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S U M M A R Y
Numerous geological processes are governed by thermal and mechanical interactions. In par-
ticular, tectonic processes such as ductile strain localization can be induced by the intrinsic
coupling that exists between deformation, energy and rheology. To investigate this thermome-
chanical feedback, we have designed 2-D codes that are based on an implicit finite-difference
discretization. The direct-iterative method relies on a classical Newton iteration cycle and
requires assembly of sparse matrices, while the pseudo-transient method uses pseudo-time
integration and is matrix-free. We show that both methods are able to capture thermomechan-
ical instabilities when applied to model thermally activated shear localization; they exhibit
similar temporal evolution and deliver coherent results both in terms of nonlinear accuracy
and conservativeness. The pseudo-transient method is an attractive alternative, since it can
deliver similar accuracy to a standard direct-iterative method but is based on a much simpler
algorithm and enables high-resolution simulations in 3-D. We systematically investigate the
dimensionless parameters controlling 2-D shear localization and model shear zone propaga-
tion in 3-D using the pseudo-transient method. Code examples based on the pseudo-transient
and direct-iterative methods are part of the M2Di routines (Räss et al., 2017) and can be
downloaded from Bitbucket and the Swiss Geocomputing Centre website.

Key words: Finite-difference methods; Continental deformation; Numerical techniques;
Geodynamics.

1 I N T RO D U C T I O N

Thermomechanical feedback represents a first-order multiphysics
coupling for geodynamic processes. For instance, thermomechan-
ical coupling plays a major role in initiating and regulating con-
vection currents at the scale of the Earth’s mantle (Pekeris 1935;
McKenzie et al. 1974; Parsons & McKenzie 1978). Thermal con-
vection represents a type of Rayleigh–Bénard instability that is
intrinsically linked to the temperature sensitivity of rock-forming
mineral densities. Besides convection, thermally activated shear
localization is another, yet far less explored, example of thermo-
mechanical coupling in geodynamics. However, these processes
have been used to explain the initiation of subduction (Regenauer-
Lieb et al. 2001; Thielmann & Kaus 2012), the generation of deep
earthquakes (Ogawa 1987; Hobbs & Ord 1988; Prieto et al. 2013;
Ohuchi et al. 2017), ductile strain localization (Fleitout & Froide-
vaux 1980; John et al. 2009) or the formation of tectonic nappes
(Jaquet & Schmalholz 2017). Thermally activated shear localization
occurs when local temperature perturbations owing to shear heat-
ing (mechanical dissipation induced by irreversible deformation)
are large enough not to be diffused away efficiently. Since ductile

mineral strengths strongly depend on temperature (e.g. Carter &
Ave’Lallemant 1970), a local temperature increase results in ther-
mal softening, which can further induce the focusing of strain into a
localized shear zone (Yuen & Schubert 1979; Fleitout & Froidevaux
1980; Kaus & Podladchikov 2006). Since localization is driven by
a self-regulating feedback process, it can either vanish, be main-
tained stably or evolve into a runaway instability given specific
conditions (e.g. Rice & Fairbridge 1975; John et al. 2009; Braeck &
Podladchikov 2007). Shear zones caused by shear heating have an
inherent width (Duretz et al. 2014; Moore & Parsons 2015) in which
the strain is focused although the thermal imprint may be diffused
(Takeuchi & Fialko 2012; Schmalholz & Duretz 2015). Thermally
activated shear localization is generally not an exclusive mecha-
nism and can occur in conjunction with other physical processes
such as microstructural evolution (Peters et al. 2015; Thielmann
et al. 2015) and mineral reactions (Andersen et al. 2008) that can
further promote strain localization.

In the following, we first proceed to a dimensional analysis and
parameter reduction for thermomechanical equations, which are
further used to model thermally activated shear localization. We
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introduce two numerical modelling approaches, namely a clas-
sic direct-iterative (DI) method and a less conventional, pseudo-
transient (PT) approach. The PT method’s viability is demonstrated
by providing a quantitative comparison with numerical solutions
achieved with the standard DI method. We assess both the accuracy
and performance of PT solutions. We provide a systematic paramet-
ric analysis of 2-D thermally activated shear localization. Natural
shear localization always occurs in 3-D, which is important for lo-
calization caused by thermal softening, since thermal diffusion of
local heat sources is more efficient in 3-D than in 2-D. Yet, there
are very few efficient 3-D algorithms that allow one to accurately
simulate thermally activated strain localization in 3-D. Here, we
show that the PT method is well suited for the efficient and accu-
rate simulation of 3-D shear zone formation by thermal softening.
Finally, we discuss how different numerical treatments of nonlin-
earities and time integration schemes can affect model predictions
as well as performance. For reproducibility purposes, we provide
the PT and DI numerical codes (MATLAB) used to solve thermo-
mechanical problems. The MATLAB routines are part of M2Di
(Räss et al., 2017) and are available for download from Bitbucket at
https://bitbucket.org/lraess/m2di and from the Swiss Geocomput-
ing Centre website http://wp.unil.ch/geocomputing/software/. The
PT routines are located in the TM2Dpt folder and the DI routines
(TM2Di) are located in the M2Di2 folder. The GPU (C-CUDA)
routines are available upon request to the authors.

2 T H E M AT H E M AT I C A L M O D E L

2.1 Thermomechanical coupling

The equations governing thermomechanics of slowly creeping in-
compressible power-law viscous fluids, in the absence of buoyancy
forces, are

∂vi

∂xi
= 0,

∂τi j

∂x j
− ∂p

∂xi
= 0,

τi j ε̇i j + k
∂2T

∂x2
i

− ρCp
∂T

∂t
= 0,

ε̇i j = 1

2

(
∂vi

∂x j
+ ∂v j

∂xi

)
= 1

2
Aτ n−1

II exp

(
− Q

R (T0 + T )

)
τi j ,

(1)

where vi are components of the velocity vector in the xi spatial
direction, p is the pressure, T is the temperature deviation from the
initial temperature T0, ρ is the density, Cp is the specific heat, ε̇i j is
the strain rate tensor, τ ij and τ II are the deviatoric stress tensor and
the square root of its second invariant:

τII =
√

1

2
τi jτi j , (2)

A is the pre-exponent, n is the stress exponent, Q is the activation
energy and R is the universal gas constant. Since we mostly focus on
small strains, we do not consider heat transport owing to advection.

Four independent scales

T̄ = n RT 2
0

Q
,

τ̄ = ρCpT̄ ,

t̄ = 21−n A−1τ̄−n exp

(
Q

RT0

)
and

L̄ =
√

k

ρCp
t̄

(3)

for temperature, stress, time and length, respectively, and their de-
pendent combinations, such as the velocity scale: V̄ = L̄/t̄ , are used
to make all the variables dimensionless. Hereinafter, all variables
are dimensionless, unless noted otherwise. Introducing dimension-
less variables in eq. (1) results in the following dimensionless form
of the governing equations (see Appendix Acc for details):

∂vi

∂xi
= 0,

∂τi j

∂x j
− ∂p

∂xi
= 0,

τi j ε̇i j + ∂2T

∂x2
i

− ∂T

∂t
= 0,

ε̇i j = 1

2

(
∂vi

∂x j
+ ∂v j

∂xi

)
= 2−nτ n−1

II exp

(
n T

1 + T
T0

)
τi j ,

(4)

The model parameters are the dimensionless initial temperature T0,
the power-law exponent n as well as four parameters that arise from
the initial and boundary conditions: the radius and the magnitude
of the circular thermal perturbation, the length of the square com-
putational domain, L and the boundary velocity, VBC (Fig. 2).

3 T H E N U M E R I C A L M E T H O D S

The system of nonlinear equations (eq. 4) is discretized on a Carte-
sian staggered grid with regular grid-spacing. The time derivative
of the heat equation is approximated by either a backward-Euler or
a Crank–Nicolson scheme. The dimensionless viscosity is a nonlin-
ear function of both the temperature and strain rate and is expressed,
after eq. (4), as

η = ε̇II
1−n

n exp

(
− T

1 + T
T0

)
, (5)

where ε̇II is the square root of the second invariant of the deviatoric
strain rate tensor:

ε̇II =
√

1

2
ε̇i j ε̇i j . (6)

Obtaining a numerical solution that satisfies the nonlinear discrete
thermomechanical equations is generally an iterative process. Ar-
bitrary initial pressure, velocity and temperature fields will not sat-
isfy the discrete equations as they would produce an imbalance.
An implicit solution procedure will seek to iteratively reduce the
imbalances until the thermomechanical equations are satisfied to
a desired accuracy. To this end, the thermomechanical eq. (4) is
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formulated as

− ∂vi

∂xi
= fp,

∂τi j

∂x j
− ∂p

∂xi
= fv,

∂2T

∂x2
i

+ τi j ε̇i j − ∂T

∂t
= fT,

(7)

where the ∂ symbolises numerical approximation to partial deriva-
tives. The right-hand side terms are nonlinear continuity, momentum
and thermal residuals (fp, fv, fT), which quantify the magnitude of
the imbalance of the thermomechanical equations.

Two methods are employed to minimize the magnitude of theses
residuals and deliver accurate pressure, flow and temperature fields.
The first method relies on Newton iterations and uses a DI scheme,
thus requiring the assembly and factorization of sparse matrices.
The second method uses a PT approach, which is fully iterative and
matrix-free. Both numerical methods rely on a two-way coupling,
since both the coupling term (shear heating) and rheology are treated
implicitly.

3.1 The direct-iterative method

For the DI method, we employ a Newton scheme which allows us
to obtain accurate nonlinear solutions within few iterations (see
Appendix B). The numerical solution, x = [v, p, T]T , is iteratively
corrected with the following update:

xk+1 = xk + αδxk+1, (8)

where the δ operator stands for the correction of a quantity, α is
a scalar optimization parameter and k is the nonlinear iteration
index. The Newton correction, δx = [δv, δp, δT]T , is obtained by
applying the inverse of the Jacobian matrix, JTM, to the current
nonlinear residual f = [fv, fp, fT

]T
:

δxk+1 = − JTM
−1 fk . (9)

Prior to the solution update, we run a line search procedure to
determine the optimization parameter α (0 < α ≤ 1) that yields:

min
∣∣∣∣f (xk + α δxk+1

)∣∣∣∣
L2

. (10)

In the DI context, it is necessary to formulate and assemble the
Jacobian matrix. The latter describes the gradient of the residuals
with regard to the solutions; for example, the sensitivity of the
momentum imbalance with regard to the velocity field. For the
considered thermomechanically coupled flow, the Jacobian matrix
takes the form of

JTM = ∂fi

∂x j
=
⎡
⎣ Jvv Kvp JvT

Kpv 0 0
JTv 0 JTT

⎤
⎦. (11)

The Jvv corresponds to the mechanical Jacobian matrix, which arises
from the strain rate dependence of viscosity. The JvT block high-
lights the temperature dependence of viscosity and the JTv block
arises from the linearization of the shear heating term. The Kvp and
Kpv, respectively, represent the gradient operator and divergence
discrete operators. The matrix JTT is a modified Laplace operator
that also includes contributions from the temperature dependence
of the viscosity. The Newton corrections for the thermomechanical

system can be formulated as

δx =
⎡
⎣ δv

δp
δT

⎤
⎦ = −

⎡
⎣ Jvv Kvp JvT

Kpv 0 0
JTv 0 JTT

⎤
⎦−1⎡⎣ fv

fp

fT

⎤
⎦, (12)

and is obtained via DI procedure (see Appendix C).
The nonlinear iteration cycle is aborted once one of the following

criteria ||f||L2 / ||f||initial
L2 < tolrel

nonlin or ||f||L2 < tolabs
nonlin is met; mean-

ing that the thermomechanical balance equations are satisfied to the
desired accuracy. The main steps of the DI approach are summarized
in Fig. 1(a). This code is written in MATLAB language; it is based
on and made available as part of the M2Di routines (Räss et al.
2017) under the name TM2Di (https://bitbucket.org/lraess/m2di).

3.2 The pseudo-transient method

The PT or relaxation method allows one to iteratively solve non-
linear problems in a single iteration loop in a matrix-free way. The
relaxation method is a classical numerical technique to solve station-
ary (elliptic) problems (Frankel 1950). The method was extended in
the 1960s to elastic problems (Otter et al. 1966) and more recently to
elasto-plastic (Cundall 1982) and viscoelastic problems (Poliakov
et al. 1993). The PT method relies on introducing PT terms into
steady-state equations. Given a set of initial and boundary condi-
tions, solutions can be found by integrating the equations forward in
pseudo-time (τ ) until steady state is attained; that is, the pseudo-time
derivative vanishes. For example, the compressible Navier–Stokes
equations incorporate right-hand side time derivatives for both the
mass

(
β

∂p
∂t

)
and momentum

(
ρ

∂vi
∂t

)
balance equations. These latter

represent the elastic bulk rheology (with β as compressibility) and
the acceleration (with ρ as the density), respectively. A solution
to the incompressible Stokes problem requires that both of these
transient terms vanish.

The essence of the PT method is to integrate the balance equations
in pseudo-time, τ , until the PT terms vanish. To this end, eq. (4) is
expressed as

− ∂vi

∂xi
= β

∂p

∂τp
,

∂τi j

∂x j
− ∂p

∂xi
= ρ

∂vi

∂τv
,

∂2T

∂x2
i

+ τi j ε̇i j − ∂T

∂t
= ∂T

∂τT
.

(13)

This approach is equivalent to iteratively reducing the magnitude
of the residual of each equation (e.g. as in the DI method) since PT
terms are equivalent to residuals.

The nonlinear viscosity η is evaluated at each PT iteration k using
the current strain rate and temperature solution fields. The treatment
of nonlinearities is greatly facilitated by using an effective viscosity
(ηeff), which we formulate as

ηeff
k = exp

[
θη ln

(
ηeff

k−1
)+ (1 − θη) ln

(
η k
)]

, (14)

where θη (0 ≤ θη ≤ 1) corresponds to a relaxation factor. This
approach is a continuation method, since the effective viscosity
progressively relaxes towards the de facto physical viscosity (ηeff

→ η) throughout the PT iterations.
The integration of the momentum, mass conservation and tem-

perature evolution equations necessitates the definition of individual
pseudo-time steps, �τ vi , �τ p and �τT. Hereinafter, we assume that
ρ and β are equal to 1.0 and the pseudo-time steps are formulated

https://bitbucket.org/lraess/m2di
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(a) (b)

Figure 1. Algorithmic flowchart for both methods used in the study: (a) the direct-iterative method (TM2Di code) and (b) the pseudo-transient method.

Figure 2. Schematic initial model configuration for 2-D calculations. T0

stands for the initial temperature, L is the box length and VBC is the boundary
velocity.

as

�τ p = θp
2.1 Ndim ηk

i t (1 + ηb)

max(Nx , Ny)
,

�τ vi = θvi

min(�x,�y)2

2.1 Ndim ηk
i t (1 + ηb)

,

�τT = θT
min(�x,�y)2

2.1 Ndim
,

(15)

where ηb is a numerical analogy of bulk viscosity, Nx and Ny are
the number of gridpoints in the x and y direction, respectively, �x
and �y are grid-spacings, θvi , θ p and θT are pseudo-time step re-
duction factors (≤1.0) and Ndim is the number of dimensions. �τT

is the pseudo-time step used for explicit integration of diffusion
equation satisfying the Courant–Friedrichs–Lewy condition (CFL).
�τ vi is the pseudo-time step used for integrating the momentum
equations. It is constructed by multiplying the explicit CFL time
step for viscous flow min(�x,�y)2/(2.1 Ndim ηk

i t ) by 1/(1 + ηb),
which includes a numerical analogy to the bulk viscosity ηb. The
use of the denominator of �τ vi as nominator in the definition of
�τ p leads to an empirically derived pseudo-time step for the con-
tinuity equation. This criteria allows for an optimal convergence of

the Stokes problem, making the iteration strategy less sensitive to
the physical shear viscosity η. A dimensional analysis confirms that
the product of β−1�τ p [Pa s] by the divergence of velocities [s−1]
produces dynamic pressure increments in [Pa]. Identical reasoning
can be applied to the momentum balance equation, where ρ−1�τ v

[m2 Pa−1 m−1] multiplies the force balance terms [Pa m−1] to pro-
duce increments of velocity [m s−1]. We further highlight that ηk

i t

refers to entire fields (defined for every gridpoint); thus, pseudo-time
step values are local to every gridpoint within the computational do-
main and analogous to the application of diagonal preconditioner
in matrix-based solvers. At each PT iteration, the velocity, pres-
sure and temperature fields are updated at each iteration using their
current values of pseudo-time step and residual:

pk = pk−1 + �τp f k
p

vk
i = vk−1

i + �τvi gk
vi

T k = T k−1 + �τT f k
T .

(16)

The use of damping greatly reduces the number of iterations needed
for convergence of the PT iterations (Choi et al. 2013; Yang & Mittal
2014). To this end, the damped momentum residual gk

vi
in eq. (16)

is written as

gk
vi

= f k
vi

+
(

1 − ν

Ni

)
f k−1
vi

(17)

where optimal values of ν reside within the range (1 ≤ ν ≤ 10) and Ni

is the number of gridpoints in the direction i. An analogue approach
for elastic rheology is described by Cundall & Strack (1979) and is
successfully used in the FLAC geotechnical software (Cundall et al.
1993). As for the DI method, the PT iterations are performed until
one of the following criteria ||f||L2 / ||f||initial

L2 < tolrel
nonlin or ||f||L2 <

tolabs
nonlin is verified.

3.3 Physical time integration

For both the DI and PT methods, the integration of the heat equation
is done in physical time t. An implicit (backward-Euler) or semi-
implicit (Crank–Nicolson) solution is obtained by updating the heat
fluxes and shear heating term at each nonlinear or PT iteration. In
the following examples, we use a physical time step, �tT, which is
proportional to the CFL time step:

�tT = ξ
min(�x, �y)2

2.1 Ndim
= ξ�t exp, (18)

where ξ corresponds to a time step ratio, �tT/�texp. Despite the use
of an implicit scheme, we did not obtain successful time integration
of the nonlinear equations system for an arbitrary choice of time
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step. Thus, we allow for time step values that are proportional to
those required for explicit integration of the heat equation (�texp).
In the following section, we systematically investigate for different
spatial resolution which values of time step can lead to success-
ful time integration. Implementations of the thermomechanical DI
and PT solvers were performed in both MATLAB (see Supporting
Information) and C-CUDA languages (only for the PT method).

4 A C O M PA R I S O N O F T H E
D I R E C T - I T E R AT I V E A N D T H E
P S E U D O - T R A N S I E N T M E T H O D S

In this section, we demonstrate that both the DI method and the PT
method can solve thermomechanical problems to the same accuracy
level. We evaluate each method’s performance on current personal
computers (single CPU and single GPU).

4.1 The reference model’s configuration

The numerical models were designed to study the propagation of
shear zones owing to shear heating in a viscous medium subjected to
far-field pure shear kinematics. For 2-D calculations, we consider a
physical domain of dimensions [0, L] × [0, L]. The normal boundary
velocities are set to vx = −VBC for x = L, vy = VBC for y = L and 0
elsewhere. Zero shear stress and zero heat flux boundary conditions
are applied on all model sides. The initial temperature field, T0, is
set to 16.4423 and a perturbation of radius equals to 0.0857L and
amplitude equals to 0.1T0 is centred around the origin (Fig. 2).

The reference model is run for a boundary velocity of 66.4437,
a model length of 0.86038 and a stress exponent of 3. For the 3-D
models, the model domain extends up to z = L, where a zero normal
boundary velocity, shear stress and heat flux are applied. Thus, the
first model embeds an initial cylindrical (i.e. continuous in the z
direction) temperature perturbation and is similar to the 2-D model.
In the second model, an initially spherical temperature perturbation
is prescribed.

4.2 The temperatures and strain rates inside the shear
zones

Thermally activated shear zones have inherent length scales that are
proportional to material properties and loading conditions. Thus,
it is possible to characterize dynamically evolving fields such as
the temperature in such shear zones. If the numerical resolution is
greater than the characteristic length scale, these modelling results
are essentially independent of the numerical resolution (e.g. Duretz
et al. 2014). A typical model evolution is depicted in Fig. 3, which
shows the progressive focusing of strain rate and temperature with
time. Since the shear bands have a finite-length scale, it is possible
to monitor the evolution of these quantities inside the shear band
(Fig. 4). The strain rate overcomes the background strain rate by an
order of magnitude within 1.5 × 10−3 time units. The temperature
increase follows a distinct evolution and tends towards a value of
3.5 for a model time of 3.0 × 10−3. The simulations computed with
the DI and PT methods clearly provide the same temperature and
strain rate predictions (Fig. 4).

4.3 The nonlinear solvers’ accuracy

To show the PT method’s ability to handle nonlinear thermomechan-
ical problems, we present a quantitative analysis of errors caused

by the nonlinearity. A single time step numerical solution was com-
puted with the DI method using the previously described setup and
a resolution of 942 numerical cells. The solution procedure was
aborted once we attained machine precision for nonlinear residuals;
the obtained effective strain rate, temperature and pressure serve as
reference solution fields. We then computed a series of numerical
solutions using larger nonlinear tolerances (iteration exit criteria)
with both the PT and DI method.

The deviation of the numerical solutions with regard to the ref-
erence fields was calculated as

‖Ea‖L2 = ‖anumerical − areference‖L2, (19)

where a is either ε̇II, P or T. For the same nonlinear tolerance, the
DI and PT provide the same deviation from the reference results
(Fig. 5). The deviations obtained with either the DI or the PT de-
crease as the nonlinear tolerance is decreased. Thus, both methods
converge towards the reference numerical solution with a linear
trend. Nonlinear numerical solutions obtained with the PT method
can reach the same accuracy level as those obtained with the DI
method.

4.4 The conservation of energy

For thermomechanical problems, considering a purely viscous rhe-
ology, energy conservation postulates that mechanical work should
be fully converted into heat. The numerical simulations’ accuracy
depends on numerical schemes’ ability to conserve energy and
therefore fulfil the energy conservation equation. The work per unit
length is obtained by evaluating the following integrals (Green’s
theorem):

W =
∫

t

∫
V

τi j ε̇i j dV dt =
∫

t

∮
S
σi jvi n j dSdt, (20)

where nj is the unit vector to the boundaries and S is the surface of
the domain. The thermal energy per unit length takes the form of

E =
∫

t

∫
V

∂T

∂t
dV dt, (21)

where V is the volume of the domain. The time evolution of W and
E for 2-D numerical simulations using the configuration described
in Section 4.1 is depicted in Fig. 6. The work and thermal energy
computed from the PT and DI simulations all follow the same
trend. For either methods, the work equals to thermal energy at any
moment in time. Thus, the numerical solutions arising from the
finite-difference discretization are conservative, independent of the
solving procedure.

4.5 Performance

We evaluate the performance of the MATLAB CPU-based and C-
CUDA GPU-based PT solvers using two different metrics. The
first metric is an evaluation of the effective memory throughput
(MTPeffective). The second metric is a measurement of the wall-
time needed to achieve convergence over a time step. Since the PT
solvers perform stencil operations in a matrix-free approach, the
memory transfers bound the algorithm and the number of floating-
point operations per second are not affecting the performance. The
used MTPeffective metric (Omlin 2017) evaluates how efficiently data
is transferred between the memory and the computation units, in
Gigabytes per second (GB s−1):

MTPeffective = (Nx × Ny) × Nt × nIO × precis

1e9 × timeNt

, (22)
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Figure 3. Thermomechanical activated shear localization in 2-D. The model was run using the reference model parameter (see the main text) and initiated
with a circular temperature perturbation (10 per cent increase of temperature). Pure shear was applied on boundaries normal to x (inflow) and y (outflow). All
thermal boundary conditions were insulating (zero heat flow).

where (Nx × Ny) is the number of cells, Nt is the number of time
steps or iterations performed, nIO is the number of memory ac-
cesses performed, precis is the floating-point precision (either 4 or

8 bytes) and timeNt is the time (in seconds) needed to perform the Nt

steps. The number of memory accesses (nIO) defines the minimum
number of read-and-write or read-only operations required to solve
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Figure 4. Strain rate amplification (upper panel) and temperature (lower
panel) evolution in the shear zone (away from the model boundaries). Both
PT and DI models were run with a relative tolerance of 10−9 and with
backward-Euler time integration for the energy equation. For this example,
PT models typically converge within about 105 iterations.

Figure 5. Nonlinear accuracy PT and the DI method (TM2Di code). Errors
in P, T and ε̇II were computed for different relative tolerance (εr). The PT
and the DI methods provide similar errors, and both converge linearly to the
reference results with decreasing tolerance.

Figure 6. Evolution of mechanical work (W) and heat (E) in time. Both the
PT and DI models were run with backward-Euler time integration for the
energy equation.

the specific physics. For 2-D coupled thermomechanics, the read-
and-write operations correspond to the updates of the degrees of
freedom (vx, vy, P, T), and two additional read-only operations for
converging the nonlinear viscosity; in our case, nIO = 10. All the
performance benchmark runs are performed using double-precision
floating-point arithmetic (precis = 8 bytes) for fair comparison in
particular between MATLAB and C-CUDA implementations. The
MTPeffective values reported in Fig. 7(a) represent the efficiency of
memory transfers for the PT solvers, for both vectorized MAT-
LAB CPU and C-CUDA single-GPU implementations. The ob-
tained numbers should be compared to the peak memory throughput
values (MTPpeak) for the specific hardware, here an Intel i5 CPU and
an Nvidia Titan X (Maxwell) GPU. MTPpeak values are measured
performing memory copy only without any computation. Values of
MTPpeak are in the order of 20 GB s−1 for the Intel i5 CPU and in the
order of 260 GB s−1 for the Titan X (Maxwell) GPU. The MATLAB
CPU implementation runs at about 2 per cent of the MTPpeak, while
the C-CUDA GPU codes run above 10 per cent of the MTPpeak. The
optimized memory bandwidth as well as the inherent parallelism on
the GPU chip could explain such differences. The resulting over-
all performance gain of the parallel GPU implementation versus
the serial CPU is more than two orders of magnitude. The GPU
MTPeffective values show that some optimization steps could still
be performed in order to achieve closer to MTPpeak values. Such
considerations are beyond the scope of this study, but could include
increased number of on-the-fly computation, kernel rearranging and
register queues.

Although the MTPeffective provides the efficiency of hardware
utilization for a specific implementation of the thermomechani-
cal solver, a more relevant metric should be used to compare the
memory-bounded stencil PT iterative approach to the DI solver
TM2Di. Here, the wall-time metric is chosen to assess the overall
time to solution of a nonlinear step converged to tolrel

nonlin = 10−8

(Fig. 7b). The Newton-based DI solver TM2Di shows a close to
linear increase of wall-time with increasing problem size (DoF).
It is implemented in MATLAB and an Intel i5 (2016) CPU on a
system equipped with 16 GB of RAM is used for computations.
The maximal 2-D problem size fitting in 16 GB RAM represents a
numerical domain of 9602 gridpoints, solved in a wall-time close to
2.5 min. In comparison, 15 per cent less time was needed to con-
verge the same problem using the C-CUDA GPU-based PT solver
on an Nvidia Titan X (Maxwell). Nonetheless, the key benefit of this
method is the maximal problem size that can be resolved using the
available 12 GB of on-chip RAM of the GPU; 163 MDoF represents
a numerical 2-D domain size of 64002 cells, which is a very high
numerical resolution compared to the resolution currently used in
geodynamic numerical simulations. In terms of wall-time, the PT
GPU solver outperforms the Newton DI-based solver TM2Di for
the investigated setup.

4.6 Explicit and implicit coupling strategies

The numerical solution of multiphysics problems can be achieved by
means of various coupling strategies. For thermomechanical flow,
a two-way coupling implies an implicit treatment of nonlinear cou-
pling terms (Popov & Sobolev 2008; Kaus et al. 2016), namely the
viscous-dissipation term and the strain rate and temperature depen-
dence of the viscosity. In the two-way coupling, the viscosity is thus
a function of the strain rate and temperature evaluated at new time
index: η

(
ε̇II

t+�t , T t+�t
)
. One-way coupling represents an alterna-

tive coupling strategy commonly used in geodynamic modelling.
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Figure 7. Performance evaluation of the thermomechanically coupled solvers. (a) Effective memory throughput MTPeffective in GB s−1 of the pseudo-transient
implementations using an iterative and matrix-free approach. 2-D MATLAB running on an Intel i5 (2016) processor with 16 GB RAM is compared to 2-D and
3-D C-CUDA running on Nvidia Titan X (Maxwell) GPU. The DoF represents four variables in 2-D (vx, vy, P and T) and five variables in 3-D (vx, vy, vz, P and
T), multiplied by the respective number of gridpoints. The MTPeffective of the 2-D and 3-D GPU implementations saturate at about 20 GB s−1. This is one order
of magnitude lower than the MTPpeak (memory copy only) measured on the Titan X (Maxwell) GPU. The vectorized MATLAB implementation running on
the Intel i5 CPU shows a close to two orders of magnitude discrepancy between peak and effective MTP. Two orders of magnitude of MTPeffective is observed
between the GPU implementation and that of the CPU, both performing double-precision arithmetics. (b) Time-to-solution converging a nonlinear step to
tolnonlin = 1e − 8, comparing the pseudo-transient method implemented in C-CUDA running on a single Nvidia Titan X (Maxwell) GPU to the direct solver
type using the TM2Di Newton MATLAB implementation executed on an Intel i5 (2016) CPU. 3.7 MDoF represents a 2-D domain of 960 x 960 gridpoints and
is the maximal resolution that TM2Di can handle while using less than 16 GB of RAM. 2-D domain resolution up to 19202 gridpoints could be solved in 15
min using the matrix-free pseudo-transient GPU solver while using less than 12 GB of RAM (on the device).

One-way coupling resides in (1) obtaining a nonlinear solution of
the purely mechanical problem (thus only considering the strain rate
dependence of viscosity) and (2) solving the energy equation using
the mechanical dissipation obtained from the mechanical solution
(Kaus & Podladchikov 2006). In other words, one-way coupling
uses strain rates at the new time index but temperature of the old
time index to evaluate the viscosity, η

(
ε̇II

t+�t , T t
)
. A fully explicit

coupling strategy can also be envisaged (Gerya & Yuen 2003, 2007).
This approach relies on an explicit treatment of both coupling terms
and rheological equations, which results in a linear mechanical prob-
lem. With this approach, the viscosity is evaluated using solutions
from the previous time index: η (ε̇II

t , T t ). To evaluate the impacts
of the different coupling strategies, we have run our reference simu-
lation (Section 4.1) with the different strategies. Strain localization
can be achieved with an explicit coupling strategy, but with the least
intensity. We have monitored the gains in strain rate amplification
and temperature using the solutions obtained using explicit coupling
as reference (Fig. 8). For the same value of physical time step, �t,
one-way coupling leads to an increase of 25 per cent in strain rate
amplification and two-way coupling results in a 40 per cent increase
in strain rate amplification. The impacts on maximum temperatures
were less pronounced, since increments of 8 and 13 per cent were
obtained for one-way and two-way coupling, respectively. Refining
the time step can be used to improve the accuracy of the one-way
coupling approach. For instance, twice smaller time step led to a
30 per cent gain in strain rate; however, with a smaller time step,
the gain in strain rate rapidly saturates (here, to about 32 per cent)
and does not catch up the values obtained with a two-way coupling.
Alternative coupling strategies, such as time averaging whereby

η
(
ε̇II

t+ �t
2 , T t+ �t

2

)
, were not considered here but could also be

envisaged.

4.7 Time integration

The choice of a time integration scheme is also critical when solv-
ing coupled nonlinear transient equations. Using our configuration
(Section 4.1), successful time integrations were not possible for ar-
bitrary large time step values. Time step values were often required
to be on the order of the CFL criteria for diffusion despite the use
of an implicit integration scheme (backward-Euler). This was es-
pecially true when using low grid resolutions (502 cells, h = 1.7 ×
10−2). We have reported the range of time step variation factors ξ

that provided stable integration for various grid resolutions (Fig. 9).
Restrictions on time step values usually decrease with increasing
grid resolution. At high resolution (5002 cells, h = 1.7 × 10−3),
a time step variation factor in the order of 50 was achievable us-
ing backward-Euler. The Crank–Nicolson scheme generally proved
to have a larger stability domain, and time step variation factors
could reach 80 at high resolution. In practice, the combination of a
Crank–Nicolson scheme with an adaptive time stepping procedure
(e.g. using time step bisection based on the magnitude of nonlinear
residuals (Popov & Sobolev 2008; Duretz et al. 2015) can allow for
stable and flexible time integration.

5 T H E R M A L LY A C T I VAT E D S H E A R
L O C A L I Z AT I O N : A P P L I C AT I O N S

Here, we present applications computed with the PT approach that
demonstrate the method’s flexibility as well as its power.

5.1 Thermomechanical strain localization in 2-D: a
systematic study

We have studied the relative importance of the boundary velocity
(VBC) and bulk strain (ε) on shear zone development and evolution,
performing 139 systematic 2-D simulations. Each simulation com-
pleted 1000 time steps with a resolution of 1902 cells. We have used
a Crank–Nicolson time integration and relative nonlinear tolerance
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Figure 8. The impacts of different multiphysics coupling strategies (one-way coupling, two-way coupling and explicit coupling) on numerical solution. Panels
(a) and (b) depict the evolution of the temperature increase and strain rate amplification in the shear zone for the different coupling strategies using the same
constant physical time step (�t). Panels (c) and (d) show the gains in temperature and strain rate when using one-way coupling and two-way coupling in
comparison to the explicit coupling (used as a reference here). We also report results obtained with the one-way strategy but with lower time step values (colour
lines). Backward-Euler time integration was used to integrate the energy equation.

Figure 9. Solvability of the thermomechanical nonlinear system (two-way
coupling). Models were run for different values of ξ = �tT/�texp

T and
various grid resolutions Nx. At larger resolutions, models with a larger
physical time step become more solvable. These results were obtained using
the DI method. Models were run for the reference parameters until a final
time of 3 × 10−3. Simulations for which the DI solver failed to converge
for the requested value of ξ are considered unsuccessful. In a general case,
the time step could be adapted through the simulations in case the linear or
nonlinear solves are unsuccessful.

of 10−5. The entire systematic study was run sequentially on a single
Nvidia GTX Titan X (Maxwell) GPU card. We have monitored the

maximum temperature and the strain rate amplification factor in the
evolving shear zone (Figs 10a and b) using the model configuration
described above (Section 4.1). Strain localization occurred over the
entire parameter space to a variable degree. Both the maximum
temperature and strain rate amplification strongly depend on VBC

and ε. Weak shear localization occurred for low-boundary velocity
and is characterized by a small strain rate amplification factor (<5).
The most intense shear localization led to peak temperature (>8)
and strain rate amplification factor(>102) and was achieved for a
boundary velocity of 400.

In-depth analysis of this data set reveals that the model results
can be collapsed using a single parameter VBClog10ε. Variations of
this non-dimensional parameter allow one to predict the maximum
temperature and strain rate amplification over the entire investi-
gated parameter range (Figs 10c and d). The consistent collapse
for simulations with different bulk strains and significantly variable
localization intensities (different temperatures and strain rates in
the shear zone) further show the approach’s robustness, since the
accuracy of numerical solutions is the same over the investigated
parameter range.

5.2 The development of shear zones in 3-D

To demonstrate the flexibility of the presented PT algorithm, we
have extended our GPU code to study 3-D thermomechanical de-
formation. Two models characterized by different initial thermal
conditions were performed. The models were run with a resolu-
tion of 1583 and a relative tolerance of 10−5 was achieved at each
time step. Both simulations ran for 5000 time steps, and each took
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Figure 10. Systematic study of the relative importance of the boundary velocity (VBC) on the maximum temperature and strain rate amplification reached in
the shear zone. Panels (a) and (b) depict the maximum temperature and the strain rate amplification factor (log10 max(ε̇II/ε̇BG)) achieved in the shear zone as a
function of VBC, respectively. The coloured circles represent each individual simulation that was run. The colour bar corresponds to the maximum temperature
(in panels a and c) and maximum strain rate amplification (panels b and d) that was reached during the simulations. Panels (c) and (d) show the data collapse
for the maximum temperature as a function of VBCε and the strain rate amplification factor as a function of V 2

BC L . The rightmost subpanels depict temperature
and strain rate fields associated with specific parts of the considered parameter space (indicated by the grey lines).

about 1 day on a single Nvidia GTX Titan X (Maxwell) GPU card.
For both models, we applied zero shear stress on each side and
only boundaries normal to the x- and y-axis had a non-zero nor-
mal velocity component. Thus, in the first setup, we considered a
cylindrical initial thermal perturbation; this configuration is equiv-
alent to the 2-D model discussed above (Section 4.1) and leads to
the rapid development of a cylindrical shear zone (Fig. 11a). The
second model embedded spherical initial thermal perturbation. For
such a configuration, more time is required to propagate the shear
zone in 3-D (Fig. 11b). Since more mechanical work is dissipated
prior to localization, the shear zone’s walls experienced a higher
temperature than in the cylindrical case. The maximum tempera-
ture in the centre of the shear zones was about 3.5 for both models,
which is similar to what was obtained in the 2-D models (Fig. 4).

6 D I S C U S S I O N

6.1 Benefits of the pseudo-transient method and
perspectives

The reported results confirm the PT method as performant alterna-
tive to a more classical DI solver type to address nonlinear coupled
problems in geodynamics. In this study, we proved that both methods
are capable of resolving the complex nonlinear physics and converge
to an identical solution, even over a large number of time steps. The
DI solvers are robust and weakly sensitive to large contrasts in ma-
terial properties (e.g. viscosity). However, they may require a long
and non-trivial development phase. A performant Cholesky fac-
torization of the symmetrical and positive definite finite-difference
matrix delivers acceptable time-to-solution for 2-D setups, but is
inclined to hit the maximum system wide available RAM memory

already at low spatial resolutions for 3-D problems on the consid-
ered personal computers: for example, about 603 cells. We further
report that implicit methods require physical time step values close
to CFL if significant nonlinearities are involved.

In contrast, PT solvers result from a simple implementation
of the coupled system of equations. The inherent parallelism in
PT iterative-based solvers enables a straightforward vectorization,
which shows promising implementation on multiple-core acceler-
ators such as GPUs. GPU-based PT solvers outperformed CPU-
based DI solvers regarding wall-time, even for 2-D setups. The re-
ported solution of nonlinear thermomechanical problems are identi-
cal when computed with either the PT or the DI solver types, and val-
idates the robustness and accuracy of the PT solver implementation.
Further, the PT algorithms are succinct codes that enhance readabil-
ity and make them less error prone. Besides faster times-to-solution,
the benefits of PT stencil-based matrix-free solver approaches re-
side in lower memory footprint, optimal usage of actual hardware
and straightforward parallelization, since only neighbours’ access is
required. Since the investigation of large 3-D setups may require the
use of more than a single-GPU accelerator, the GPU-based PT solver
can readily be extended to run on a distributed-memory machine,
via message-passing interface (MPI). Implementing an MPI point-
to-point communication type for subdomain boundary exchange
enables the PT solvers to scale on the largest supercomputers and
show by construction a close to optimal parallel efficiency (Omlin
et al. 2017a,b).

In this contribution, we focused on the small-strain limit and
thus did not treat advection. However, the PT method is not re-
stricted to this specific case and will be extended to convection-type
problems in the future. To this end, the PT method will be cou-
pled to either Eulerian (i.e. upwind type) or Eulerian–Lagrangian



Shear heating and localization 11

Figure 11. 3-D numerical models of thermomechanical shear localization. Two different configurations were considered: a cylindrical initial thermal per-
turbation (a) and a spherical initial thermal perturbation. Both perturbations evolve into a single shear zone in response to the mechanical work exerted by
the boundaries. Pure shear was applied on boundaries normal to y (inflow) and z (outflow); boundaries normal to x were free to slip. All thermal boundary
conditions were insulating.

(i.e. characteristics-based) advection solvers. By analogy with the
treatment of nonlinear couplings (see Section 4.6), the PT method
will provide a simple framework for implementing either explicit
or implicit advection solvers (Furuichi & May 2015). The latter

discretization is a method of choice in order to avoid numerical in-
stabilities in convection problems involving a free surface (Furuichi
& May 2015).
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7 C O N C LU S I O N S

In the perspective of quantifying and simulating fully coupled ther-
momechanical processes, such as ductile strain localization owing
to shear heating, we have presented two numerical methods based
on the finite-difference discretization. The first method is a thermo-
mechanical extension to the DI M2Di solver (Räss et al. 2017) that
relies on sparse matrix assembly and factorization, and the second
method is based on a fully matrix-free PT method. Both methods
can model thermomechanically activated shear localization in 2-D
and provide consistent results. For 2-D models on a standard desk-
top computer, the PT method is as accurate and can be as efficient
(in terms of wall-time) as the DI approach. We also investigated the
impacts of different nonlinear coupling strategies and could show
that no matter how much the time step is decreased, solutions ob-
tained with one-way coupling never achieves the accuracy of the
two-way coupling.

The significant advantage of the PT method is that it can be
extended for high-resolution 3-D numerical simulations without
significant modification of the 2-D algorithm and without a drastic
increase in memory requirements as the latter scales linearly with
the number of grid cells. We show that the PT method is suitable
to perform high-resolution 3-D simulations of thermomechanically
activated shear localization and other relevant coupled physics in
geodynamics (Räss et al. 2018). Further, the efficiency of the ther-
momechanical codes makes it suitable for systematic analysis of
the parameters that control the dynamics of shear zone develop-
ment. Based on 139 2-D simulations, we show that a consistent
data collapse of the shear zone temperature and strain rate can be
established, which further demonstrate the PT method’s robustness.
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Omlin, S., Räss, L. & Podladchikov, Y.Y., 2017b. Simulation of three-
dimensional viscoelastic deformation coupled to porous fluid flow,
Tectonophysics, in press.

Otter, J. R.H., Cassell, A.C. & Hobbs, R.E., 1966. Dynamic relaxation, Proc.
Inst. Civ. Eng., 35(4), 633–656.

Parsons, B. & McKenzie, D., 1978. Mantle convection and the thermal
structure of the plates, J. geophys. Res., 83(B9), 4485–4496.

Pekeris, C.L., 1935. Thermal convection in the interior of the Earth, Geophys.
J. Int., 3, 343–367.

Peters, M., Veveakis, M., Poulet, T., Karrech, A., Herwegh, M. & Regenauer-
Lieb, K., 2015. Boudinage as a material instability of elasto-visco-plastic
rocks, J. Struct. Geol., 78, 86–102.

Poliakov, A.N.B., Cundall, P.A., Podladchikov, Y.Y. & Lyakhovsky, V.A.,
1993. An explicit inertial method for the simulation of viscoelastic flow:
an evaluation of elastic effects on diapiric flow in two- and three-layers

http://dx.doi.org/10.1130/G25230A.1
http://dx.doi.org/10.1103/PhysRevLett.98.095504
http://dx.doi.org/10.1130/0016-7606(1970)81[2181:HTFODA]2.0.CO;2
http://dx.doi.org/10.1002/jgrb.50148
http://dx.doi.org/10.1680/geot.1979.29.1.47
http://dx.doi.org/10.1002/2014GL060438
http://dx.doi.org/10.1080/14786435.2015.1054327
http://dx.doi.org/10.1137/0720023
http://dx.doi.org/10.1016/0191-8141(80)90046-2
http://dx.doi.org/10.2307/2002770
http://dx.doi.org/10.1016/j.cpc.2015.02.011
http://dx.doi.org/10.1016/j.pepi.2003.09.006
http://dx.doi.org/10.1016/j.pepi.2007.04.015
http://dx.doi.org/10.1029/JB093iB09p10521
http://dx.doi.org/10.1038/ngeo419
http://dx.doi.org/10.1017/S0022112074000784
http://dx.doi.org/10.1093/gji/ggv143
http://dx.doi.org/10.1029/JB092iB13p13801
http://dx.doi.org/10.1038/ngeo3011
http://dx.doi.org/10.1002/2017GL074293
http://dx.doi.org/10.1680/iicep.1966.8604
http://dx.doi.org/10.1029/JB083iB09p04485
http://dx.doi.org/10.1111/j.1365-246X.1935.tb01742.x
http://dx.doi.org/10.1016/j.jsg.2015.06.005


Shear heating and localization 13

models, in Flow and Creep in the Solar System: Observations, Modeling
and Theory, pp. 175–195, eds Stone, D.B. & Runcorn, S.K., Springer
Netherlands.

Popov, A. & Sobolev, S., 2008. Slim3D: a tool for three-dimensional ther-
momechanical modeling of lithospheric deformation with elasto-visco-
plastic rheology, Phys. Earth planet. Inter., 171(1–4), 55–75.

Prieto, G.A., Florez, M., Barrett, S.A., Beroza, G.C., Pedraza, P., Blanco,
J.F. & Poveda, E., 2013. Seismic evidence for thermal runaway dur-
ing intermediate-depth earthquake rupture, Geophys. Res. Lett., 40(23),
6064–6068.
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A P P E N D I X A :
N O N - D I M E N S I O NA L I Z AT I O N O F T H E
T H E R M O M E C H A N I C A L E Q UAT I O N S

Dimensionless thermomechanical equations (eq. 4) can be obtained
by introducing the characteristic scales (eq. 3) in the dimensional
thermomechanical eq. (1). The dimensionless equations are ob-
tained by substituting all dimensional variables by the product of
their characteristic values and dimensionless value. For example,
the temperature can be expressed as T = T̄ T̃ , there the tilde sign
stands for the dimensionless temperature.

Here the temperature evolution equation is expressed as

0 = τi j ε̇i j + k
∂2T

∂x2
i

− ρCp
∂T

∂t
= τ̄

t̄
τ̃i j

˜̇εi j

+ k
T̄

L̄2

∂2T̃

∂ x̃2
i

− ρCp
T̄

t̄

∂ T̃

∂ t̃
. (A1)

By dividing the above expression by τ̄ /t̄ yields

0 = τ̃i j ˜̇εi j + k
t̄ T̄

τ̄ L̄2

∂2T̃

∂ x̃2
i

− ρCp
T̄

τ̄

∂ T̃

∂ t̃
. (A2)

After introducing the characteristic length, L̄ =
√

k
ρCp

t̄ and stress,

τ̄ = ρCpT̄ , one finally gets

0 = τ̃i j ˜̇εi j + ∂2T̃

∂ x̃2
i

− ∂ T̃

∂ t̃
. (A3)

The dimensional constitutive relationship is spelled as

ε̇i j = 1

2
Aτ n−1

II exp

(
− Q

R (T0 + T )

)
τi j . (A4)

One first introduces the characteristic time and stress to express the
dimensionless strain rate:

˜̇εi j

t̄
= 2−1 Aτ̄ n−1τ̃ n−1

II exp

(
− Q

R (T0 + T )

)
τ̄i j τ̃i j , (A5)

which can be recasted as

˜̇εi j = t̄ 2−1 Aτ̄ n τ̃ n−1
II exp

(
− Q

R (T0 + T )

)
τ̃i j . (A6)

After substitution of the characteristic time, t̄ =
21−n A−1τ̄−n exp

(
Q

RT0

)
, the expression simplifies to

˜̇εi j = 2−n τ̃ n−1
II exp

(
− Q

R (T0 + T )
+ Q

RT0

)
τ̃i j . (A7)

Expressing the Arrhenius term with a common denominator and
introducing the dimensionless temperature yields:

˜̇εi j = 2−n τ̃ n−1
II exp

(
Q RT̄ T̃

R2T 2
0 + R2T0T̄ T̃

)
τ̃i j . (A8)

By substituting , T̄ = n RT 2
0

Q at the numerator and dividing both the

numerator and denominator by R2T 2
0 leads to

˜̇εi j = 2−n τ̃ n−1
II exp

(
nT̃

1 + T̄
T0

T̃

)
τ̃i j . (A9)

Finally one may introduce a dimensionless reference temperature,
T̃0 = T0/T̄ , which simplifies the expression in the following way:

˜̇εi j = 2−n τ̃ n−1
II exp

⎛
⎝ nT̃

1 + T̃
T̃0

⎞
⎠ τ̃i j . (A10)

The dimensionalization of the momentum equations (in the ab-
sence of body forces) and of the continuity equation is straightfor-
ward, hence they will not be detailed here. Please note that in the
main body of the text, we omit the ˜ superscript to enhance the
readability.

A P P E N D I X B : S O LV I N G T H E
N O N L I N E A R T H E R M O M E C H A N I C A L
S Y S T E M W I T H T H E
D I R E C T - I T E R AT I V E S C H E M E

An implicit (or semi-implicit) discretization (e.g. backward-Euler,
Crank–Nicolson) results in a linear system of equation of the form:

KTM x = b, (B1)

The systems of equation couples the different solution fields
v, p, T in the following way:⎡
⎣Kvv Kvp 0

Kpv 0 0
KTv 0 KTT

⎤
⎦

︸ ︷︷ ︸
KTM

⎡
⎣ v

p
T

⎤
⎦

︸ ︷︷ ︸
x

=
⎡
⎣ bv

bp

bT

⎤
⎦

︸ ︷︷ ︸
b

,
(B2)
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where the matrices KTM contains coefficients resulting from the
discretization (here, centred finite differences). The blocks Kvv and
KTv represent the deviatoric stress gradient and shear heating oper-
ators, respectively. The Kvp block represents the discrete gradient
operator, which equals minus the transpose of the divergence oper-
ator, that is, Kpv = −Kvp

T . The KTT is the Laplace operator, which
arises from the diffusion term in the temperature evolution equation.
The b contains contributions resulting from the time discretization
of the transient terms (here in bT) as well as contributions from the
boundary conditions (e.g. Dirchlet and Newman boundary values).

In the case of a linear problem, the solutions x can readily be
obtained by applying the inverse of the matrix KTM to the right-
hand side vector b:

x = KTM
−1 b. (B3)

In the present case, the nonlinear dependence of the viscosity
on the temperature and the velocity (i.e. via the strain rate depen-
dence) causes the global system of equation to be nonlinear. The
nonlinearity results in an imbalance of the global equations:

b − KTM x = f �= 0, (B4)

where f is the nonlinear residual vector. In order to minimize the
imbalance, quantified by the magnitude f, it is convenient to solve
this problem iteratively. To this end, the solution vector is updated
within a cycle of k nonlinear iterations:

xk+1 = xk + αδxk+1, (B5)

where δxk is the nonlinear correction to the solution. The scalar
parameter α is determined during a line search procedure in order
to minimize the magnitude of the residuals:

min
∣∣∣∣f (xk + α δxk+1

)∣∣∣∣
L2

. (B6)

In the context of Picard iterations, these corrections are obtained
by evaluating the matrix KTM at each iteration, using the values
of viscosities evaluated with the current temperature and velocity
fields, and by computing the correction as

δxk+1 = (KTM
k
)−1

fk, (B7)

where k is the nonlinear iteration index. The vector f can be obtained
with the following operation:⎡
⎣ fv

fp

fT

⎤
⎦

︸ ︷︷ ︸
fk

=
⎡
⎣ bv

bp

bT

⎤
⎦

︸ ︷︷ ︸
bk

−
⎡
⎣Kvv(v, T) Kvp 0

Kpv 0 0
KTv(v, T) 0 KTT

⎤
⎦

︸ ︷︷ ︸
KTM

k

⎡
⎣ v

p
T

⎤
⎦

︸ ︷︷ ︸
xk

,
(B8)

Here, we emphasize the nonlinearity held in the blocks Kvv and KTv

due to the nonlinear dependence of viscosity on the velocity and
temperature. Nonlinear iterations need to be performed until the
magnitude of the nonlinear residual has decreased below a given
level of tolerance, for example, ‖fk‖2 < tol. The Picard iterations
only deliver a linear rate of convergence and therefore, a high num-
ber of iterations is generally required before reaching the desired
nonlinear accuracy (i.e. several tens of iterations).

To overcome this severe restriction, we have used a Newton lin-
earization. To this end, the iteration matrix in eq. (B11) is substituted
by the Jacobian matrix JTM. The Jacobian matrix takes the form of

JTM = ∂fi

∂x j
(B9)

and thus contains information about the gradient of the residual
with regard to the solution. In practice, for the considered case, the

Jacobian matrix can be written as

JTM =
⎡
⎣ Jvv Kvp JvT

Kpv 0 0
JTv 0 JTT

⎤
⎦, (B10)

where the blocks Jvv and JTv differ from Kvv and KTv since they
contain additional contributions from the gradients of viscosity with
regard to the velocity. The new block JvT as well as the block JTT

contain information from the gradients of viscosity with regard
to the temperature. The structure of the matrix operator JTM shares
similarities with that employed by Wilson et al. (2017), who applied
similar linearization to study thermomechanical convection. The
Newton correction is hence obtained with the following operation:

δxk+1 = (JTM
k
)−1

fk, (B11)

which allows to reach the desired nonlinear accuracy with a
quadratic rate of convergence (i.e. less than 10 iterations).

A P P E N D I X C : T H E D I R E C T - I T E R AT I V E
S O LV E R

We seek a solution of the following linear system:⎡
⎣ Jvv Kvp JvT

Kpv 0 0
JTv 0 JT T

⎤
⎦

︸ ︷︷ ︸
JTM

⎡
⎣ δv

δp
δT

⎤
⎦

︸ ︷︷ ︸
δx

= −
⎡
⎣ fv

fp

fT

⎤
⎦

︸ ︷︷ ︸
f

.
(C1)

To facilitate and enhance the linear solve procedure, we introduce
the pre-conditionner:

Jpc
TM =

⎡
⎣ Jvv Kvp JvT

Kpv Jpp 0
JTv 0 JTT

⎤
⎦, (C2)

where the block matrix Jpp = γ −1I corresponds to a weakly com-
pressible contribution.

The linear residuals are defined as⎧⎨
⎩

rv = fv − Jvvδv − Kvpδp − JvTδT
rp = fp − Kpvδv
rT = fT − JTvδv − JTTδT

. (C3)

The solutions are found iteratively:⎧⎨
⎩

δvi+1 = δvi + δδv
δpi+1 = δpi + δδp
δTi+1 = δTi + δδT,

(C4)

where δδv, δδp and δδT are iterative corrections and i is the iteration
count.

The iterative velocity correction is obtained by solving:

δδv = J̄vv
−1

r̄v, (C5)

where J̄vv = Jvv − Kvp

(
Jpp

−1 Kpv

)
and r̄v = rv −

Kvp

(
Jpp

−1 rp

)− KvTδδT. Applying the inverse of Jpp is a
trivial operation, since Jpp is a diagonal block matrix. However,
applying the inverse of J̄vv is a cumbersome task, since J̄vv may
not be a symmetrical matrix. Here, we use an iterative Krylov
subspace solver (generalized conjugate residuals, Eisenstat et al.
1983) where the Cholesky factors of the symmetrical operators
resulting from a Picard linearization are used for preconditioning.
This approach is described in detail by Räss et al. (2017).

Subsequently, the iterative pressure correction is obtained in a
trivial way by evaluating

δδp = Jpp
−1
(
rp − Kpvδδv

)
. (C6)
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Finally, the iterative temperature correction is calculated as follows:

δδT = JTT
−1 (rT − JTvδδv) . (C7)

Here, JTT is a symmetric positive definite matrix and its inverse can
be efficiently applied using pre-computed Cholesky factors. The

iteration is repeated until the L2 norm of all linear residual vectors
has decreased below a given threshold value.



Key words

Authors are requested to choose key words from the list below to describe their work. The key words will be printed underneath the summary and are useful 
for readers and researchers. Key words should be separated by a semi-colon and listed in the order that they appear in this list. An article should contain no 
more than six key words.

COMPOSITION and PHYSICAL PROPERTIES
Composition and structure of the continental crust
Composition and structure of the core
Composition and structure of the mantle
Composition and structure of the oceanic crust
Composition of the planets
Creep and deformation
Defects
Elasticity and anelasticity
Electrical properties
Equations of state
Fault zone rheology
Fracture and fl ow
Friction
High-pressure behaviour
Magnetic properties
Microstructure
Permeability and porosity
Phase transitions
Plasticity, diffusion, and creep

GENERAL SUBJECTS
Core
Gas and hydrate systems
Geomechanics
Geomorphology
Glaciology
Heat fl ow
Hydrogeophysics
Hydrology
Hydrothermal systems
Infrasound
Instrumental noise
Ionosphere/atmosphere interactions
Ionosphere/magnetosphere interactions
Mantle processes
Ocean drilling
Structure of the Earth
Thermochronology
Tsunamis
Ultra-high pressure metamorphism
Ultra-high temperature metamorphism

GEODESY and GRAVITY
Acoustic-gravity waves
Earth rotation variations
Geodetic instrumentation
Geopotential theory
Global change from geodesy
Gravity anomalies and Earth structure
Loading of the Earth
Lunar and planetary geodesy and gravity
Plate motions
Radar interferometry
Reference systems
Satellite geodesy
Satellite gravity
Sea level change

Seismic cycle
Space geodetic surveys
Tides and planetary waves
Time variable gravity
Transient deformation

GEOGRAPHIC LOCATION
Africa
Antarctica
Arctic region
Asia
Atlantic Ocean
Australia
Europe
Indian Ocean
Japan
New Zealand
North America
Pacifi c Ocean
South America

GEOMAGNETISM and ELECTROMAGNETISM
Archaeomagnetism
Biogenic magnetic minerals
Controlled source electromagnetics (CSEM)
Dynamo: theories and simulations
Electrical anisotropy
Electrical resistivity tomography (ERT)
Electromagnetic theory
Environmental magnetism
Geomagnetic excursions
Geomagnetic induction
Ground penetrating radar
Magnetic anomalies: modelling and 

interpretation
Magnetic fabrics and anisotropy
Magnetic fi eld variations through time
Magnetic mineralogy and petrology
Magnetostratigraphy
Magnetotellurics
Marine electromagnetics
Marine magnetics and palaeomagnetics
Non-linear electromagnetics
Palaeointensity
Palaeomagnetic secular variation
Palaeomagnetism
Rapid time variations
Remagnetization
Reversals: process, time scale, 

magnetostratigraphy
Rock and mineral magnetism
Satellite magnetics

GEOPHYSICAL METHODS
Downhole methods
Fourier analysis
Fractals and multifractals
Image processing

Instability analysis
Interferometry
Inverse theory
Joint inversion
Neural networks, fuzzy logic
Non-linear differential equations
Numerical approximations and analysis
Numerical modelling
Numerical solutions
Persistence, memory, correlations, clustering
Probabilistic forecasting
Probability distributions
Self-organization
Spatial analysis
Statistical methods
Thermobarometry
Time-series analysis
Tomography
Waveform inversion
Wavelet transform

PLANETS
Planetary interiors
Planetary volcanism

SEISMOLOGY
Acoustic properties
Body waves
Coda waves
Computational seismology
Controlled source seismology
Crustal imaging
Earthquake dynamics
Earthquake early warning
Earthquake ground motions
Earthquake hazards
Earthquake interaction, forecasting, 

and prediction
Earthquake monitoring and test-ban 

treaty verifi cation
Earthquake source observations
Guided waves
Induced seismicity
Interface waves
Palaeoseismology
Rheology and friction of fault zones
Rotational seismology
Seismic anisotropy
Seismic attenuation
Seismic instruments
Seismic interferometry
Seismicity and tectonics
Seismic noise
Seismic tomography
Site effects
Statistical seismology
Surface waves and free oscillations
Theoretical seismology



Tsunami warning
Volcano seismology
Wave propagation
Wave scattering and diffraction

TECTONOPHYSICS
Backarc basin processes
Continental margins: convergent
Continental margins: divergent
Continental margins: transform
Continental neotectonics
Continental tectonics: compressional
Continental tectonics: extensional
Continental tectonics: strike-slip and transform
Cratons
Crustal structure
Diapirism
Dynamics: convection currents, and mantle 

plumes
Dynamics: gravity and tectonics
Dynamics: seismotectonics
Dynamics and mechanics of faulting
Dynamics of lithosphere and mantle
Folds and folding
Fractures, faults, and high strain 

deformation zones
Heat generation and transport

Hotspots
Impact phenomena
Intra-plate processes
Kinematics of crustal and mantle deformation
Large igneous provinces
Lithospheric fl exure
Mechanics, theory, and modelling
Microstructures
Mid-ocean ridge processes
Neotectonics
Obduction tectonics
Oceanic hotspots and intraplate volcanism
Oceanic plateaus and microcontinents
Oceanic transform and fracture zone processes
Paleoseismology
Planetary tectonics
Rheology: crust and lithosphere
Rheology: mantle
Rheology and friction of fault zones
Sedimentary basin processes
Subduction zone processes
Submarine landslides
Submarine tectonics and volcanism
Tectonics and climatic interactions
Tectonics and landscape evolution
Transform faults
Volcanic arc processes

VOLCANOLOGY
Atmospheric effects (volcano)
Calderas
Effusive volcanism
Eruption mechanisms and fl ow emplacement
Experimental volcanism
Explosive volcanism
Lava rheology and morphology
Magma chamber processes
Magma genesis and partial melting
Magma migration and fragmentation
Mud volcanism
Physics and chemistry of magma bodies
Physics of magma and magma bodies
Planetary volcanism
Pluton emplacement
Remote sensing of volcanoes
Subaqueous volcanism
Tephrochronology
Volcanic gases
Volcanic hazards and risks
Volcaniclastic deposits
Volcano/climate interactions
Volcano monitoring
Volcano seismology

2

© 2017 RAS, GJI

Key words


