which can be solved efficiently (e.g. for convection Net et al.,
2012; Kaplan et al., 2017).

1.4 Outline
In this study, we aim at investigating numerically RDDC in spherical bodies. We are motivated by ex-
plaining the origin of the early geodynamo and by the potential importance of the double-diffusive effects
highlighted by Busse (2002) and Simitev (2011). We will focus on rotating full spheres, without inner
cores. Beyond the geophysical motivation, a full sphere geometry is the simpler configuration to illustrate
the intricate influence of rotation and global geometry on RDDC. Moreover, we will employ the classical
Eulerian description, for which efficient codes are available.

The paper is organised as follows. The formulation of the problem is described in §2, together with
our numerical method of choice. In §3, we draw physical insights from existing local stability analyses.
Then, we conduct a global stability analysis in spheres in §4, and we compare it with the asymptotic theory
of RDDC in cylindrical geometry of Busse (2002) In §5, we perform nonlinear simulations to study the
rotating finger convection (i.e. for a destabilising compositional gradient and a stabilising thermal one). In
§6, we predict the onset of RDDC for core conditions and discuss the geophysical implications. Finally,
we end the paper in §7 with a conclusion and outline several perspectives for geophysical and astrophysical
bodies.
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2 Description of the problem

2.1 Dimensional background state
We model RDDC in planetary cores by studying thermal and compositional Boussinesq convection in
a rotating sphere. We consider a full sphere of radius R, filled with an homogeneous incompressible
Newtonian fluid of density ρ, molecular kinematic viscosity ν, thermal diffusivity κT and compositional
diffusivity κC � κT . The fluid is co-rotating with the sphere at the angular velocity Ω = Ωs1z in the
inertial frame. The fluid is also stratified in density under the (dimensional) imposed gravitational field
g = −g0r 1r, where g0R is the dimensional value of the gravity field at the outer spherical boundary
r = R and 1r is the unit radial vector in spherical coordinates (r, θ, φ).

Within the Boussinesq approximation (Spiegel & Veronis, 1960), variations of the density ρ∗ due to
the (dimensional) temperature T ∗ and concentration of light elements C∗ are only taken in the buoyancy
force. We use the following linear equation of state

ρ∗/ρm = 1− αT (T ∗ − Tm)− αC(C∗ − Cm) (1)

by assuming |ρ∗ − ρm|/ρm � 1, where (Tm, Cm, ρm) are the mean reference values at r = R and
(αT , αC) are the thermal and compositional expansion coefficients. In equation of state (1), T ∗ is actually
the departure from the adiabatic reference temperature profile. Similarly, C∗ is the departure from the
compositional reference barodiffusive profile (Davies & Gubbins, 2011), which is rather small compared
to the adiabatic density profile (Gubbins et al., 1979, 2004).

We work in the co-rotating reference frame. We study slight departures from a motionless, hydrostatic
background state for the temperature T ∗0 and composition C∗0 . The latter profiles are governed by the
dimensional temperature and composition equations in the Boussinesq approximation

κT∇2T ∗0 = −QT , κC∇2C∗0 = −QC , (2)

with QT and QC the thermal and compositional source (or sink) terms.
Thermo-compositional convection is sustained by the thermal and compositional gradients (∇T ∗0 ,∇C∗0 ).

They can be maintained by (i) non-zero internal sources/sinks (QT ,QC), (ii) thermal or compositional
fields externally imposed at the boundary or (iii) flux conditions. In the Earth’s core, the thermal gradient
is mainly imposed by heat extracted at core-mantle boundary (CMB), yielding flux conditions. The com-
positional gradient is presently mainly driven by the crystallisation of the solid inner core (e.g. Loper &
Roberts, 1981), while, in the early Earth, it may have been driven by the precipitation of light elements
at the top of the core (O’Rourke & Stevenson, 2016; Badro et al., 2016). Hence, flux-type conditions are
more relevant for compositional effects. Actually, the proper boundary condition ties the heat flux and the
compositional flux to the local core dynamics (Braginsky & Roberts, 1995). This intricate condition has
only been implemented in the anelastic simulations of Glatzmaier & Roberts (1996), who also treated sepa-
rately thermal and chemical buoyancies. Yet, they assumed identical turbulent diffusivities, which discards
double-diffusive effects.

However, the choice of the boundary conditions is less crucial for the dynamics in the full sphere
geometry (investigated here) than in spherical shells (Kutzner & Christensen, 2000; Hori et al., 2012). To
ensure stationary solutions, we assume that thermal and compositional background profiles are sustained
by spatially homogeneous sources (QT ,QC). Hence, the dimensional solutions of equations (2) are

T ∗0 (r) = Tm +
QT
6κT

(R2 − r2), (3a)

C∗0 (r) = Cm +
QC
6κC

(R2 − r2). (3b)

Without loss of generality, we set (Tm, Cm) = (0, 0), because they do not play any dynamical role (only
the gradients do have a role).
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2.2 Dimensionless governing equations
For numerical convenience, we work with dimensionless quantities. We use the length scale R, the viscous
time scale R2/ν, the temperature scale (νQTR2)/(6κT

2) and the composition scale (νQCR2)/(6κC
2).

Note that temperature and composition scales can be either positive or negative, depending on the signs
of (QT ,QC). In the following, we write the dimensionless velocity, temperature and composition without
asterisk to differentiate them from their dimensional counterparts. In dimensionless form, dimensional
background state (3) yields

T0(r) =
1− r2
Pr

, C0(r) =
1− r2
Sc

, (4)

with
Pr =

ν

κT
, Sc =

ν

κC
, L =

Sc

Pr
, (5)

the Prandtl number, the Schmidt number and the Lewis number.
In the co-rotating frame, we assume centrifugal effects to be small compared to the self-gravity of the

fluid sphere g. This condition is typically met in planetary cores, such that we neglect the centrifugal buoy-
ancy in the Boussinesq equations (Lopez et al., 2013). We denote u the dimensionless velocity field, Θ the
dimensionless temperature and ξ the dimensionless concentration departing from motionless background
state (2). The governing dimensionless equations are

∂u

∂t
+ (u · ∇)u = − 2

Ek
1z × u−∇p+∇2u (6a)

+ (RaT Θ +RaC ξ) r1r,

∂Θ

∂t
+ (u · ∇)Θ =

1

Pr

(
2 r · u +∇2Θ

)
, (6b)

∂ξ

∂t
+ (u · ∇)ξ =

1

Sc

(
2 r · u +∇2ξ

)
, (6c)

∇ · u = 0, (6d)

with u the dimensionless velocity field, p the dimensionless reduced pressure (including the centrifugal
force). In equations (6), we have introduced the Ekman number

Ek =
ν

ΩsR2
, (7)

the thermal and compositional Rayleigh numbers

RaT =
αT g0QTR6

6νκT 2
, RaC =

αCg0QCR6

6νκC2
(8)

which can be either positive or negative, depending on the signs of (QT ,QC), Typical values of numbers
[Pr, Sc, L,Ek] are given in table 1.

Equations (6) are supplemented by boundary conditions (BC). At the outer spherical boundary mod-
eling the CMB, the velocity field satisfies the non-penetration and no-slip boundary conditions in the co-
rotating frame, i.e.

u · 1r = 0, u× 1r = 0 at r = 1. (9)

For the thermal and compositional perturbations (Θ, ξ), we impose zero radial fluxes

∂Θ

∂r
=
∂ξ

∂r
= 0 at r = 1. (10)

The above boundary conditions (10) are relevant for a planetary core, in which the CMB controls heat and
compositional fluxes through the profiles T0(r) and C0(r). The fixed temperature flux models the heat flux
exctracted by the mantle, while the fixed compositional flux models exsolution of light elements by the
mantle (e.g. O’Rourke & Stevenson, 2016).
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Figure 1: Dimensionless background Brunt-Väisälä frequency for stably stratified background states
(N2

0 /Ω
2
s > 0). Parameters: Pr = 0.3, Sc = 3, Ek = 10−5 and RaT = −RaC/3, with RaC = 3 × 109

(solid line) and RaC = 1010 (dashed line).

2.3 Brunt-Väisälä frequency
To compare heat and composition gradients, we introduce the total dimensional Brunt-Väisälä frequency
N . The latter is defined in the Boussinesq approximation by (e.g. Bullen, 1975)

N2 = g ·∇
(
ρ

ρm

)
. (11)

The fluid is stably stratified in density when N2 > 0, neutral when N2 = 0 and unstably stratified when
N2 < 0. The total dimensional Brunt-Väisälä frequency characterising the background state, denoted N0

in the following, is such that N2
0 = N2

0,T +N2
0,C where

N2
0,T = −αT g ·∇T ∗0 and N2

0,C = −αC g ·∇C∗0 (12)

are the thermal and compositional contributions. Solutions (3) show that positive values of (QT ,QC)
(respectively negative) give destabilising (respectively stabilising) thermal and compositional gradients.

To compare the rotational effects with the stratification, a relevant quantity is the square of the Brunt-
Väisälä frequency normalised by the fluid angular velocity Ωs. In dimensionless variables, it reads for the
background state

N2
0

Ω2
s

(r) = −2r2Ek2
(
RaT
Pr

+
RaC
Sc

)
= −2r2Ro2c , (13)

where Roc = Ek (RaT /Pr + RaC/Sc)
1/2 is the double-diffusive convective Rossby number. For-

mula (13) is illustrated in figure 1. Because of the quadratic radial dependence in the background state
(3), the background Brunt-Väisälä frequency is linear in r in our model. In pure thermal convection
(RaC = 0, RaT > 0), Roc is often employed as a proxy of the ratio between buoyancy and Coriolis
forces (Gastine et al., 2016). In the strongly stratified regime, characterised by Roc � 1, the scaling prop-
erties become reminiscent to non-rotating convection, whereas turbulent rotating convection is expected
when Roc � 1. Hence, we can expect a similar distinction between a strongly stratified regime of RDDC,
when |N2

0 /Ω
2
s| � 1 (i.e. |Roc| � 1), and a weakly stratified regime when |N2

0 /Ω
2
s| � 1 (i.e. |Roc| � 1).

2.4 Numerics in spheres
We will employ the classical Eulerian description in spherical geometry to solve equations (6). So far,
most Eulerian simulations of RDDC have neglected the distinction between thermal and compositional
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buoyancies. This lead to the co-density approach, first proposed by Lister & Buffett (1995) and Braginsky
& Roberts (1995), in which the two components have the same diffusivities κT = κC . This assumption is
widely used (e.g. Schaeffer et al., 2017) and is mostly motivated by simplicity and numerical convenience,
reducing by one both the number of parameters and equations. The proposed justification is that these
molecular diffusivities should be replaced by a turbulent one, accounting for the mixing by unresolved
small-scale eddies. However, this assumption is highly questionable and only possibly valid for highly
turbulent flows, as found for overturning convection (Nataf & Schaeffer, 2015). Additionally, it filters out
double-diffusive effects.

Only few Eulerian codes have treated separately the two buoyant components in spherical geome-
try, by using pseudo-spectral methods (Glatzmaier & Roberts, 1996; Manglik et al., 2010; Net et al.,
2012; Takahashi, 2014) or finite volumes (Breuer et al., 2010). Here, we use the linear code SINGE
(https://bitbucket.org/vidalje/singe) and the nonlinear code XSHELLS (https://nschaeff.
bitbucket.io/xshells/), which are both open-source codes. We have implemented in both codes the
composition equation (6c) to account for double-diffusive effects. The SINGE code has been used for lin-
ear computations of waves (Vidal & Schaeffer, 2015) and convection onsets (Gastine et al., 2016; Kaplan
et al., 2017) in spherical geometry. On the other hand, XSHELLS can simulate turbulent flows in several
contexts (Schaeffer et al., 2017; Kaplan et al., 2017, 2018), scaling on thousands of cores, by using a do-
main decomposition in the radial direction (MPI and OpenMP standards). XSHELLS solves the dynamical
equations with a second order time-stepping scheme and treats the diffusive terms implicitly, while the
nonlinear terms are handled explicitly.

Both codes use a pseudo-spectral method, by describing the velocity field u with poloidal and toroidal
scalars (e.g. Backus, 1986). Then, poloidal and toroidal scalars are expanded onto spherical harmonics
Y ml (θ, φ) of degree l and azimuthal wave number m, truncated at (lmax,mmax) in the simulations. Sim-
ilarly, temperature Θ and composition ξ are also expanded onto spherical harmonics. The two codes use
second order finite differences in radius with Nr points and spherical harmonic expansions provided by the
fast SHTns library (Schaeffer, 2013). At the origin (r = 0), geometric conditions are applied: scalar fields
(Θ, ξ) can have a non-zero value at the origin. Since it must be independent of θ and φ, only shperical
harmonic l = 0 is allowed. Similary for vector fields that have a non-zero vector at the origin, only l = 1 is
allowed. These all translate into appropriate boundary conditions, that distinguish l = 0, l = 1 and l > 1
and which are used in both codes. For nonlinear simulations, numerical instabilites can arise because of the
clustering of points near the origin. In the XSHELLS code, these instabilities are suppressed by truncating
the spherical harmonic degree at ltr(r) = 1 +

√
r/rs lmax with rs = 0.5. The XSHELLS code passes

benchmarks designed to highlight issues arising at the origin (Marti et al., 2014).
The typical spatial resolution at Ek = 10−5 is Nr = 192, lmax = 120, mmax = 110. For the most

demanding nonlinear simulations (at large RaC , RaT ), the numerical resolution is Nr = 384, lmax = 320
and mmax = 300. For such simulations, we show in figure 2 typical instantaneous spectra of the volume
average of kinetic, thermal and compositional energies defined by

E{u,t,c} =
1

2

∫ {
|u|2,Θ2, ξ2

}
dV. (14)

Spectra are numerically well converged. We have also integrated the dynamics over several viscous time
units (to skip any possible transient) to ensure reliable numerical results.

3 Insights from local stability analyses
Composition and heat do not play a symmetrical role when L 6= 1. Several canonical situations occur and
various local stability criteria have been devised for non-rotating fluids (e.g. Garaud, 2018). Although the
spherical geometry is natural for planetary cores, ruling out boundary effects yields physical insights for
the stability. We briefly apply them for the background state (3).

Pioneering stability criteria have been inferred for non-rotating, diffusionless stellar interiors. Ledoux
(1947) obtained the stability criterion (in dimensional and dimensionless forms)

N2
0 = N2

0,T +N2
0,C > 0, i.e. RaT L < −RaC . (15)
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Figure 2: Instantaneous radial average of kinetic Eu (dashed black), thermal Et (dotted red) and compo-
sitional Ec (solid green) energy spectra as a function of the spherical degree l + 1 (a) and azimuthal order
m+1 (b) at t = 2.7 (viscous time). Nonlinear simulations at Pr = 0.3, Sc = 3, Ek = 10−5, RaC = 1010

and RaT = −RaC/3. The azimuthal spectrum (b) is dominated by the m = 0 component due to the
presence of zonal flows for large enough RaC , see figure 15 below.
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Note that in the absence of compositional effects, Ledoux criteria (15) reduces to the Schwarzschild crite-
rion (Schwarzschild & Härm, 1959)

N2
0,T > 0, i.e. RaT > 0. (16)

When the background state is both Schwarzschild (N2
0,T < 0) and Ledoux unstable (N2

0 < 0), the fluid is
prone to overturning convection driven by thermal and compositional buoyancies.

However, Ledoux and Schwarzschild criteria (15)-(16) are not sufficient when heat (rapid diffuser) and
composition (slow diffuser) have opposite destabilising/stabilising effects. Actually, the stability of the
system depends on the density ratio R0 (Stern, 1960), given by

R0 =
αT
αC
· |∇T

∗
0 |

|∇C∗0 |
∼
∣∣∣∣RaTRaC

∣∣∣∣L, (17)

in which the last estimate holds for our background state (3) at the outer boundary. When the fluid is
Ledoux unstable, i.e. R0 ≤ 1, the system is usually prone to overturning convection, but also sometimes to
finger convection (Schmitt, 2011). When the fluid is stable according to Ledoux criterion (15) the situation
depends on the values of (Pr, Sc). On the one hand, the situation N2

0,T > 0 (i.e. RaT < 0) and N2
0,C < 0

(i.e. RaC > 0) refers to the finger regime. In addition to overturning convection for R0 ≤ 1, the finger
configuration is prone to double-diffusive instabilities when (Baines & Gill, 1969)

1 ≤ R0 < L, i.e. |RaT | ≤ RaC . (18)

In that case, several finger DDC patterns can develop. On the other hand, the situation N2
T,0 < 0 and

N2
C,0 > 0 refers to the semi-convection regime (Spiegel, 1969). The fluid is prone to double-diffusive

instabilities when (e.g. Radko, 2013)

1 ≤ R−10 ≤ Pr + 1

Pr + 1/L
. (19)

Based on typical values of dimensionless Lewis and Prandtl numbers given in table 1, we can expect many
celestial fluid bodies to be unstable against double-diffusive convection according to criteria (17)-(19).

The aforementioned local criteria do not account for rotational effects. Because the background state
(3) is spatially varying, we cannot directly use plane-wave perturbations usually employed in local analyses
(e.g. Cébron et al., 2013). However, the spatial extent of a local model is much smaller than the size of
the global domain. Hence, we can linearise (3) in first approximation around a given position r0 to use
WKB-type perturbations of the form

[u,Θ, ξ] ∝ exp (ik · r0 + λt) , (20)

with k the local wave vector and λ = σ+iω the eigenvalue, where σ ≥ 0 is the growth rate (or damping rate
if σ ≤ 0) and ω is the angular frequency. Note that perturbations (20) differ from WKB-type perturbations
considered by Yano (1992) and Jones et al. (2000) for thermal convection. Indeed, the latter perturba-
tions are exponentially decaying in the cylindrical direction around a given cylindrical radius (to fulfill the
boundary conditions). After some algebra, this yields a polynomial equation for the eigenvalue λ, similar
to the one obtained by Sengupta & Garaud (2018), valid at the local position r0 of colatitude angle θ. Note
that Braginsky (2006) obtained a similar polynomial but considered a truncated version of the Coriolis
force. As first obtained by Sengupta & Garaud (2018), the local analysis shows that the aforementioned
non-rotating criteria are asymptotically valid for weakly rotating RDDC. Moreover, it indubitably shows
that fastest-growing unstable waves for local rotating finger convection are largely unaffected by rotation.
The unstable waves span the height of the local domain, with typical wave numbers k · g = 0, called ele-
vator waves (e.g. Sengupta & Garaud, 2018). All other waves are merely stabilised by rotation. Moreover,
the range of density ratios R0 for which RDDC takes place is unchanged compared to non-rotating DDC,
given by (18) in the finger regime.

However, this local behaviour may be misleading. Indeed, it is known that WKB-type local solutions do
not necessarily provide approximations to the complete three-dimensional global solutions. For instance,
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they can severely differ for thermal convection in the limit Ek � 1 (Busse, 1970; Soward, 1977; Yano,
1992; Jones et al., 2000). Therefore, the local analysis, predicting unavoidably elevator modes as the
fastest-growing modes, is likely inaccurate to describe the onset of RDDC for rapidly rotating cores, and
we turn to a global stability analysis.

4 Global stability analysis

4.1 Generalised eigenvalue problem
In this section, we perform a global linear stability analysis of background state (3). To do so, we discard
the nonlinear terms (u · ∇u,u · ∇Θ,u · ∇ξ) in equations (6). The symmetries of the background state
and the linearised equations leads to uncoupled families of modes. The axisymmetry implies all azimuthal
wave numbers m are uncoupled and can be considered separately. Similarly, the reflexion symmetry about
the equatorial plane implies the same for symmetric (s = 1) and anti-symmetric (s = −1) modes with
respect to that plane. Thus, for a given m and symmetry s, we expand the linear perturbations in spherical
coordinates (r, θ, φ) as

[u,Θ, ξ] (r, t) =
[
û, Θ̂, ξ̂

]
(r, θ) exp [imφ+ λt] , (21)

where λ = σ + iω is the complex eigenvalue with the growth rate <e(λ) = σ and the angular frequency
=m(λ) = ω. Substituting expansions (21) into equations (6) yields the generalised eigenvalue problem (in
symbolic form)

AX = λBX, (22)

with X = [û, Θ̂, ξ̂] the state vector and (A,B) two linear operators, associated with the left and right hand
sides of equations (6) and taking into account boundary conditions (9)-(10). Problem (22) is a boundary
value problem, giving the dispersion relation for the complex eigenvalue

λ = λ(m, s,RaT , RaC , P r, Sc, Ek). (23)

From relation (23), the linear onset of convection is defined by the marginal state σ = 0, realized for a set
of Rayleigh numbers (RaT , RaC) for given values of (m, s,Ek, Pr, Sc).

We use the SINGE code (Vidal & Schaeffer, 2015) to solve the generalised eigenvalue problem (22),
by using an efficient sparse eigenvalue solver provided by the SLEPC library (Hernández et al., 2005). At
the parameters of our study, we found that the onset of RDDC is systematically governed by equatorially
symmetric (s = 1) perturbations (i.e. they have a lower onset than anti-symmetric perturbations). This is
similar to purely thermal convection in spheres (e.g. Busse, 1970; Jones et al., 2000) and RDDC with an
inner-core at similar parameters (Net et al., 2012). Nevertheless, the antisymmetric modes may still play a
role (Landeau & Aubert, 2011; Net et al., 2012), see here §5.

We survey dispersion relation (23) by fixing all parameters except one of the Rayleigh numbers RaX
(where X can be T or C), that we vary until the growth rate σ = 0 is bracketed within a small tolerance.
This is done automatically by the SINGE code using an optimization procedure based on Brent’s method.
Having computed a collection of Rayleigh numbers RaX at the onset for various azimuthal wave numbers
m, we can usually define the critical number RacX obtained for the critical wave number mc, yielding the
minimum Rayleigh number over all computed azimuthal numbers.

4.2 Marginal stability
4.2.1 Convection for unstably stratified fluids

We set Sc = 3 and Pr = 0.3, giving a Lewis number L = 10, and report in table 2 the critical parameters
at the onset of pure compositional (overturning) convection for RaT = 0. As already noticed for pure
thermal convection (Zhang, 1992; Jones et al., 2000), we report only a broad agreement between our global
numerical results and local predictions at the onset (e.g. Busse, 1970). The critical Rayleigh numbers RacC
are typically under-estimated by a factor two in the local theories (compared to the numerics), whereas the
critical wave number mc and the angular frequency ω are over-estimated (not shown).
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Figure 3: Linear onset of RDDC in the finger regime (RaT < 0, RaC > 0) computed with SINGE.
Computations at Pr = 0.3, Sc = 3 and for Ek = 10−4 (left), Ek = 10−5 (middle) and Ek = 10−6

(right). Colour shows the considered critical wave number m at the onset. The upper (black) dashed
line is the neutral stability curve N2

0 = 0. The lower (magenta) dashed line is the upper bound (18) for
non-rotating finger convection, i.e. RaT = −RaC .

Ek mc RacC ω

10−4 10 1.59× 106 −7.74× 101

10−5 20 3.40× 107 −4.63× 102

10−6 55 7.60× 108 −2.32× 103

Table 2: Critical azimuthal wave number mc, compositional Rayleigh number RacC and angular frequency
ωc at the linear onset (σ = 0) of compositional overturning convection (i.e. for RaT = 0). Computations
with SINGE at Sc = 3.
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Figure 4: Influence of the Lewis and Ekman numbers on the linear onset of RDDC for the m = 1 mode
computed with SINGE. The curves were computed using Sc = 3, but the exact same curves are obtained
with Sc = 30 or Sc = 100. The dotted (black) line is the marginal curve from the theory of Busse (2002)
with Γ = 2.4 (see appendix C). The thin (colored) dashed lines are the neutral stability curve N2

0 = 0
for the corresponding Lewis numbers. The thick (magenta) dashed line is the upper bound (18) for non-
rotating finger convection, i.e. RaT = −RaC . Vertical lines mark the theoretical onset of convection for
RaT = 0 for Ek = 10−6, 10−11 and 10−15 from left to right.
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(a) m = 20, RaT = 0, RaC = 3.4× 107, ω/Ωs = −4.66× 10−3

(b) m = 60, RaCEk = 104 = −RaTEk, ω/Ωs = 1.45× 10−5

Figure 5: Eigenmodes at the onset of RDDC computed with SINGE. Linear computations at Pr =
0.3, Sc = 3 and Ek = 10−5. The full discs are equatorial cuts representing four different field com-
ponents. The half discs are meridional cuts (taken at 3 o’clock in the equatorial planes) showing each a
different component. The relative amplitude of us (cylindrical radial velocity) and uφ (azimuthal velocity)
are preserved by using the same color maps. For the m = 60 with RaT = −RaC , the shape and amplitude
of the ξ (composition) and Θ (temperature) fields are the same.

Then, we investigate the stability in the presence of an additional stabilising thermal background, which
we refer to as the finger regime (RaC ≥ 0, RaT ≤ 0). For many fixed RaT < 0, we determine the
critical value of the compositional Rayleigh number RacC , reported in figure 3 for three Ekman numbers
Ek = {10−6, 10−5, 10−4}. When |RaT | � |RaC |, the preferred modes of convection are almost that of a
pure compositional convection, with an onset almost unchanged. Indeed, double-diffusive effects become
significant only when |RaT | ∼ |RaC |. This behaviour has also been observed in thick shells (Net et al.,
2012).

4.2.2 Inviscid convection for stably stratified fluids

When RaT < 0 is further decreased, double-diffusive effects start playing a significant role when the fluid
is stably stratified in density. For some values of RaT , there are now three values of RaC that give σ = 0,
and σ does not evolve monotonically with RaC . The marginal stability curve σ = 0 takes schematically
the form of a tongue in the Rac−RaT diagram (figure 3), stretching towards lower RaC within the stably
stratified domain. Within this tongue, convection occurs at RaC and m much lower than for RaT = 0
(typically m ≤ 10), down to m = 1 near the edges. This effect gets more important as Ek is reduced, as
observed in figure 3. At Ek = 10−6, RaC in the tongue can go down to 10 times lower than the minimum
RacC of pure chemical convection. Furthermore, the smaller the m, the lower RaC is at the onset. Hence,
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(c) m = 1, Ek RaT = −9, Ek RaC = 3000, ω/Ωs = −24.3× 10−7

Figure 6: Eigenmodes at the onset of RDDC computed with SINGE at Pr = 0.03, Sc = 30 and Ek =
10−7. The composition (ξ) and temperature (Θ) perturbations are shown as color maps, superimposed
with streamlines of the instantaneous velocity field. The full discs are equatorial plane cuts, while the half
discs are meridional cuts (taken at 3 o’clock in the equatorial planes). The relative amplitude of ξ and Θ is
preserved by using the same color map; likewise for uφ and uz .
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the critical wave number mc severely drops, e.g. from mc = 20 to mc = 1 at Ek = 10−5. This
contradicts local stability analyses (e.g. Sengupta & Garaud, 2018), which do not capture this puzzling
double-diffusive behaviour. Indeed, the existence of the double-diffusive tongue is due to the interplay
between global rotation and the bounded geometry, as outlined by Busse (2002). However, note that the
onset of modes with large azimuthal wave numbers m is almost unaffected by these effects, in agreement
with the asymptotic limit of short-wavelength perturbations.

When RaT is still further reduced, the critical RacC increases again for all wave numbers. Ultimately,
the stability curves for all azimuthal numbers m collapse onto the asymptotic regime of non-rotating finger
convection (18), i.e.

RaC = −RaT for RaC , |RaT | → ∞. (24)

However, we show in appendix A that limit (18) is not always valid in the sphere, depending on the thermal
and compositional boundary conditions.

Because the edge of the tongue consists of a large-scale m = 1 mode, we can expect being able
to compute the onset with SINGE at the parameters of the Earth’s core. We remark that the tongue is
stunningly invariant when plotted using inviscid dimensionless numbers, as shown in figure 4. We have
also checked that Pr and Sc play only a role through the Lewis number L. These two observations
prove the inviscid nature of the low Rayleigh number double diffusive convection. To our knowledge, this
behaviour has not been noticed by previous authors, although it can be inferred from the theory of Busse
(2002), see appendix C.

Furthermore, the tongue only weakly depends on the Lewis number when L � 1. Hence, the black
curve displayed in figure 4, computed at Ek = 10−15, fully characterises the convection onset within
a stably stratified sphere, for any Ekman number Ek ≤ 10−4. In particular, the lowest value of RaC
in this regime is given by RaC ' 52Ek−1 for RaT ' −26Ek−1. Because the viscous convection
onsets at RaC ∼ Ek−4/3 (Busse, 1970; Jones et al., 2000), the Ekman number controls the transition
between inviscid low-Rayleigh number convection and the standard viscous convection. Thus, the domain
of existence of inviscid convection increases as Ek−1/3.

This behaviour supports the possibility of convection in planetary cores at low Rayleigh numbers (com-
pared to the ones for pure compositional rotating convection). However, unlike the suggestion of Busse
(2002) who mistakenly considered the non-rotating limit, the unstable Rayleigh numbers are not reduced
down to non-rotating values, but rather to RaC ' 52Ek−1. Note that the correct behaviour RaC ∼ Ek−1
is actually present in the annulus model (see appendix C).

We also remark that these effects subsist with other boundary conditions, but the shape of the unstable
tongue varies as shown in appendix A. Interestingly, the asymptotic limit from local theory RaT = −RaC
is not always relevant (as pointed out above). Finally, note that for the semi-convection quadrant (RaC ≤
0, RaT ≥ 0 – reported in appendix B), we find a similar behaviour with almost no effect of small stabilising
compositional gradients. However, for stably stratified fluids, the marginal curves σ = 0 are significantly
different, and should be studied in future work.

4.3 Eigenmodes at the onset
The rapid rotation does provide constraints on the velocity structure, not taken into account in local (un-
bounded) analyses. For instance in convective rotating spheres with the no-slip condition, flows approx-
imately obey the Taylor-Proudman theorem (Greenspan, 1968). This constraint yields quasi-geostrophic
(QG) columnar motions, almost invariant along the rotation axis 1z , as recovered numerically by SINGE
(Kaplan et al., 2017). Then, we show in figure 5 and 6 the spatial pattern of several eigenmodes at the onset
of finger convection. They are representative of our linear numerical results, and do not depend much on
the viscosity.

The eigenmode at the onset of almost pure compositional convection is shown in figure 5a. The flow
is in the form of spiraling columnar rolls (Zhang, 1992), extending spirally from near latitude 60◦ to
the equatorial region. For this mode, the composition and temperature perturbations are phase-shifted
by about 90◦. Spiraling modes appear to be the preferred modes of convection for the moderate value
Sc = 3. However, in the limit Sc � 1, spiraling is expected to be small (Zhang, 1992; Guervilly, 2010).
In figure 5b, we show a typical low-frequency mode (m = 60) computed at RaC = 109 = −RaT . For
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this mode, the composition and temperature perturbations are indistinguishable. In that case, the critical
Rayleigh number for all the modes are close, such that several modes are likely to be triggered in a slightly
supercritical state.

Then, we show in figure 6 the m = 1 mode at the onset within the double-diffusive tongue of figure 7.
At the tip of this tongue (EkRaC ' 52 in figure 6a) the mode is quite simple and spans the whole sphere
and is almost stationary. Remarkably, the composition and temperature perturbations are phase-shifted by
about 45◦. The flow exhibits features reminiscent of quasi-geostrophy (columns aligned along the rotation
axis). For stronger forcing (EkRaC & 1000 in figures 6b,c), the mode increases in complexity, with
several zeros in the direction parallel to the rotation axis. There, it is no longer columnar and could not be
captured by the quasi-geostrophic approach (Busse, 2002; Simitev, 2011).

5 Nonlinear simulations of RDDC

5.1 Nonlinear onset
As illustrated in figure 7a, the linear global analysis predicts the existence of alternating stabilising and
destabilising double-diffusive effects when increasingRaC for a fixedRaT at the upper edge of the inviscid
tongue. We compare in figure 7b computations performed with SINGE and XSHELLS at Ek = 10−5,
along the profile RaT = −1.7 × 106 shown in figure 7a. The growth rate computed with XSHELLS
(during the exponential growth) is in perfect agreement with the eigenvalue computations.

Then, we aim at determining if this effect survives against finite-amplitude perturbations in nonlinear
simulations. To do this, we have run the simulations sequentially for increasing value of RaC , and us-
ing the output of the previous simulation as initial state. Starting from a linearly stable background state,
increasingRaC first destabilises the system, leading to RDDC within the unstable tongue. Then, further in-
creasing RaC from a previous nonlinear state (at smaller RaC) abruptly inhibits the previously established
RDDC whenRaC gets out of the tongue. This is counter-intuitive as restabilisation occurs even though the
compositional profile has a priori a stronger destabilising gradient. Finally, overturning convection sets up
again in the system for larger values of RaC > 3.4× 107. Similarly, we also find that the double-diffusive
tongue subsists nonlinearly by varying RaT at a fixed RaC (not shown).

Thus, we have shown that this double-diffusive tongue is a linear mechanism, that persists against
nonlinear perturbations of finite amplitude. We have found no evidence from the numerics that RDDC may
onsets through a subcritical bifurcation, as recently obtained in pure thermal convection at much lower Ek
and Pr (Kaplan et al., 2017).

5.2 Double-diffusive structures
In the following, we have conducted nonlinear simulations for stably stratified fluids along the profile
RaT = −RaC/3 shown in figure 7 as a diagonal line. Along this profile, the density ratio (17) is kept
constantR0 = L/3 but the background Brunt-Väisälä frequency increases according to formula (13). Note
that we have also performed non-linear simulations in the semi-convection quadrant, as briefly discussed
in appendix B.

Within the double-diffusive tongue, for typical compositional Rayleigh numbers RaC ≤ 108, the non-
linear solutions are reminiscent of the eigenmodes at the linear onset (not shown). However, for higher
Rayleigh number (RaC ≥ 108), many high-wavenumber modes are unstable (see figure 7), leading to
extremely thin convection fingers, elongated in the direction of the rotation axis due to the rapid rotation
(figure 8).

In non-rotating systems, finger DDC leads to spatial scales intrinsically governed by the fast (thermal)
diffusion and viscosity (e.g. Radko, 2013). Recently, Bouffard (2017) proposed another empiric scaling
law in the presence of rotation. These two scaling laws predict the typical length of density structures in the
equatorial plane l⊥. They read respectively in the non-rotating and rotating regimes (with our variables)

l⊥ ∝ |RaT |−1/4 ∝ Ra−1/4C , (25a)

l⊥ ∝ (Ek |RaT |)−1/2 ∝ (EkRaC)
−1/2

, (25b)
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Figure 7: Onset of convection in the inviscid tongue at Ek = 10−5, P r = 0.3, Sc = 3. (a) Zoom in
on figure 3. The upper (black) dashed line is the neutral curve N2

0 = 0, i.e. RaT = −RaC/L. The
lower (magenta) and dashed line is bound for non-rotating finger convection (18), here RaT = −RaC .
Colour represents the azimuthal wave numbers m. Full black points: stable nonlinear simulations. Black
circles: unstable nonlinear simulations. Green (respectively grey) solid lines with + symbols are the onset
for the anti-symmetric (respectively symmetric) m = 0 mode. These nonlinear runs span the profile
RaT = −1.7 × 106 (horizontal line) and the profile RaT = −RaC/3, i.e. constant R0 = L/3 (diagonal
solid line). (b) Growth rate σ along the profileRaT = −1.7×106 shown in (a). Red crosses: computations
with SINGE. Blue circles: computations with XSHELLS. The vertical scale is linear for −0.1 ≤ σ ≤ 0.1
and logarithmic for |σ| > 0.1.
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(a)

(b)

Figure 8: Nonlinear simulation of finger RDDC at Pr = 0.3, Sc = 3, Ek = 10−5, RaC = 1010 and
RaT = −RaC/3 (before the saturation of the large-scale zonal flow). Rotation is along 1z . (a) 3D
snapshot of RaTΘ (upper colour bar corresponding to the left part) and compositional perturbation RaCξ
(bottom colour bar corresponding to the right part). (b) 3D snapshot of the magnitude of the vorticity
|∇× u|.
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Figure 9: Typical dimensionless wavelength l⊥ of fingers in the equatorial plane. Nonlinear simulations
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heuristically the two regimes (N0/Ωs . 0.5) of finger convection in the simulations, as determined from
figure 10 (see below).

in which the rightmost forms involvingRaC are only valid for profiles characterised byRaT ∝ RaC . Note
that scalings (25a)-(25b) are expected for large enough values of the Lewis number. In addition, the typical
horizontal size of the fingers is reasonably well approximated by prediction (25a) in the non-rotating case,
even for moderate values of L. Indeed, relation (25a) holds for local computations at L = 3 (see figure 7a
of Traxler et al., 2011).

We assess their relevance for RDDC against 3D simulations performed at the finite value of L = 10
in figure 9. We have determined the approximate number of fingers in the equatorial plane to estimate
l⊥. We observe two regimes, with a transition between RaC ' 5 × 108 and RaC ' 1.5 × 109. Our
measurements do not seem to be in obvious agreement with the previous scaling laws, but the decrease of
l⊥ with increasing RaC slows down at the transition, as predicted. The transition occurs for the Brunt-
Väisälä frequency N0/Ωs ' 0.5, and will be seen in several other diagnostics in the following (see below).
We did not test the dependence of l⊥ with the Ekman number E, which is predicted by eq. 25b. This
would require to reduce the Ekman number, and run several high-resolution simulations at the edge of
what is feasible.

For the simulations in the strongly stratified regime at RaC ≥ 109, we may look for density staircases
(Stern & Turner, 1969). The latter are made of stacks of well-mixed convective layers, separated by stably
stratified shells for the total density profile (e.g. Stellmach et al., 2011). However, we have not found any
evidence of density staircases in our simulations. In the non-rotating regime, Brown et al. (2013) found
that local simulations performed at low values of the reduced density ratio R̃0 � 0.01 exhibit properties
consistent with density layering, with

R̃0 =
R0 − 1

L− 1
. (26)

The finger regime is mapped into 0 ≤ R̃0 ≤ 1. We have R̃0 ∼ 0.2 in our simulations, such that the absence
of staircases is expected even for non-rotating fluids. Thus, performing more turbulent simulations, at
lower values of R̃0 � 1, appears necessary to investigate the interplay between rotational effects and
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density staircases.

5.3 Turbulence and transport
We now focus on specific features of finger convection in the turbulent regime. To quantify the nonlinear
outcome, we compute in figure 10 the root mean square (rms) Reynolds and Rossby numbers

Re =

√
2

V
Eu, Ro = ReEk, (27)

with V = 4π/3 the dimensionless spherical volume and Eu the kinetic energy defined by formula (14).
We have used the time average of Eu in the saturated regime to determine the rms velocity. We have also
separated Re and Ro based on total and non-zonal poloidal energies, to illustrate several regimes of finger
convection.

First, when N0/Ωs . 0.5, the Reynolds numbers based on total and radial velocities both exhibit
the same scaling Re ∝ Ra0.93C . However, when N0/Ωs & 0.5, another regime appears. Although Re
based on the total velocity is still nearly proportional to RaC , the scaling of Re based on the poloidal
energy is suddenly altered for RaC ≥ 109, yielding Re ∝ Ra0.24C . Hence, for strong stratification, radial
(poloidal) motions are inhibited, while toroidal ones are not. This behaviour is consistent with scaling
arguments and simulations of sustained stratified turbulence (Billant & Chomaz, 2001; Brethouwer et al.,
2007). Indeed, a transition is expected between two turbulent regimes, characterised by strong and weak
radial (here poloidal) motions. Such a dichotomy has been also evidenced in pioneering global simulations
of tidally driven stratified flows (Vidal et al., 2018).

We can compare our results with the unbounded RDDC recently studied by Sengupta & Garaud (2018).
They find the local Reynolds number Rel, based on the convective velocity (analog to our non-zonal
poloidal energy), to scale as

Rel ∝ [Pr (R0 − 1)]−1/2. (28)

In our case, this formula gives a constant value of∼ 1, in apparent contrast with the evolution of Re shown
in figure 10a. However, Re is based on the (global) radius of our sphere, which is not relevant to estimate a
local Reynolds number. Using rather the local length l⊥, we estimate Rel = l⊥Re in our simulations. As
shown in figure 10b, we then obtain a constant Rel ' 1 in agreement with formula (28). In both regimes
N0/Ωs ≤ 0.5 and N0/Ωs ≥ 0.5, we thus recover the behaviour observed in unbounded RDDC. This can
be understood with the following physical argument. Finger convection works because during the motion
of a fluid particle, the temperature can be exchanged with its surroundings. Hence, the thermal diffusion
time-scale l2⊥/κT must not be smaller than the advection time-scale l⊥/u. This leads to the condition
u l⊥/κT . 1, that is the Pclet number is of order one. This also translates into Rel . 1/Pr, which is
consistent with our findings (fig. 10b, Rel ' 1 independent of RaC). Note that, because we have set
Pr = 0.3, the two predictions cannot be distinguished.

We now turn to the efficiency of convective transport of temperature and composition, which are quan-
tified by the Nusselt NuT and Sherwood Sh numbers respectively. Their value is 1 for pure diffusion, and
increase with increasing convection strength. In a convective sphere with internal sources and fixed flux at
the outer boundary, they are given by

NuT =
T0(0)− T0(1)

T0(0)− T0(1) + Θrms(0)−Θrms(1)
, (29a)

Sh =
C0(0)− C0(1)

C0(0)− C0(1) + ξrms(0)− ξrms(1)
, (29b)

with [T0, C0](r) the dimensionless background profiles (4) and the rms values of temperature and compo-
sitional perturbations [Θrms, ξrms](r), defined from thermal and compositional energies at the radius r. In
figure 11, we observe that NuT is only weakly affected by varying RaC , yielding NuT − 1 ≤ 10−2. This
is in agreement with local models of non-rotating finger convection. Indeed, Brown et al. (2013) showed
that NuT is always low and drops to 1 as L (or R0) is increased. This shows that the significant thermal
diffusion necessary for finger patterns to develop always dominates the heat transport.
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Figure 10: (a) Reynolds and Rossby numbers [Re,Ro = ReEk] and (b) local Reynolds number Rel =
l⊥Re (with l⊥ given in figure 9), as a function of RaC for nonlinear simulations along the diagonal profile
shown in figure 7, i.e. for a constant buoyancy numberR0. Computations atPr = 0.3, Sc = 3, Ek = 10−5

and RaT = −RaC/3, for which the double-diffusive inviscid tongue exists for RaC ≥ 6.37 × 106. Blue
circles: rms velocity based on total energy. Red squares: rms velocity based on non-zonal, poloidal energy
(proxy of the radial velocity). In (a), the tilted lines are the best least-square fit to the data, yielding the
scalings Re ∝ Ra0.93C (blue dashed), Re ∝ Ra0.95C (red thin for N0/Ωs . 0.5) and Re ∝ Ra0.24C (red thin
for N0/Ωs & 0.5).
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Figure 11: Turbulent thermal (red squares) and compositional (green circles) Nusselt numbers [NuT , Sh],
defined by formulas (29), as a function of the compositional Rayleigh number RaC for rotating finger
convection. Nonlinear simulations at Pr = 0.3, Sc = 3, Ek = 10−5 and RaT = −RaC/3 (i.e. constant
R0 = L/3). The vertical dashed line separates the two rotating regimes in the simulations.

The compositional Nusselt number exhibits more significant variations. When RaC increases in the
regime N0/Ωs . 0.5 defined above, Sh increases up to Sh ∼ 2. Thus, the turbulent compositional flux
is enhanced, for a fixed R0 and an increasing strength of the background stratification along the profile.
Then, in the second regime (N0/Ωs & 0.5), increasing further RaC does not yield significant changes in
Sh.

Note that the scaling of the Nusselt and Sherwood numbers in figure 11, are in agreement with the laws
of non-rotating finger convection (e.g. Garaud, 2018). Indeed, they predict constant Nusselt and Sherwood
numbers for constant buoyancy ratio R0 and Prandtl number Pr.

By contrast, the regime N0/Ωs . 0.5 is more puzzling. One one hand, no clear scaling was observed
for Sh, NuT or l⊥, but on the other hand the Re ∼ RaC scaling found in this regime has also been put
forward in rotating thermal convection (Guervilly et al., 2019), also obtained at low Pr and low Nu.

Figure 12 shows the evolution of the convective power for the same set of simulations, as a function of
RaC = −3RaT . The convective power – the work done by buoyancy forces – is the sum of the thermal
buoyancy power PT = αT (T ∗0 + Θ)g · u and the solutal buoyancy power PC = αC(C∗0 + ξ)g · u. Three
regimes may be distinguished here. Within the anomalous inviscid tongue (RaC . 4 × 10−7, see Fig.
7a), the compositional buoyancy almost balances the thermal buoyancy. Only a small amount of net power
drives convection. For larger RaC , the solutal buoyancy overcomes more easily the thermal stabilizing
gradient, leading to more efficient convection. This coincides with the identification of small-scales fingers
(see Fig. 9). Interestingly, for the largest forcings, we find that the net convective power P evolves like
P ' 0.013RaC . A scaling of P proportional toRaC is also reported in standard convection and convective
dynamos (e.g. Christensen & Aubert, 2006), but with a proportionality constant close to one.

5.4 Zonal flows
For strong forcings, two different symmetries of zonal flow emerge which are discussed below.

5.4.1 Equatorial anti-symmetry for moderate forcing

Within the regime N0/Ωs . 0.5, an equatorially anti-symmetric, differential rotation emerges from satu-
rated quasi-geostrophic motions. A typical temporal evolution is summarised by figure 13a. Initially, the
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Figure 12: Convective power as a function of chemical Rayleigh number RaC , for a stably stratified setup
at Pr = 0.3, Sc = 3, Ek = 10−5 and RaT = −RaC/3 (i.e. constant R0 = L/3). The thermal and solutal
convective powers, respectively PT and PC , measure the work done by the thermal and compositional
buoyancy forces respectively. Here, PT < 0 opposes fluid motion, while PC > 0 drives the flow. For large
RaC , the net convective power P = PT + PC scales as P ' 0.013RaC . Error bars indicate the temporal
fluctuations of the quantities. The vertical dashed lines mark the limit of the anomalous inviscid tongue
(RaC ' 4× 107) and the limit N0/Ωs = 0.5 (RaC ' 1.2× 109).
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(a)

(b) t = 1.6 (c) t = 8

Figure 13: Nonlinear simulation of finger RDDC for stably stratified fluids at Pr = 0.3, Sc = 3, Ek =
10−5 and RaC = 3 × 108 and RaT = −RaC/3. (a) Equatorially anti-symmetric (blue, i.e. the lowest
one at t = 1), symmetric (green, i.e. the lowest one at t = 8) and total (orange, i.e. the uppermost one at
any time) kinetic energies Eu as a function of the dimensionless time t. (b) & (c) Dimensionless azimuthal
velocity uφ at the outer boundary (r = 1), in a meridional slice and in the equatorial plane (z = 0) at the
times shown by the dashed vertical lines in (a) (t = 1.6 and t = 8). The rotation axis is along 1z .
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Figure 14: Reynolds and Rossby numbers as a function of RaC for nonlinear simulations along the di-
agonal profile RaT = −RaC/3 (shown in figure 7) at Pr = 0.3, Sc = 3, Ek = 10−5. Zs and Za
are respectively the zonal equatorially symmetric and anti-symmetric components. NZs and NZa are
their non-zonal analogues. The vertical red dashed line is the anti-symmetric linear onset for the mode
m = 0 while the black one at RaC ' 1.2 · 109 corresponds to N0/Ωs ' 0.5. As expected, the non-zonal
symmetric perturbation dominates near the RDDC onset.

saturated nonlinear flow is dominated by quasi-geostrophic vortices (see figure 13b). They are associated
with density fingers (thicker than the ones illustrated in figure 8, obtained at larger RaC). Columnar mo-
tions are predominant as long as t ≤ 2 in the simulation (figure 13a). Then, an anti-symmetric flow grows
on few viscous time units (figure 13a). Meanwhile, the energy of the equatorially symmetric flow is signif-
icantly reduced, such that the total energy of the fluid remains roughly constant. This anti-symmetric flow
is mainly toroidal, consisting of a strong differential rotation: the flow is prograde in the Northern hemi-
sphere and retrograde in the the Southern hemisphere (see figure 13c), and is associated with a segregation
of both compositional and temperature anomalies in one hemisphere (not shown). This is the first report of
such flows in finger convection. Actually, as shown in figure 14, they appear just above the linear onset for
the equatorially anti-symmetric and axisymmetric (EAA) mode. By contrast, Landeau & Aubert (2011)
found the appearance of the EAA mode in purely thermal convection much further above its onset. In our
case, the EAA flow appearing in the nonlinear regime is clearly linked to the crossing of the associated
linear threshold. It is quite unexpected that, far from the instability onset, a purely linear mechanism can
explain the symmetry breaking of a nonlinear flow at saturation. This highlights the potential importance
of linear modes even far from the global stability threshold in this systems. Furthermore, it emphasizes the
importance of long simulations spanning several diffusion times.

5.4.2 Equatorial symmetry for strong forcing

Figure 14 shows that the EAA is overtaken by equatorially symmetric zonal flows for N0/Ωs & 0.5. This
contrasts with Landeau & Aubert (2011), where the EAA mode increasingly dominates with forcing. Being
mainly toroidal, the zonal flow does not affect the Reynolds number based on poloidal non-zonal energy
shown in figure 10. The more RaC increases, the larger the amplitude of this zonal flow, which quickly
dominates all other components, as shown in figure 14. A typical kinetic energy spectrum is shown as a
function ofm in figure 2b. The zonalm = 0 component has an amplitude up to several orders of magnitude
larger than the non-zonal components.

This zonal flow has a strong radial dependence, as illustrated in figure 15a. In the bulk (here at r = 0.5),
the zonal flow is prograde. However, it naturally exhibits multiple alternating prograde and retrograde jets
at the outer spherical boundary, with rich dynamics (figure 15b).
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(a)

(b)

Figure 15: Equatorially symmetric zonal jet in rotating finger convection. Azimuthal average of the dimen-
sionless rotation of the fluid Ω = Ek uφ/r. Simulations at Pr = 0.3, Sc = 3, Ek = 10−5, RaC = 1010

and RaT = −RaC/3. (a) Instantaneous 3D snapshot of Ω up to radius r = 0.995. The rotation axis is
along 1z . (b) Ω as a function of time t and colatitude θ (in degrees) at the radius r = 0.995, below the
Ekman boundary layer.
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THERMAL COMPOSITIONAL

Pr 0.01 0.1
Sc 102

RacT 6.00× 1019 1.42× 1020 0
RacC 0 0 1.08× 1021

mc 10755 22301 67570

Table 3: Parameters for the onset of convection at core conditions (Ek = 10−15): critical thermal RacT
or compositional RacC Rayleigh numbers, critical wave number mc computed from table 2 of Jones et al.
(2000). Note that our dimensionless numbers Ek and Ra differ from theirs.

These zonal flows may be seen as the manifestation in spheres of large-scale vortices (LSV) found in
(unbounded) local simulations. LSV are conspicuous in local simulations of rotating finger convection in
the polar regions (Sengupta & Garaud, 2018). They also appear in rotating semi-convection (Moll et al.,
2017) and in rotating pure-thermal convection (e.g. Guervilly et al., 2014; Guervilly & Hughes, 2017).
Julien et al. (2018) argued that the formation of zonal flows and jets is a robust feature resulting from an
inverse energy cascade, provided that the flow is strongly anisotropic. In our simulations it is the zonal
flows that allow rapid velocities (Re ∼ 1000) to be reached by convection in stably stratified fluids.

6 Towards planetary core conditions

6.1 Linear onset in the early Earth
We have highlighted, using linear and nonlinear simulations, that rotation has surprising effects for rotat-
ing finger convection. Now, a complete quantitative picture of the onset of rotating finger convection is
emerging for typical core conditions (Ek = 10−15 and L = 104). Indeed, we remind the reader that
double-diffusive effect are negligible except for |RaT | ∼ |RaC |. Hence, we gather in table 3 the parame-
ters of pure thermal or compositional convection, as predicted by the global theory of Jones et al. (2000).
Moreover, thanks to the inviscid nature of the instability in the stably stratified region (N2

0 > 0), we have
already determined the onset of finger convection at Earth’s core conditions (see figure 4).

The scenario is illustrated in figure 16. For core conditions, we clearly observe the possibility of
convection at reduced Rayleigh number, immensely facilitated by the stably stratified thermal profile. First,
the wave number at the onset is strongly reduced within the tongue, yielding typical values m ≤ 10. The
growth rate increases with RaC from a few to several thousands per viscous time-scale within the tongue.

Then, as expected, the critical Rayleigh number at the onset of pure compositional convection RacC ∼
1021 (table 3) is orders of magnitude larger than the critical value at the upper edge of the double-diffusive
tongue, i.e. RacC ' 1017. The composition Rayleigh number RaC is thus reduced by four decades for the
early Earth by adding a stabilising temperature gradient.

6.2 Speculative estimates for the early Earth
To investigate the relevance of RDDC in the early Earth, we can use orders of magnitude arguments. They
are presently highly speculative, due e.g. to the large modeling uncertainties. They will be certainly revised
by future additional constraints, provided by mineral physics and thermal models of the Earth.

A typical estimate of the compositional Rayleigh number is

RaC
Sc
∼ g0R

4

ν2
∆ρC
ρm

, (30)

where ∆ρC is the typical density yielding the compositional buoyancy (due to light elements) and ρm the
typical density of the core. Following Jones (2015), typical values are R = 3500 km for the radius of the
core, Rg0 = 10 m.s−2 for the gravitational acceleration, ν = 10−6 m2.s−1for the (molecular) kinematic
viscosity and Sc = 102 for the Schmidt number. The amount of light elements attributable to compositional
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(a) Growth rate

(b) Most unstable azimuthal wave number

Figure 16: Linear onset of RDDC for Early Earth core conditions, i.e. Ek = 10−15, L = 104 in the finger
quadrant. Orange thick line is the onset form = 1, computed with SINGE for these parameters (and setting
Pr = 3.10−4 for numerical convenience, the results being independent of Pr, see §4.2.2). Colour maps
are obtained from the approximate annulus theory of Busse (2002), adjusted to fit the SINGE data, for the
dimensionless growth rate (a) and the most unstable wave number (b). In this model, the RDDC tongue is
given by formula (49), shown as red dashed lines. Dashed oblique line is the neutral curve N2

0 = 0, i.e.
RaT = −RaC/L. By contrast with the annulus theory, faded colored zones are stable according to SINGE
(see appendix C for details).

28



sources is highly debated. The compositional gradient was likely destabilising in the early Earth, due to
the exsolution or crystallisation of light elements in the core. The equilibration at high temperatures in the
aftermath of giant impacts would be responsible for a small amount of magnesium to partition into the core,
yielding the exsolution of light magnesium oxides in the core (Badro et al., 2016; O’Rourke & Stevenson,
2016). This mechanism is energetically efficient, since precipitating a layer of magnesium-bearing material
with a typical thickness of 10 km above the CMB would be equivalent to crystallising the entire inner core
(O’Rourke & Stevenson, 2016). Instead of invoking such singular events, Hirose et al. (2017) advocated
the crystallization of silicon dioxide. Nonetheless, in the two scenarios, roughly the same mass of light
elements is precipitated/crystallised. Thus, typical (speculative) upper bounds are 0.2 wt % of precipitated
magnesium-bearing minerals (see figure 2 of O’Rourke & Stevenson, 2016) or 0.4 wt % of crystallised
silicon dioxide (Hirose et al., 2017). Based on these two scenarios, we may consider the typical value
∆ρC/ρm = 10−3 as an upper bound. Then, formula (30) yields the estimate RaC/Sc ≤ 1029 in the early
Earth. This upper estimate is much larger than the critical values required at the onset (figure 16), typically
RacC ∼ 1017 − 1018 in the inviscid tongue and RacC ∼ 1021 for compositional convection (even without
stabilising thermal effects). This suggest that the early Earth did undergo highly supercritical RDDC, either
for unstably or stably stratified fluids.

The properties of convection would be certainly different in the two regimes. Hence, to argue in favour
of one regime, we have to estimate the square of the total background Brunt-Väisälä frequency N2

0 . On the
one hand, the compositional part is

N2
0,C/Ω

2
s ∼ −Ek2RaC/Sc. (31)

This gives the speculative estimate −10−1 ≤ N2
0,C/Ω

2
s ≤ 0. On the other hand, the presence of a thick,

thermally stratified layer seems probable prior to the formation of the inner core if there was a sub-adiabatic
heat flux at the top of the core Qcmb. To our knowledge, there is no reliable agreement between thermal
models of the Earth (e.g. Labrosse et al., 1997; Nimmo, 2015; Nakagawa, 2018). Therefore, we estimate a
speculative upper bound from the difference between the total heat flux Qcmb and the adiabatic flux Qa at
the CMB

N2
0,T

Ω2
s

∼ αT g0R

kSΩ2
s

[Qa −Qcmb] , (32)

with S the surface of the outer core, αT ∼ 10−5 K−1 the thermal expansion coefficient (Nimmo, 2015) and
k the thermal conductivity. The latter quantity is badly constrained (Williams, 2018), so does the thermal
history of the Earth. Possible values are 40 − 160 W.m−1.K−1. A broad range of values appears possible
for Qa − Qcmb. Upper-bound estimates are presently a few TW, yielding the (highly) speculative bounds
for a thermal stratification 0 ≤ N2

0,T /Ω
2
s � 1− 10. The upper bound values are very close to the plausible

geophysical estimates of the thermal Brunt-Väisälä frequency at the top of the Earth in the present time
(e.g. Labrosse et al., 1997; Buffett, 2014; Helffrich & Kaneshima, 2013). Consequently, N2

0,T +N2
0,C may

have been either positive or negative.
To sum up, the Early Earth may have been prone to either overturning convection (for unstably stratified

fluids) or finger RDDC (for stratified fluids).

7 Conclusion

7.1 Summary
We have revisited rotating double-diffusive convection (RDDC) in planetary cores, by considering flows
driven by buoyancy forces of thermal and compositional origins. We have studied RDDC with a Boussinesq
model in a full sphere, with internal source and sink terms. We have separated thermal and compositional
effects, to go beyond the codensity approach (Braginsky & Roberts, 1995; Lister & Buffett, 1995) com-
monly used in planetary simulations. We have mainly focused on the finger regime (RaC ≥ 0, RaT < 0),
by considering stabilising thermal effects and destabilising compositional effects.

First, we have performed the linear stability analysis of background diffusive state (3) in the finger
quadrant, by using a global (spherical) method. A global picture is now emerging. A quantitative proxy
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of the strength of rotational and stratified effects is the absolute value of the square of the dimensionless
background Brunt-Väisälä frequency, i.e. the ratio |N2

0 /Ω
2
s|. Overturning convection occurs for unstably

stratified fluids (N2
0 /Ω

2
s ≤ 0). When overturning convection is controlled by rotational effects (−1 ≤

N2
0 /Ω

2
s ≤ 0), the onset is largely unaffected by double-diffusive effects when |RaT | � RaC in the

finger regime. Then, the linear spherical analysis recovers asymptotically the onset of non-rotating DDC
in strongly stratified regime (N2

0 /Ω
2
s � 1). On the other hand, it strongly differs in the other regime

N2
0 /Ω

2
s � 1 with local analyses. Indeed, local analyses predict that rotation has a simple stabilising effect,

merely increasing the critical Rayleigh numbers at the onset. However, rotational effects are more subtle in
the presence of double diffusion. Indeed, the global analysis shows that the linear onset of RDDC can occur
for lower Rayleigh numbers for stably stratified fluids than for unstably stratified fluids. This phenomenon,
first outlined by Busse (2002), is intrinsically due to rotational effects in the bounded spherical geometry.
Therefore, they are filtered out by local models. The associated flows at the linear onset do not always
take the form of quasi-geostrophic motions (aligned with the rotation axis), unlike in standard rotating
convection (e.g. Zhang et al., 2007; Kaplan et al., 2017). In addition, for a specific combination of boundary
conditions (namely fixed temperature and imposed composition flux), rotating double-diffusive convection
surprisingly occurs for density ratios R0 > L, which is beyond the limit of non-rotating double-diffusive
convection. In the finger regime, double-diffusive effects become preponderant only for stably stratified
fluids (N2

0 /Ω
2
s ≥ 0). On the contrary, as discussed in appendix B, double-diffusive effects start playing a

role even for unstably stratified fluids (N2
0 /Ω

2
s ≤ 0) in the semi-convection quadrant (RaC ≤ 0, RaT > 0).

Second, we have conducted high-resolution, nonlinear simulations for rotating stratified fluids (N2
0 /Ω

2
s ≥

0) in the finger regime. Several nonlinear features have been obtained. Outside the DD tongue for large
enough RaC , the flow structures (fingers) strongly differ from the linearly unstable tongue modes at the
upper edge of the DD tongue. Moreover, we have identified a sharp transition outside the tongue in the
rapidly rotating finger regime. This transition empirically occurs at N0/Ωs ' 0.5 in the simulations, for
the fixed value Ek = 10−5. In the first regime, the nonlinear flows exhibit equatorially anti-symmetric,
large-scale zonal flows, which appears when the associated linear onset is crossed. In the second regime,
strong equatorially symmetric zonal flows are sustained. The latter flows are reminiscent of the large-scale
vortices found in local models of finger convection (e.g. Sengupta & Garaud, 2018). The turbulent prop-
erties, e.g. the output Reynolds or Nusselt numbers, are also significantly different in the two regimes.
Notably, we have found scalings for the second regime that appear in broad agreement with the scalings
proposed for local DDC.

Finally, we have succeeded in predicting the onset of RDDC numerically at core conditions, after
noticing the inviscid nature of finger convection in the weakly stratified regime. We have shown that
the combination of rotation and double-diffusive effects is strongly destabilising in the inviscid tongue for
stably stratified fluids. The critical Rayleigh number is reduced by four decades for realistic core conditions.
Then, we have crudely estimated the thermal and compositional stratification in the Early Earth. We support
that it may have undergone highly turbulent RDDC, either in the overturning compositional convection
(unstably stratified) or in the finger regime associated with strong zonal flows.

7.2 Perspectives
7.2.1 Discussion and improvements

A considerable amount of work remains to be done, e.g. to expand the surveyed parameter space and to
refine the model. Further simulations are required to understand the nonlinear saturation of finger convec-
tion (figure 10), e.g. by varying L, RaT and RaC . On the one hand, we have found that local scalings
of non-rotating finger convection (Garaud, 2018) may qualitatively hold in the second rotating regime.
Nonetheless, a more exhaustive numerical survey of the parameter space is required to assess their quan-
titative validity. Moreover, it remains an open question whether regimes of rotating thermal convection
(Gastine et al., 2016) apply for RDDC, both for destabilising and stabilising density profiles. Therefore,
this calls for assessing and possibly improving the scaling laws describing rotating convection in the pres-
ence of significant double-diffusive effects.

For numerical reasons, we have considered moderate values for the Lewis L = 10 and Ekman Ek =
10−5 numbers in the nonlinear simulations. The value of L is about two orders of magnitude smaller than
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the expected values in planetary cores. Larger values of L may facilitate the generation double-diffusive
structures. In particular, we have not found any density staircases (Stern & Turner, 1969), resulting from
secondary instabilities. Several theories have been proposed in the non-rotating case (Stern & Turner,
1969; Radko, 2013). For the moderate values of Pr characterising planetary cores, their generation may
rely on the mixing by nonlinear internal waves (Garaud et al., 2015). Yet, these mechanisms remain to
be confirmed in the presence of rapid rotation. Their existence may strongly affect the turbulent regime.
Indeed, it has been shown that density staircases can increase the turbulent heat and compositional fluxes by
several orders of magnitude (e.g. in oceanography Schmitt et al., 2005). Thus, the conditions of existence
for density staircases in rotating finger convection remain unanswered and studying them deserves future
work.

We have outlined that we cannot rule out RDDC in the Early Earth. Now, investigating the dynamo
capability is necessary to assess the validity of the proposed mechanisms for the origin of the Early geo-
dynamo (Badro et al., 2016; O’Rourke & Stevenson, 2016; O’Rourke et al., 2017; Hirose et al., 2017).
The dynamo capability of rotating finger convection remains an open question. Typically, dynamo action
requires Rm > 100, where Rm = RePm is the magnetic Reynolds number with Pm = ν/η the mag-
netic Prandtl number (Pm � 1 for cores) and η the magnetic diffusivity. With this first study, we cannot
establish scaling laws that would allow us to infer Rm at core conditions. However, Fig. 10 shows that Re
can be large, possibly allowing large Rm too. For large RaC , the flow organizes itself into strong large-
scale zonal shears and weak small-scale fingers. Even though the radial velocity of the small-scale finger is
small, the large-scale zonal shear is large. This situation could in principle sustain an αω dynamo, in which
the large-scale shear is responsible for a so-called ω-effect while the small-scale convection produces an
α-effect (e.g. Roberts, 1972). We have also checked that our flow displays a significant amount of helicity,
an ingredient thought to be important to obtain an important α-effect. From a numerical point of view, we
reach Re ∼ 103 in our simulations. In an αω dynamo context, the relevant magnetic Reynolds number
would be the geometric mean Rm∗ of the Rm based on the large-scale zonal flow and the Rm based on
the small-scale one (e.g. Roberts, 1972). According to Fig. 10a, this leads to Rm∗ ∼ 200Pm, potentially
allowing dynamos for Pm & 1.

Beyond the question of the dynamo capability, we can wonder about the strength of the generated
magnetic field. In the case of simple convective dynamos (ie without double-diffusive effects), the field
strength scales as P 1/3, where P is the convective power (e.g. Christensen & Aubert, 2006). Despite the
small values of Nu and Sh (see Fig. 11), we find significant buoyancy power in our simulations, scaling
like P ' 0.013RaC (see Fig. 12). This scaling is similar to the one found in standard convective dy-
namos (see Christensen & Aubert, 2006), differing only by the constant factor which is about 100 times
smaller here. Assuming this scaling holds, we can expect strong magnetic fields to be generated, provided
that RaC is large enough. Nevertheless, the saturation of a dynamo driven by double-diffusive convection
may behave differently. In addition, the large-scale zonal flows we have found in these simulations, which
may persist for core conditions, are known to be important for the dynamo process in stratified interiors
(e.g. Spruit, 2002) whereas it does not change much the radial transport (and thus the Nusselt and Sher-
wood numbers). Indeed, such zonal flows can sustain various hydrodynamic and magnetic instabilities (e.g
Knobloch, 1982; Jouve et al., 2015). Hence, dynamo onset, field strength at saturation, and extrapolation to
core conditions all require a future study of dynamo driven by double-diffusive convection in the turbulent
rotating regime.

Recently, Guervilly & Cardin (2016) and Kaplan et al. (2017) found that the smooth (linear) onset of
rapidly rotating thermal convection is replaced by (nonlinear) hysteresis cycles and subcritical behaviours,
at small enough Ekman numbers. These effects may survive with double-diffusive effects in the overturn-
ing regime. Finger convection may also occur though a subcritical bifurcation when L � 1, as proposed
for non-rotating stratified fluids in planar models (Veronis, 1965; Proctor, 1981). This mathematical ob-
servation has not been confirmed yet numerically. Notably, we have not found evidence supporting this
behaviour in the numerics. However, these nonlinear effects may only appear for L larger than in our sim-
ulations. Therefore, studying finite-amplitude perturbations appears of special interest to investigate the
transition towards turbulence in RDDC when L� 1.

Finally, we have neglected so far several double-diffusive effects occurring in a binary mixture. More
relevant compositional boundary conditions may be implemented, e.g. the intricate boundary condition
proposed by Braginsky & Roberts (1995); Glatzmaier & Roberts (1996). Investigating additional binary

31



effects in the thermal and heat fluxes is also worthy of interest (still in the Boussinesq approximation).
They are only responsible for second order effects at the linear onset (e.g. Hort et al., 1992; Net et al.,
2012), when a background state state is imposed. However, they may play a dynamical role in nonlinear
simulations. For instance, barodiffusion is the tendency of light material to migrate down the pressure
gradient. Barodiffusion sustains the accumulation of light elements at the top of the core (Gubbins &
Davies, 2013), to naturally increase the Brunt-Väisälä frequency. Handling barodiffusion is not demanding
numerically, e.g. in shells by considering a system forced by the boundaries (i.e. no background state)
but with an additional mass sink (e.g. Davies & Gubbins, 2011; Bouffard, 2017). These effects should be
considered for consistent future nonlinear simulations.

7.2.2 Towards planetary applications and beyond

Beyond the origin of the early geodynamo, the (possible) outermost stable stratification in the Earth’s core
is another long standing geophysical issue (e.g. Loper & Roberts, 1981; Braginsky, 1993; Lister & Buffett,
1998). The existence of such a layer has been outlined by seismological (Helffrich & Kaneshima, 2010,
2013; Irving et al., 2018), geodetic (Buffett & Seagle, 2010) and geomagnetic (Gubbins, 2007; Buffett,
2014) data. The density stratification may have a thermal and/or compositional origin (e.g. Buffett & Sea-
gle, 2010; Davies et al., 2018; Nakagawa, 2018; Bouffard et al., 2019). Indeed, the thermal conductivity
has been revised upward by ab-inito calculations (Pozzo et al., 2012; de Koker et al., 2012; Pozzo et al.,
2013) and experiments (Gomi et al., 2013; Ohta et al., 2016; Konôpková et al., 2016). This may favour
an outer sub-adiabatic thermal stratification, but large thermodynamical uncertainties remain (Williams,
2018). Moreover, Mound et al. (2019) pointed out that this outermost stratification may be regional (rather
than global), being generated by the lateral variations in heat flux at the coremantle boundary . Stratification
may be also sustained by the accumulation of light elements (e.g. Loper & Roberts, 1981). This stratified
layer may affect the geodynamo (e.g. Olson et al., 2017; Christensen, 2018), e.g. by filtering small-scale
internal convective motions (Vidal & Schaeffer, 2015) or trapping waves (Knezek & Buffett, 2018). How-
ever, this hypothetical layer may be prone to either rotating finger convection or semi-convection (Bra-
ginsky, 2006), making the internal core dynamics more complex. In particular, intense zonal flows could
develop, as we have found in this work. Partially stratified core layers may also exist in other planets, e.g.
Mercury (Manglik et al., 2010; Takahashi et al., 2019) or Venus (Jacobson et al., 2017). Therefore, it is of
special interest to determine whether thermally and/or compositionally stably stratified layers can survive
dynamically against RDDC.

In addition, double-diffusive effects are also relevant for giant planets (Stevenson, 1982), such as Saturn
(Stevenson & Salpeter, 1977; Leconte & Chabrier, 2013) and Jupiter (Moll et al., 2017). Stellar interiors
may also undergo DDC (Garaud, 2018), e.g. low-mass hosting exoplanets (Vauclair, 2004) or massive stars
(e.g. Merryfield, 1995; Woosley et al., 2002). Even though they were largely neglected, rotational effects
may be significant in these objects, e.g. for the giant planets of our Solar system which are rapidly rotating
(9.9 hr for Jupiter and 10.7 hr for Saturn) or for some radiative stars (e.g. Jouve et al., 2015).

The validity of the Boussinesq model for compressible interiors should be assessed. The scalings for the
typical length scale of density structures, applied to planetary Earth-like parameters, yield (Bouffard, 2017)
l⊥ ∼ 20 cm for rapid rotations cm and l⊥ = 40 cm in the non-rotating case. Spiegel & Veronis (1960)
showed that the Boussinesq approximation is relevant for dynamical scales smaller than the pressure scale
height, typically one-tenth of the radius of stars. Therefore, the compressible dynamics may be surprisingly
well described by using the Boussinesq approximation, as advocated in the non-rotating regime (Radko,
2016). A comparison between Boussinesq and anelastic models of RDDC (e.g. Glatzmaier & Roberts,
1996) is certainly worthy of interest for astrophysical objects.

In addition, gaseous planets would require to consider stress-free conditions for the flow. Our results
show that, in the limit Ek � 1, stress-free conditions do not affect the onset of inviscid RDDC, which
remains symmetric with respect to the equatorial plane. However, these bodies are characterised by much
smaller values of Pr � 1 (compared to planetary cores). In this regime, flows at the onset can be equato-
rially anti-symmetric torsional modes. They sometimes appear as the preferred unstable modes of (pure)
thermal convection in spheres in the limit Pr � 1 (e.g. at Pr/Ek = 10), but only for stress-free condi-
tions (Sánchez et al., 2016; Zhang et al., 2017) as commonly used for giant planets and stars. Moreover,
polar anti-symmetric modes have also been found at the onset when Pr � 1, for (pure) thermal convection
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in thick (Garcia et al., 2008) and thin (Garcia et al., 2018) spherical shells. The nonlinear regime in the
low-Pr regime is expected to differ from the high-Pr regime (e.g. in the non-rotating regime Garaud,
2018). Therefore, studying RDDC in the low-Pr regime with stress-free conditions may lead to different
double-diffusive effects than those previously obtained in shells (e.g. Net et al., 2012).

Finally, we remark that the large-scale inviscid mode in the stably stratified regime is always m = 1,
with a net flow at the center within the equatorial plane. Such a mode could constrain the translation
direction of a freshly-nucleated inner core to be perpendicular to the rotation axis, in agreement with
seismological observation of the hemispherical dichotomy of the inner core (see e.g. Deguen, 2012).
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A Other boundary conditions at the linear onset
We investigate the effects of different mechanical, thermal and compositional boundary conditions (BC)
on RDDC in spheres. We substitute no-slip conditions (9) by stress-free conditions for the velocity field

1r · u = 0, 1r × [E1r] = 0 at r = 1 (33)

with E =
[
∇u + (∇u)>

]
/2 the strain rate tensor (incompressible Newtonian fluid). Instead of fixed flux

conditions (10), we consider fixed temperature or composition at the boundary

Θ = ξ = 0 at r = 1. (34)

Numerical results, computed with SINGE, have been performed for m = 1 and m = 6 at Ek = 10−4

and m = 1 at Ek = 10−11. Given that the results lead to the same conclusions, we only show the re-
sults for m = 1 and Ek = 10−11 in figure 17. Within the stable double-diffusive tongue given by the
Ledoux criterion (15), the linear onset is independent of the mechanical conditions. For the low Ekman
number considered here, using stress-free (33) or no-slip condition (9) leads to the same marginal stability
curve (not shown). However, changing the boundary condition on the temperature or composition field
has important effects on the shape of the marginal stability curve, but the latter still remains independent
of viscosity. Surprisingly, with a fixed temperature and imposed buoyancy flux, the double-diffusive con-
vection extends to RaT < −RaC , which corresponds to density ratios R0 > L. This linear instability,
located beyond the expected range of finger convection, has been confirmed by time-stepping nonlinear
simulations with XSHELLS (at EkRaT = −103, EkRaC = 6× 102 and Ek = 10−5).

B Semi-convection
The onset of RDDC in the semi-convection quadrant (RaT > 0, RaC < 0) is represented in figure 18 the
linear computations at the onset computed with SINGE, for two values ofEk. The critical parameters at the
onset of pure thermal convection are given in table 4, for completeness with table 2 for pure compositional
convection. The onset of convection is largely insensitive to double-diffusive effects as long as |RaC | �
RaT . This refers to the overturning regime of thermal convection. For higher |RaC |, double-diffusive
effects start to be important when |RaC | ≥ RaT . As in the finger regime, the marginal stability curve σ
takes the form of a tongue in theRac−RaT diagram (figure 3). However, double-diffusive effects become
significant even for unstably stratified fluids (N2

0 < 0), as opposed to the finger quadrant in which only
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Figure 19: 3D snapshot of a nonlinear simulation of rotating semi-convection (RaT > 0, RaC < 0 at
Pr = 0.3 and Sc = 3), showing the chemical buoyancy RaCξ for a stably stratified background state at
Ek = 10−5, RaC = −7× 109 and RaT = 5× 108. Rotation axis is along 1z .

Ek mc RacT ω

10−4 12 9.86× 105 −5.48× 102

10−5 40 3.60× 107 −2.08× 103

Table 4: Critical wave numbermc, thermal Rayleigh numberRacT and angular frequency ωc at the marginal
onset (σ = 0) of thermal overturning convection (i.e. for RaC = 0). Computations at Sc = 3 and
Pr = 0.3. The first row is obtained at Ek = 10−4 and the second one at Ek = 10−5.

stably stratified fluids (N2
0 ≥ 0) are strongly affected. Within this tongue, modes with small azimuthal

wave number are triggered at the onset, which also occurs for smaller thermal Rayleigh number than in
the overturning regime. In the limit |RaC | → ∞, RDDC reaches asymptotically the non-rotating regime
predicted by formula (19). Then, we show in 19b an illustrative nonlinear simulation of semi-convection
at Ek = 10−5 and RaT = 108. Density structures exhibit larger spatial scales than the ones obtained in
simulations within the finger regime (for similar absolute values of the Rayleigh numbers).

C Revisiting the annulus geometry

C.1 Mathematical formulation
We revisit the model of RDDC in a cylindrical annulus. A few misprints are present in Busse (2002),
which also used other dimensionless variables. Furthermore, Busse (2002) made wrong assumptions when
drawing his conclusions, mistakenly considering the non-rotating limit. Before taking the annulus model
further, we clearly explain the theory, going through the derivation of the equations in our formalism.

For the sake of tractable analytical developments, Busse (1970) pointed out that a simplified model of
QG convection in spheres should consider a thin cylindrical annulus, with sloping top and bottom bound-
aries. Using this asymptotic model, he investigated the onset of thermal convection with RaC = 0 (Busse,
1986), and extended it to RDDC (Busse, 2002). This model considers a thin-gap geometry centered on
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Figure 20: Configuration of the rotating cylindrical annulus. The thin gap of the annulus at the cylindrical
radius s0 is d, h the spatially varying height of the annulus, χ the angle of the conical upper and lower
(not shown) caps. Ω the planetary angular velocity and g is the radially directed acceleration of gravity.
The inner cylindrical wall at x = −d/2 (respectively outer wall at x = d/2) is kept at the (dimensional)
temperature T ∗0,1 and composition C∗0,1 (respectively T ∗0,2 and C∗0,2) in the background state.

the QG columns at the onset. Moreover, this asymptotic theory can embrace core conditions in the limit
Ek � 1 and L� 1. The annulus geometry is illustrated in figure 20. We consider the cylindrical annulus
region, located at the cylindrical radius s0 in a full sphere rotating at the angular velocity Ωs. We use the
small-gap approximation, by assuming d/s0 � 1. Thus, the effects of the spherical curvature can be ne-
glected and we use the Cartesian coordinate system of unit vectors (1x,1y,1z) centered at s0. The annular
channel is bounded at top and bottom by rigid conical caps with the angle of inclination χ. We denote h
the half-height of the cylindrical annulus (with respect to the equatorial plane). In the background state,
the fluid is stratified in temperature and composition under the inward gravity field g = −g0s01x, which
is constant at the scale of the annulus. The inner wall (respectively the outer one) is kept at the constant
temperature T ∗0,1 and composition C∗0,1 (respectively T ∗0,2 and C∗0,2).

We choose the gap d as length scale, d2/ν as time scale, ∆T ∗ Pr = (T ∗0,1 − T ∗0,2)Pr as thermal scale
and ∆C∗ Sc = (C∗0,1 − C∗0,2)Sc as compositional scale. These thermal and compositional scales are the
local analogues of the global scales chosen in the main text. Dimensionless variables are denoted in the
following without asterisk. We assume that the slope χ of the upper and lower caps shown in figure 20 is
small (χ� 1), such that the local conductive background state is close to the one in the annulus of uniform
depth (e.g. Busse, 1970). Hence, the dimensionless background state is

∇T0 = − 1

Pr
1x, ∇C0 = − 1

Sc
1x. (35)

Then, the local form of equations (6) for the dimensionless perturbations (u,Θ, ξ) takes the form

∂u

∂t
+

2

Ẽk
1z × u = −∇p+∇2u (36a)

+
(
R̃aT Θ + R̃aC ξ

)
1x,

∂Θ

∂t
=

1

Pr

(
1x · u +∇2Θ

)
, (36b)

∂ξ

∂t
=

1

Sc

(
1x · u +∇2ξ

)
. (36c)
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We have introduced in equations (36) the local Ekman and Rayleigh numbers

Ẽk =
ν

Ωsd2
, (37a)

R̃aT =
αg0s0∆T ∗d3

ν2κT
, (37b)

R̃aC =
αg0s0∆C∗d3

ν2κC
. (37c)

Note that Rayleigh numbers (37) are the local versions of the spherical Rayleigh numbers (8) introduced
in the main text.

We seek velocity solutions of equations (36) with small variations along the rotation axis 1z . Hence,
the velocity takes the form of QG flows

u ∼ ∇× (Ψ 1z) + uz1z, (38)

with uz the small vertical velocity (at the order χ) and Ψ the velocity stream function in the equatorial plane
(z = 0). The linear onset given by equations (36) can be solved by considering stress-free, iso-thermal and
iso-compositional boundaries

Ψ =
∂2Ψ

∂2x
= Θ = ξ = 0 at x = ±1

2
. (39)

We also assume that the upper and lower conical caps at z = ±h/(2d) are rigid, with fixed vertical thermal
and compositional fluxes (Busse, 1986). This yields

u · 1z = ± tanχ (u · 1x),
∂

∂z
[Θ, ξ] = 0. (40)

Other conditions are irrelevant in the analysis. In particular, the neglected viscous boundary layer vanishes
in the limit Ek � 1 in the annular geometry (Hunter, 1967). This is in agreement with the observation
that the viscous boundary condition is of second order importance for the onset of convection in spheres
(Zhang & Jones, 1993; Jones et al., 2000), at least for not too small values of Pr at fixed Ek (Zhang et al.,
2017). Although these boundary conditions are not physically realistic (Braginsky & Roberts, 1995), they
do not hinder from investigating the leading order double-diffusive effects. Then, following Busse (2002),
we take the z-component of the curl of momentum equation (36a) and average it over z (from bottom to
upper caps). This yields at first order in χ (see Busse, 1986, for the derivation)(

∂

∂t
−∆⊥

)
∆⊥Ψ− β ∂Ψ

∂y
− R̃aT

∂Θ

∂y
− R̃aC

∂ξ

∂y
= 0, (41)

with the two-dimensional horizontal Laplacian ∆⊥ = ∂2/∂x2 + ∂2/∂y2 and the parameter

β =
4Ωsd

3

hν
tanχ. (42)

In the rapidly rotating limit Ẽk � 1, β is a leading order parameter containing the effects of the boundary
curvature (the so-called β-effect).

We assume periodicity in the 1x direction to satisfy boundary conditions (39), yielding the form of the
solutions (e.g. Busse, 1986)

[Ψ,Θ, ξ](x, y, t) =
[
Ψ̂, Θ̂, ξ̂

]
exp(imy + λt)

cos

[
nπ

(
x+

1

2

)]
), (43)
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where
[
Ψ̂, Θ̂, ξ̂

]
are complex-valued amplitudes, λ is the complex eigenvalue with <e(λ) = σ the growth

rate, m is the azimuthal wave number and n is the degree of spatial complexity along the horizontal di-
rection. We substitute solutions (41) into equations (36b)-(36c) and (41). They can be recast into a single
equation for Ψ̂. This equation can be recast into the original form introduced by Busse (2002), i.e.

(λPr + a2)

(
λPr +

a2

L

)
[(λ+ a2)a2 + imβ]

−m2

[
RT

(
λPr +

a2

L

)
+RC (λPr + a2)

]
= 0 (44)

with a2 = m2 + n2π2 and by introducing the thermal and compositional Rayleigh numbers in the Busse’s
notation

RT = R̃aT and RC = R̃aC/L. (45)

Because all azimuthal wave numbers m are separated, the marginal stability curve σ = 0 is obtained
by minimising the critical Rayleigh number over all values of m. In the following, we will survey the
properties of RDDC in the annulus geometry by varying Busse’s parameters (RT , RC).

In our notations, the growth rate σ = <e(λ) of RDDC is predicted by the following polynomial equa-
tion (Busse, 2002)

(λPr + a2)(λSc+ a2)[(λ+ a2) a2 + imβ]

−m2
[
RaT

(
λSc+ a2

)
+RaC (λPr + a2)

]
= 0, (46)

with a2 = m2 + π2, [RaC , RaT ] the Rayleigh numbers (8) and β a geometrical parameter in the annu-
lus geometry. When double-diffusive effects are negligible, the onsets of pure thermal or compositional
rotating convection are naturally recovered, given by the critical values

RacT = g(Pr) and RacC = g(LPr), (47)

with the function

g(x) =
a6

m2
+

(
βx

1 + x

)2

a−2. (48)

C.2 New asymptotic predictions
In the limitEk � 1, we have obtained an analytical expression for the double-diffusive onset from formula
(46). This contradicts the prediction Busse (2002), made by mistakenly considering the non-rotating limit.
Within the double-diffusive tongue, the onset is given by (see details in the supplementary material)

RacT = ± βa2(L+ 1)

m
√

(K − 1)(L2 −K)
with

RacC
RacT

= −K, (49)

with negative (respectively positive) values of RacT in the finger (respectively semi-convection) regime.
Predictions (49) agree very well with our numerical simulations in the sphere (see figure 4). In particular,
we recover that the results do not depend on Sc and Pr, but only on L and Ek. Moreover, for each m, the
minimum |RacC | is located along the line

RacT = −1 + L2

2L2
RacC ' RacC/2 for L� 1 (50)

and is given by

min
RaT
|RacC | =

2βa2L

m(L− 1)
' 2a2β

m
for L� 1. (51)

This corrected expression of the reduced onset agrees with our numerical results in the sphere (figure 4).
Note that we also recover that, near this point, the onset is independent on L, and thus only depends on Ek.
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Figure 21: Comparison between the annulus asymptotic theory and SINGE computations at Pr = 0.3,
Sc = 3, Ek = 10−6. Colour bar shows the most unstable azimuthal wavenumber. At the upper edge of
the double-diffusive tongue, the critical number is mc = 3 in (a) and (b). The dashed (thick) gray line is
the marginal stability curve σ computed with SINGE. The dashed tilted line is the neutral curve N2

0 = 0,
i.e. RaT = −RaC/L. The tilted solid line is the bound for non-rotating finger convection (18), i.e. the
curve RaT = −RaC . For the annulus theory, we set Γ = 3.786 to match the pure compositional onset (at
RaT = 0) given by SINGE.

C.2.1 Matching the annulus to the sphere

Simitev (2011) showed numerically that n = 1 is always the most unstable radial wave number in the
annulus geometry. So, we have fixed n = 1 in the following, as originally considered by Busse (2002).
Then, parameters (37)-(42) are local parameters. Moreover, the latter parameter β is constant in the thin-
gap approximation. However, the spherical curvature, here measured by χ, is spatially varying in the
sphere. For a matching to the sphere, these local parameters should be adjusted at the location of the
QG structure at the onset, as schematically illustrated in figure 20. Indeed, β strongly depends on the
critical cylindrical radius s0 at which columnar QG motions first appear, which is known to vary in spheres
(Jones et al., 2000). Similarly, (R̃aT , R̃aC) depend not only on the global Rayleigh numbers (RaT , RaC)
introduced in the main text (8), but also on the local position s0.

Therefore, (R̃aT , R̃aC , β) are free parameters in the model. To heuristically link the local and global
parameters, we introduce one adjustable parameters Γ such that

β = ΓEk−1, (52)

Γ should depend on the dimensionless parameters at the onset, i.e. Γ = Γ(Ek, Pr, Sc,RaT , RaC). Thus,
this parameter is not a priori uniquely determined.

C.2.2 Benchmark with SINGE

We now compare the prediction of the previous model with the actual data given by SINGE. To do so, we
have adjusted Γ such that the marginal stability curve σ = 0, predicted by (44), coincides with the critical
Rayleigh numbers at the onset of pure compositional convection (RaT = 0) as computed by SINGE. We
show in figure 21 the superposition of the marginal stability curve σ = 0 determined by SINGE and the
stability map predicted by equation (44) in the finger quadrant.

Several points are worthy of comment. First, the critical wave number mc in the theory is over-
estimated compared to the numerical values in table 2, roughly by a factor three. This confirms that local
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theories can only predict the order of magnitude of the wave number at the onset (e.g. Busse, 1970). On
the marginal stability curve within the double-diffusive tongue, SINGE always find an m = 1 mode.

Second, the reduced model recovers the non-rotating limit of finger convection. Indeed, the non-
rotating limit (18), i.e. RaT = −RaC , is asymptomatically reached for large enough Rayleigh numbers.
Note however that we found convective motion beyond this limit with SINGE for some boundary condi-
tions (see §A).

Finally, double-diffusive effects are over-estimated in the reduced model for unstably stratified fluids
(above the dashed-line in figure 21), predicting unstable regions where the system is in fact stable. In
addition, in the reduced model, the unstable double-diffusive tongue widens without bound when increasing
L, whereas it reaches a limit for L & 103 in our numerical computations (see figure 4). Quantitatively,
these discrepancies increase when Ek decreases.
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