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Abstract. Multi-scale interactions between the main players of the atmospheric water cycle are poorly understood, even in 

present-day climate, and represent one of the main sources of uncertainty among future climate projections. Here, we present

a method to downscale observations of relative humidity available from the passive microwave sounder SAPHIR at a nominal

horizontal resolution of 10 km to the finer resolution of 90 m using scattering ratio profiles from the lidar CALIPSO. With the

scattering ratio profiles as covariates, an iterative approach applied to a non-parametric regression model based on Quantile5

Random Forest is used to effectively incorporate into the predicted relative humidity structure the high-resolution variability

from cloud profiles. Results are presented for tropical ice clouds over the ocean: based on the coefficient of determination (with

respect to the observed relative humidity) and the Continuous Rank Probability Skill Score (with respect to the climatology),

we conclude that we are able to successfully predict, at the resolution of cloud measurements, the relative humidity along the

whole troposphere, yet ensuring the best possible coherence with the values observed by SAPHIR. By providing a method10

to generate pseudo-observations of relative humidity (at high spatial resolution) from simultaneous co-located cloud profiles,

this work will help revisiting some of the current key barriers in atmospheric science. A sample of co-located SAPHIR and

CALIPSO observations, together with the downscaled relative humidity predictions, is made available at http://dx.doi.org/10.

14768/20181022001.1.

1 Introduction15

The atmospheric water cycle consists of complex processes covering a wide range of scales. At small scales, the components

of the atmospheric water cycle - water vapour, clouds, precipitation (rain and snow), aerosols - interact amongst each other

and with their surrounding environment through micro-physical, radiative and thermo-dynamical processes. At global scales,

the atmospheric water cycle interplays with the global atmospheric circulation and the Earth radiative balance. These complex

multi-scale interactions are not well understood and how the global atmospheric water cycle works in present-day climate is20

the subject of intense research, e.g. within the World Climate Research Program (WCRP) core project “Global Earth Water

cycle Exchanges” (GEWEX, http://www.gewex.org/) and within the WCRP grand challenge on “cloud, circulation and climate

1

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-138

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 4 January 2019
c© Author(s) 2019. CC BY 4.0 License.



sensitivity” (https://www.wcrp-climate.org/grand-challenges). Given this poor understanding, it is challenging to anticipate

how the atmospheric water cycle will evolve in the future as climate warms (Boucher et al., 2013).

A symptomatic example of this lack of knowledge is the difficulty of state-of the art climate models to reproduce the observed

clouds and precipitation in present-day climate (Nam et al., 2012), Cesana and Chepfer (2012), Zhang et al. (2005), Kay et al.

(2016), Klein et al. (2017), Lacour et al. (2017)). One of the reasons is that small-scale processes act at space and time scales5

smaller than the model grid-box and smaller than the model time step, therefore those processes are not represented explicitly

in climate models. As a consequence, on a longer term (hundred years), the projections on how clouds and precipitation will

evolve in the future differ amongst models (Vial et al., 2016). Observations collected by field experiments and ground-based

sites have provided essential knowledge on how the atmospheric water cycle works at small scale (<100 m) (Campbell et

al., 2002; Intrieri et al., 2002; Shupe et al., 2006; Long et al., 2009; Wild, 2009; Manara et al., 2016), but these observations10

are sparse and limited in space. Thanks to their global cover and their long life-time, satellites have observed the water cycle

components on a global scale for over 25 years (Gruber and Levizzani, 2008; Raschke et al., 2012; Stubenrauch et al., 2013).

However, these satellites lack some essential capabilities, such as documenting the detailed vertical structure of the water cycle

components. Since 2006, the space lidar CALIPSO (Winker et al., 2017) and the space radar CloudSat (Stephens et al., 2008)

provide a more detailed view of aerosols, clouds, and precipitation (light rain and snow), on a global scale. These active sensors15

provide new surface-blind detailed vertical profiles of aerosols (Liu et al., 2009; Sekiyama et al., 2010), clouds (Mace et al.,

2009; Vaughan et al., 2009; Chepfer et al., 2010), snow precipitation (Palerme et al., 2014), Arctic atmosphere (Kay et al.,

2008; Cesana and Chepfer, 2012), light rain precipitation (Lebsock and L’Ecuyer, 2011), atmospheric heating rate profiles and

surface radiation (Kato et al., 2011; Stephens et al., 2012).

Similarly, atmospheric reanalyses, although suited for the study of integrated contents of water vapour (Obligis et al., 2009;20

Schröder et al., 2017), exhibit noticeable biases in the tropical water and energy budget on the vertical. As suggested by

comparisons between satellite observations of single-layer upper tropospheric humidity and atmospheric reanalyses (Chuang

et al., 2010; Chiodo and Haimberger, 2010), reanalyses fail to reproduce the observed vertical correlation structure between

the various layers of relative humidity in the upper troposphere, where moisture is mainly influenced by the shape of the

convective detrainment profile in deep convective clouds (Folkins et al., 2002), together with drying effects induced by mixing25

or air intrusion from the subtropics (Pierrehumbert, 1998; Brogniez et al., 2009). On the other hand, since 2011, the passive

microwave sensor ‘Sondeur Atmosphérique du Profil d’Humidité Intertropical par Radiométrie’ (SAPHIR), provides over the

entire tropical belt (30◦S - 30◦N) observations of water vapour even in the presence of (non-precipitating) clouds, which are

largely transparent at frequencies above 100 GHz (Brogniez et al., 2015). These detailed profiles are observed all over the

globe, and thus are good candidates to help improving our current understanding on how the atmospheric water cycle works.30

However, if the new generation of space clouds observations has the relevant spatial resolution (60 m on the vertically, 333

m horizontally, (Chepfer et al., 2010)) and the global cover to document processes over the entire Earth, the water vapour

observations do not. The water vapour measured by SAPHIR is observed at larger spatial resolutions (with a footprint size

at nadir of 10 km) which implies that small scale heterogeneities will be missed, critical for understanding the full water

cycle processes. To better understand the atmospheric water cycle, and the multi-scales interplays, it is thus of strong interest35
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to build a pseudo-observations dataset that contains, over the entire tropical belt and during several years, simultaneous

co-located profiles of water vapour and clouds at high spatial resolution relevant to process studies (480 m vertically and

330 m horizontally, Chepfer et al. (2010)). It is the purpose of this paper to build such a pseudo-observation dataset.

Among the clouds forming in the troposphere, tropical ice clouds are of particular interest, because of their extensive

horizontal and vertical coverage and their long lifetime (Sassen et al., 2008), and above all because they are intimately related5

to water vapour (Udelhofen and Hartmann, 1995). Although the approach that we present in this study could in principle be

extended to other cloud types, here we decided to focus on ice clouds, for which the connection to water vapour is expected to

be stronger (Luo and Rossow, 2004; Tian et al., 2004).

When combining measurements from different platforms care must be taken to account for the different spatial resolutions

of the instruments (Atkinson , 2013). For spaceborne instruments, the horizontal spatial resolution or support is determined10

by the sensor’s instantaneous field of view and is approximately equal to the size of a pixel in an image provided by that

sensor. Although ideally we would like all spaceborne measurements to have the finest possible horizontal spatial resolution, in

practice there is a limit imposed by the trade-off between spatial resolution, revisit time and spatial coverage: on the one hand,

CALIPSO and CloudSat provide images with a fine horizontal spatial resolution (see section 2.2) but have a sparse coverage

and a long revisit time due to their polar orbiting; on the other hand, SAPHIR, owing to the low inclination of its orbit, is15

characterized by a much higher revisit frequency and a more complete coverage, but has a lower horizontal spatial resolution

(see section 2.1). The support therefore provides a limit on what a spaceborn sensor can retrieve and effectively acts as ‘filter

on reality’ (Atkinson , 2013): different instruments with different supports will indeed view the Earth differently.

Statistical downscaling methods (Bierkens et al., 2000; Vaittinada et al., 2015) involve reconstructing a coarse-scale measured

variable at a finer resolution based on statistical relationships between large- and local-scale variables. Although the typical20

application for these methods is to derive sub-grid scale climate estimates from GCMs outputs or reanalysis data to drive

impact studies (Gutierrez et al., 2018), recent studies have started adopting the standard downscaling techniques to enhance

the resolution of satellite images using available covariate data at a finer resolution (Liu and Pu, 2008; Malone et al., 2012).

Following the approach taken in these studies, here we are interested in modelling, at the finer scale of the clouds measurements,

the statistical relationship between the water vapour layered-vertical structure associated to ice clouds in the tropical belt and25

the vertical profiles of clouds provided by CALIPSO. The method employed in this study provides a general framework to

effectively perform a downscaling of SAPHIR observations of relative humidity and, for unsampled locations and times, to

predict the (downscaled) water-vapour vertical structure using cloud profiles only.

The paper is organized as follows. In section 2 we present the satellite data sources used in this study; section 3 describes

the general approach and the methods used to downscale water vapour observations from vertical cloud profiles; results are30

discussed in section 4 and finally, conclusions and future perspectives are drawn.
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2 Data

2.1 SAPHIR

SAPHIR is a cross-track passive microwave sounder on board the Megha-Tropiques mission. It observes the Earth’s atmosphere

with an inclination of 20 degrees to the equator, a footprint size at nadir of 10x10 km2, with a 1700-km swath made of scan lines

containing 130 non-overlapping footprints (for more details see e.g. Brogniez et al. (2016) and references therein). Operating5

since October 2011, SAPHIR provides indirect observations of the relative humidity (RH) in the tropics (28◦S - 28◦N) by

measuring the upwelling radiation with six double-sideband channels close to the 183.3-GHz water vapour absorption. In this

work, we used the layer-averaged RH (six layers distributed between 100 and 950 hPa) derived by Brogniez et al. (2016).

In this study, the authors adopted a purely statistical technique to retrieve for each atmospheric layer the full distribution of

RH from the space-borne observations of the upwelling radiation and training RH data derived from radiosondes profiles.10

This retrieval scheme was found to have similar performances compared to other methods that also rely on some other physical

constraints (e.g. the surface emissivity, temperature profile, and a prior forRH profiles for brightness temperature simulations).

Figure 1a, shows an example, for each atmospheric layer, of the mean of the retrieved RH distribution, derived as detailed in

Brogniez et al. (2016).

2.2 CALIPSO15

The lidar profiles in the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Cloud

Product (CALIPSO-GOCCP, Chepfer et al. (2010)), are designed to compare in a consistent way the cloudiness derived

from satellite observations to that simulated by General Circulation Models (GCMs, (Chepfer et al., 2008)). CALIPSO is

a nearly sun-synchronous platform that crosses the equator at about 01:30 LST (Winker et al., 2009) and carries aboard the

Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). CALIOP measures, every 330 m along track with a foot size20

of 90 m, the Attenuated Backscattered (ATB) profile at 532 nm. The lidar scattering ratio (SR) is measured relative to the

backscatter signal that a molecular atmosphere (without clouds or aerosols) would have produced. Within a cloud the SR value

represents a signature of the amount of condensed water within each layer convoluted with the optical properties of the cloud

particles that depend on their size and shape. Values of SR greater than five are taken as indications of layers containing clouds

(Fig. 1b, see Chepfer et al. (2010) for more details). On the other hand, values of SR lower than 0.01 correspond to layers25

that are not documented by CALIPSO. Indeed, layers located below clouds opaque to radiations are not sounded by the laser

(Guzman et al., 2017; Vaillant de Guélis et al., 2017).

Following Chepfer et al. (2010), layers corresponding to values located below the surface (SR = −888), rejected values

(SR = −777), missing values (SR = −9999) and noisy observations ( −776< SR < 0) were all set to missing. Moreover, in

order to reduce the noise and the number of missing data, each SR profile (40 equidistant layers with height interval of 48030

m) was averaged as the following: in the boundary layer (below 2 km), the original vertical spacing was used (four layers in

total), while, above, the layers were averaged every 1 km, giving in total p = 21 vertical layers. Only the averaged SR profiles

without any missing layer were retained: the choice of setting to missing all noisy layers, implies retaining mostly night-time

4
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data only (after excluding the averaged profiles with missing layers, the percentage of day-time profiles dropped from about

50% to less then 15%). Finally, in order to further reduce the noise in the profiles, these were transformed using a Principal

Component Analysis (PCA) analysis, where 90% of the variance was retained.

3 Methods

A three-step method was applied to downscale water vapour observations from vertical cloud profiles. First, we co-located5

SAPHIR and CALIPSO observations (section 3.1); then, using a statistical clustering technique, we selected only CALIPSO

profiles corresponding to ice clouds 3.2), and finally we applied the downscaling method (section 3.3).

3.1 SAPHIR-CALIPSO co-location

To identify the times and locations where the orbits of SAPHIR and CALIPSO overlap, we first extracted all the observations

at Nadir falling within a distance of 50 km and within 30 min (for details of the software used for the co-location of the10

orbits see http://climserv.ipsl.polytechnique.fr/ixion). SAPHIR measurements (both at and off-Nadir) corresponding to the

selected orbits were then matched to CALIPSO observations falling within each SAPHIR pixel, defined as the 10 km circle

around its geographical coordinates (see Fig. 1c). In the following analysis, each SAPHIR measurement at coarse resolution

(M = 1, ...,N ) encapsulates n(M) CALIPSO observations at fine scale (m= 1, ...,n(M)), where n(M) changes depending

on the spatial alignment of the two satellites. Fig. 2 shows a sample of the co-located CALIPSO and SAPHIR profiles.15

The following analysis is focused on tropical ice clouds over the ocean, where the correlation between cloud profiles and

tropospheric humidity is expected to be larger (Schröder et al., 2017).

3.2 Selection of tropical ice cloud profiles

In order to select only profiles characterized by tropical ice clouds, the co-located samples were separated into clusters based

on indicators of the type of clouds present at the moment of the observation.20

The clusters were obtained by a k-means unsupervised classification of the reconstructed SR profiles (e.g. Lloyd (1982)).

Since layers with SR values in the same range are associated to the same micro-physical properties, for clustering only, the

recontructed SR profiles were binned according to the interval boundaries suggested in Chepfer et al. (2010), as detailed in

Fig. 5 in their study. Given an optimal number of clusters (k), this method partitions the observations into k clusters with each

observation belonging to the cluster with the nearest mean by minimizing the within-cluster-sum of squares (wss). Since the25

initial assignment of the observations to a cluster is random, the algorithm is run several times (here 100) and the partition with

the smallestwss is chosen amongst the different ensemble members. However, when k is not known a priori, it must be selected

from a range of plausible values (here: k ∈ {2, . . . ,15}), and chosen so that adding another cluster does not produce a drastic

decrease in wss, and therefore does not improve significantly the quality of the clustering. For example for reconstructed SR

profiles in July 2013 over the Indian Ocean, this criterion yields between 8 and 13 clusters (not shown).30
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As Fig. 3 shows, both clusters 1 derived by k-means with k=8 and k=13 show a similar mean SR profile, with layers

classified as cloudy mostly in the upper troposphere. As a further check that these profiles correspond indeed to ice clouds, we

compared the k-means result with the clusters derived by combining the cloud phase flags associated with each vertical level

as defined in Cesana and Chepfer (2013) (e.g. a profile corresponding only to clear-sky and liquid observations is classified as

LIQUID, see caption in Fig. 3 for more details). As Fig. 3 shows, again a similar characteristic SR profile is observed for the5

flag-based profiles corresponding to ICE and ICE-MIX observations. Therefore, in the following, the k-means classification is

used to select all SAPHIR-CALIPSO co-located observations belonging to SR clusters characterized by this typical mean SR

profile (in Fig. 3, clusters outlined by a red square).

3.3 Downscaling of water vapour measurements from cloud profiles

Given the SAPHIR-CALIPSO co-located samples belonging to ice cloud-type clusters as derived in the previous section,10

SAPHIR relative humidity at the l-th pressure level (RHl, here corresponding to the mean of the distribution in Brogniez et al.

(2016)) can be estimated in terms of an unknown function Φ of the SR profile

RHl ∼ Φ(SR1,SR2, ...,SRp) (1)

where SR1,SR2, ...,SRp designate SR at each altitude level (p = 21, following the vertical averaging implemented as

described in section 3.2) and here represent the covariate data sources, also known as predictors. The method to downscale15

SAPHIR observations of relative humidity from CALIPSO SR profiles consists in a two-stage regression model implemented

directly on the observed spatial resolution (Liu and Pu, 2008; Malone et al., 2012). First, RHl is estimated based on the chosen

statistical regression model (section 3.3.1). Secondly, the same regression model is applied iteratively to the predictions R̂Hl

and at each iteration step the multi-site results are corrected to harmonize the average of the estimates at fine resolution with

its value at coarser scale (section 3.3.2).20

This downscaling scheme differs from the classical downscaling approach, where local variables, generally point-scale

observations, are generated from large-scale variables, available at the much coarser grid-scale resolution typical of climate

models and reanalyses outputs, based on a model trained on the available local variables. This approach cannot be applied

in the case under study, since there are no RH observations at the resolution of cloud measurements available. On the other

hand, by including covariates at a finer resolution in the regression model of Eq. (1) we can incorporate their higher-resolution25

variability in the estimates of the response variable (hereRH), while maintaining, through the iterative procedure, the so-called

‘mass balance’ with the original measured values.

3.3.1 Choice of the regression model

The aim of this section is to compare different regression models for RHl given the set of predictors SR1,SR2, ...,SRp and to

select the model with the ‘best’ predictions in a sense that will be clarified later. The models tested in this study are summarized30

in Table 1.

6
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Random Forests (RF, Breiman (2001)), similarly to other machine learning techniques, does not require to specify the

functional form of the relationship between the response variable and the predictors and, provided a large learning sample,

has been shown to perform well (Hastie and Tibshirani, 2009) in the context of prediction of a response variable even with a

non-linear relationship with a set of predictors. RF belongs to the family of classification and regression decision trees (Breiman

et al., 1984). Decision trees split the predictor space into boxes (or leaves) such that the homogeneity of the corresponding5

values of the response variable in each box is maximized. For regression trees, the homogeneity is defined as the sum of the

residual-sum of squares (rss) with respect to the mean of the response variable within each box. As described in detail for

example in Hastie and Tibshirani (2009), this method is implemented by sequentially splitting the predictor space into the

regions xi < c and xi ≥ c where the predictor xi and the cutting-point c give the greatest possible reduction in rss. This binary

split is repeated until a minimum number of observations in each leaf is reached or because of an insufficient decrease in rss.10

Another possibility, which prevents overfitting, is to grow a tree with a large number of leaves but prune it at each split by

controlling the trade-off of between the tree complexity (i.e. the number of leaves) and the fit to the data. Finally, the model

estimate of the response variable is given by the mean of all the observations in each terminal leaf and for predictions for a new

set of values of the predictors, one has then simply to follow the path in the tree until the final leaf is found. In order to reduce

the variance in the predictions, Breiman (1996) proposed to grow a tree on several bootstrapped samples of the original data15

and then take the average result from the different trees (bagging). This approach is justified by the property that by taking the

average of N independent observations with variance σ2 we reduce the variance by σ2/N . To avoid overfitting, the number of

bootstrapped samples and that of the corresponding trees can be adjusted, while the trees are not pruned. With RF, the variance

in the predictions can be even further reduced by retaining at each split a random selection from the full set of predictors,

therefore reducing the correlation between the trees generated by bootstrapping only.20

Bagging and RF only estimate the conditional mean of the response variable but not its distribution, which can give

information on the uncertainty in the predictions. On the other hand, Quantile Regression Forests (QRF, Meinshausen (2006)),

by computing the Cumulative Distribution Function (CDF) of the response variable in each terminal leaf instead of its mean,

represent a straightforward extension of the RF method, allowing to estimate any quantile of the response variable.

Non-parametric methods, like RF and QRF, do not allow to specify the functional form of the relationship between the25

response variable and the predictors. For this reason, we also tested the results obtained with a Generalized Additive Model

(GAM, Hastie and Tibshirani (1986)), which is a statistical semi-parametric regression technique. A GAM is a Generalized

Linear Model (GLM) with predictors involving a sum of non-linear smooth functions:

g (E [y|x]) =
p∑

i=1

fi (xi) + ε (2)

where g(·) is a link function between the expectation of the response variable y (here the RH of an atmospheric layer l)30

conditionally on a set of p predictors x1, ...,xp (here SR1, ...,SRp) and a sum of unknown univariate smooth functions of each

predictor, fi(·). ε represents a zero-mean Gaussian noise. Here, RHl is assumed to follow a beta distribution, which is the

usual choice for continuous proportion data, and its canonical link function, the logit g(x) = log
(

x
1−x

)
, is used (Wood, 2011),

7
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which assures that all values are in the (0,1) interval. To estimate each f , we can represent it as a weighted sum of known basis

functions zk(·)

f (x) =
∑

k

βkzk (x) (3)

in such a way that Eq.(2) becomes a linear model, and only the βk are unknown. Here, we chose to represent the basis

functions as piecewise cubic polynomials joined together so that the whole spline is continuous up to second derivative. The5

borders at which the pieces join up are called knots, and their number and location control the model smoothness. To fit the

model in Eq. (2), we used the approach of Wood (2011): the appropriate degree of smoothness of each spline is determined by

setting a maximal set of evenly spaced knots (i.e. bias(f)� var(f)) and then controlling the fit by regularization, by adding

a ‘wiggliness’ penalty
∫
f

′′
(x)dx= βTSβ to the likelihood estimation:

L(β)−βT Sβ (4)10

where L is the likelihood function of the β parameters and S the penalty matrix, with elements for the kth - k̃th terms

Skk̃ =
∫
z

′′
k (x)z

′′

k̃
(x)dx .

Ideally, we would like to account for a neighbouring structure, i. e. neighbouring SR profiles should be characterized

by similar model parameters. This effect can be accounted for by assuming, under the Markovian property, that the model

parameters for the mth profile are independent of all the other parameters given the set of its neighbours N (m). This15

neighbouring structure can then be modelled by adding to Eq. (2) a smooth term with penalty

Γ(γ) =
n∑

m=1

∑

m̃∈N (m)

(γm− γm̃)2 (5)

where γm is the smooth coefficient for regionm andN (m) denotes the elements ofN (m) for which m̃ >m. The penalty in

Eq. (5) can be then rewritten as Γ(γ) = γT Sγ with Smm̃ =−1 if m̃ ∈N (m) and Smm̃ = n(m) where n(m) is the number of

profiles neighbouring profile m (not including m itself). This specification is very computationally efficient, given the sparsity20

of the parameters precision matrix, and is known as Gaussian Markov random field (GMRF, Rue and Held (2005)). Here, we

implemented this augmented model by defining two CALIPSO SR profiles as neighbours if they belong to the same SAPHIR

pixel.

Another possibility, although more computationally expensive, is to explicitly include in our model the spatial correlation

structure of the predictors by a fusion of geostatistical and additive models, known as geoadditive models (Kammann and25

Wand, 2003). These models allow accounting not only for the non-linear effects of the predictors (under the assumption of

additivity) but also for their spatial distribution: two SR profiles, and therefore the corresponding water vapour structures, are

more likely to be dependent if they are close, by some metric. Given a set of geographical locations s, a (bivariate) smooth

8

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-138

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 4 January 2019
c© Author(s) 2019. CC BY 4.0 License.



term f(s) can be represented as the random effect f(s) = (1, sT )γ +
∑

jwjC(s,sj) with w ∼N(0,(λC)−1), γ a vector of

parameters and C(s,sj) = c(||x−xj ||) a non-negative function such that c(0) = 1 and lim
d→∞

c(d) = 0, which is interpretable as

the correlation function of the smooth f (Wood, 2011). By adding this term to the model in Eq. (2), we explicitly include the

spatial autocorrelation in the SR data without changing the mathematical structure of the minimization problem, and we can

still use the GAM basis-penalty representation (Wood, 2011). Here, we assumed an isotropic exponential correlation function5

C(s,sj) = exp(− ‖ s− sj ‖ /r) with the range r chosen equal to the size of SAPHIR pixels (10 km).

Following Ferro (2008), Ferro et al. (2014), and Taillardat et al. (2016), to assess the prediction skills of such models,

scoring rules can be used to assign numerical scores to probabilistic forecasts and measure their predictive performance. Given

an observation y, for a model ensemble forecast with members x1, ..,xK a fair estimator (Ferro et al., 2014) of the continuous

ranked probability score (CRPS) is10

CRPS(y) =
1
K

K∑

i=1

| xi− y | −
1

2K (K − 1)

K∑

i=1

K∑

j=1

| xi−xj | (6)

where lower values of the CRPS indicate better predictive skills. For regression techniques that estimate the conditional

mean only (RF, GAM, GAM with GRMF, and the geoadditive method), the CRPS score accounts only for the accuracy of the

forecast (the second term in Eq. (6) is zero), while for probabilistic methods, like the QRF method, it also accounts for the

forecast precision. Typically, in order to directly compare a prediction system to a reference forecast (e.g. a climatology), the15

continuous ranked probability skill score (CRPSS) is needed

CRPSS = 1− CRPSmod

CRPSref
(7)

The CRPSS is positive if and only if the model forecast is better than the reference forecast for the CRPS scoring rule.

3.3.2 Iterative downscaling

Following the approach of Liu and Pu (2008) and Malone et al. (2012), the predictions were further optimized by ensuring that,20

for all layers, the observed relative humidity is as close as possible to the average of the predicted RH distributions within the

corresponding encapsulating SAPHIR pixel. This approach is meant to preserve the so-called ‘mass balance’ with the coarse

scale SAPHIR information, and can be easily implemented with the following iterative approach:

1 within each SAPHIR pixel (M ), update the predictions R̂Hl: R̃Hl(m) = R̂Hl(m)+RHl(M)− 1
n(M)

∑
j∈n(M) R̂Hl(j)

2 with the chosen regression model, regress the updated predictions R̃Hl with respect to the set of predictors SR1,SR2, ...,SRp25

3 if the coefficient of determination (R2) with respect to the observed relative humidityRHl(M) of the updated predictions

is larger than that of the previous iteration than repeat steps [1]-[2], otherwise stop at previous iteration.

For ensemble models, like QRF, the update predictions and R2 are computed on the median of the distribution only.

9
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4 Results and discussion

Figure 4 shows, for ice cloud profiles in the Indian Ocean in July 2013 (k=8), the comparison of the CRPSS computed for

the forecast derived for the different regression methods (QRF, RF, GAM, GAM with GRMF, and the geoadditive method)

with respect to the reference CRPS computed from the empirical distribution of the observations. In order to validate the

regression results with independent test data, the predictions were performed using a 5-fold cross validation scheme and, to5

reduce the computation time, were limited to the first iteration step (here we are interested in comparing the performance of

the different models rather than performing the full downscaling). For the RF and QRF method, the sensitivity of the results

to the model parameters (number of trees and number of predictors selected at random at each split) was also investigated

using a grid search; however, for both models, variations in the prediction skills (both in terms of R2 and the CRPSS score)

were found negligible with respect to the choice of these parameters, that were therefore set to their default values (c.f. the10

randomForest R package, R Core Team (2017)). The largest CRPSS is obtained using the QRF method, with a median

value larger than 0.5 for all layers. The RH predicted with the RF method are also significantly better that what we would

obtain from the empirical distribution of the observations, although the probabilistic approach taken in QRF is more skill-full.

On the other hand, all GAM-derived methods have a lower score, with CRPSS median values overall below 0.5, although, apart

from the highest and lowest layers, all medians are above zero. As the CRPSS reveals, full non-parametric methods that do not15

rely on any assumption on the probability distribution of the response and that are free to learn any functional form from the

training data, perform significantly better.

A positive value of the CRPSS for all RH layers indicates a high level of correlation along the full vertical profile, which

is expected for ice clouds: within and in the neighbourhood of regions of deep convection, which is their primary source

(Hartmann et al., 2001), air masses are rapidly transported from the boundary layer through the free troposphere into the20

tropopause region (Corti et al., 2006). This is also shown in the scatter plot of the median of the QRF-predicted distribution

vs. the observed relative humidity (Fig. 5): for layers L1-L5, the data are distributed close to the identity line, with the model

explaining a large proportion of the variance of the observed RH (R2 ≥ 0.7). On the other hand, as expected for ice clouds

which populate the upper troposphere, lower correlation values are found for the lowest layer (L6, R2 ∼ 0.3). To assess the

importance of the cloud structure on the predicted relative humidity at different layers, we can compute, for each predictor, the25

decrease in accuracy obtained by randomly permuting its values (Fig. 6): the larger this value, the more important a predictor is.

For the higher layers, as expected, this metric highlights the larger contribution of SR layers corresponding to layers classified

as cloudy, which are observed above ∼ 10 km (c.f. Fig. 3). On the other hand, for layers closer to the surface, the contribution

of lower, (on average) non-cloudy SR layers is found to be equally important because of the moisture that originates over

warm waters. Similar results can be found for different choices of the number of clusters (k=13), season (January), and region30

(Pacific Ocean), as shown in Fig. 7. These results are also independent (not shown) on the temporal difference and the spatial

alignment of the co-located samples, on the distance from the cost, or on the uncertainty (standard deviation) in the observed

relative humidity by SAPHIR.

10
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Overall, these results suggest that, at the instantaneous scale of cloud measurements, the water vapour response along the

whole troposphere in correspondence with ice cloud profiles is well predicted only accounting for their capability to backscatter

radiation (given by the observed SR profile). While the large-scale link between relative humidity and the cloud properties

(vertical distribution, phase and opacity) has been well documented in previous studies (Martins et al., 2011; Reverdy et al.,

2012), this work represents the evidence that this relationship can also be detected at much smaller spatio-temporal scales. The5

emergence of a clear signal at these fine scales, also highlights the limitations of SAPHIR measurements: although SAPHIR

observes the water vapour field at a much finer horizontal resolution than what is currently available in reanalysis products, in

order to explain physical processes, downscaled observations are needed. Figure 8 compares, for a selection of ice cloud profiles

(n(M)> 25), the corresponding layers of relative humidity observed by SAPHIR with the median of the downscaled results

derived by implementing the iterative QRF scheme. For all layers, the iteration typically stops after 2-3 steps and, although10

increases the R2 between SAPHIR observations and the predicted relative humidity by only few percent, ensures consistency

with the observed data, as described in section 3.3.2. The goal of the downscaling scheme implemented in this work is to

reconstruct the variation of the relative humidity field at the fine resolution of cloud measurements within each SAPHIR

coarsely resolved pixel: as Fig. 8 shows, the downscaled values exhibit variations within the same SAPHIR pixel depending

on the corresponding SR profile (Fig. 8c) that cannot be observed by SAPHIR (Fig. 8b). As discussed at the beginning of this15

section, a measure of the reliability of these variations can be derived from the spread of the predicted distribution, given here

as the interquartile range (Fig. 8d).

The intra-pixel RH variations are further analysed in Fig. 9, which shows for a single SAPHIR pixel overlaid on the

observed values, the downscaled predictions from the QRF and the geoadditive model. For the latter, the predictions were

extended outside the observed CALIPSO locations on the direction orthogonal to CALIPSO track line up to 1 km on each20

side. The relative humidity field at these new locations was predicted using the model fitted through the iterative scheme for

the available CALIPSO observations and assuming that each SR profile was also representative of the cloud distribution for

locations shifted along the direction orthogonal to CALIPSO track within a distance of 1 km. As expected and shown by Fig.

9b, the largest part of the variance is explained by the SR predictors, while variations related to the spatial smooth are almost

not noticeable with the scale used in the plot, compared to the variations in the predictions for a given SR profile.25

Although the CRPSS quantifies the quality of the predictions (w.r.t. the climatology) conditionally on the regression model

and the predictors, for direct validation, observations of relative humidity at the scale of the clouds measurements would be

required. In principle, the network of radiosonde measurements, which provides RH quality-checked data (Durre et al., 2006)

and has been used in previous studies for validation of satellite measurements, including SAPHIR (Sivira et al., 2015; Brogniez

et al., 2016), could be used for validation purposes. However, in practice, its limited spatial coverage, with also most of the30

observations falling over land, hampers the feasibility of this approach. On the other hand, probabilistic approaches, like the

QRF method, by assessing the uncertainty in the predictions through the spread of the distribution, allow the quantification of

the confidence in those predictions and therefore, in a way, provide an indirect estimate of their quality.

11
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5 Conclusions

We have presented a method to downscale observations of relative humidity (RH) available from the passive microwave

sounder SAPHIR at a nominal horizontal resolution of 10 km to the finer resolution of 90 m using scattering ratio (SR)

profiles from the lidar CALIPSO. The method was applied to ice clouds profiles over the tropical oceans, where the connection

to water vapour is expected to be stronger.5

By using an iterative regression model of the satellite-derived RH with the SR profiles as covariates, we were able to

successfully predict the relative humidity along the whole troposphere at the resolution of cloud measurements. The method

also ensures that the average of the predicted RH distributions within the corresponding encapsulating SAPHIR pixel is as

close as possible to the observed value. Amongst the different regression models tested, the best results were obtained using a

Quantile Random Forest (QRF) method, with a coefficient of determination (R2) with respect to the observed relative humidity10

larger than 0.7 and a CRPSS with respect to the climatology with a median value larger than 0.5 for all layers down to 800 hPa.

High explanatory power along the full vertical profile is expected for ice clouds, for which deep convection, by transporting air

masses from the boundary layer up to the tropopause region, is their primary source.

By providing a method to generate profiles of water vapour (at high spatial resolution) from simultaneous co-located cloud

profiles, this work will be of great help to revisit some of the current key barriers in atmospheric science. While SAPHIR15

record only stretches back to 2011, CALISPO cloud measurements are available since 2006, a period that includes three El

Niño/Southern Oscillation (ENSO) cycles. A 10-year long high resolution water vapour-clouds combined dataset might allow:

• to study how small scale water cycle processes behave when exposed to strong variations in large scale circulation

regimes such as those associated to El Niño cycles

• to ‘evaluate’ how small scale water vapour inhomogeneities affect the water vapour simulated by standard reanalyses20

(e.g. ERA-Interim Dee et al. (2011), NCEP Kalnay et al. (1996), etc.), which are known to badly parameterize clouds

and to have biases in water vapour in the upper troposphere (Schröder et al., 2017)

• to put the results of past and current field experiments into a larger scale context, e.g. identifying if results of specific

campaigns are representative of large portions of the tropical belt

• to guide the parametrization of unresolved subgrid-scale water vapour/clouds processes to reduce cloud feedback uncertainties25

(Randall et al., 2003) in climate models which ultimately will contribute to improve model-based estimates of climate

sensitivity

• to evaluate the description of water vapour/cloud interactions in regional models - e. g. WRF, Meso-NH (Chaboureau

et al., 2002; Fan et al., 2007), which although having a fine-enough grid-spacing to allow explicit simulations of the

mesoscale dynamics associated with convective clouds (Guichard and Couvreux, 2017) still integrate parametrizations30

to represent sub-grid-scale motions, micro-physics, and radiative processes
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• to test the validity of the fixed anvil temperature hypothesis (Hartmann and Larson, 2002) and estimate the changes to

long-wave fluxes with warming, for example using simulated CALIPSO profiles from model variables (Chepfer et al.,

2008)

• to quantify the limits of current and future space missions by characterizing the spatial inhomogeneities in water vapour

fields that cannot be observed by present satellites and will likely not be observed within the next tow decades (e.g.5

2017-2027 Decadal Survey for Earth Science and Applications from Space) due to technological limits.

We also note that the method developed in this study could in principle be extended to other types of clouds, although

additional covariates might be required (e.g., for liquid clouds, including the radar reflectivity as measured by the radar

CloudSat, might increase the model explanatory power in the presence of light precipitation). Finally, the downscaling method

presented here could be also applied to other satellite products, with the underlying assumption of using covariate data that are10

strongly related to the target variable.

Sample availability. A sample of co-located SAPHIR and CALIPSO observations, together with the downscaled relative humidity predictions,

is available using the following digital object identifier (doi): http://dx.doi.org/10.14768/20181022001.1. This dataset corresponds to ice
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Figure 1. (a): RH (mean) observed by SAPHIR for all six pressure layers, in the Indian Ocean on January 2nd 2017 between 03:38 and

06:45 am. Overlaid is the CALIPSO track line (red line). (b): example of SR profile measured by CALIPSO. (c): schematic representation of

SAPHIR-CALIPSO co-location: M = 1, ...,N SAPHIR measurements at coarse resolution encapsulating m = 1, ...,n(M) finely-resolved

CALIPSO observations.
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Figure 2. Reconstructed SR profiles for a selection of CALIPSO samples in the Indian Ocean, July 2013 (top) and co-located RH

observations from SAPHIR (mean and uncertainty (standard deviation), middle and bottom). As in Chepfer et al. (2010), SR > 5 correspond

to cloudy observations, 0 < SR < 0.01 (light yellow) correspond to fully attenuated observations, and 1.2 < SR < 5 (grey) correspond to

unclassified observations. Note that the reconstructed SR were only used for layers indicating clouds to avoid mixing of cloud and clear sky

values. The x-axis represents the co-location index.
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Figure 3. Mean SR profile per cluster for different choices of the clustering method (Indian Ocean, July 2013). (a): Mean SR profile per

cluster obtained by a k-means classification setting k=8. (b): as (a) but setting k=13. (c): Mean SR profiles per cluster derived by combining

the cloud phase flags in Cesana and Chepfer (2013). ICE: observations classified as ice only. LIQUID: observations classified as liquid only.

MIX: profiles containing SR values derived by averaging observations classified as liquid and observations classified as ice. UNDEFINED:

observations for which the cloud phase flag in Chepfer et al. (2010) is ‘undefined’, ‘horizontally oriented’ or ‘unphysical’. The cluster type

is then defined as the combination of these flags. Profiles characterized by other combinations of flags (e.g. FALSE LIQUID, FALSE ICE,

etc.) correspond to less than 250 observations and have been omitted. Selected anvil-type clusters are outlined by a red square.
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Figure 4. CRPSS score for ice cloud profiles (k=8) in the Indian Ocean, July 2013: QRF (red solid line), RF (blue dashed line), GAM (dark

grey solid line), GAM with GMRF smoother (light grey solid line) and with the geoadditive method (green solid line). The dots at the top of

each panel indicate the median of the distribution. Predictions are from the validation set within a 5-fold cross validation scheme.
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Figure 5. Scatter plot of the median of the predicted distribution vs. observed RH for ice cloud profiles (k=8) in the Indian Ocean, July

2013. Predictions are made using the QRF method and are from the validation set within a 5-fold cross validation scheme. R2 is computed

as 1−
∑

i(yi− ŷi)∑
i(yi− y)2

where the yi represent SAPHIR observations with mean y and ŷi are the cross-validation predictions.
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Figure 6. Variable importance (QRF method) for the predicted RH for ice cloud profiles (k=8) in the Indian Ocean, July 2013.
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Figure 7. CRPSS score for ice cloud profiles (QRF method): Indian Ocean, July 2013 setting k=8 (red solid line) and setting k=13 (blue

dashed line); Indian Ocean, January 2013 setting k=8 (dark grey solid line); Pacific Ocean, July 2013 setting k=8 (light grey solid line). The

dots at the top of each panel indicate the median of the distribution.
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Figure 8. (a): SR profiles for a selection of ice cloud profiles from CALIPSO in the Indian Ocean, July 2013. The selected cloud profiles

correspond to SAPHIR pixels with n(M) > 25. The scale is the same as in Fig. 2. (b): Co-located layered-RH observations from SAPHIR

(mean). (c): Predicted layered-RH using the QRF method within the iterative scheme (median). (d): as (c) but for the interquartile range

instead of the median. (e): for each layer, absolute difference between the observed RH from SAPHIR and the average over each SAPHIR

pixel of the predicted RH . The x-axis represents the co-location index.
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Figure 9. Example of predicted RH for a single SAPHIR pixel corresponding to ice cloud profiles using the QRF method (top, median) and

the geoadditive model (bottom) within the iterative scheme.
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Model Model type Spatial Correlation Prediction type

RF Non-parametric - Conditional mean

QRF Non-parametric - Conditional quantiles

GAM Semi-parametric - Conditional mean

GAM with GMRF smoother Semi-parametric Neighbour structure Conditional mean

Geoadditive Semi-parametric Exponential correlation function Conditional mean

Table 1. Summary of the regression models tested in this study.
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