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ABSTRACT
Surface magnetic fields have been detected in 5% to 10% of isolated massive stars,
hosting outer radiative envelopes. They are often thought to have a fossil origin, i.e.
inherited from the stellar formation phase. Yet, magnetic massive stars are scarcer
in (close) short-period binaries, as reported by the BinaMIcS collaboration. Thus,
different physical conditions in the molecular clouds giving birth to isolated stars and
binaries are commonly invoked. Here, we suggest that the observed lower magnetic in
binaries is due to nonlinear tides. Close binaries are likely prone to the tidal instability,
a fluid instability growing upon the equilibrium tide via nonlinear effects. However, its
outcome in radiative interiors is poorly understood. We investigate the tidal instability
in rapidly rotating, stably stratified fluids permeated by fossil fields. First, we show
that the tidal instability is generated by triadic resonances involving inertia-gravity
waves in short-period massive binaries. Second, we build a mixing-length theory of
the turbulent mixing generated by nonlinear tides. The predictions are confronted to
proof-of-concept simulations. The typical time scale for the turbulent decay of a fossil
field evolves as (β2

0Ωs)
−1, with Ωs the typical spin angular velocity of the fluid and β0

the tidal amplitude. Hence, we predict that the tidal disruption of fossil fields would
occur in less than a few million years for typical short-period massive binaries (with
β0 ∼ 10−3 − 10−2). Therefore, the observed dearth of short-period magnetic binaries
may be explained by the mixing generated by nonlinear tides.

Key words: waves – instabilities – binaries: close – stars: magnetic field – stars:
massive

1 INTRODUCTION

1.1 Massive stars and magnetic incidence

The magnetism of massive stars has sparked the interest
of astronomers for a long time (Babcock 1958). More re-
cently, large spectropolarimetric surveys of these stars have
been carried out, such as MiMeS (Wade et al. 2015; Grun-
hut et al. 2016) or BOB (Hubrig et al. 2014). They have
detected surface magnetic fields in 5 to 10% of pre-main se-
quence and main-sequence massive stars (e.g. Alecian et al.
2017; Mathys 2017). In addition, a magnetic dichotomy has
been evidenced between the strong magnetism of chemically
peculiar A/B stars (e.g. Auriere et al. 2007; Sikora et al.
2018) and the ultra-weak magnetism of Vega-like stars (Lig-
nieres et al. 2009; Petit et al. 2010, 2011; Blazère et al. 2016).
The origin of these fields is unclear. According to stellar
evolution theory, massive stars host thick outer radiative
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envelopes, which are stably stratified in density. These en-
velopes are often supposed to be motionless in standard stel-
lar models (e.g. Kippenhahn et al. 1990). This severely chal-
lenges the classical dynamo mechanism (Parker 1979), which
requires internal turbulent motions (e.g. convection in low-
mass stars). Some dynamo mechanisms have been proposed,
e.g. relying on the convection of the innermost convective
core (Brun et al. 2005; Featherstone et al. 2009) generating
magnetic flux tubes rising the stellar surface (MacGregor
& Cassinelli 2003; MacDonald & Mullan 2004), on differen-
tially rotating flows (Spruit 1999, 2002; Braithwaite 2006;
Jouve et al. 2015) or on baroclinic flows (Simitev & Busse
2017). However, the relevance of these mechanisms remains
elusive and debated.

The most accepted assumption is that the fields in mas-
sive stars have a fossil origin (Borra et al. 1982; Moss 2001),
since they appear relatively stable over the observational
period. The fields would be shaped in the stellar formation
phase and would survive into later stages of stellar evolution.
The fossil theory is now well supported by the existence of
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magnetic configurations stable enough to survive in stars
over their lifetimes (Braithwaite & Spruit 2004; Braithwaite
& Nordlund 2006; Reisenegger 2009; Duez & Mathis 2010;
Duez et al. 2010; Akgün et al. 2013). Hence, the fossil the-
ory may provide a unifying explanation for the magnetism of
intermediate-mass stars (Braithwaite & Spruit 2017). How-
ever, the fossil hypothesis still suffers from several weak-
nesses. In particular, we may naively expect all massive stars
to exhibit surface magnetic fields. This is not consistent with
the observations (e.g. Alecian et al. 2017; Mathys 2017).
Moreover, the theory does not explain convincingly the ob-
served magnetic bi-modality (e.g. Auriere et al. 2007). To
solve these issues, different physical conditions in the star-
forming regions are usually invoked (e.g. Commerçon et al.
2010, 2011; Braithwaite & Cantiello 2012).

An efficient way to assess this hypothesis is to survey
close binaries. Although the formation of binaries is not well
understood, we can reasonably assume that the two binary
components have been formed together, under similar phys-
ical conditions. Then, observing magnetic fields in the two
components of a binary system would provide constraints
to disentangle initial condition effects from other possible
physical effects. The BinaMIcS collaboration (Alecian et al.
2014a) surveyed short-period massive binaries, aiming at
providing new constraints on the magnetic properties of
massive stars. About 170 short-period double-lined spectro-
scopic binary (SB2) binary systems on the main-sequence
have been analysed (Alecian & et al. 2019). They have typi-
cal orbital periods Torb ≤ 20 days and a separation distance
between the two components D ≤ 1 au.

A magnetic incidence of about 1.5 % has been measured
in the BinaMIcS sample (Alecian et al. 2017). This is much
lower to what is typically found in isolated hot stars (see
above). Therefore, it appears that radiative stars in short-
period binary systems are much less frequently magnetic
than in isolated systems. This confirms the general trend
observed in other studies, dedicated to intermediate-mass
A-type stars (e.g. Carrier et al. 2002; Mathys 2017), and ex-
tend it to hotter and more massive stars. Note also that mag-
netic fields have been mostly observed only in one of the two
components of the close binaries (Alecian et al. 2017), with a
notable exception in ε Lupi system (Shultz et al. 2015). If ini-
tial conditions were solely responsible for the presence or not
of a fossil field, then we would naively expect that the two
components of a magnetic binary should host fossil fields.
This is clearly not a general trend. Thus, these puzzling ob-
servations defy the theories which are commonly invoked.
Notably, is it due to formation processes (Commerçon et al.
2011; Schneider et al. 2016), that exclude more magnetic
fields in binaries than in single stars? Or is there any other
mechanism in close binaries, responsible for relatively quick
dissipation of magnetic fields?

1.2 Mixing in radiative (stratified) interiors

An alternative scenario is to invoke some kind of mixing
in the radiative envelopes, that may destroy the pervading
fossil fields dynamically. Identifying mixing sources in ra-
diative stars is a long standing issue (see the review of Zahn
2008), since mixing also affects the transports of chemical
elements and of angular momentum. Shear-driven turbu-
lence, induced by the (expected) differential rotation of ra-

diative envelopes (e.g. Goldreich & Schubert 1967; Rieutord
2006; Hypolite et al. 2018), has been largely investigated
(e.g. Zahn 1974; Mathis et al. 2004, 2018).

A more efficient mixing in short-period stellar binaries
may be provided by tides. Indeed, short-periods binaries
are strongly deformed (e.g. Chandrasekhar 1969; Lai et al.
1993). Tides proceed in two steps. First, they generate a
quasi-hydrostatic tidal bulge, known as the equilibrium tide
velocity field (Zahn 1966; Remus et al. 2012), leading to an-
gular momentum exchange between the orbital and spinning
motions. Second, they induce dynamical tides (e.g. Zahn
1975; Rieutord & Valdettaro 2010), i.e. waves that propagate
within the radiative regions. Radiative envelopes support the
propagation of many waves, which are continuously emitted
by several mechanisms (e.g. Gastine & Dintrans 2008a,b;
Mathis et al. 2014). Among them, internal gravity waves
(Dintrans et al. 1999; Mirouh et al. 2016) do induce mixing
processes in radiative regions (Schatzman 1993; Rogers &
McElwaine 2017).

However, the aforementioned tidal effects are only lin-
ear processes. They are likely relevant for weak tides in the
solar and extra-solar planets (Ogilvie 2009), but they may
be inefficient to disrupt fossil fields on their own. More-
over, nonlinear effects can significantly modify the outcome
of the tidal response. Indeed, the equilibrium tide flow can
be unstable against the tidal instability (e.g. Rieutord 2004;
Le Bars et al. 2010; Vidal & Cébron 2017). The latter insta-
bility is a fluid instability, associated with nonlinear triadic
resonances between two waves and the equilibrium tide ve-
locity field (Kerswell 2002). The nonlinear saturation of the
tidal instability can exhibit a wide variety of nonlinear states
in homogeneous fluids such as space-filling small-scale tur-
bulence (Le Reun et al. 2017, 2018) or even global mixing
(Grannan et al. 2016; Vidal et al. 2018).

Yet, the fate of the tidal instability in stratified fluid
interiors is poorly known. On the one hand, theoretical
studies have shown that an axial density stratification, i.e.
aligned with the spin angular velocity, has stabilising effects
(Miyazaki & Fukumoto 1991, 1992). Moreover, in the equa-
torial regions, a radial stratification can either increase or
decrease the growth rate of the instability (Kerswell 1993a;
Le Bars & Le Dizès 2006; Cébron et al. 2013). On the other
hand, three-dimensional numerical simulations suggest that
the tidal instability is largely unaffected in stratified interi-
ors, for a wide range of stratification (Cébron et al. 2010;
Vidal et al. 2018). Therefore, a consistent global picture of
the tidal instability in stably stratified interiors is highly de-
sirable. Indeed, this is a prerequisite to assess the astrophys-
ical relevance of the tidal instability for the stellar mixing in
close massive binaries.

1.3 Motivations

The present study has a twofold purpose. First, we aim to
propose a predictive global theory of the tidal instability in
idealised stratified interiors. Such a theory should accurately
predict the onset of the instability, reconciling previous theo-
retical analyses (Miyazaki & Fukumoto 1992; Miyazaki 1993;
Kerswell 1993a; Le Bars & Le Dizès 2006) and numerical
studies (Cébron et al. 2010; Vidal et al. 2018) within a sin-
gle framework. Then, asymptotic predictions for the (nonlin-
ear) tidal mixing, as found numerically in (Vidal et al. 2018),
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must be obtained to carry out the astrophysical extrapola-
tion. Second, we aim to propose a new physical scenario of
tidal disruption of fossil fields, compatible with the observed
lower magnetic incidence in short-period massive binaries as
analysed by the BinaMIcS collaboration (Alecian et al. 2017;
Alecian & et al. 2019).

The paper is organised as follows. In §2, we present the
idealised model. In §3, we investigate the linear of the tidal
instability in stratified interiors. Then, we develop an heuris-
tic, mixing-length theory of the tidal mixing in §4, which is
confronted against proof-of-concept simulations. Hence, we
propose a novel scenario for close binaries in §5, which is
then applied to short-period double-lined spectroscopic bi-
nary (SB2) systems. Finally, we end the paper with a con-
clusion in §6 and outline some perspectives.

2 FORMULATION OF THE PROBLEM

2.1 Assumptions

The full astrophysical problem is rather complex. Hence,
we consider an idealised model, for which numerical simula-
tions can be conducted and confronted against theory. We
describe here the main assumptions, as they will be used
throughout the paper. Our model retains the essential fea-
tures that govern the tidal instability, i.e. rotation, stratifi-
cation, magnetic fields and a tidally deformed geometry.

We consider a primary self-gravitating body, filled with
an electrically conducting and rotating fluid of mass M1 and
volume V. Radiative fluid envelopes are expected to un-
dergo differential rotation (Goldreich & Schubert 1967), e.g.
provided by the contraction occurring during the pre-main-
sequence phase or baroclinic torques (Busse 1981, 1982;
Rieutord 2006). However, differential rotation tends to be
smoothed out by hydromagnetic effects. In particular, dif-
ferential rotation may sustain the magneto-rotational in-
stability, ultimately leading a state of solid-body rotation
(Arlt et al. 2003; Rüdiger et al. 2013, 2015) on a few Alfvén
timescale (Jouve et al. 2015). Consequently, we assume that
the radiative envelope is uniformly rotating.

Then, the primary is orbited by a companion star
of mass M2. We investigate here only short-period, non-
coalescing binaries. Due to the combined action of rotation
and of the gravitational potential, the shape of each binary
component depart from the spherical geometry. We do not
seek here the mutual tidal interactions between the primary
and the secondary. Indeed, at the leading order, the pri-
mary (or the secondary) is a triaxial ellipsoid in solid-body
rotation (e.g. Chandrasekhar 1969; Lai et al. 1993), as ob-
tained by modelling the other component by a point-mass
companion. Therefore, for the sake of simplicity, we treat
the secondary as a point mass for the orbital dynamics (e.g.
Hut 1981, 1982).

The secondary rises an equilibrium tide (Zahn 1966; Re-
mus et al. 2012) on the fluid primary, with a typical equa-
torial amplitude denoted β0. An initially eccentric binary
system, with non-synchronised rotating components, evolves
towards an orbital configuration characterised by a circu-
lar orbit and, ultimately, the system will be synchronised
(Hut 1981, 1982). For weakly elliptic orbits, Nduka (1971)
showed that the ellipsoidal distortion β0 points toward the

  

Figure 1. Sketch of the idealised orbital configuration (coplanar

and aligned spin and orbit angular velocities), seen from above in

the inertial frame.

tidal companion at the leading order. Vidal & Cébron (2017)
also showed that weak orbital eccentricities have little effects
on the internal fluid dynamics of the primary at the leading
order in the eccentricity. Thus, we assume that the binary
system is circularised (or weakly eccentric), with an equato-
rial bulge aligned with the orbital companion.

Then, we consider only the leading-order component of
the tidal potential, associated with the asynchronous tides
(Ogilvie 2014). Thus, the fluid spin and orbital angular ve-
locities are coplanar and aligned in the inertial frame. Note
that this is the expected equilibrium state of the system
(e.g. Chandrasekhar 1969). The other tidal components, e.g.
obliquity tides, are mainly responsible for additional fluid
instabilities which are superimposed on the tidal instabil-
ity (e.g. Kerswell 1993b). They can be neglected for a first
attempt.

Within the fluid primary, diffusive effects are of second
order for the tidal instability, in the absence of significant
surface diffusive effects at a free boundary (Rieutord 1992;
Rieutord & Zahn 1997). Hence, we assume that the fluid
has a uniform kinematic viscosity ν, a radiative (thermal)
diffusivity κT (Kippenhahn et al. 1990) and a magnetic dif-
fusivity η = 1/(µ0σ), where σ is the electrical conductiv-
ity and µ0 the magnetic permeability of free space. Finally,
Clausen & Tilgner (2014) showed that the fluid compressibil-
ity has almost no effect on the tidal instability. Therefore, we
model density variations departing from the isentropic pro-
file within the Boussinesq approximation (Spiegel & Veronis
1960).

2.2 Governing equations

The radiative star is modelled as a tidally deformed, uni-
formly rotating and stably stratified fluid domain in the
Boussinesq approximation. The fluid domain, of typical den-
sity ρM = M1/V, is rotating at the angular velocity Ωs in
the inertial frame. The orbital configuration is illustrated in
figure 1. The orbital angular velocity in the inertial frame
is denoted Ωorb 1z , with Ωorb , Ωs for a non-synchronised
orbit. an ellipsoid in the central frame (e.g. Chandrasekhar
1969; Lai et al. 1993). In the central frame, in which the
shape is stationary, the outer boundary ∂V of the fluid do-
main describes an ellipsoid (e.g. Chandrasekhar 1969; Lai
et al. 1993). Its mathematical expression in Cartesian coor-
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Number Symbol CZ RZ

Ekman Ek 10−16 10−18

Prandtl Pr 10−6 10−6

Magnetic Prandtl Pm 10−6 10−6

Magnetic Ekman Em 10−12 10−10

Brunt-Väisälä N0/Ωs 0 0 − 100

Lehnert Le 10−5 ≤ 10−5

Table 1. Typical values of the dimensionless numbers. CZ: stellar
convective zones, e.g. in the Sun(Charbonneau 2014). Note that

N0 = 0 in convective envelopes. RZ: (rapidly) rotating radiative

zones (e.g. Rieutord 2006). The order of magnitude of the Lehnert
number in RZ has been estimated from the typical values for the

scarce short-period magnetic binaries given in table 4.

dinates (x, y, z) is( x
a

)2
+

( y
b

)2
+

( z
c

)2
= 1, (1)

where (a, b, c) are the semi-axes. The equatorial ellipticity is
defined by β0 = |a2 − b2 |/(a2 + b2).

In the following, we work in dimensionless variables.
They are written without ∗, to distinguish them from their
dimensional counterparts. To do so, we choose a typical ra-
dius R of the fluid domain as unit of length, Ω−1

s as a unit
of time, Ω2

sR/(αT g0) as unit of the temperature with g0 a
typical value of the gravity field at the outer boundary and
αT the thermal expansion coefficient (at constant pressure).
For the magnetic field, we choose ΩsR/

√
ρM µ0 as typical

unit. We also introduce the dimensionless orbital frequency
Ω0 = Ωorb/Ωs. The dimensionless nonlinear equations in the
rotating central frame governing the dimensionless velocity
field v(r, t), temperature T(r, t) and magnetic field B(r, t) at
the position r and time t are momentum, energy and induc-
tion equations. They read

∂v

∂t
= −(v · ∇)v − 2Ω0 1z × v − ∇(P + Pm) + Ek ∇2v

− Tg + (B · ∇)B, (2a)

∂T
∂t
= −(v · ∇)T + Ek

Pr
∇2T + Q, (2b)

∂B

∂t
= ∇ × (v × B) + Em∇2B, (2c)

∇ · v = ∇ · B = 0, (2d)

with P the hydrostatic pressure (including centrifugal ef-
fects), Pm = |B |

2/2 the magnetic pressure, Q a heat source
term and g = −∇Φ0 the (imposed) gravity field in the Boussi-
nesq approximation. In governing equations (2), we have
introduced as dimensionless numbers the Ekman number
Ek = ν/(ΩsR2), the Prandtl number Pr = ν/κT , the mag-
netic Prandtl number Pm = ν/η and the magnetic Ekman
number Em = Ek/Pm. Typical values are given in table 1 for
stellar interiors. The latter are characterised by weakly dif-
fusive conditions (i.e. Ek, Ek/Pr, Ek/Pm � 1). This regime
will greatly simplify the analysis of the tidal instability.

We do not solve directly the full equations (2). Indeed,
a reference ellipsoidal state is always first established, on
which the tidal instability grows upon and saturates nonlin-
early. We expand the field variables as perturbations (not

necessarily small) around a steady reference ellipsoidal ba-
sic state [U0,T0, B0] (detailed later). Thus, the dimension-
less nonlinear governing equations for the perturbations
[u,Θ, b](r, t) are

du
dt
+ (u · ∇)u = −u · ∇U0 − 2Ω0 1z × u − ∇(p + pm) (3a)

+ Ek ∇2u − Θg + (B0 · ∇)b + (b · ∇)B0,

dΘ
dt
+ (u · ∇)Θ = −(u · ∇)T0 +

Ek
Pr
∇2
Θ, (3b)

∂b

∂t
+ ∇ × (b × u) = ∇ × (U0 × b + u × B0) + Em∇2b, (3c)

∇ · u = ∇ · b = 0, (3d)

with d/dt = ∂/∂t + (U0 · ∇) the material derivative along
the basic flow (7), p the hydrodynamic pressure, and the
magnetic pressure pm = B0 · b. For the proof-of-concept sim-
ulations in §4, the equations will be supplemented by appro-
priate boundary conditions.

2.3 Reference ellipsoidal configuration

We consider a steady reference equilibrium state, for which
isopycnals coincide with isopotentials for Φ0 (including cen-
trifugal force, self-gravity and tides). This assumption is con-
sistent with compressible models (Lai et al. 1993). Hence, we
assume that the background temperature profile T0(r) and
the gravity field g, solutions of equations (2a)-(2b) are in a
barotropic state (for a well-chosen Q), i.e. g × ∇T0 = 0. We
neglect the baroclinic part, which is known to enhance the
growth rate of the tidal instability in the equatorial plane
(Kerswell 1993a; Le Bars & Le Dizès 2006). In the nonlinear
regime, a baroclinic state would certainly also enhance the
tidal turbulence in stellar interiors. However, we focus here
on the less favourable configuration for growth of the tidal
instability (i.e. barotropic stratification). This choice is also
consistent with the assumed uniform rotation of the fluid.
Indeed, baroclinic torques are known to sustain differential
rotation (e.g. Busse 1981, 1982; Rieutord 2006). Moreover,
considering a barotropic state is a relevant assumption when
the isopycnals move sufficiently fast to keep track of the ro-
tating tidal potential (Ogilvie 2014). This situation is ex-
pected when the stratification has a large enough amplitude
compared to the differential rotation Ωs −Ωorb between the
spin and the orbit.

To characterise the stratification, we introduce the di-
mensional (local) Brunt-Väisälä frequency N in the reference
state. In dimensional variables, the latter is defined by

N2 = −αT g
∗ · ∇T∗0 . (4)

The fluid ellipsoid is assumed to be entirely stably stratified
in density, i.e. N2 > 0. The exact profiles in stellar interiors
depend on the stellar internal processes. However, we aim
at comparing analytical and numerical computations, which
cannot be done for arbitrary profiles. Thus, we assume that
the dimensionless total gravitational potential is quadratic,
i.e.

Φ0 =
x
a

2
+

y

b
2
+

z
c

2
. (5)

Then, we consider the (dimensionless) reference temperature
in barotropic equilibrium T0 = (N2

0 /Ω
2
s)Φ0, with N0 a typical

value of the Brunt-Väisälä frequency at the outer boundary.
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For intermediate-mass stars with M1 = 3M� (where M� is
the solar mass), a typical value is N0 ∼ 10−3 s−1 (e.g. Rieu-
tord 2006), and typical values of Ω−1

s range between 1 and
100 days (Mathys 2017). This yields 0 ≤ N0/Ωs ≤ 100 in
radiative stars. Hence, a barotropic reference configuration
is a reasonable starting assumption.

Then, the ellipsoid is permeated by an imposed fossil
magnetic field B0(r) (in dimensionless form). To measure the
relative strength of magnetic and rotational effects, we in-
troduce the (dimensionless) Lehnert number (Lehnert 1954)

Le =
B∗0

ΩsR
√
ρM µ0

. (6)

where B∗0 is the typical (dimensional) strength of the fossil
field. The Lehnert number is the ratio of the Alfvén and rota-
tional velocities. When Le � 1, the Coriolis force dominates
over the Lorentz force in momentum equation (2a). The
regime Le � 1 is encountered in many magnetic stars (table
1). In the Sun, a typical value is Le ∼ 10−5 (Charbonneau
2014). For the scarce magnetic binaries which have been ob-
served, the median field strength is B∗0 ∼ 1 kG (see also values

in table 4). This yields as typical values Le ≤ 10−5 − 10−4.
Hence, we focus on the regime Le � 1 in the following.

Finally, the orbital configuration drives the equilibrium
tidal flow (e.g. Remus et al. 2012). For non-synchronised
orbits (Ω0 , 1), its leading-order flow components in the
central frame are (e.g. Cébron et al. 2012b; Vidal & Cébron
2017)

U0(r) = (1 −Ω0)
[
−(1 + β0)y 1x + (1 − β0)x 1y

]
. (7)

This is an exact incompressible solution of the nonlinear
hydrodynamic momentum equation (2a). Moreover, it sat-
isfies the no-penetration U0 · 1n = 0 at the boundary ∂V,
with 1n the unit outward normal vector. Note that the ba-
sic flow (7) is not rigorously a solution in the presence of
an arbitrary magnetic field. Yet, the large-scale poloidal and
toroidal components of B0(r) are unlikely to modify the equi-
librium tide flow (Kerswell 1993a, 1994; Mizerski & Bajer
2011).

2.4 Hydromagnetic waves

In the absence of any driving mechanism, a fossil
field B0 slowly decays on the Ohmic diffusive timescale
(Ωs Ek/Pm)−1. This time is larger than the typical lifetime of
least massive stars on the main-sequence (e.g. Braithwaite
& Spruit 2017). However, equations (3) support the propa-
gation of several waves, which can strongly modify the dy-
namical evolution of radiative envelopes. In the presence of
tides, it turns out that the waves can be nonlinearly coupled
with the equilibrium tide velocity field U0, yielding the tidal
instability (e.g. Kerswell 1993a; Vidal & Cébron 2017). This
clearly shows that the wave dynamics is a key phenomenon
in radiative stars. Hence, identifying the different families in
our system is a prerequisite.

The wave properties have already been outlined in un-
bounded geometries (e.g. Gubbins & Roberts 1987; Mathis
& de Brye 2011; Sreenivasan & Narasimhan 2017). These un-
bounded waves have global bounded counterparts, known as
Magneto-Archimedean-Coriolis (MAC) modes. In appendix
A, we present a new algorithm to compute the MAC modes

10−5 10−4 10−3 10−2

Le

10−5

10−4

10−3

10−2

10−1

100

101

102

|ω
i|

∝ Le

∝ Le2

(a) Neutral fluid (N0/Ωs = 0)

10−5 10−4 10−3 10−2

Le

10−5

10−4

10−3

10−2

10−1

100

101

102

|ω
i|

∝ Le

∝ Le2

(b) Stratified fluid (N0/Ωs = 10)

Figure 2. Spectrum |ωi | as a function of Le for large-scale MAC

modes in the unperturbed geometry (β0 = 0), stratified under the
gravitational potential (5). The background (toroidal) magnetic
field is B0 = 0.1

[
−z 1y + y 1z

]
+

[
−y 1x + x 1y

]
in dimensionless

form. From bottom to top: green circles are slow MC and torsional
modes (respectively scaling in Le and Le2), blue squares fast

MC modes and red stars gravito-inertial modes. The truncation

polynomial degree is n = 5, see appendix A for details.

in arbitrary triaxial ellipsoids (e.g. tidally deformed bod-
ies). The dimensionless eigenfrequency ωi of MAC modes in
full ellipsoids is shown in figure 2, for the relevant regime
Le ≤ 10−1. We have considered an arbitrary reference con-
figuration to illustrate several representative properties of
the modes.

We identify three families of waves in neutrally strat-
ified fluids (figure 2a), in agreement with investigations in
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spherical geometries (e.g. Schmitt 2010; Labbé et al. 2015).
First, the high frequency branch represents fast Magneto-
Coriolis (MC) modes (Malkus 1967; Labbé et al. 2015).
They are similar to pure Coriolis modes (Greenspan 1968;
Vantieghem 2014; Backus & Rieutord 2017), with the spec-
trum |ωi | ≤ 2 in the regime Le � 1. These modes are regular
in space and only weakly affected by large-scale magnetic
fields in weakly deformed spheres (e.g. Schmitt 2010; Labbé
et al. 2015), as observed by the frequency dependence on
Le in the figure. Note that their behaviour is different than
the singular modes, localised on attractors (e.g. Rieutord &
Valdettaro 1997, 2018), that only exist in shells because the
mathematical problem is ill-posed (Rieutord et al. 2000).
Second, the low frequency branch represents slow Magneto-
Coriolis modes. Their typical dimensionless frequency scales
as |ωi | ∝ Le2. Braithwaite & Cantiello (2012) proposed that
these Magneto-Coriolis modes are responsible for the ex-
pected failed-fossil origin of the ultra weak magnetic fields
in Vega-like stars. Indeed, these fields may be the remnants
of some fields inherited after star formation phase and may
evolve dynamically on the timescale Le−2Ω−1

s , which can
be roughly equal to the age of intermediate-mass stars. In
addition, the third intermediate branch represents torsional
Alfvén modes (Labbé et al. 2015), scaling as |ωi | ∝ Le. They
are usually filtered out in reduced models, e.g. in local mod-
els considering uniform fields. They exist when the current
direction ∇×B0 of the basic state is misaligned with the spin
rotation axis Ωs.

Then, we show the spectrum of MAC modes in strati-
fied fluids in figure 2b. The aforementioned hydromagnetic
modes still exist in stably stratified interiors, yielding fast
and slow MAC waves. However, their properties in the pres-
ence of buoyancy and magnetic fields are rather complex in
spherical-like domains (Friedlander 1987). On the one hand,
fast MAC modes and gravito-inertial modes are barely mod-
ified by magnetic fields, as illustrated in figure 2b when
Le � 1. However, they strongly depend on the stratifica-
tion (Friedlander & Siegmann 1982a). On the other hand,
slow MC modes can be strongly affected by the magnetic
field and the stratification (Friedlander 1987). Finally, the
buoyancy force also sustains high frequency internal grav-
ity modes. They can be affected by the rotation, yielding
gravito-inertial modes (Friedlander & Siegmann 1982a).

3 ONSET OF THE TIDAL INSTABILITY

In this section, we present the stability analysis of the tidal
instability at the onset. First, we outline the general sta-
bility method in §3.1. In §3.2, we present some analytical
computations valid in the equatorial and polar regions, to
get a physical insight of the instability mechanism. Then,
we solve the stability equations in the whole stellar interior
in §3.3 and §3.4. Finally, we discuss the magnetic effects in
§3.5.

3.1 Stability theory

3.1.1 Triadic couplings

It has been recognised for a long time that the tidal insta-
bility is a parametric instability (Malkus 1989). It is due to

triadic interactions between pairs of modes that are coupled
with the underlying flow (7). A fluid instability can grow
upon the reference configuration provided that resonance
conditions are met in time and space (Le Dizès 2000). A
necessary condition for instability is given by the time res-
onance condition in the central frame (Kerswell 2002; Vidal
& Cébron 2017)

|ωi − ωj + δ | = 2 |1 −Ω0 |, (8)

where [ωi, ωj ] are the angular frequencies of two free waves
and δ a small detuning parameter (δ → 0 for diffusionless
fluids) allowing for imperfect resonances (Lacaze et al. 2004;
Cébron et al. 2012a, 2014), due to either diffusive (e.g. Ker-
swell 1993a) or topographic effects (e.g. Le Dizès 2000). De-
tuning effects are negligible in the astrophysical regime (al-
most diffusionless and with β0 � 1). Note that the case of
synchronised orbits Ω0 = 1 (in average) is forbidden by con-
dition (8). Thus, synchronised orbits must be treated sepa-
rately, see appendix B.

We are now in a position to survey the possible non-
linear couplings of the different types of modes which yields
to tidal instabilities. The MAC modes presented in §2 can
be combined in several ways to fulfil condition (8) in non-
synchronised systems. From condition (8), the tidal instabil-
ity traditionally exists in the orbital range −1 ≤ Ω ≤ 3 (e.g.
Vidal & Cébron 2017). The associated triadic interactions
necessarily involve fast MAC waves coupled with either fast
or a slow MAC waves (Kerswell 1993a, 1994). Indeed, in the
astrophysical regime Le � 1, the spectrum illustrated in fig-
ure 2 clearly shows that no triadic couplings are effective in
ellipsoids between two slow MAC waves. Thus, the couplings
of slow MAC waves with the equilibrium tide flow cannot be
advocated in stellar interiors.

Among the aforementioned resonances, sub-harmonic
resonances are characterised by ωi = −ωj . Then, the res-
onance condition (8) reduces (in the diffusionless regime) to

|ωi | = |1 −Ω0 |. (9)

which is a necessary stability condition for a sub-harmonic
instability. Sub-harmonic resonances have been found to be
the most unstable in homogeneous fluids (Kerswell 1993a,
1994; Le Dizès 2000; Vidal & Cébron 2017), i.e. yielding the
largest growth rates σ. For the tidal instability, only fast
MAC waves can fulfil the sub-harmonic resonance condition
(9). To clarify the underlying structure at the resonance of
fast MAC waves, we first treat the non-magnetic case (i.e.
Le = 0). Indeed, the addition of the magnetic field has only
second-order effects (see §3.5).

3.1.2 Short-wavelength perturbations

We seek three-dimensional perturbations, solution of the lin-
earised equations (3) and satisfying the resonance conditions
(8) or (9). Diffusive effects are extremely small in radiative
stellar interiors (see table 1). In a first attempt, we can inves-
tigate the stability of the reference ellipsoidal configuration
by seeking diffusionless perturbations.

The global stability analysis is beyond the scope of the
present study. However, in the diffusionless regime, three-
dimensional global perturbations of small enough length
scales are excited, such that they are not affected by the
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boundary. Hence, we consider short-wavelength (WKB) per-
turbations (Lifschitz & Hameiri 1991; Friedlander & Vishik
1991). They are local perturbations, barely sensitive to the
ellipsoidal boundary ∂V, advected along the fluid trajecto-
ries X(t) of U0. The local stability theory is of practical inter-
est, because the stability equations then reduce to ordinary
differential equations in the Lagrangian description. The lo-
cal stability behaviour should be obtained in the global sta-
bility analysis by a limiting process, as argued by Lifschitz
(1995). This has been confirmed in homogeneous cylinders
(Kerswell 1993a) and ellipsoids (Vidal & Cébron 2017).

In appendix C, we have extended the general local
stability theory to account for magnetic effects within the
Boussinesq approximation. Here, we consider only the hy-
drodynamic Boussinesq stability equations, by seeking Eu-
lerian perturbations upon the equilibrium tidal flow in the
form

[u,Θ](r, t) = [û, Θ̂](r, t) exp(ik · r), |k(t)| = |k0 |, (10)

where k(t) is the local wave vector with the initial value
k0. The stability equations are rather solved in Lagrangian
variables, yielding the ordinary differential equations (in di-
mensionless form)

DX

Dt
= U0(X), X(0) = X0, (11a)

Dk

Dt
= − (∇U0)

> k, k(0) = k0, (11b)

Dû

Dt
=

[(
2 kkT

|k |2
− I

)
∇U0 + 2

(
kkT

|k |2
− I

)
Ω0 1z×

]
û

− Θ̂

(
I −

kkT

|k |2

)
g, (11c)

DΘ̂
Dt
= −(û · ∇)T0, (11d)

with D/Dt the Lagrangian time derivative. The solenoidal
condition û · k = 0, is satisfied as long as it holds at the
initial time, i.e. û(0) · k0 = 0 in the Lagrangian description.
Equations (11) do depend on the fluid trajectories X(t) be-
cause the gravity field g is spatially varying.

Equations (11) are ordinary differential equations along
the Lagrangian trajectories X(t). They are also independent
of the magnitude of k0 in the diffusionless limit. Hence, we
follow Le Dizès (2000) by restricting the initial wave vector
to the unit spherical surface

k0 = sin(θ0) cos(φ0) 1x,+ sin(θ0) sin(φ0) 1y + cos(θ0) 1z, (12)

where φ0 ∈ [0, 2π] is the longitude and θ0 ∈ [0, π] is the
colatitude between the spin axis 1z and the wave vector k0.
In practice, equations (11) are integrated from a range of
wave vectors k0 and initial positions X0 within the reference
ellipsoidal domain. The basic state is unstable with respect
to short-wavelength perturbations if

lim
t→∞

(
| û(t, X0, k0)| + |Θ̂(t, X0, k0)|

)
= ∞. (13)

Then, we determine the maximum growth rate σ as the
fastest growing solution for all initial conditions, i.e. the
largest Lyapunov exponent. This yields a sufficient condi-
tion for the instability.

3.2 Two limit configurations

The equilibrium tidal flow (7) admits analytical periodic
fluid trajectories X(t) and wave vectors k(t), solution of equa-
tions (11a)-(11b). Thus, we can carry out an asymptotic
analysis to solve equations (11), by expanding all quanti-

ties (X, k, û, Θ̂) in successive powers of β0 (see details in
Le Dizès 2000). We present two simple configurations, which
are tractable analytically.

3.2.1 Equatorial plane

First, we focus on the equatorial plane z0 = 0. At the lead-
ing asymptotic order β0 = 0, U0 is a solid-body rotation.
Resonance condition (9) yields, in the equatorial plane,√

4(Ω̃0 + 1)2 + Ñ0
2

x2
0 cos(θ0) = ±1 (14)

with x0 ≤ 1 the position of the initial trajectory X0 in the
equatorial plane, the background rotation Ω̃0 = Ω0/(1 − Ω0)
and Ñ0 = (N0/Ωs)/|1 − Ω0 |. Several configurations are pos-
sible, depending on the parameters. On the one hand, the

LHS of equation (14) is purely imaginary when −Ñ0
2

x2
0 >

4(Ω̃0 + 1)2, i.e. when the stratification is unstably stratified
(with N2

0 /Ω
2
s ≤ 0). Then, a centrifugal instability grows upon

the reference configuration, with a maximum (dimension-
less) growth rate (e.g. Le Bars & Le Dizès 2006)

σ

|1 −Ω0 |
=

√
−Ñ0

2
x2
0 − 4(Ω̃0 + 1)2. (15)

On the other hand, the tidal instability is triggered when
all terms in equation (14) are real. Hence, no sub-harmonic

instability is possible when Ñ0
2

x2
0 < −3 − 4Ω̃0(2 + Ω̃0). This

defines the forbidden zone of the tidal instability in stably
stratified fluids, at a given position x0. For neutral fluids
(N0 = 0), we recover the classical allowable orbital range
of the tidal instability −1 ≤ Ω0 ≤ 3. Outside this range,
we find that waves can be involved in triadic resonances in
stratified fluids. Thus, sub-harmonic tidal instabilities may
not be forbidden in stratified fluids when Ω0 ≤ −1 and Ω0 ≥ 3
(range known as the forbidden zone in neutral fluids).

At the next asymptotic order (Le Dizès 2000), the di-
mensionless growth rate in the equatorial plane is

σ

|1 −Ω0 |
=

(2Ω̃0 + 3)2

16(1 + Ω̃0)2 + 4Ñ0
2

x2
0

β0. (16)

Hence, as already discussed in the conclusion of Le Bars &
Le Dizès (2006), the growth rate σ is weakened by the strat-
ification when x0 increases. However, note that their formula
for this case slightly differs from equation (16). This led us
to confirm the validity of our equation (16) by numerical
integration of the local stability equations (see later).

We show in figure 3 the maximum growth rate, com-
puted from formula (16), by considering different orbital
configurations Ω0. Several points are worthy of comment.
First, the tidal instability is excited in the equatorial regime
when −1 ≤ Ω0 ≤ 3 (in the diffusionless limit), i.e. in the clas-
sical orbital range of the tidal instability (Le Dizès 2000).
This mechanism occurs for any realistic value of N0/Ωs ≤ 100
(see table 1). In this orbital range, the maximum growth rate
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Figure 3. Survey of the growth rate of the tidal instability, pre-

dicted by formula (16) in the equatorial plane (x0 = 0.5, z0 = 0), as
a function of (N0/Ωs, Ω0). Colour bar shows the normalised ratio

log10(σ/β0). White areas correspond to marginally stable areas.

For neutral fluids, the tidal instability is restricted to the allow-
able range −1 ≤ Ω0 ≤ 3 when β0 � 1. When Ω0 = 1 (horizontal

white line), the basic state is synchronised (see appendix B).

is always obtained for neutral fluids (N0 = 0), yielding the
usual (dimensionless) growth rate (Le Dizès 2000)

σ

|1 −Ω0 |
=
(2Ω̃0 + 3)2

16(1 + Ω̃0)2
β0. (17)

Second, outside the classical orbital range (i.e. in the for-
bidden zone), we unravel new tidal instabilities, triggered
for large enough values of the Brunt-Väisälä frequency (i.e.
N0/Ωs � 1). Their growth rate in can be larger than one in
our dimensionless units (not shown), because their typical
time scale is N−1

0 (rather than Ω−1
s ). Note that such sub-

harmonic resonances have been reported in local stratified
simulations (Le Reun et al. 2018).

Therefore, in the equatorial regions, we have shown
that a barotropic stratification has (i) a destabilising effect,
within the usual forbidden zone (i.e. Ω0 ≤ −1 and Ω0 ≥ 3),
and (ii) a stabilising effect when −1 ≤ Ω0 ≤ 3. However, we
emphasise that a baroclinic state (i.e. g × ∇T0 , 0) has the
opposite effect (Kerswell 1993a; Le Bars & Le Dizès 2006).
This behaviour can be recovered by our asymptotic analy-
sis, by assuming an imposed gravity field with a different
equatorial ellipticity β1 , β0. For such a reference ellipsoidal
configuration, formula (16) becomes

σ

|1 −Ω0 |
=

(2Ω̃0 + 3)2

16(1 + Ω̃0)2 + 4 Ñ0
2

x2
0

�����β0 + Ñ0
2

x2
0
β0 − β1

2Ω̃0 + 3

����� , (18)

which corrects misprints in equation (D.1) of Cébron et al.
(2012b), obtained with a different unit of time. For circu-
lar iso-lines of gravity (β1 = 0), formula (16) clearly shows
that the growth rate of the tidal instability is enhanced in
the equatorial plane. This is the configuration considered by
Kerswell (1993a) and Le Bars & Le Dizès (2006). Besides,
equation (18) recovers formula (4.7) of Le Bars & Le Dizès
(2006) in their particular configuration Ω̃0 = 0.

3.2.2 Polar regions

Now, we focus on the polar regions, by considering initial
fluid trajectories close to the spin axis (i.e. s0 = β0 � 1). At
the leading asymptotic order β0 = 0, sub-harmonic resonance
condition (9) yields in the central frame

cos2(θ0) =
1 − Ñ0

2
z2
0

4(Ω̃0 + 1)2 − Ñ0
2
z2
0

. (19)

The above condition (19) shows that the forbidden zone of
the tidal instability coincides with the one for neutral fluid,
i.e. Ω0 ≤ −1 and Ω0 ≥ 3. Outside this range, the asymptotic
(dimensionless) growth rate is

σ

|1 −Ω0 |
=

(
2Ω̃0 + 3

)2
(1 − Ñ0

2
z2
0)

16(1 + Ω̃0)2 − 4Ñ0
2
z2
0

β0. (20)

Formula (20) is identical to the diffusionless growth rate de-
vised by Miyazaki (1993), denoting Ñ0z0 their local value of
the stratification. Hence, an axial stratification is uniformly
stabilising along the polar axis.

3.3 Bulk sub-harmonic resonances

The previous analytical analysis shows that a stable strati-
fication (N0/Ωs ≥ 0) has indubitably a stabilising behaviour
in equatorial regions. Moreover, the axial stratification has
a stabilising effect, i.e. is responsible for a trapping of
the instability in the equatorial region. These observations
are in agreement with existing local analyses (Miyazaki &
Fukumoto 1992; Miyazaki 1993; Kerswell 1993a; Le Bars
& Le Dizès 2006; Cébron et al. 2012b). However, this is
barely consistent with three-dimensional numerical simula-
tions (Vidal et al. 2018), showing that the growth rate at
the onset is largely unaffected by the stratification. To rec-
oncile these approaches, we investigate the onset of the tidal
instability in the whole reference fluid domain. We investi-
gate only non-synchronised orbits, i.e. Ω0 , 1. Synchronised
orbits can be studied in a similar fashion, see appendix B.

3.3.1 Families of waves

It turns out that the behaviour of the tidal instability is
intrinsically associated with the properties of the waves in-
volved in the sub-harmonic resonances. The wave-like equa-
tion in the system, introduced in appendix A, is a mixed
hyperbolic-elliptic partial differential equation. In the gen-
eral case, a wave-like hyperbolic domain coexists with an
elliptic domain, in which the waves are evanescent. At the
leading asymptotic order β0 = 0, Friedlander & Siegmann
(1982a) showed that the characteristic curve delimiting the
two domains is

(4 − ω2
i )

[
ω2
i − (N0/Ωs)

2z2
]
= 0. (21)

The wave spectrum is divided in two main regimes. On the
one hand, we have inertial waves modified by the gravity,
called inertial-gravity waves and denoted H . They have hy-
perbolic turning surfaces given by equation (21). They are
sub-divided in two families

H1 : (N0/Ωs)
2 < ω2

i < 4, (22a)
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Figure 4. Existence of sub-harmonic resonances as a function

of Ω0 = Ωorb/Ωs and N0/Ωs. The sub-harmonic resonance condi-
tion is given by formula (9) in the central frame. In white regions

tidally forced waves do not propagate. Stars (yellow area): hyper-
bolic waves H1. Right slash (purple area): hyperbolic waves H2.

Dots (green area): elliptic waves E1. Back slash (blue area): ellip-

tic waves E2. The classical allowable region of the tidal instability
(for neutral fluids) is −1 ≤ Ω0 < 3. wave-like domains (H1, H2) are

illustrated in figure 5 (a,b). Similarly, wave-like domains (E1, E2)
are illustrated in figure 6 (a,b).

H2 : 0 < ω2
i < min[4, (N0/Ωs)

2]. (22b)

On the other hand, we have gravity waves modified by the
rotation, called gravito-inertial waves and denoted E. They
have ellipsoidal turning surfaces given by equation (21).
They are also divided in two families characterised by

E1 : 4 < ω2
i < (N0/Ωs)

2, (23a)

E2 : max[4, (N0/Ωs)
2] < ω2

i < 4 + (N0/Ωs)
2. (23b)

These properties are quite general, since equation (21) de-
pends solely on the reference state. Therefore, both global
modes (e.g. Dintrans et al. 1999) and local waves propagat-
ing upon this reference configuration exhibit this distinction.

The different families of waves satisfying the sub-
harmonic resonance condition (9) are illustrated in figure
4. This is the main result of the linear theory, as it provides
a necessary (and sufficient, see later) condition for the ex-
istence of tidal instabilities, in both global modes and local
models. Two kinds of tidal instabilities are obtained, de-
pending on the value of key parameter Ω0. At the leading
asymptotic order, the sub-harmonic resonance condition (9)
yields in the local theory

cos2(θ0) =
ω̃ + Ñ0

2
r2
0 [(Ñ0

2
r2
0 − ω̃) cos2 α0 − cos(2α0)]

ω̃2 + Ñ0
2
r2
0 [Ñ0

2
r2
0 − 2ω̃ cos(2α0)]

+
2
√
ω1[ω̃(1 − Ñ0

2
z2
0) + Ñ0

2
r2
0 − 1]

ω̃2 + Ñ0
2
r2
0 [Ñ0

2
r2
0 − 2ω̃ cos(2α0)]

, (24)

with ω̃ = 4(1 + Ω̃0)
2, the initial position X0 = (x0, z0)

> =

r0(sinα0, cosα0)
> where r0 is the initial radius and ω1 =

Ñ4
0 r4

0 cos2 α0 sin2 α0. The associated wave-like domains and
colatitude angles θ0 are shown in figures 5 and 6.

3.3.2 Classical orbital range (−1 ≤ Ω0 ≤ 3)

The classical allowable range of the instability in homoge-
neous fluids is −1 ≤ Ω0 ≤ 3 (Craik 1989; Le Dizès 2000).
Within this range, the sub-harmonic condition involves only
H waves, as shown in figure 4. For a neutral stratification
(N0 = 0), they are inertial waves H1, which propagate in the
whole fluid cavity (Friedlander & Siegmann 1982a). They
have the colatitude angle at the sub-harmonic resonance
(Le Dizès 2000)

cos(θ0) =
1

2(1 + Ω̃0)
=

1 −Ω0
2

. (25)

This remains valid in weakly stratified fluids (i.e. N0/Ωs �

1). Indeed, H1 waves are only slightly modified by the buoy-
ancy. They still propagate in the whole fluid domain, as
shown in figure 5a. In addition, their colatitude angle θ0 is
slightly increased with respect to formula (25) in the polar
regions.

When N0/Ωs ≥ 1, H1 waves morph into H2 waves,
i.e. inertia-gravity waves. These waves are strongly modi-
fied by the buoyancy. Their wave-like domain is confined
between hyperboloids, as shown in figure 5b. Outside the
hyperboloid volume, these waves at the sub-harmonic reso-
nance are evanescent (in global models). The characteristic
curve delimiting the wave-like and evanescent domains is hy-
perbolic and given by equation (21). Along the polar axis,
local waves at the sub-harmonic resonance do not propagate
in the evanescent regions for vertical positions zc satisfying

|zc | ≥
|1 −Ω0 |

N0/Ωs
. (26)

This shows that an axial stratification has a stabilising effect,
as predicted by formula (20).

This behaviour is responsible for an equatorial trapping
of the waves in the other directions at the sub-harmonic res-
onance. Indeed, the hyperbolic wave-like domain, bounded
by equation (21), converges towards the conical volume de-
limited by the asymptote cos(θc) = |1−Ω0 |/2 (Friedlander &
Siegmann 1982a), where θc is the critical colatitude. This is
exactly formula (25). Therefore, expression (25) also defines
the position of the critical latitudes at which the waves at
the sub-harmonic resonance propagate orthogonally to the
gravity field (here radial direction at the leading order in β0).
Hence, these specific waves are insensitive to the stratifica-
tion. We emphasise that the presence of stratification does
not alter the position of the critical latitudes (Friedlander
& Siegmann 1982a,b). When |1 −Ω0 | → 0, the waves at the
sub-harmonic resonance are equatorially trapped according
to formula (25).

3.3.3 Forbidden zone

Within the forbidden zone Ω0 ≤ −1 and Ω0 ≥ 3, any tidal
instability must involve gravito-inertial waves E for the sub-
harmonic mechanism, whatever the strength of the strat-
ification. Indeed, figure 4 clearly shows that the waves at
the sub-harmonic resonance depend only on the value of the
orbital frequency Ω0. When N0/Ωs ≤ 1, the sub-harmonic
condition is never satisfied within this orbital range. Hence,
no tidal instability is triggered. This is in agreement with
formula (17) for the growth rate in the equatorial plane.
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(a) H1 (b) H2

Figure 5. Wave-like domains and colatitude θ0 (degrees) for the waves with hyperbolic turning surfaces H satisfying sub-harmonic
resonances. (a) H1 wave: Ω0 = 0, N0/Ωs = 0.5. (b) H2 wave: Ω0 = 0, N0/Ωs = 2. The dashed grey hyperbolic curve is given by equation (21).

The tilted dashed grey line is the asymptote given by cos θ0 = |1−Ω0 |/2. Waves disappear along the polar axis when z ≤ |1−Ω0 |/(N0/Ωs).

(a) E1 (b) E2

Figure 6. Wave-like domains and colatitude θ0 (degrees) for the waves with ellipsoidal turning surface E satisfying sub-harmonic

resonances. (a) E1 wave: Ω0 = 3.4, N0/Ωs = 2. (b) E2 wave: Ω0 = 4, N0/Ωs = 10. The dashed grey ellipsoidal curve is given by equation

(21). The vertical dashed grey line is the asymptote given by s =
√
|1 −Ω0 |2 − 4/(N0/Ωs), where s is the cylindrical radius from the spin

axis. Waves disappears along the polar axis when z ≤ |1 −Ω0 |/(N0/Ωs).

However, gravito-inertial waves E can be excited at the
sub-harmonic resonance for a stronger stratification, typi-
cally N0/Ωs � 1 when |Ω0 | increases. Their critical char-
acteristic surfaces, given by equation (21), are ellipsoidal.
On the one hand, E1 gravito-inertial waves are trapped in
a region that does not encompass the polar axis, as shown
in figure 6a. The minimum distance between the spin axis
and the wave-like domain in the equatorial region is given
by (Friedlander & Siegmann 1982a)

xc =

√
|1 −Ω0 |2 − 4

N0/Ωs
. (27)

Therefore, the thickness of the wave-like domain increases
when the ratio N0/Ωs increases. On the other hand, E2 waves
at the sub-harmonic resonance are gravito-inertial waves,
trapped in a region that excludes the central part of the
fluid (figure 6b). Along the polar axis, these waves do not
propagate when z is smaller than the critical value (26). The
size of wave-like domain increases when the ratio N0/Ωs in-
creases. In the limit N0/Ωs →∞, these waves become almost
pure internal gravity waves, propagating in the whole fluid
domain at the sub-harmonic resonance. This situation has

been investigated numerically in local models (Le Reun et al.
2018), by assuming Ωs = 0.

3.4 Growth rate in the orbital range −1 ≤ Ω0 ≤ 3

The necessary condition for instability (9), illustrated in
figure 4, exactly coincides with the unstable zones of the
tidal instability in the equatorial plane (see figure 3). How-
ever, it does not predict the growth rate σ of the insta-
bility. To go beyond the analytical formulas in the equa-
torial and polar regions, we solve numerically the local
stability equations (11). We have used the local stability
code SWAN (https://bitbucket.org/vidalje/swan/), in-
troduced in Vidal & Cébron (2017). We have updated it
to handle the general local stability equations, which are
described in appendix C. Moreover, by solving numerically
the full local equations, we do not assume a priori the sub-
harmonic condition (9). Hence, we can assess the general va-
lidity of the sub-harmonic condition (9) in stratified fluids,
as already found in (Kerswell 1993a, 1994; Le Dizès 2000;
Vidal & Cébron 2017).

In the astrophysical regime β0 � 1, the resonance con-
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Ω0 = −0.5 Ω0 = 0 Ω0 = 0.5

(a) N0/Ωs = 1

Ω0 = −0.5 Ω0 = 0 Ω0 = 0.5

(b) N0/Ωs = 2

Ω0 = −0.5 Ω0 = 0 Ω0 = 0.5

(c) N0/Ωs = 5

Figure 7. Largest normalised growth rate σ/β0 for several configurations, computed with the SWAN code. Ellipsoidal boundary of

ellipticity β0 = 0.2. Visualisations in a meridional plane with normalised axes x/a and z/c, with a =
√

1 + β0, b =
√

1 − β0 and c = 1/(ab).
White dashed lines show the conical layers where the growth rates are maximum, as predicted by formula (25).
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dition, either (8) or (9), is satisfied numerically for only a few
initial wave vectors k0. Numerically, this is too expansive to
survey all the possible configurations for k0. Thus, we set
the equatorial ellipticity to the value β0 = 0.2. This does not
change in any way the relevance of the following numerical
results, because σ is proportional to β0 (when β0 � 1). How-
ever, for large values of β0, the general resonance condition
(8) can be satisfied for a wider range of initial wave vectors
k0, due to geometrical detuning effects (Le Dizès 2000; Vidal
& Cébron 2017). Hence, the simulations are more tractable
numerically. In practice, we have considered many fluid tra-
jectories X(t) and k0, sampling the whole ellipsoidal domain,
to get representative results.

We have benchmarked the code against analytical for-
mulas (16) and (20) in the equatorial and polar regions, ob-
taining a perfect agreement and cross-validating the asymp-
totic analysis (not shown). Then, we only investigate the
stability of the equilibrium tide flow (7) within the orbital
range −1 ≤ Ω0 ≤ 3, for which the binary systems considered
in §5 belong. When the stratification is neutral (N0 = 0),
the whole domain is unstable (not shown) as expected, with
a homogeneous growth rate predicted by formula (17). We
survey illustrative stably stratified configurations N0/Ω0 ≥ 0
in figure 7. Several aspects the figure are worthy of comment.
We clearly recover the trapping of the instability by the ax-
ial stratification, outlined by the weakening of the growth
rate in formula (20). In the bulk, the weakening first occurs
in the polar regions, and then spreads out towards lower
latitudes when N0/Ωs increases (from top to bottom pan-
els in figure 7). Along the polar axis, it turns out that the
transition between unstable and stable areas occurs at the
position (26). In addition, the equatorial region is still un-
stable for the range of N0/Ωs considered, in agreement with
figure 3.

Then, the numerical analysis unravels an unexpected
feature compared to the asymptotic analysis. When N0/Ωs
increases, tidal instabilities are always triggered in the bulk.
The stratification confines the instabilities along conical lay-
ers (white dashed lines), tilted from the spin (polar) axis.
The tilt angle is exactly the colatitude angle θ0, given by for-
mula (25), which maximises the classical tidal instability for
neutral fluids (N0 = 0). This shows the equatorial trapping
does not affect similarly all the orbits. When −1 ≤ Ω0 ≤ 1,
the tilt angle θ0 given by formula (25) goes from θ0 = 0 to
θ0 = π/2. Hence, the instability on retrograde orbits (with
small values of θ0) is less significant than on prograde or-
bits. When N0/Ωs � 1, the tidal instability is equatorially
trapped between the conical layers, with growth rates on
the equatorial plane predicted by formula (16). However, on
these conical layers, it turns out that the largest growth rate
σ is unaffected by the stratification, for any value of N0/Ωs.
Hence, the maximum growth rate of the tidal instability in
stratified fluids is always given by formula (17), for any orbit
in the orbital range −1 ≤ Ω0 ≤ 3.

Therefore, the numerical analysis has confirmed and ex-
tended the asymptotic analysis. In stably stratified interiors,
the tidal instability is triggered by sub-harmonic resonances
of inertia-gravity waves in the orbital range −1 ≤ Ω0 ≤ 3.
There is an equatorial trapping of the tidal instability be-
tween conical layers, depending on the orbital configuration
according to formula (25). Yet, the maximum growth rate is
unaffected by the stable stratification. Moreover, it turns out

that the sub-harmonic condition (9) is a necessary and suf-
ficient condition for the existence of the tidal instability. In-
deed, we have not found any other resonance yielding larger
growth rates compared to the sub-harmonic resonances.

3.5 Magnetic effects

We reintroduce now the leading-order effects of the per-
vading magnetic fields at the onset of the tidal instability.
We have already shown that a magnetic field only weakly
modifies the fast MAC waves at the sub-harmonic reso-
nance, as illustrated by the spectrum 2. This is in agreement
with global dynamo simulations, in homogeneous (Cébron &
Hollerbach 2014; Reddy et al. 2018) and stratified fluids (Vi-
dal et al. 2018), showing that even a dynamo magnetic field
only barely modifies the hydrodynamic tidal flows. However,
at the linear onset of the tidal instability, the Lorentz force
introduces an Ohmic damping of the (diffusionless) growth
rate (Herreman et al. 2009, 2010; Cébron et al. 2012b).
Hence, the dimensionless growth rate σ ought to be reduced
due to Joule diffusion by the Joule damping rate τΩ ≤ 0.
This Joule damping rate can be estimated by the damp-
ing rate of the free waves involved in the triadic resonances
(8). Indeed, triadic couplings can only yield non-vanishing
growth rates if the hydromagnetic waves individually exist,
i.e. if they are not damped by Joule diffusion.

The pervading fossil magnetic fields are nearly axisym-
metric and dipole-dominated at the leading order, as ob-
served in magnetic binaries (e.g. Alecian et al. 2016; Land-
street et al. 2017; Kochukhov et al. 2018; Shultz et al. 2017,
2018). For the stability theory, the background fossil field
is B0 ∝ 1z , with a dimensionless strength measured by the
Lehnert number Le. The presence of other field components
only slightly modifies the frequencies of the fast hydromag-
netic waves, such that there is no reason to suggest that
the damping rate would behave otherwise. In the regime
Le � 1, the damping rates have been devised by Sreeni-
vasan & Narasimhan (2017) in the local theory and by Ker-
swell (1994) in ellipsoidal geometry. It turns out that they
depend on the wave properties at the resonance. Notably,
we explain in appendix D why the mixed couplings between
fast and slow MAC waves cannot lead to any tidal instabil-
ity in close-binaries. Hence, only sub-harmonic resonances
of fast MAC waves can generate the tidal instability in the
presence of magnetic fields.

Following Sreenivasan & Narasimhan (2017), the Joule
damping rate of the fast waves is, at the leading order in
Le � 1,

τΩ
|1 −Ω0 |

= −
cos2(θ0) |k0 |

4Em Le2

4 cos2(θ0) + |k0 |4 Em2 (28)

with |k0 | the norm of the wave vector at the resonance (and
at initial time) and cos(θ0) given by condition (25). Note that
formula (28) is exactly the Joule decay rate of the tidal insta-
bility in homogeneous fluids (Herreman et al. 2009; Cébron
et al. 2012b). Formula (28) has two asymptotic behaviours,
depending on the value of k0. They are separated by the
condition

|k0 | =
√

2 cos(θ0)/Em ∼ Em−1/2. (29)

On the one hand, we obtain a wave-dominated regime when
|k0 | ≤ Em−1/2, in which the Joule damping rate scales as
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Figure 8. Dimensionless Joule damping −τΩ/ |1−Ω0 | of the tidal

instability (solid blue line) as a function of the magnitude of the
wave number |k0. Dashed magenta line is given by formula (29),

delimiting the two hydromagnetic regimes. Red shaded areas show

the typical strength of the diffusionless growth rate of the tidal
instability σ ∼ O(β0), with β0 ∈ [10−4, 10−2] for close binaries.

Computations at Le = 10−5 and Ek/Pm = 10−12 for a dimension-

less fossil field B0 = 1z aligned with the spin axis.

τΩ ∝ −Em Le2 |k0 |
4/4. On the other hand, we get a diffusion-

dominated regime when |k0 | ≥ Em−1/2. In the latter regime,
the damping rate is independent of the wave vector and
scales as τΩ ∝ −Le2/Em. We illustrate in figure 8 the evolu-
tion of the Joule damping rate (28) in the different regimes.
The tidal instability will survive in the presence of mag-
netic fields if σ � |τΩ |. Typical values of the diffusionless
growth rate, given by formula (17), are σ ∼ O(β0) with
β0 ∈ [10−4, 10−2] in close binaries. We clearly observe that
the tidal instability does survive against Joule diffusion, for
short-wavelength perturbations with |k0 | ≤ 105. For larger
values of the wave number, the Joule damping rates always
overcome the diffusionless growth rates, such that no insta-
bility is triggered.

Thus, in the astrophysical regime Le � 1, we have
shown that the tidal instability can be triggered, even in
the presence of fossil fields in close binaries. The underlying
mechanism is the sub-harmonic resonance of fast hydromag-
netic waves.

4 TIDAL MIXING

At this stage, we have shown that nonlinear tides can sus-
tain the tidal instability in stably stratified interiors, even
against the stabilising effects of the density stratification and
magnetic fields. The next step is to characterise the satu-
rated regime of the tidal flows. Modelling turbulent mixing
in radiative interiors is one of the enduring problems in stel-
lar dynamics (e.g. Zahn 1974). Several studies have exam-
ined the turbulence in radiative interiors (e.g. Zahn 1992;
Mathis et al. 2004; Garaud et al. 2017; Gagnier & Garaud
2018; Mathis et al. 2018). Yet, these models only account

for shear-driven turbulence. Hence, the tidally driven tur-
bulence in binaries remains to be described.

In homogeneous fluids, numerical simulations have
shown that small-scale turbulence can be excited by tides
(Le Reun et al. 2017), possibly leading to global tidal mixing
(Vidal et al. 2018). Thus, tidal mixing is expected in radia-
tive interiors. However, simulating this problem is severely
hampered by the fact that any numerical model cannot
probe accurately the stellar conditions. This makes the rel-
evance of numerical results elusive. Therefore, we aim to
build asymptotic scaling laws of the tidal mixing, based on
dimensional-type arguments, that can embrace both numer-
ical and stellar conditions.

In §4.1, we introduce the assumptions for our mixing-
length theory of the tidal mixing. Then, we propose phe-
nomenological prescriptions in §4.2, characterising the rotat-
ing stratified turbulence in the orbital range −1 ≤ Ω0 ≤ 3.
Finally, we assess their validity by using proof-of-concept
simulations in §4.3.

4.1 Mixing-length theory

4.1.1 Assumptions

We develop a phenomenological description of the nonlinear
tidal mixing in radiative interiors, by using dimensional-type
arguments. We employ a mixing-length theory to predict the
mixing of the fossil field B0. As shown in §3, magnetic ef-
fects play a minor role on the instability in the orbital range
−1 ≤ Ω0 ≤ 3. They essentially damp out the growth rate of
the instability (at the leading order). This is in agreement
with dynamo nonlinear simulations of tidal flows in homo-
geneous (Cébron & Hollerbach 2014) and stratified fluids
(Vidal et al. 2018). Indeed, the kinetic energy of the non-
linear tidal flows is largely unaffected by dynamo magnetic
effects, even though they are essential for the self-sustained
generation of the dynamo magnetic field. Therefore, we can
reasonably switch off the Lorentz force (B · ∇)B in the gen-
eral momentum equation (2a). The nonlinear dynamics of
the tidal flow is then uncoupled to the fossil field B0. How-
ever, the nonlinear tides do mix the fossil field in induction
equation (3c).

As commonly assumed in turbulent convection, any
molecular diffusivity (denoted D) is then replaced by an ef-
fective eddy diffusivity (denoted Dt), induced by the nonlin-
ear tides. By dimensional analysis (e.g. Tennekes & Lumley
1972), the mixing-length theory yields in dimensional form
(up to a proportional constant)

Dt ∝ ut lt, (30)

where ut and lt are respectively the typical (dimensional)
velocity and length scale of the turbulent motions. The eddy
diffusivity Dt is a local property of the nonlinear flow, rather
than a property of the fluid. The key point is to find accurate
predictions for ut and lt.

On the one hand, we have shown in §3 that the tidal in-
stability is generated by sub-harmonic resonances of inertial
waves, more or less modified by the gravity field in the or-
bital range −1 ≤ Ω0 ≤ 3. This mechanism holds whatever the
strength of the stratification, measured by the ratio N0/Ωs.
This suggests that the turbulent velocity scale ut should not
depend on the strength of the local stratification (4), i.e. the
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typical ratio N0/Ωs. This is supported by proof-of-concept
simulations (see figure 2b of Vidal et al. 2018), showing that
nonlinear tidal flows exhibit the scaling devised in homoge-
neous fluids (Grannan et al. 2016), i.e.

ut ∼ β0RΩs(1 −Ω0), (31)

Hence, we can safely estimate the turbulent velocity ut by
using prescription (31). On the other hand, lt should depend
on the local value of the stratification, i.e. the local ratio
N/Ωs. Indeed, several regimes have been found in forced
stratified turbulence (e.g. Brethouwer et al. 2007).

4.2 Phenomenological prescriptions

4.2.1 Weakly stratified regime (N0/Ωs ≤ 1)

In the weakly stratified regime, characterised by N0/Ωs ≤ 1,
H1 waves at the sub-harmonic resonance are barely affected
by the stratification. This explains why the tidal mixing
computed in Vidal et al. (2018) is constant, as long as
N0/Ωs ≤ 1 (see their figure 9). We estimate lt by balancing
the nonlinear term (u · ∇)u with the injection term (u · ∇)U0
in momentum equation (3a). This leads to the typical tur-
bulent length scale (in dimensional form) lt ∼ R. Hence, the
eddy diffusivity in the weakly stratified regime reduces to
the isotropic coefficient (in dimensional form)

Dt ∝ β0R2
Ωs(1 −Ω0). (32)

Prescription (32) shows that the eddy diffusivity is isotropic
and should scale linearly with the equatorial ellipticity in
the weakly stratified regime (N0/Ωs ≤ 1).

4.2.2 Stratified regimes (N0/Ωs ≥ 1)

We now investigate the stratified regimes N0/Ωs ≥ 1. Strat-
ified turbulence is highly anisotropic. Indeed, a commonly
observed feature of strongly stratified flows is the forma-
tion of quasi-horizontal layers, often described as pancake
structures (e.g. Billant & Chomaz 2001). Such layers are
conspicuous in simulations of tidal flows in strongly strati-
fied fluids, both in non-rotating (Le Reun et al. 2018) and
rotating fluids (Vidal et al. 2018). Hence, lt depends on both
the direction and the strength of the stratification. We in-

troduce two turbulent length scales, respectively l ‖t in the
normal direction (i.e. along the gravity field) and l⊥t in the
other horizontal directions.

Several regimes of stratified turbulence have been de-
vised in fundamental fluid mechanics (Billant & Chomaz
2001; Brethouwer et al. 2007). They are characterised by
the buoyancy Reynolds number

R ∼
u3
t

l⊥t N2
0 ν
. (33)

Le Reun et al. (2018) investigated the small-scale turbulence
sustained by the tides in the regime R ≤ 1, in which vertical
viscous shearing is important. However, radiative interiors
are likely in the opposite regime R � 1 (Mathis et al. 2018).
Moreover, they neglected the rotation, by setting Ωs = 0. In
such a configuration, the subspaces of waves [H1,H2] at the
sub-harmonic resonance are empty, according to dispersion
relations (22). Hence, the associated tidal instability involves

only sub-harmonic resonances of internal waves H2 in the
limit N0/Ωs → ∞ and |Ω0 | → ∞. Therefore, their results do
not apply for our astrophysical problem, for any orbit in the
range −1 ≤ Ω0 ≤ 3. In the relevant strongly stratified regime
R � 1, diffusion is unimportant and the turbulence is three-
dimensional (Brethouwer et al. 2007). The general scalings of
this regime have been confirmed by turbulence simulations
(e.g. Godeferd & Staquet 2003; Maffioli & Davidson 2016).
Thus, they can be applied to the tidal problem. In addition,
rotational effects are also important within the orbital range
−1 ≤ Ω0 ≤ 3, even for large values of N0/Ωs ≥ 10. Hence,
the resulting turbulence undergoes the combined action of
stratification and rotation.

In rotating stratified turbulence, the two turbulent
length scales are related by (e.g. Billant & Chomaz 2001)

l⊥t ∼
N0
Ωs

l ‖t . (34)

Turbulent scaling (34) has been confirmed in local simu-
lations of rotating stratified turbulence (Waite & Bartello
2006). For strong stratification N0/Ωs ≥ 10, we combine the
two balances obtained by equating (i) the nonlinear term
with the buoyancy force in momentum equation (3a) and (ii)
the injection term (u · ∇)T0 and the nonlinear term (u · ∇)Θ
in energy equation (3b). These balances yield respectively

ut

l ‖t
∼ αT g0 Θt and αT g0 Θt ∼ N2

0 l ‖t , (35)

where Θt is the typical dimensional turbulent buoyancy per-
turbation. From balances (35) we recover the classical scal-
ing for the turbulent length scale in the normal direction, i.e.

ut ∼ l ‖t N0 (e.g. Billant & Chomaz 2001; Brethouwer et al.
2007). Hence, the turbulent length scale in the normal di-
rection is

l ‖t ∼ β0R(1 −Ω0)
Ωs

N0
. (36)

Scaling (36) shows that tidal mixing falls in the asymptotic
regime of strongly stratified turbulence (Brethouwer et al.
2007). Then, we obtain two prescriptions for the eddy diffu-

sivity, the first one valid in the normal direction D
‖

t and the
second one Dt in the perpendicular directions. They yield

D
‖

t ∝ β
2
0 R2
Ωs(1 −Ω0)

2Ωs
N0
, (37a)

D⊥t ∝ β
2
0 R2
Ωs(1 −Ω0)

2. (37b)

Prescriptions (37) show that the eddy diffusivity should have
a quadratic dependence with the equatorial ellipticity in
any spatial direction. Another interesting prediction in this
regime is that the turbulent potential and kinetic energies,
defined by (in dimensional variables)

Et(Θ
∗) ∼

1
2
α2
T g

2
0

N2
0
Θt, Et(u

∗) ∼
1
2

u2
t, (38)

are of the same order of magnitude (Billant & Chomaz 2001).
This can be checked in the numerical simulations (see later).

In-between the aforementioned two stratified regimes,
i.e. when 1 ≤ N0/Ωs ≤ 10, the situation is unclear. Indeed,
Vidal et al. (2018) found that u · g, which is responsible for
the normal tidal mixing, is largely unaffected by the strat-
ification when N0/Ωs ≤ 10 (see their figure 4). This would
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suggest to extend the prescription of the turbulent mixing
(32) up to N0/Ωs ≤ 10. Yet, this behaviour is not conspicu-
ous in the numerics (see figure 9b of Vidal et al. 2018). We
propose that this may be due to the rather specific numerical
method, which inaccurately probes the intermediate regime
1 ≤ N0/Ωs � 10. Thus, we may expect also a transition be-
tween the two regimes (32) and (37) when 1 ≤ N0/Ωs ≤ 10.

4.3 Validation against simulations

4.3.1 Proof-of-concept methodology

We assess the relevance of predictions (32) and (37) by us-
ing direct numerical simulations. As explained in §4.1, the
Lorentz force plays a negligible role on the flow dynamics for
the tidal instability. Therefore, the dimensionless governing
equations in the numerical model reduce to

∂b

∂t
= ∇ × [(U0 + u) × b] +

Ek
Pm
∇2b, (39a)

∇ · b = 0, b(r, t = 0) = B0(r), (39b)

where the fossil field B0(r) is imposed as an initial condition
for the magnetic field perturbation b(r, t). In equation (39a),
the nonlinear flow u is governed by the (decoupled) mo-
mentum and energy equations (3a)-(3b) without the Lorentz
force. For the simulations, the governing equations are sup-
plemented by the stress-free conditions

u · 1n = 0, 1n ×
[
(∇u + (∇u)>)1n

]
= 0, (40)

and a fixed temperature perturbation Θ = 0 at the bound-
ary. Stress-free conditions (40) are known to lead to spurious
numerical behaviours, associated with the evolution of an-
gular momentum in weakly deformed spheres (Guermond
et al. 2013). To solve this numerical issue, we follow Cébron
& Hollerbach (2014) and Vidal et al. (2018) by imposing a
zero-angular momentum for the velocity perturbation. Fi-
nally, the external region is assumed to be electrically insu-
lating, such that the magnetic field b matches a potential
field at the boundary.

For the numerical simulations, we employ the proof-of-
concept approach introduced in Vidal et al. (2018). Briefly,
the reference ellipsoidal configuration (described in §2.3) is
approximated in spherical geometry by an spatially vary-
ing equatorial ellipticity profile ε(r, β0), depending of the el-
lipticity β0 of the ellipsoidal configuration. This profile is
chosen such that the reference configuration satisfies all the
aforementioned boundary conditions in the spherical geom-
etry. We refer the reader to Vidal et al. (2018) for further
methodological details.

In magnetic radiative stars, the topology of the fossil
field B0(r) is not arbitrary. Indeed, only magnetic equilibria
involving poloidal and toroidal components are stable (e.g.
Braithwaite & Spruit 2017). However, the exact topology
of the fossil field is not essential for our numerical model.
Indeed, induction equation (39a) is not coupled to the mo-
mentum equation (negligible Lorentz force). Thus, problem
(39) is a kinematic (i.e. linear) initial value problem for the
fossil field. By linearity, all the components of the fossil field
can be considered independently. For each magnetic compo-
nent, we can then measure a typical global turbulent eddy
diffusivity (30).

To do so, we compute the (dimensionless) decay rate

ση ≤ 0 of the volume average of the magnetic energy over
the computational integration time T , i.e.

ση = lim
T→∞

1
T

log
©­­«
∫
V

1
2
|b |2 dV

ª®®¬ . (41)

Decay rate (41) is a global estimate in the simulations of the
effective diffusivity Dt. Note that Käpylä et al. (2019) mea-
sured in a similar way the turbulent diffusivity, obtaining a
good quantitative agreement with mean-field analyses.

The decay rate should have the same scaling law in
β0 for all the initial magnetic fields. Yet, the (arbitrary)
prefactors will be different. Indeed, all the (separate) mag-
netic components may not obey the same scaling law in the
strongly stratified regime. Notably, we expect toroidal mag-
netic fields, satisfying B0 · 1n = 0 (at any position), to be
preferentially mixed in the normal direction. Thus, scaling
(37a) should apply predominantly for toroidal fields. On the
contrary, we expect poloidal magnetic fields (with predom-
inant components in the normal direction) to obey scaling
(37b). However, we emphasise that the prefactors obtained
from numerical simulations, performed for conditions far-
removed from the astrophysical regime, are likely irrelevant
for the astrophysical problem. Hence, with our numerical
method, only the dependence in β0 can be safely validated
against simulations. Hence, we should have (i) ση ∝ β0 in

the weakly stratified regime (32) and (ii) ση ∝ β2
0 in the

strongly stratified regime (37).

4.3.2 Numerical results

The simulations have been performed with the open-source
nonlinear code XSHELLS (https://nschaeff.bitbucket.
io/xshells/), described in Schaeffer et al. (2017) and val-
idated against standard spherical benchmarks (Marti et al.
2014; Matsui et al. 2016). A second-order finite difference
scheme is used in the radial direction. The angular direc-
tions are discretised using a pseudo-spectral spherical har-
monic expansion, provided by the blazingly efficient SHTns
library (Schaeffer 2013). The time-stepping scheme is of sec-
ond order in time and treats the diffusive terms implicitly,
while the nonlinear and Coriolis terms are handled explicitly.

As a reference configuration, we have assumed Ω0 = 0.
Indeed, we have shown theoretically in §3 that the underly-
ing mechanism of the tidal instability does not change in the
range −1 ≤ Ω0 ≤ 3, and similarly the turbulent scalings (e.g.
Grannan et al. 2016; Vidal et al. 2018). Hence, investigating
only one orbital configuration is necessary. Then, we have
chosen as an initial fossil field the least-damped, poloidal
free decay magnetic mode of the sphere (see Moffatt 1978,
p. 36-40). This particular magnetic field is an exact solution
of the purely diffusive induction equation. It has the small-
est Ohmic free decay rate σΩ (in dimensionless form), given
by

σΩ = π
2Ek/Pm. (42)

This is the most suited field to assess the validity of the
turbulent scaling laws. Indeed, the slow Joule diffusion (42)
should not be coupled with the expected faster turbulent
diffusion. In practice, we conducted the simulations at the
fixed dimensionless numbers Ek = 10−4, Pr = 1 and Pm =
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Figure 9. Turbulent diffusion of magnetic fields by nonlinear
tides. Ratio ση/ |σΩ | of the global decay rate ση of the magnetic

field b, normalised by the free magnetic decay rate σΩ (Moffatt

1978) of the initial magnetic field B0, as a function of the equa-
torial ellipticity β0. Simulations at Ω0 = 0, Ek = 10−4, Pr = 1 and

Pm = 0.1. The least-squares fits are ση/ |σΩ | = −3.09 β0 − 1.00 in

(a) and ση/ |σΩ | = −3.13 β2
0 − 1.21 in (b).

0.1. The latter value ensures that no dynamo magnetic field
can grow exponentially our spatial discretisation is Nr =

224 radial points, lmax = 128 spherical harmonic degrees and
mmax = 100 azimuthal wave numbers. We have integrated
the equations on one (dimensionless) Ohmic diffusive time
(Ek/Pm)−1 to determine accurately the turbulent decay rate
ση .

Figure 9 shows the representative results for the two
stratified regimes. We observe that the decay rate ση is al-
ways larger than the free decay rate σΩ expected for the ini-
tial fossil field. Then, the striking feature is that we recover
the two scalings as a function of the ellipticity, predicted
by our mixing-length theory. In the weakly stratified regime
(figure 9a), the numerical eddy diffusivity (41) is in broad
agreement with the linear scaling ση ∝ β0, consistent with
the mixing-length formula (32). The agreement is even much

better in the strongly stratified regime (figure 9b), obtaining
the quadratic scaling ση ∝ β

2
0 expected from (37).

Finally, the typical ratio of the volume averaged thermal
and kinetic (dimensionless) energies, for the simulations of
figure 9b, is E(Θ)/E(u) = 8.1±3.5. This numerical value is in
very good agreement with the theoretical scaling (38) in the
strongly stratified regime (Billant & Chomaz 2001), yielding
E(Θ)/E(u) ∼ N0/Ωs = 10 in dimensionless variables. This is
another evidence of the validity of the mixing-length theory.

5 ASTROPHYSICAL DISCUSSION

We have obtained a consistent picture of the tidal instabil-
ity in an idealised set-up of radiative interiors. It predicts
the linear onset (§3) and the nonlinear mixing induced by
the saturated flows (§4). For the sake of theoretical and nu-
merical validations, we have only considered rather idealised
stellar models, described in §2. Then, the predictions have
been successfully confronted with proof-of-concept numer-
ical simulations, paving the way for astrophysical applica-
tions.

Indeed, we emphasise that more relevant stellar condi-
tions can be embraced. In particular, the sub-harmonic con-
dition still holds by considering more realistic stratified con-
figurations for the waves (Friedlander & Siegmann 1982a).
Similarly, the mixing-length theory is only based on local
dimensional arguments, that remain valid for more realis-
tic conditions. Therefore, we discuss now our findings in the
context of tidally deformed and stably stratified (radiative)
interiors. Notably, we are in the position to build a new phys-
ical scenario, that may explain the lower incidence of fossil
fields in short-period and non-synchronised binaries (Alecian
et al. 2017).

5.1 A new scenario

We consider a close binary system with a radiative primary
of mass M1 and a secondary of mass M2. The primary is
pervaded by an initial fossil field B0. Note that distinction
between the primary and secondary is only made for conve-
nience, such that the situation can be reversed in the sce-
nario (if we are interested in the secondary). The orbital
and spin angular velocities are respectively Ωorb and Ωs.
We focus on non-synchronised binaries in the orbital range
−1 ≤ Ω0 ≤ 3, where Ω0 = Ωorb/Ωs is the dimensionless
orbital frequency. The orbits are almost circularised, but
small orbital eccentricities e � 1 do not strongly modify
the fate of tidal flows (Vidal & Cébron 2017). We also focus
on binaries with short-period systems, with typical periods
Ts = 2π/Ωs ≤ 10 days. Due to the combined action of the
tides and the spin, the star is deformed into an triaxial el-
lipsoid (Chandrasekhar 1969; Lai et al. 1993; Barker et al.
2016). The latter is characterised by a typical equatorial el-
lipticity β0, estimated from the static bulge theory (Cébron
et al. 2012b; Vidal et al. 2018). For the bulge generated onto
the primary, this reads

β0 ∼
3
2

M2
M1

(
R
D

)3
, (43)

where R is the typical radius of the primary and D the typ-
ical distance separating the two bodies. The density strati-
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Figure 10. Anisotropic turbulent mixing of the poloidal (dot-

ted) and toroidal (dashed) field lines of the fossil field B0 by the
nonlinear tides. A possible innermost convective core is also rep-

resented.

fication of the radiative envelope is measured by the typical
dimensionless ratio N0/Ωs, where N0 is the typical Brunt-
Väisälä frequency. A representative value for intermediate-
mass stars is N0 ∼ 10−3 s−1 (e.g. Rieutord 2006), yielding a
typical ratio N0/Ωs � 10.

The tidal forcing sustains an equilibrium tidal veloc-
ity field (Remus et al. 2012; Vidal & Cébron 2017) in the
primary fluid body. This equilibrium tidal flow can be non-
linearly coupled with free inertial-gravity waves, to trigger
tidal instabilities. The dimensional growth rate σ∗ of the
tidal instabilities, which does not depend on the stratifica-
tion, is given by

σ∗ =
(2Ω̃0 + 3)2

16(1 + Ω̃0)2
|Ωs −Ωorb | β0, (44)

with Ω̃0 = Ω0/(1−Ω0). In the saturated regime, the tidal in-
stabilities enhance the internal mixing due to turbulence.
In strongly stratified radiative interiors (N0/Ωs � 10),
the turbulent mixing generated by the nonlinear tides is
anisotropic, characterised by an eddy turbulent diffusivity

D
‖

t in the direction of the self-gravity and by D⊥t (� D
‖

t ) in
the other (horizontal) directions.

Then, the turbulent mixing will dynamically disrupt
the fossil field B0. However, the latter field, containing
both poloidal and toroidal components (to be in quasi-static
magnetic equilibrium in the initial stage), will undergo an
anisotropic tidal disruption. The mechanism is illustrated
in figure 10. On the one hand, the poloidal components,
which are mainly along the normal direction and can be
observed at the stellar surface, are preferentially disrupted
by the (large) eddy diffusivity D⊥t in the horizontal direc-
tions. On the other hand, the toroidal components, hidden
in the star since they are only along the horizontal direc-
tions, are preferentially mixed by the (small) eddy diffusiv-

ity D
‖

t in the normal direction. Thus, poloidal and toroidal
field lines are disrupted on different typical turbulent time
scales. However, as soon as the fossil magnetic equilibrium

is disrupted (by the tidal flows), both poloidal and toroidal
magnetic components quickly die out a few Alfvén time
scales (LeΩs)−1, as shown theoretically and numerically (e.g.
Tayler 1973; Markey & Tayler 1973, 1974; Braithwaite 2009;
Mitchell et al. 2014). Therefore, the typical turbulent time
scale for the tidal disruption of the fossil field is

τt ∝
R2

D⊥t

=
1

β2
0 Ωs(1 −Ω0)2

, (45)

i.e. the fast turbulent time scale in the perpendicular direc-
tions destroying the poloidal components.

5.2 Non-magnetic binaries

We assess here the relevance of the tidal scenario for short-
period massive binary systems. Non-magnetic and non-
synchronised (Ω0 , 1) binaries are given in table 2. They
have been surveyed by the BinaMIcS collaboration (e.g. Ale-
cian et al. 2017). The predictions of the tidal scenario for
these binary systems are given in table 3. All these close-
binaries are rapidly rotating and undergo strong tidal ef-
fects in the two bodies, as measured by the large values
of the ellipticity β0 ∼ 10−2. Hence, the tides do trigger
quickly the tidal instability, growing on the typical time scale
(σ∗)−1 ≤ O(103) years. This is much shorter than the life-
time of these stars, about τMS ∼ 109 years for a star of mass
M1 = 2M� on the main sequence. Hence, the tidal instability
is likely present in these non-synchronised binaries.

Then, typical values for the turbulent time scale (45)
are τt ∈ [102, 106] years, except for HD 32964 which is less
affected by the nonlinear tides (smaller β0). Hence, the tidal
disruption of the initial fossil fields does occur on a very
short time scale compared to the stellar lifetime, typically
τt/τMS � 10−3. This time scale (45) is also much smaller
that the time scale for the Ohmic decay rate of the magnetic
field in the absence of turbulence τΩ ∝ (Ωs Ek/Pm)−1, due to
the slow Joule diffusion. As illustrated in figure 11, we get
by τt/τΩ � 10−2 (except for HD 32964).

Therefore, nonlinear tides in non-synchronised may sus-
tain the tidal disruption of fossil fields, on time scales
much shorter than the stellar lifetime. This may explain the
scarcity of significant magnetic fields at the surface of mas-
sive stars in close binaries.

5.3 Magnetic binaries

We give in table 4 the orbital properties of some scarce
magnetic binaries, analysed by the BinaMIcS collaboration.
They were already known to be magnetic, e.g. HD 98088
(Babcock 1958; Abt et al. 1968; Carrier et al. 2002), ε

Lupi (Shultz et al. 2015) and HD 156324 (Alecian et al.
2014b). The aforementioned tidal scenario would suggest
that (strong) magnetic fields may be anomalies in short-
period massive binaries. However, their existence does not
necessarily challenge the tidal scenario (a priori).

We note that HD 156324 and HD 98088 are synchro-
nised. The fate of the tidal instability for synchronised or-
bits (Ω0 = 1) is discussed in appendix B. On the one hand,
system HD 156324 is nearly circularised (Shultz et al. 2017),
whereas non-circular orbits are required for the tidal mech-
anism to operate in synchronised systems. Hence, the tidal
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Symbol System M1 M2 R (M1) R (M2) D Ts (M1) Ts (M2) Torb Eccentricity

(figure 11) (M�) (M�) (R�) (R�) (R�) (days) (days) (days) e

◦ HD 23642 2.22 1.57 1.84 1.57 11.96 2.49 2.45 2.46 0.0
5 HD 24133 1.39 1.31 1.78 1.49 5.042 0.827 0.783 0.80 0.0
4 HD 24909 3.53 1.72 2.47 1.53 10.59 1.8 1.8 1.74 7.4 × 10−2

/ HD 25638 14.3 10.7 8.91 6.70 23.97 3.01 2.76 2.70 0.0
. HD 25833 5.36 4.90 2.99 2.60 14.67 2.0 1.7 2.03 7.1 × 10−2

8 HD 32964 2.63 2.57 1.95 1.92 22.90 5.57 5.55 5.52 8.4 × 10−2

� HD 34364 2.48 2.29 1.78 1.82 18.24 3.90 4.01 4.13 0.0
D HD 36486 24.0 8.40 16.5 6.50 43.00 6.24 2.13 5.73 0.11
7 HD 150136 62.6 39.5 13.1 9.54 38.00 2.9 2.7 2.67 0.0

Table 2. Physical and orbital characteristics of the non-synchronised and non-magnetic binary systems considered in this study, surveyed

by the BinaMIcS collaboration (e.g. Alecian et al. 2017). The masses [M1, M2] of the primary and the secondary bodies are given in Sun

mass unit M�. The typical stellar radius R (of either the primary or of the secondary) and the typical distance D between the two bodies
is given in Sun radius unit R�. The spin and orbital periods [Ts, Torb] are expressed in days. They yield the spin and angular velocities

[Ωs = 2π/Ts, Ωorb = 2π/Torb]. Note that Ts has been estimated by assuming aligned spin-orbit systems. HD 23642: Groenewegen et al.

(2007), HD 24133: Clausen et al. (2010), HD 24909: Değirmenci (1997), HD 25638: Tamajo et al. (2012), HD 25833: Giménez & Clausen
(1994), HD 32964: Makaganiuk et al. (2011), HD 34364: Nordstrom & Johansen (1994), HD 36486: Shenar et al. (2015), HD 150136:

Mahy et al. (2012).

System β0 σ∗ (1/year) τt (years) τt/τΩ
Body 1 Body 2 Body 1 Body 2 Body 1 Body 2 Body 1 Body 2

HD 23642 3.87 × 10−3 4.77 × 10−3 1.03 × 10−2 5.07 × 10−3 5.27 × 105 2.29 × 106 4.86 × 10−4 2.15 × 10−3

HD 24133 6.21 × 10−2 4.12 × 10−2 1.46 × 100 6.11 × 10−1 7.53 × 101 5.10 × 102 2.09 × 10−7 1.49 × 10−6

HD 24909 9.27 × 10−3 9.28 × 10−3 9.25 × 10−2 9.26 × 10−2 8.71 × 103 8.69 × 103 1.11 × 10−5 1.11 × 10−5

HD 25638 5.76 × 10−2 4.39 × 10−2 1.12 × 100 2.03 × 10−1 2.97 × 101 1.20 × 103 2.26 × 10−8 9.97 × 10−7

HD 25833 1.16 × 10−2 9.13 × 10−3 4.78 × 10−2 5.83 × 10−1 3.23 × 104 3.38 × 102 3.70 × 10−5 4.56 × 10−7

HD 32964 9.01 × 10−4 9.04 × 10−4 7.89 × 10−4 4.61 × 10−4 4.06 × 107 1.20 × 108 1.67 × 10−2 4.97 × 10−2

HD 34364 1.29 × 10−3 1.60 × 10−3 1.14 × 10−2 7.12 × 10−3 3.18 × 105 7.48 × 105 1.87 × 10−4 4.28 × 10−4

HD 36486 2.97 × 10−2 1.48 × 10−2 2.20 × 10−1 4.32 × 100 3.94 × 102 1.07 × 101 1.45 × 10−7 1.16 × 10−8

HD 150136 3.91 × 10−2 3.76 × 10−2 5.98 × 10−1 7.53 × 10−2 1.16 × 102 2.46 × 101 9.19 × 10−8 2.09 × 10−8

Table 3. Predictions of the tidal scenario for the close binaries described in table 2. For all these stars, we have taken as representative

value for the dimensional Brunt-Väisälä frequency N0 = 10−3 s−1 (e.g. Rieutord 2006). The equatorial ellipticity β0 is given by expression
(43). The dimensional growth rate σ∗ is given by formula (44). The turbulent time scale of tidal disruption τt is given by formula (45).

The molecular Ohmic diffusive time scale is τΩ ∝ (Ωs Ek/Pm)−1 (in dimensional units of Ωs), with Ek/Pm ∼ 10−12.

System M1 M2 R (M1) R (M2) D Ts (M1) Ts (M2) Torb Eccentricity B∗0 (M1) B∗0 (M2)

(M�) (M�) (R�) (R�) (R�) (days) (days) (days) e (kG) (kG)

HD 156324 8.5 4.1 3.8 2.3 13.2 1.58 1.58 1.58 0.0 14 < 2.6
HD 98088 2.19 1.67 2.76 1.77 21.7 5.905 5.905 5.905 0.18 3.9 < 1.6

ε Lupi (corot) 8.7 7.3 4.7 3.8 29.2 2.30 2.5 4.56 0.277 0.9 0.6
ε Lupi (slow) 8.7 7.3 4.7 3.8 29.2 6.4 7.1 4.56 0.277 0.9 0.6
ε Lupi (fast) 8.7 7.3 4.7 3.8 29.2 0.40 0.32 4.56 0.277 0.9 0.6

Table 4. Physical and orbital characteristics of the magnetic binary systems surveyed by the BinaMIcS collaboration (Folsom et al. 2013;

Shultz et al. 2015, 2017, 2018). The masses [M1, M2] of the primary and the secondary bodies are given in Sun mass unit M�. The typical

stellar radius R (of either the primary or of the secondary) and the typical distance D between the two bodies is given in Sun radius unit
R�. The spin and orbital periods [Ts, Torb] are expressed in days. They yield the spin and angular velocities [Ωs = 2π/Ts, Ωorb = 2π/Torb].
The typical surface magnetic field B∗0, believed to be of fossil origin, is given in kiloGauss (kG) for the two components. HD 156324 and
HD 98088 are synchronised systems (see appendix B), whereas ε Lupi system is not synchronised.

mechanism is not currently relevant for HD 156324. This
may explain why the fossil field is still observed. On the
other hand, HD 98088 is not circularised such that nonlin-
ear tidal mixing is expected. However, as shown in appendix
B, formula (45) for the typical turbulent time scale ought to
be reduced in synchronised systems, such that (1−Ω0)

2 ∼ ε2

with ε � 2e is the dimensionless amplitude of the tidal forc-
ing (Goldreich & Mitchell 2010; Cébron et al. 2012b; Vidal
& Cébron 2017). Based on the accuracy of the measured pe-
riods in table 4, we may assume ε ≤ 10−3, such that the tur-
bulent time scale τt, given by formula (B5), is expected to be
much larger in HD 98088 than for the systems of table 3 (for
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Figure 11. Turbulent decay of the fossil field τt (45), normalised

by the typical Ohmic τΩ ∼ (Ωs Ek/Pm)−1, as a function of the
equatorial ellipticity β0 and the dimensionless orbital angular fre-

quency Ω0 = Ωorb/Ωs . The close binaries of table 3 are illustrated

by the symbols given in table 2. Large (white) symbols refer to
the body 1 of the considered binary, whereas small (cyan) symbols

refer to the body 2. Computations at Ek/Pm = 10−12.

similar values of the equatorial ellipticity β0 ∼ 10−3). There-
fore, the existence of the (synchronised) magnetic binaries
HD 156324 and HD 98088 appears to be consistent with the
tidal scenario. However, note that the tidal mechanism may
have occurred before the synchronisation and/or circulari-
sation of the systems. Indeed, observations show that circu-
larisation and synchronisation processes are effective for ra-
diative stars (e.g. Giuricin et al. 1984a,b; Zimmerman et al.
2017). On the one hand, circularisation is expected to be
faster in radiative stars, e.g. due to radiative damping (e.g.
Zahn 1975, 1977). On the other hand, synchronisation pro-
cesses have been much less studied in radiative interiors (e.g.
Rocca 1989, 1987; Witte & Savonije 1999, 2001), and the
confrontation with the observations is less satisfactory (e.g.
Mazeh 2008; Zimmerman et al. 2017). Thus, understanding
these two processes in radiative stars still deserves further
work, notably to take into account the overlooked effects of
the tidal instability in short-period binaries.

Finally, the case of ε Lupi system (e.g. Uytterhoeven
et al. 2005; Shultz et al. 2015) is more intricate. Nonlinear
tidal mixing should occur within these stars, with a short
typical turbulent time scale τt ∼ 103 years. The fossil field
may be currently disrupted by the nonlinear tides, but the
process may have not last long enough to yield vanishing
observable fields. Another possibility is that these magnetic
fields would be internally regenerated by dynamo action, to
balance the decay due to the nonlinear tides. Such a (cur-
rently speculative) mechanism may be particularly relevant
for the rapidly rotating component of ε Lupi in table 4. Sev-
eral dynamo mechanisms may be advocated, e.g. driven by
differentially rotating flows (Braithwaite 2006), baroclinic
flows (Simitev & Busse 2017) or even nonlinear tides (Vidal
et al. 2018). Though the dynamo action of tides in strongly

stratified interiors remains elusive, the scaling law for the
magnetic field strength at the stellar surface, proposed by
Vidal et al. (2018), would yield |B0 | ∼ 0.1 − 1 kG. This is
the order of magnitude of the observed surface fields. Thus,
understanding the origin of the magnetic fields in the ε Lupi
system certainly deserves future works.

6 CONCLUSION

6.1 Summary

In this work, we have investigated nonlinear tides in short-
period massive binaries, motivated by the puzzling lower
magnetic incidence of close binaries compared to isolated
stars (Alecian et al. 2017; Alecian & et al. 2019). To do so, we
have adopted an idealised model for rapidly rotating strat-
ified fluids within the Boussinesq approximation, which are
bounded in triaxial ellipsoids. This model consistently takes
into account all the ingredients encountered in massive bina-
ries, namely the combination of rotation and non-isentropic
stratification, the tidal distortion (on coplanar and aligned
orbits) and the leading-order magnetic effects. We have re-
visited the fluid instabilities triggered by the tides in the
global system (Vidal et al. 2018), by combining analytical
computations and proof-of-concept simulations.

First, we have investigated the linear onset of the tidal
instability in non-synchronised, stratified fluid masses. Our
results have unified all the previous existing stability anal-
yses, within a single framework, and have unravelled new
phenomena. We have shown that the tidal instability in ra-
diative interiors is due to sub-harmonic resonances between
inertial-gravity waves and the underlying equilibrium tidal
flow, for any orbit in the range −1 ≤ Ω0 ≤ 3. Within this
range, the tidal instability is weakened by a barotropic strat-
ification along the polar axis (Miyazaki & Fukumoto 1991;
Miyazaki 1993) and the equatorial plane. On the contrary,
a baroclinic stratification does enhance the growth rate of
the tidal instability (Kerswell 1993a; Le Bars & Le Dizès
2006). However, the striking feature is that the tidal insta-
bility onsets with a maximum growth rate which is unaf-
fected by the stratification. The instability is triggered in
volume along three-dimensional conical layers, whose posi-
tion depends solely on the orbital parameter Ω0. In the or-
bital range Ω0 ≤ −1 and Ω0 ≥ 3, i.e. in the forbidden zone
of the tidal instability in homogeneous fluids (e.g. Le Dizès
2000), the tidal instability can be generated by sub-harmonic
resonances of gravito-inertial waves, provided that the strat-
ification is strong enough for the considered orbital configu-
ration. This provides a theoretical explanation of the insta-
bility mechanism investigated numerically in Le Reun et al.
(2018).

Second, we have developed a predictive, mixing-length
theory of the anisotropic tidal mixing, induced by nonlinear
tides in the orbital regime −1 ≤ Ω0 ≤ 3. For strongly strat-
ified interiors, we have modelled the anisotropic mixing by
introducing two turbulent eddy diffusivities (e.g. Tennekes
& Lumley 1972), one describing the mixing in the direction
of the gravity field and the second in the other (horizontal)
directions. We have shown that these two turbulent diffusiv-
ities should scale as β2

0, where β0 is the equatorial elliptic-
ity of the equilibrium tide. We have validated these scalings
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against proof-of-concept simulations, by using the numerical
method introduced in Vidal et al. (2018).

Finally, we have used the mixing-length theory to ex-
trapolate the numerical results towards more realistic stellar
conditions. We have built a new physical scenario, predict-
ing the disruption of fossil fields by nonlinear tides in short-
period (non-coalescing) massive binaries. We have applied
it to a subset of short-period binaries, analysed by the Bi-
naMIcS collaboration (Alecian et al. 2017; Alecian & et al.
2019). This scenario may explain well the lower incidence
of surface magnetic fields in short-period binaries than in
isolated stars. Indeed, we predict a tidal disruption of fossil
fields occurring in less than a few million years. This is much
shorter than the Joule diffusion time scale of the fossil fields,
and similarly than the typical lifetime of these stars.

6.2 Perspectives

This study calls for many improvements on the theoretical
front, to confirm the likelihood of our mechanism. Since we
have only handled the key ingredients, future works should
strive to include additional effects within the model. First, it
would be interesting to examine if (secondary) shear insta-
bilities are sustained by the nonlinear tides in the strongly
stratified regime. Shear instabilities are likely ubiquitous in
radiative interiors (e.g. Mathis et al. 2004, 2018), which un-
dergo differential rotations (Goldreich & Schubert 1967).
To do so, the classical diffusionless instability condition for
shear instabilities (e.g. Drazin & Reid 1981) ought to be
modified in radiative interiors, to take into account the ther-
mal diffusivity (Townsend 1958; Zahn 1974). Hence, in the
presence of turbulent tidally driven flows, secondary shear
instabilities would exist if

Rit Pet ≤ 1, (46)

with Rit = N2
0 /(ut/l

‖

t )
2 the turbulent Richardson number

and Pet = utl ‖t /D
‖

t the turbulent Péclet number. The typical
estimate yields RitPet ∼ 1 in the strongly stratified regime.
Thus, such secondary shear instabilities may be triggered
by the nonlinear tides, possibly enhancing the tidal mixing
coefficient.

Then, a natural extension would be to investigate con-
sistently the interplay between the dynamical tides and
differential rotation, e.g. resulting from in-situ baroclinic
torques (e.g. Busse 1981, 1982; Rieutord 2006). However,
we point out that this is unclear whether strong differential
rotations can survive in the presence of fossil fields, because
they are damped by hydromagnetic effects (Arlt et al. 2003;
Rüdiger et al. 2013, 2015; Jouve et al. 2015). Nonetheless,
the tidal elliptical instability does exist in differentially ro-
tating elliptical flows, as shown in fundamental fluid me-
chanics (Eloy & Le Dizès 1999; Lacaze et al. 2007). The
properties of the modes in differentially rotating flows can
be investigated in more realistic global models (Friedlander
1989; Mirouh et al. 2016), such that extending the tidal the-
ory seems achievable. Closely related to the study of differen-
tial rotation is the study of baroclinic flows (e.g. Kitchatinov
2014; Caleo & Balbus 2016; Simitev & Busse 2017). We have
shown that baroclinic reference states do enhance the tidal
instability, as first noticed by Kerswell (1993a) and Le Bars

& Le Dizès (2006). Thus, we may even expect a stronger
turbulent tidal mixing in baroclinic radiative interiors.

Radiative stars also host innermost convective cores.
Thus, the outcome of the tidal instability in shells should be
considered. In shells, singular modes localised on attractors
do exist (Dintrans et al. 1999; Mirouh et al. 2016; Rieutord
& Valdettaro 2018). These singular modes are likely more af-
fected by the magnetic field (Lin & Ogilvie 2017). However,
we emphasise that almost regular modes do coexist with
singular modes in shells (e.g. Zhang 1993; Vidal & Schaeffer
2015; Barik et al. 2018). The former can trigger tidal insta-
bilities in shells, as confirmed experimentally and numeri-
cally for homogeneous fluids (Aldridge et al. 1997; Seyed-
Mahmoud et al. 2000; Lacaze et al. 2005; Seyed-Mahmoud
et al. 2004; Lemasquerier et al. 2017). Moreover, the sta-
bility theory we have presented remains formally valid in
shells. Hence, we do not expect any significant difference for
stratified fluids at the onset. Then, the boundary effects on
the turbulent tidal mixing remain to be determined.

Another daunting perspective is to account for com-
pressibility. Using the Boussinesq approximation seems ex-
aggerated for stellar interiors. However, the influence of the
fluid compressibility is apparently negligible at the onset of
the tidal instability (Clausen & Tilgner 2014). This is one of
the reason why we have adopted the Boussinesq approxima-
tion. Moreover, investigating non-isentropic reference pro-
files cannot be easily simulated numerically with the more
usual anelastic approximation (e.g. Anufriev et al. 2005).
Clarifying the effects of compressibility certainly deserves
future work, both in the linear and nonlinear regimes.

Finally, the scarce non-synchronised magnetic binaries
(Carrier et al. 2002; Shultz et al. 2015; Alecian et al. 2017;
Kochukhov et al. 2018) seem to challenge the general trend
of the tidal scenario, predicting a lack of magnetic massive
stars in short-period binaries. These fields appear to be not
disrupted by the nonlinear tides. If the tidal mechanism re-
mains valid by including the aforementioned proposed im-
provements, they might be dynamically regenerated in situ
by dynamo action. For instance, tides do sustain dynamo
action in homogeneous fluids (Cébron & Hollerbach 2014;
Reddy et al. 2018), as well as in weakly stratified interi-
ors (Vidal et al. 2018). Yet, the dynamo capability of tides
remains elusive in strongly stratified interiors (Vidal et al.
2018). Baroclinic flows are a possible candidate, since they
are dynamo capable (Simitev & Busse 2017). They may also
favour the radial mixing generated by nonlinear tides, which
is a necessary ingredient for dynamo action (Kaiser & Busse
2017). This certainly deserves future works to investigate
dynamo magnetic fields in more realistic models of radiative
stars.
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APPENDIX A: MAC MODES IN TRIAXIAL
ELLIPSOIDS

In this appendix, we present a new method to compute the
three-dimensional hydromagnetic eigenmodes of an strati-
fied Boussinesq fluid contained within a rigid triaxial ellip-
soid. This approach relies on a fully global, explicit spec-
tral method in ellipsoids, in which the velocity field is de-
scribed by polynomial finite-dimensional Galerkin bases.
The algorithm has been implemented within the new code
SHINE (https://bitbucket.org/vidalje/shine). It has
been benchmarked successfully for the Coriolis modes in el-
lipsoids (Vantieghem 2014; Lemasquerier et al. 2017), while
the fast and slow hydromagnetic solutions have been vali-
dated for the Malkus field in spheres (Malkus 1967; Zhang
et al. 2003), spheroids (Kerswell 1994) and triaxial ellipsoids
(Vidal et al. 2016).

A1 Assumptions

We work in dimensional variables for the sake of general-
ity, and use the notations introduced in the main text. We
consider a diffusionless, incompressible electrically conduct-
ing fluid, contained within a triaxial ellipsoid of semi-axes
(a, b, c). The fluid is stratified under the gravity field g∗ in
the Boussinesq approximation. The fluid is contained within
an ellipsoidal container, which is rotating at the angular
velocity Ω in the inertial frame. We expand the velocity,
the temperature and the magnetic field as small pertur-
bations [u∗,Θ∗, b∗](r, t) around an equilibrium state of rest
[0,T∗0 , B

∗
0](r).

In the linear approximation, the dimensional governing
equations are

∂u∗

∂t
= −2Ω × u∗ − ∇p∗ − αTΘ∗g∗ (A1a)

+ αB
[
(∇ × b∗) × B∗0 + (∇ × B∗0) × b∗

]
,

∂Θ∗

∂t
= −(u∗ · ∇)T∗0 , (A1b)

∂b∗

∂t
= ∇ × (u∗ × B∗0), (A1c)

∇ · u∗ = ∇ · b∗ = 0, (A1d)

with αB = (ρM µ0)
−1 and p∗ the hydrodynamic pressure. By

taking the time derivative of equations (A1), we can obtain
a single wave-like equation of second order in time for the
velocity perturbation u∗. This reads

∂2u∗

∂t2
+ 2Ω ×

∂u∗

∂t
= −

∂∇p∗

∂t
+ αT (u

∗ · ∇)T∗0 g∗ + f ∗m, (A2)

with the Lorentz force

f ∗m = αB(∇ × B∗0) ×
[
∇ × (u∗ × B∗0)

]
+ αB

[
∇ × (∇ × (u∗ × B∗0))

]
× B∗0. (A3)

Note that equations (A1) cannot be recast into a single equa-
tion for the velocity perturbation u∗ in the presence of an
arbitrary basic flow U∗0, e.g. flow (7) considered in the main
text. However, we point out that some well-chosen ellipsoidal
equilibrium configurations may be reduced to a single equa-
tion (e.g. in spheres Friedlander 1989).

Finally, equation (A2) is supplemented by the non-
penetration boundary conditions

u∗ · 1n = 0, B∗0 · 1n = 0. (A4)

with 1n the unit outward vector normal to the ellipsoidal
boundary. We emphasise that alternative boundary condi-
tions for the background magnetic field cannot be consid-
ered, at least to investigate consistently all the hydromag-
netic modes . Indeed, allowing a non-zero normal magnetic
field at the boundary would create a surface electrical den-
sity current generating a Lorentz force f ∗m in the form of
a discontinuous Dirac function distributed on the boundary
(Friedlander & Vishik 1990). This would lead to spurious
diffusionless solutions for the slow hydromagnetic modes.
However, we would expect the fast hydromagnetic modes to
be only barely affected by the magnetic boundary condition,
since the Lorentz force in momentum equation (A2) has only
second-order effects on the fast modes.

A2 Galerkin method

We employ the method of Galerkin weighted residuals (e.g.
Finlayson 2013) to describe the velocity field. We seek a
finite-dimensional Galerkin expansion of the modes as[
u∗, p∗

]
(r, t) =

[
û∗, p̂∗

]
(r) exp(iωi t), û∗ =

∞∑
l=1

γj ûl
∗, (A5)

where ωi is the angular frequency, {γl} modal complex coef-
ficients and {ûl(r)} real basis Galerkin elements (see later).
Then, we rewrite equation (A2) in the symbolic form(
−ω2

i A2 + iωiA1 +A0
)
û∗ = iωi ∇p̂∗, (A6)

where [A2,A1,A0] are three linear operators.
The basis elements {ûl(r)} are made of linear combi-

nations of Cartesian monomials {xi y j zk }i+j+k<∞ satisfying

∇ · û∗l = 0, ûl
∗ · 1n = 0. (A7)

Expansion (A5) is similar to expansions used in the finite-
element method (FEM). However, compared to the tradi-
tional FEM, our basis elements {ûi(r)} are global poly-
nomials, infinitely continuously differentiable in ellipsoids.
The mathematical completeness of the polynomial expan-
sion for incompressible fluids is then ensured by using the
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Weierstrass approximation theorem (Backus & Rieutord
2017; Ivers 2017). Hence, this method is a rigorous spec-
tral method in ellipsoids. Several Cartesian expansions have
been proposed, see a comparison in Vidal & Cébron (2017).

Then, we truncate the series (A5) at a given polynomial
degree n such that i + j + k ≤ n. In the absence of any strati-
fied or magnetic effect, the Coriolis operator is exactly closed
within the considered polynomial bases i + j + k ≤ n (e.g.
Kerswell 1993b; Backus & Rieutord 2017). Thus, the Cori-
olis modes are exactly described by these polynomial bases
(see computations in Vantieghem 2014; Lemasquerier et al.
2017). Note that fast and slow MC modes also admit ex-
act polynomial descriptions for background magnetic fields
which are linear in the Cartesian space coordinates (Malkus
1967; Vidal et al. 2016). For any other practical configura-
tion, we have to choose a maximum polynomial degree n
to ensure a good enough convergence of the desired modes
(since higher order bases are excited by the buoyancy and
Lorentz forces). We substitute the truncated expansion into
equation (A6), yielding the quadratic eigenvalue problem(
−ω2

i A2 + iωi A1 + A0
)
γ = 0, (A8)

where γ = (γ1, γ2, . . . )
> is the eigenvector and [A2, A1, A0]

are three matrices. Their elements are given by the Galerkin
projections over the ellipsoidal domain

A2,i j =

∫
V

ûi
∗ · A2 û j

∗ dV, (A9a)

A1,i j =

∫
V

ûi
∗ · A1 û j

∗ dV, (A9b)

A0,i j =

∫
V

ûi
∗ · A0 û j

∗ dV . (A9c)

The volume integral for a given Cartesian monomial xi y j zk

is exactly given by∫
V

xi y j zk dV =
2ai+1bj+1ck+1

3 + i + j + k
β

(
i + j

2
+ 1,

k + 1
2

)
× β

(
i + 1

2
,

j + 1
2

)
(A10)

if [i, j, k] are all even and vanishes otherwise, where β(i, j) is
the transcendental beta function defined as a function of the
Gamma function Γ(i) by

β(i, j) =
Γ(i) Γ( j)
Γ(i + j)

, Γ

(
i +

1
2

)
=
(2i)!
22ii!
√
π. (A11)

Note that the pressure term vanishes in equation (A8) by
virtue of the divergence theorem, such that an explicit de-
composition for the pressure is not required.

APPENDIX B: ECCENTRIC, SYNCHRONISED
ORBITS

In this appendix, we consider synchronous stratified binary
systems moving on weakly eccentric coplanar orbits. Note
that the following results are also relevant for stratified
moons or gaseous planets orbiting around a massive central
body (e.g. Kerswell & Malkus 1998; Cébron et al. 2012b;

Lemasquerier et al. 2017). We consider a diffusionless tidal
model of the tidally deformed fluid body, characterised by
an equatorial ellipticity β0. The fluid body is rotating at the
uniform angular velocity Ωs, aligned in the inertial frame
with the orbital angular velocity of the companion along
1z . We use the dimensionless variables introduced in §2, i.e.
taking (Ωs)

−1 as the relevant time scale. Due to the weak
orbital eccentricity e � 1, the orbital angular velocity has
periodic time variations. For the sake of generality, we as-
sume that the tidal forcing has the following (dimensionless)
expression, at the leading order in the eccentricity,

Ω0(t) = 1 + ε cos ( f t) . (B1)

where f is the dimensionless frequency of the forcing and ε ≤
2e their dimensionless amplitude. Forcing (B1) is known as
longitudinal librations. For this tidal forcing, the equilibrium
tide velocity field has the following form in the central frame

U0(r, t) = −2ε
[
−(1 + β0)y 1x + (1 − β0)x 1y

]
. (B2)

The above tidal flow (B2) is prone to the libration-
driven tidal instability, which is quite similar to the tidal
instability in non-synchronised systems (e.g. Kerswell &
Malkus 1998; Cébron et al. 2012b; Vidal & Cébron 2017).
Indeed, this fluid instability is due to a sub-harmonic res-
onance between two waves of angular frequency |ωi | inter-
acting the basic flow (B2). By analogy with formula (9) in
non-synchronised systems, the sub-harmonic resonant con-
dition yields

|ωi | = f /4. (B3)

The four kinds of waves [H1,H2, E1, E2], introduced §3.3,
are involved in the instability mechanism. We show the na-
ture of the waves satisfying condition (B3) in figure B1.
The classical allowable range of the instability is 0 ≤ f ≤ 4
(e.g. Cébron et al. 2012a), in which only triadic couplings
of inertia-gravity waves [H1,H2, ] are involved. In this fre-
quency range, the instability is trapped along critical lati-
tudes for a strong enough stratification, i.e. when N0/Ωs � 1.
Similar to the non-synchronised configurations, it turns out
that the largest growth rate is unaffected by the ratio N0/Ωs
on these critical latitude. Thus, they are predicted by the dif-
fusionless formula obtained in neutral fluids (see formula 4
of Cébron et al. 2012a).

In the other frequency range f > 4, the instability
is only due to triadic couplings of internal-gravity waves
[E1, E2] modified by the rotation. Moreover, the instability
only exists for strong a enough stratification N0/Ωs � 1.

Finally, we can use a mixing-length theory to get a phe-
nomenological prescription of the tidal mixing, by similar
analogy with non-synchronised orbits. The main difference
with non-synchronised systems is that the typical turbulent
velocity ut should scale as (Favier et al. 2015; Grannan et al.
2016)

ut ∼ ε β0RΩs. (B4)

Hence, the turbulent time scale for the tidal disruption of the
fossil field (45) ought to be reduced in synchronised systems,
yielding the prescription

τt ∝
1

ε2β2
0 Ωs

. (B5)

MNRAS 000, 1–28 (2019)



26 Vidal J. et al.

Figure B1. Waves at the sub-harmonic resonance condition (B3)
for synchronised systems, as a function of the (dimensionless) forc-

ing frequency f and N0/Ωs . The other notations are identical to

the ones introduced in the main text. White regions: no compat-
ible waves satisfying (B3). Stars (yellow area): hyperbolic waves

H1. Right slash (purple area): hyperbolic waves H2. Dots (green
area): elliptic waves E1. Back slash (blue area): elliptic waves E2.

The classical allowable region of the instability is 0 ≤ f ≤ 4 in

neutral fluids.

APPENDIX C: LOCAL (WKB) STABILITY
EQUATIONS

In this appendix, we present the local Wentzel-Kramers-
Brillouin (WKB) stability method. In the local analysis, the
unbounded growth of the perturbations gives sufficient con-
ditions for local instability (Friedlander & Vishik 1991; Lif-
schitz & Hameiri 1991). The original WKB hydrodynamic
stability theory has been extended by several authors, e.g.
to take into account thermal effects within the Boussinesq
approximation (Kirillov & Mutabazi 2017). The theory has
also been rediscovered in atmospheric sciences and oceanog-
raphy (e.g. Ionescu-Kruse 2018).

In the following, we derive the coupled (WKB) sta-
bility equations for arbitrary, spatially varying Boussinesq
and magnetic background states. We emphasise that their
derivation is intrinsically different from the one of Kelvin
wave stability equations (Craik & Criminale 1986; Craik
1989), also accounting for magnetic fields (Craik 1988; Fabi-
jonas 2002; Lebovitz & Zweibel 2004; Herreman et al. 2009;
Mizerski & Bajer 2011; Cébron et al. 2012b; Mizerski et al.
2012; Mizerski & Lyra 2012; Bajer & Mizerski 2013) and
buoyancy effects (Cébron et al. 2012b). Indeed, the Kelvin
wave method cannot investigate the stability of arbitrary
background states, contrary to the WKB method. In ad-
dition, we have also extended the stability theory to con-
sistently account for two transport scalar equations, e.g.
governing temperature and chemical composition that dif-
fuse at very different rates in stellar interiors. These double-
diffusive, hydromagnetic stability equations may be relevant
to investigate other local instabilities in stratified interiors,
e.g. the GSF instability in differentially rotating bodies (Gol-
dreich & Schubert 1967; Knobloch 1982).

C1 Linearised stability equations

We use in the following dimensional variables to devise the
general stability equations. Contrary to the main text, the
dimensional variables are written here without ∗, to keep
concise mathematical expressions. We consider a fluid rotat-
ing at the angular velocity Ω and stratified in density under
the arbitrary gravity field g. The fluid has a typical density
ρ∗, a kinematic viscosity ν, a magnetic diffusivity η, a ther-
mal diffusivity κT and a compositional diffusivity κC . The
fluid is also pervaded by an imposed magnetic field B0(r, t).
We expand the velocity, the magnetic field, the tempera-
ture and the composition (in light elements) as small Eule-
rian perturbations [u, b,Θ, ξ](r, t) around a spatially varying
and time-dependent background state [U0, B0,T0,C0](r, t). In
unbounded fluids, the perturbations are governed by the
linearised hydromagnetic, double-diffusive Boussinesq equa-
tions

du
dt
= −(u · ∇)U0 − 2Ω × u − ∇(p + pb) + ν∇2u

− (αT Θ + αCξ) g + αB (B0 · ∇b + b · ∇B0) , (C1a)

db
dt
= b · ∇U0 − (u · ∇)B0 + (B0 · ∇)u + η∇2b, (C1b)

dΘ
dt
= −(u · ∇)T0 + κT∇

2
Θ, (C1c)

dξ
dt
= −(u · ∇)C0 + κC∇

2ξ, (C1d)

∇ · u = 0, ∇ · b = 0, (C1e)

where d/dt = ∂/∂t + (U0 · ∇) is the material derivative along
the basic flow, p is the hydrodynamic pressure and pb =
αB(B0 · b) the magnetic pressure. In equations (C1), (αT , αC )
are the coefficients of thermal and compositional expansion
(at constant pressure) in the Boussinesq equation of state
(EoS)

δρ = ρ∗(1 − αTΘ − αCξ) (C2)

with δρ the Eulerian perturbation in density. By consider-
ing the composition in light elements, buoyancy effects are
symmetrical in EoS (C2) and in momentum equation (C1a).

C2 Eulerian stability equations

C2.1 Short-wavelength perturbations

We seek short-wavelength perturbations in Eulerian de-
scription, with respect to the small asymptotic parameter
0 < ε � 1. We introduce the formal asymptotic series

u(r, t) =
[
u(0) + εu(1)

]
(r, t) exp(iΦ(r, t)/ε) + . . . , (C3a)

b(r, t) =
[
b(0) + εb(1)

]
(r, t) exp(iΦ(r, t)/ε) + . . . , (C3b)

Θ(r, t) =
[
Θ
(0) + εΘ(1)

]
(r, t) exp(iΦ(r, t)/ε) + . . . , (C3c)

ξ(r, t) =
[
ξ(0) + εξ(1)

]
(r, t) exp(iΦ(r, t)/ε) + . . . , (C3d)

p(r, t) =
[
p(0) + εp(1)

]
(r, t) exp(iΦ(r, t)/ε) + . . . , (C3e)

where Φ is a real-valued scalar function that represents the
rapidly varying phase of oscillations and [u(i),Θ(i), ξ(i), p(i)]
are slowly varying complex-valued amplitudes. Note that we
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have omitted in expansions (C3) the reminder terms, as-
sumed to be uniformly bounded in ε on any fixed time in-
terval (Lifschitz & Hameiri 1991; Lebovitz & Lifschitz 1992;
Lifschitz & Lebovitz 1993). We further introduce the local
wave vector, defined by k = ∇Φ. The small asymptotic pa-
rameter ε � 1 is actually related to the typical scale of
the instability l, which must be much smaller to the typi-
cal length scale of the large-scale background flow L0. This
yields (Nazarenko et al. 1999) ε = l/L0 � 1. In the hydro-
dynamic and diffusionless case, its value is arbitrary small.

However, in hydromagnetics, ε does depend on the mag-
netic field, since the Lorentz force does depend on the length
scale. The general magnetic configuration leads to a set of
partial differential equations (Friedlander & Vishik 1995;
Kirillov et al. 2014), which must be solved locally in Eule-
rian description. However, by assuming (see also for uniform
fields Mizerski & Bajer 2011)

B0(r) = ε B̃0(r), (C4)

the partial differential equations simplify into ordinary dif-
ferential equations (even for spatially varying magnetic
fields). This is the central approximation of the theory. In
dimensionless form, we may assume that the background
field has a typical dimensionless amplitude Le � 1, yielding
ε = Le.

C2.2 Diffusionless equations

We closely follow the mathematical derivation of Kirillov &
Mutabazi (2017), extending it to the hydromagnetic case.
Substituting expansions (C3) in incompressible condition
(C1e) and collecting terms of order i/ε−1 and ε0 yields

i/ε−1 :
[
u(0), b(0)

]
· k = 0, (C5a)

ε0 : ∇ ·
[
u(0), b(0)

]
= −ik ·

[
u(1), b(1)

]
. (C5b)

The same procedure applied to governing equations (C1a)-
(C1d). First, it yields at the order i/ε−1

dΦ
dt

[
u(0), b(0),Θ(0), ξ(0)

]
=

[
−p(0)k, 0, 0, 0

]
. (C6)

The dot product of the first equation (C6) with ∇Φ, un-
der constraint (C5a), yields p(0) = 0. Then, we obtain the
Hamilton-Jacobi equation

dΦ
dt
= 0. (C7)

Finally, taking the spatial gradient of equation (C7) reads
the eikonal equation together with its initial condition (Lif-
schitz & Hameiri 1991)

dk
dt
= − (∇U0)

> k, k(r, 0) = k0, |k(r, t)| = |k0 |. (C8)

Now, by using (C7) and (C8), equations (C1a)-(C1d)

yield at the next asymptotic order ε0

−ik
[
p(1) + αB B̃0 · b(0)

]
=

(
d
dt
+ ∇U0 + 2Ω×

)
u(0) (C9a)

−

(
αTΘ

(0) + αCξ
(0)

)
g − iαB (B̃0 · k) b(0),

db(0)

dt
= i(B̃0 · k) u(0) + (∇U0) b

(0), (C9b)

dΘ(0)

dt
= −u(0) · ∇T0, (C9c)

dξ(0)

dt
= −u(0) · ∇C0. (C9d)

Equations (C9b)-(C9d) are transport equations for the mag-
netic field, the temperature and the composition amplitudes.
Applying the dot product of k with equation (C9a) gives the
first order pressure variable

− i
[
p(1) + αB B̃0 · b(0)

]
=

k

|k |2
·
(

d
dt
+ ∇U0 + 2Ω×

)
u(0)

−
k

|k |2
·
(
αTΘ

(0) + αCξ
(0)

)
g, (C10)

Then, we differentiate equation (C5a) to get the identity
(Lifschitz & Hameiri 1991)

d
dt

(
u(0) · k

)
=

dk
dt
· u(0) + k · du(0)

dt
= 0. (C11)

Finally, we use identity (C11) to simplify equation (C10),
then we substitute the resulting expression into equation
(C9a). After some algebra, we get the transport equation
for the velocity amplitude

du(0)

dt
=

[(
2 kk>

|k |2
− I

)
∇U0 + 2

(
kk>

|k |2
− I

)
Ω×

]
u(0)

−

(
I −

kk>

|k |2

)
g

(
αT Θ

(0) + αCξ
(0)

)
+ iαB(B̃0 · k) b(0). (C12)

The stability equations, given by equations (C12) and
(C9b)-(C9d), are dominant for the stability behaviour of
WKB expansions (C3) for long enough times in the limit
ε � 1 (Lifschitz & Hameiri 1991; Friedlander & Vishik
1991; Lebovitz & Lifschitz 1992; Lifschitz & Lebovitz 1993).
The next order terms are only responsible for transient be-
haviours (Rodrigues 2017). Thus, sufficient conditions for
local instability are obtained by solving transport equations
(C12) and (C9b)-(C9d).

C2.3 Diffusive effects

Extending the diffusionless WKB equations to the diffusive
regime is subtle. For instance, the diffusive term ν∇2u is
written as (Kirillov et al. 2014)

∇2u = exp
(
i
Φ

ε

) (
∇2 + i

2
ε
(k · ∇) + i

ε
∇2Φ −

|k |2

ε2

)
(
u(0) + εu(1)

)
+ . . . (C13)

As first noticed by Maslov (1986),Lifschitz & Hameiri (1991)
and Lifschitz & Lebovitz (1993), formula (C13) shows that
the WKB ansatz exp(iΦ/ε) quickly dies out because of dif-
fusion, unless ε has a quadratic dependence on the diffusion
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coefficients. Hence, we must rescale the dimensional diffu-
sivities as

[ν, η, κT , κC, ] = ε
2 [ν̃, η̃, κ̃T , κ̃C ] , (C14)

e.g. with ε = Le in the dimensionless hydromagnetic case.
Then, the diffusionless equations are augmented by included
in the right-hand sides the leading-order diffusive terms[
−ν̃ |k |2u(0),−η̃ |k |2b(0) − κ̃T |k |2Θ(0),−κ̃C |k |

2ξ(0)
]
.

C3 Lagrangian equations along fluid trajectories

WKB stability equations are partial differential equations
in Eulerian description. However, they are generally solved
in Lagrangian description. The WKB perturbations are ad-
vected along the fluid trajectories X(t) of the background
flow U0, passing through the initial point X0 at initial time
t = 0. In Lagrangian formalism, the double-diffusive WKB
stability equations are

DX

Dt
= U0(X(t)), X(0) = X0, (C15a)

Dk

Dt
= −(∇U0)

> k, k(0) = k0, (C15b)

Du(0)

Dt
=

[(
2 kk>

|k |2
− I

)
∇U0 + 2

(
kk>

|k |2
− I

)
Ω×

]
u(0) (C15c)

−ν̃ |k |2 −

(
I −

kk>

|k |2

)
g

(
αT Θ

(0) + αCξ
(0)

)
+ iαB(B̃0 · k) b(0),

Db(0)

Dt
= i(B̃0 · k) u(0) + (∇U0) b

(0) − η̃ |k |2b(0), (C15d)

DΘ(0)

Dt
= −u(0) · ∇T0 − κ̃T |k |

2
Θ
(0), (C15e)

Dξ(0)

Dt
= −u(0) · ∇C0 − κ̃C |k |

2
Θ
(0), (C15f)

with D/Dt the Lagrangian derivative. Therefore, equations
(C15) are interpreted as ordinary differential equations along
the fluid trajectories of the background flow U0 for the am-
plitudes (u(0),Θ(0), ξ(0)). In addition, the initial conditions
satisfy

u(0)(0) · k0 = 0, b(0)(0) · k0 = 0, (C16)

such the solenoidal conditions for the velocity and the mag-
netic field hold at any time. Sufficient conditions for in-
stability are obtained when (e.g. Lifschitz & Hameiri 1991;
Lebovitz & Lifschitz 1992; Lifschitz & Lebovitz 1993)

lim
t→∞

(
|u(0) | + |b(0) | + |Θ(0) | + |ξ(0) |

)
= ∞ (C17)

for given [X0, k0] and with suitable initial conditions for
[u(0), b(0),Θ(0), ξ(0)].

APPENDIX D: MIXED RESONANCES OF
SLOW/FAST WAVES

In this appendix, we show that the mixed couplings between
slow and fast hydromagnetic waves can be discarded in reso-
nance condition (8). We use the same dimensionless variables
as in the main text. In the regime Le � 1, Kerswell (1993a,
1994) obtained that the typical diffusionless growth rate of

the tidal instability involving mixed couplings scales as (in
dimensionless form)

σ ∝ Le4β0. (D1)

This diffusionless growth rate must be larger than the Joule
damping rate of the slow waves, which is τΩ ∝ −Em |k0 |

2 in
the local theory (Rincon & Rieutord 2003; Sreenivasan &
Narasimhan 2017). This gives the typical upper bound on
the wave vector

|k0 |
2 �

Le4

Em
β0. (D2)

In short-period binaries, the typical value for the equatorial
ellipticity is β0 ∼ 10−2 (see table 2). As given in table 1, we
have also the typical numbers Em ≤ 10−10 and Le ≤ 10−5.
Then, condition (D2) yields the upper bound |k0 | � 1. This
is incompatible with the short-wavelength stability theory,
which requires |k0 | � 1. Physically, this shows that the Joule
damping rate is always larger than the diffusionless growth
rate in non-ideal fluids, for any resonance involving slow MC
waves in the regime Le � 1. Therefore, mixed couplings of
fast/slow waves can be discarded for the tidal instability in
realistic stellar interiors.

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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