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Abstract We develop an efficient computational model for simulating fluid invasion patterns emerging
in variable aperture fractures. This two-dimensional model takes into account the effect of capillary force
on the fluid-fluid interfaces and viscous pressure drop in both fluid phases. The pressure distribution is
solved at each time step based on mass balance and local cubic law, considering an imposed pressure
jump condition at the fluid-fluid interface. This pressure jump corresponds to the Laplace pressure
which includes both terms related to the out-of-plane (aperture-spanning) curvature and to the in-plane
curvature. Simulating a configuration that emulates viscous fingering in two-dimensional random porous
media confirms that the model accounts properly for the role of viscous forces. Furthermore, direct
comparison with previously obtained experimental results shows that the model reproduces the observed
drainage patterns in a rough fracture reasonably well. The evolutions of tip location, the inlet pressures,
and the invading phase fractal dimensions are analyzed to characterize the transition from capillary
fingering to viscous fingering regimes. A radial injection scenario of immiscible invasion is also studied
with varying modified capillary number and viscosity ratio, showing displacement patterns ranging from
capillary fingering to viscous fingering to stable displacement. Such simulations using two contact angles
show that the invading phase becomes more compact when the wetting condition changes from strong to
weak drainage, as already observed in 2-D porous media. The model can be used to bridge the gap in spatial
scales of two-phase flow between pore-scale modeling approaches and the continuum Darcy-scale models.

Plain Language Summary The flow of two or more fluids in fractured media is an important
process involved in many industrial and environmental applications in the subsurface with examples
spanning from contaminant transport to petroleum recovery to geological storage of carbon dioxide.
Understanding and controlling two-phase flow in fractures is critical from both the scientific and
technological points of view. In this study, we focus on the displacement of one fluid by another immiscible
one in a rough fracture, a fundamental process underlying two-phase flow in fractured media. We develop
an efficient computational model for simulating fluid invasion patterns emerging in rough fractures. This
model takes into account the effect of capillary force on the fluid-fluid interfaces and viscous pressure drop
in both fluid phases. Direct comparison with experimental results shows that the model output matches the
observed patterns reasonably well. In addition, generic simulations demonstrate the ability of the model
to produce flow patterns that fall into regimes whose dependence on the viscosity ratio and capillary
number is similar to that of the classical phase diagram. The model can be used to bridge the gap in spatial
scales of two-phase flow between pore-scale modeling approaches and the continuum Darcy-scale models.

1. Introduction
The flow of two or more fluids in fractured media is an important process involved in many industrial
and environmental applications in the subsurface with examples spanning from contaminant transport
to petroleum recovery and from geological storage of CO2 to geothermal energy exploitation. In uncon-
ventional reservoirs, two-phase flow in hydraulic fractures plays a key role in the recovery of gas and the
flow-back (and the disappearance) of fracturing fluids (Edwards et al., 2017). In groundwater formations,
fractured rocks contaminated by nonaqueous phase liquids have been identified as the most difficult cate-

RESEARCH ARTICLE
10.1029/2018WR024045

Key Points:
• An efficient, intermediate-scale

model is developed for dynamic,
immiscible displacement in rough
geological fractures

• The model reproduces essential
features of experimentally observed
drainage patterns from capillary to
viscous fingering

• The model is advantageous over
CFD approaches in computational
efficiency and accuracy, especially
in low to medium capillary number
flows

Supporting Information:
• Supporting Information S1
• Data Set S1

Correspondence to:
Z. Yang and Y.-F. Chen,
zbyang@whu.edu.cn;
csyfchen@whu.edu.cn

Citation:
Yang, Z., Méheust, Y., Neuweiler, I.,
Hu, R., Niemi, A., & Chen, Y.-F.
(2019). Modeling immiscible
two-phase flow in rough fractures
from capillary to viscous fingering.
Water Resources Research, 55.
https://doi.org/10.1029/2018WR024045

Received 5 SEP 2018
Accepted 18 FEB 2019
Accepted article online 25 FEB 2019

©2019. American Geophysical Union.
All Rights Reserved.

YANG ET AL. 1

http://publications.agu.org/journals/
https://orcid.org/0000-0002-2296-050X
https://orcid.org/0000-0003-1284-3251
https://orcid.org/0000-0003-2328-7035
https://orcid.org/0000-0003-2324-0026
https://orcid.org/0000-0001-9104-4401
http://dx.doi.org/10.1029/2018WR024045
http://dx.doi.org/10.1029/2018WR024045
https://doi.org/10.1029/2018WR024045


Water Resources Research 10.1029/2018WR024045

gory of sites for remediation and management (NRC, 2005). In remediation the challenge stems mainly from
the large uncertainty in predicting the spatial location and distribution of the contaminant and the difficulty
in effectively delivering the remediation agent (Yang, Niemi, Fagerlund, Illangasekare, & Detwiler, 2013;
Yeo et al., 2003). In geological sequestration, two-phase flow in fractures arises from potential CO2 leakage
through natural fractures in the caprock initially saturated with brine (Huang et al., 2015). Understanding
and controlling two-phase flow in fractures is therefore critical from both the scientific and technological
points of view. In this study, we focus on the displacement of one fluid by another immiscible one (immis-
cible displacement) in a single fracture, a fundamental process underlying two-phase flow in fractured
media.

Immiscible two-phase flow in rock fractures is controlled by the interplay between capillary, gravitational,
and viscous forces, as well as inertia (Detwiler et al., 2009; Glass et al., 1998; Loggia et al., 2009), as is the
case for two-dimensional porous media (Méheust et al., 2002; Toussaint et al., 2012). This interplay is in turn
influenced by the wetting condition and the aperture variability associated with fracture wall roughness
(Auradou, 2009; Glass et al., 2003; Yang et al., 2016). In the absence of strong gravity effects (e.g., if the frac-
ture plane is horizontal), the flow is controlled by capillary and viscous effects. For porous media, the seminal
work of Lenormand et al. (1988) elucidated the mechanisms behind the three observed flow regimes, cap-
illary fingering, viscous fingering, and stable displacement, and presented a phase diagram mapping these
three patterns in the Ca–M plane. Here Ca = 𝜇invV∕𝛾 is the dimensionless capillary number, which charac-
terizes the relative importance of capillary and viscous forces, and M = 𝜇inv∕𝜇def is the viscosity ratio; 𝜇inv
and 𝜇def are the viscosity of the invading and defending phase, respectively; V is the average flow velocity;
and 𝛾 is the interfacial tension.

Under the influence of gravity/buoyancy, experimental work using water and oil as the fluid-pair has
shown that two-phase flow regimes can range from unstable, tortuous fingers and random clusters to sta-
ble, piston-like displacement with trapping (Loggia et al., 2009), depending on different combinations of
the dimensionless Bond numbers and capillary numbers; the former compares buoyancy to capillary forces
and the latter compares viscous to capillary forces. Observations of unsaturated flow in fractures, that is,
the much more viscous, denser water, infiltrating and displacing the nonwetting fluid air of small viscosity
and negligible density, have revealed a wide range of unstable flow dynamics, including continuous rivulet
(Kneafsey & Pruess, 1998), intermittent or snapping rivulets (Su et al., 2001, 2004), film flow (Tokunaga &
Wan, 1997), and sliding drops (Kordilla et al., 2017).

For horizontal fractures, a number of experimental studies on two-phase flow have been reported over the
past two to three decades (e.g., Amundsen et al., 1999; Arshadi et al., 2018; C.-Y. Chen & Horne, 2006;
Y.-F. Chen et al., 2017; Ferer et al., 2011; Fourar et al., 1993; Huo & Benson, 2016; Hu, Wu, et al., 2018; Karpyn
& Piri, 2007; Neuweiler et al., 2004; Persoff & Pruess, 1995; Pyrak-Nolte et al., 1992; Reitsma & Kueper, 1994;
Watanabe et al., 2015). Many of these studies have focused on pursuing suitable continuum/Darcy-scale
descriptions (i.e., capillary pressure and relative permeabililities as a function of saturation) using natural
rock fractures (e.g., Arshadi et al., 2018; Huo & Benson, 2016; Reitsma & Kueper, 1994; Watanabe et al.,
2015) or their transparent replicas (e.g., Nowamooz et al., 2009; Persoff & Pruess, 1995; Pyrak-Nolte et al.,
1992). The obtained capillary pressure and relative permeability relationships are particularly useful when
one needs to predict two-phase flow behavior at the field scale, where the fine details at the subfracture
scale will be difficult to incorporate. However, since the connectivity and arrangement of phases control
how fluids flow (Blunt, 2017), those constitutive relationships are themselves dependent on the fluid phase
configuration within a considered volume for averaging. The phase configuration is in turn governed by
the interplay between various forces at the microscale. It is thus expected that the flow regimes dictated
by the capillary number and viscosity ratio will impact the empirical constitutive relationships or even in
some cases impair the construction of these relationships. In order to study the flow regimes under various
capillary numbers and viscosity ratios in a geological fracture, Y.-F. Chen et al. (2017) recently carried out
a systematic study of the transition from capillary fingering to viscous fingering using visualization of flow
experiments in a transparent replica of the fracture. Hu, Wu, et al. (2018) analyzed the energy conversion and
dissipation during imbibition in a rough fracture and linked flow regime transition to energy conversion.

Various numerical approaches have been proposed to simulate the flow patterns emerging during immisci-
ble displacement in rough-walled fractures. For quasi-static displacement where capillary forces dominate
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viscous forces, the invasion percolation model (Chandler et al., 1982; Wilkinson & Willemsen, 1983)
originally proposed for porous media flow has been modified to include the effect of fragmentation
(Amundsen et al., 1999) and the effect of the minor principle interfacial curvature, commonly referred to as
the in-plane curvature (Glass et al., 1998; Neuweiler et al., 2004; Yang et al., 2012). Due to its smoothening
effect, the in-plane curvature has been shown to strongly influence the invasion dynamics (Glass et al., 2003;
Yang et al., 2016). Another type of quasi-static model applied to studying immiscible displacement in fracture
is the level set method-based progressive quasi-static model (Tokan-Lawal et al., 2015). In the abovemen-
tioned quasi-static approaches, the viscous effects are ignored, and thus these models are generally limited
to capillary-dominated conditions, corresponding to sufficiently small capillary numbers.

As the flow rate increases, viscous effects become comparable to capillary effects, and the viscous pres-
sure drop must be taken into account in numerical models of immiscible displacement in a fracture.
Consequently, the pressure field and the fluid interface displacement have to be solved simultaneously at
any time. One common approach consists in modifying the traditional continuum two-phase flow model
(based on the continuity equations and Darcy's laws for both phases) to include the fracture geometry
and aperture variability as well as the associated aperture-induced capillarity (Murphy & Thomson, 1993;
Yang, Niemi, Fagerlund, & Illangasekare, 2013). A disadvantage of this approach is that it cannot account for
the effect of the in-plane interface curvature. Another approach is to transform the fracture void space into a
pore-network and thus apply dynamic pore-network models to simulate fluid invasion in the fracture (e.g.,
Ferer et al., 2011; Hughes & Blunt, 2001; Karpyn & Piri, 2007). However, the definition of a pore-network that
would be the hydraulic equivalent of a given fracture is not straightforward. In addition, such models lack
a realistic inclusion of the effect of in-plane curvature. In recent years, with the ever-increasing computing
power and parallelization, a number of studies have resorted to highly resolved first principle modeling of
fluid flow and fluid-fluid interface displacement based on, for example, computational fluid dynamics (CFD)
simulations with interface capturing/tracking techniques (e.g., Basirat et al., 2017; Y.-F. Chen et al., 2018;
Ferrari & Lunati, 2013; Meakin & Tartakovsky, 2009), lattice Boltzmann simulations (e.g., Dou et al., 2013),
and smoothed particle hydrodynamics (e.g., Tartakovsky & Meakin, 2005). Despite the advances in these
highly resolved subpore-scale simulation methods, in general it remains computationally very expensive,
often to the point of being restrictive, to reliably simulate two-phase flow in a variable aperture fracture
of a reasonable size, even with parallelization using many cores. For example, a fracture of size 1 × 1 cm
and mean aperture 200 𝜇m already results in 2,500,000 grid cells of size 20 𝜇m. Simulations of two-phase
flow in rough-walled fractures of this size (1 × 1 cm) fall quite short of upscaling purposes. In addition, it
is still challenging for CFD techniques to accurately model the immiscible fluid-fluid displacement at the
pore scale in capillary driven flows, due to the spurious currents or “parasitic” velocities introduced during
the computation of the interface curvature (Y.-F. Chen et al., 2018; Roman et al., 2016). Therefore, there is
a strong need to develop efficient, reliable models of immiscible displacement in fractures that can capture
the essential physics of the interplay between the different forces and simulate two-phase flow in systems
sufficiently large for upscaling purposes.

Successful direct comparison between experimental invasion patterns and patterns obtained from numerical
simulations are rarely reported (with notable exceptions, e.g., the study by Ferrari et al., 2015, in 2-D porous
media and Y.-F. Chen et al., 2018, in a 3-D rough fracture), specially if they are performed over a wide range of
capillary numbers and viscosity ratios. In this study we develop a new computational model capable of pre-
dicting fluid-fluid displacement in variable aperture fractures in the full range of viscosity ratios and various
wetting angles normally encountered in the subsurface. This two-dimensional (2-D) model accounts for the
effect of capillary force on the fluid-fluid interfaces and viscous pressure drop in both phases. One of its main
strengths is its computational efficiency, in particular at relatively large capillary numbers for which viscous
forces play an important role in controlling the geometry of the invasion pattern. To validate the model, we
use recently published experimental observations (Y.-F. Chen et al., 2017). In the following we first describe
the model in detail. We then use the model to simulate fluid displacement in a horizontal fracture and con-
front the results to experimental data (Y.-F. Chen et al., 2017) obtained in the same fracture geometry, under
various capillary numbers and viscosity ratios. We also apply the model to simulating immiscible two-phase
in a radial injection scenario and analyze the impact of the contact angle on the displacement patterns.
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Figure 1. Calculation scheme for modeling the fluid-fluid displacement in a variable aperture fracture. The states of
the model are given by pressure p and fluid volume fraction f at each site. The interface is explicitly tracked, and the
curvatures (and thus the local capillary pressure) along the interface are calculated. The numerical procedure updates
p and f in discrete time steps until a preset exit condition is met.

2. Methods
2.1. Model Development
In this section, we describe the numerical model in detail, including (i) the overall calculation procedure
for fluid-fluid displacement (see Figure 1), (ii) the discretization of the space between the fracture walls,
(iii) the tracking of fluid-fluid interfaces and the calculation of interfacial curvatures, (iv) the procedure for
computing the pressure distribution in the fracture, and the rules of fluid invasion and interface advance-
ment. We are mainly interested in the interplay between the capillary forces and the viscous forces. Gravity
and inertia are not considered in the model. Film flows and corner flows are neglected. Contact pinning and
hysteresis are not accounted for either.
2.1.1. Representation of a Rough-Walled Fracture
Natural fractures have variable apertures. We represent the space between the fracture walls as an ensemble
of parallelepipedic boxes, positioned on a 2-D lattice over the facture plane. The projection on the fracture
plane of one of these “local parallel plates” is denoted by site in the following. The position of each site is
referenced by indices i and j along the x and y directions, respectively. Each of these sites is characterized by
its horizontal size l (identical along the x and y directions and identical for all sites) and the associated aper-
ture bi,j, which is the height of the corresponding parallelepipedic box, as well as by connections to its four
neighbors with connection areas Ai,𝑗− , Ai,𝑗+ , Ai− ,𝑗 , and Ai+ ,𝑗 . The connection areas are calculated by multi-
plying the site length l by the smaller of the two neighboring apertures; for example, Ai,𝑗− = l min(bi,𝑗 , bi,𝑗−1).
See Figure 2 for a schematic of the lattice representation. The domain has dimensions Lx × Ly = nxl × nyl,
where nx and ny are the number of sites in the x and y directions, respectively. The total volume V of the
fracture void space is LxL𝑦b̄, where b̄ is the arithmetic mean of the aperture distribution.
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Figure 2. Schematic of the lattice representation of the space between the fracture walls.

2.1.2. Curvatures of Interface and Capillary Pressure Jump
The capillary pressure threshold pc at a given site (xint, yint) of the interface is calculated locally according to
the Young-Laplace equation as

pc(xint, 𝑦int) = 𝛾

(
1

r1(xint, 𝑦int)
+ 1

r2(xint, 𝑦int)

)
= 𝛾

(
2 cos 𝜃

b(xint, 𝑦int)
+ 1

r2(xint, 𝑦int)

)
, (1)

where 𝛾 is the interfacial tension, r1 and r2 are the two principal radii of curvature at the position considered,
b is the local aperture, and 𝜃 is the equilibrium contact angle. This capillary pressure threshold is in effect
the pressure jump that would exist across the interface if it were locally at equilibrium (i.e., not moving) at
this site. It thus corresponds to the threshold value that has to be overcome for the interface to be displaced at
the interface site in question. Note that in this model, an interface site is defined as a site that is adjacent to a
fully invaded site and contains any nonzero volume of the defending fluid. Following previous works (Glass
et al., 1998; Neuweiler et al., 2004; Yang et al., 2012), 1∕r1 is referred to as out-of-plane (aperture-spanning)
curvature and 1∕r2 as in-plane curvature. See Figure 3 for a schematic of the interfacial curvatures. Note that
the in-plane curvature depends on the interface configuration in the direction of the mean fracture plane and
needs to be updated whenever the fluid-fluid interface has evolved during the immiscible displacement (the
interface evolution resulting from the displacement at each step is described below in section 2.1.4). Hence,
the in-plane curvatures contribute nonlocally to the interfacial tension, and the capillary pressure threshold
is thus not solely controlled by the local fracture geometry, but also by the history of the displacement.
To track the in-plane curvature evolution, we use the algorithm of Yang et al. (2012), which dynamically
computes the radius of in-plane curvature along the interface by circle fitting. In the calculation of capillary
pressure threshold for each interface site, we set the location of the in-plane curvature at the connection
between a fully invaded site and a noninvaded or partially invaded site. Note that for simplicity we only
update the local interface location when a site is completely filled.
2.1.3. Solution of Pressure Distribution
We solve the two-dimensional pressure distribution in the fracture via a finite volume scheme (i.e., fluxes
are defined on the faces of grid-blocks and pressure is solved at the center of grid-blocks or sites), taking

Figure 3. Schematic of the fluid-fluid interface in a fracture, featuring the in-plane and out-of-plane curvatures.
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into account the capillary pressure jump at the fluid-fluid interface. The viscosities of the invading and the
defending fluids are 𝜇inv and 𝜇def, respectively. The two fluids are assumed immiscible, and plane Poiseuille
flow (i.e., a parabolic velocity profiles between the plates) is assumed valid locally within each site box. If no
fluid-fluid interface (and hence, no capillary pressure) has to be considered at the connection between two
neighboring aperture sites, (i, j) and (i, j+), the flow rate q across that connection is related to the viscous
pressure drop (pi,j − pi,j + 1) between the two sites and the conductance C of the connection according to

qi,𝑗+ = Ci,𝑗+
pi,𝑗 − pi,𝑗+1

l
, (2)

where p is the pressure and l is the grid length. If a fluid-fluid interface has to be considered at the connection
between the two sites, the calculation of the local flow rate q must take into account a capillary pressure
threshold defined by equation (2), as follows:

qi,𝑗+ = Ci,𝑗+
max(0, pinv

i,𝑗 − pdef
i,𝑗+1 − pc

i,𝑗+ )

l
Âă , (3)

where pinv
i,𝑗 is the pressure at the invading site (i, j) and pdef

i,𝑗+1 is the pressure at the defending site (i, j + 1).
Similarly, equations (2) and (3) can be written for qi,𝑗− , qi− ,𝑗 , and qi+ ,𝑗 . The flux equation, equation (3), is
nonlinear in the sense that the interface does not move if the pressure drop is smaller than the capillary
pressure threshold. The capillary pressure threshold pc

i,𝑗+ (and similarly, pc
i,𝑗− , pc

i− ,𝑗 , and pc
i+ ,𝑗) is calculated

based on equation (1) if the connection (i, j−) is occupied by a fluid-fluid interface. Otherwise, pc
i,𝑗+ = 0. The

conductance Ci,𝑗+ (and similarly, Ci,𝑗− , Ci− ,𝑗 , and Ci+ ,𝑗) is given by

Ci,𝑗+ = (2Ai,𝑗+ )∕
(
𝜇i,𝑗

ki,𝑗
+

𝜇i,𝑗+1

ki,𝑗+1

)
, (4)

where ki,j and ki,j + 1 are the permeabilities (k = b2∕12) and 𝜇i,j and 𝜇i,j + 1 are the averaged viscosity weighted
by the volume fraction of each phase at site (i, j) and (i, j + 1), respectively.

Based on the incompressible fluid assumption, we can now write the general volume conservation equation
for each aperture site (i, j):

qi− ,𝑗 + qi+ ,𝑗 + qi,𝑗− + qi,𝑗+ = Qi,𝑗 , (5)

where Qi,j is a source term for site (i, j). As the fluids are assumed incompressible, source flux terms appear
only at the boundaries of the domain. Writing equation (5) for all sites and putting in the flux equations 2
and (3) gives a system of equations which need to be solved for the pressure distribution, given a certain set
of conditions at the boundaries of the domain. A complication arises due to the capillary pressure jump con-
dition at fluid-fluid interfaces as one substitutes the nonlinear flux equation, equation (3) into equation (5).
The max function prevents a direct solution of the pressure from equation (5). Hence, we use an iterative
approach to obtain the pressure solution of equation (5). Indeed, at each time step we use the pressure dis-
tribution from the last time step to evaluate the max function at all grids along the fluid-fluid interface, that
is, to determine whether the interfacial flux at each connection is zero or positive. With this information
we solve the conservation equation (5) for pressure and update the signs and values of the interfacial fluxes.
This process is repeated niter (number of iterations) times until a satisfactory pressure solution is obtained.
One can check the pressure field convergence by using the criterion ||pnew − pold∕||pold < 𝜀, where 𝜀 is
a tolerance and pold and pnew are the pressure solution before and after an iteration, respectively. We have
tested the effect of niter on the displacement patterns and we find that the difference between the simu-
lated patterns obtained with a fixed niter = 4 and with a tolerance 𝜀 = 10−4 are satisfactorily small (see
supporting information Figures S1–S2). In this study, we use a fixed niter = 4 for simulations of the exper-
imental configurations and a parametric investigation where the viscosity ratio, the capillary number, and
the contact angle are varied. As a reference, the pore-network simulations of Lenormand et al. (1988) used
four iterations to obtain the pressure solution at each time step.
2.1.4. Flow Rules
2.1.4.1. Front advancement:
The iterative solution of the volume conservation equation gives a pressure field, from which we explicitly
compute the fluxes along the fluid-fluid interface using equation (3). At the start of each time step, we know
the fraction of the volume occupied by the invading fluid fi,j at each site (i, j). Knowing the invading status
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Figure 4. (a) Aperture field (of standard deviation 0.12 mm) and boundary
conditions used to simulate the parallel flow experimental configuration of
Y.-F. Chen et al. (2017) and confront its results to their experimental
measurements; (b) aperture field and boundary conditions used for the
simulations of a radial injection scenario.

and fluxes at all interfacial sites, we can evaluate the time required to fill
each interfacial site box. The time step𝛥t is then calculated as the smallest
time required to completely fill one interfacial site box. The invading fluid
flows into all interface sites (0 < f < 1) that have at least one connection
with a positive flow rate, until one of the interface sites reaches f = 1.
The change in volume fraction 𝛥fi,j for each interface site (i, j) due to fluid
invasion at each time step is calculated as

Δ𝑓i,𝑗 =
Σqinterf

i,𝑗 Δt

Vi,𝑗
, (6)

where Vi,j is the volume of parallelepipedic box associated to the local site
and Σqinterf

i,𝑗 represents the sum of the interfacial fluxes from the invad-
ing neighbors to the local defending site (i, j). During drainage, when
the injection rate or the injection pressure is low, Σqinterf

i,𝑗 can be zero at
many sites if there is a large capillary resistance. When f reaches 1 at one
site, the interface location is updated accordingly. After each time step,
we update the fluid-fluid interface and recalculate the capillary pressure
threshold across the interface according to equation (1). Note that for sim-
plicity, we do not consider the influence of partially invaded sites on the
capillary pressure thresholds, since the exact configuration of fluid distri-
bution in a partially invaded site is unknown and could in any case only
be approximated. It is further assumed that once a site is fully invaded,
it remains fully invaded at all subsequent time steps. In other words,
counterinvasion is not allowed, which is a simplifying assumption to ease
the implementation of the algorithm in terms of trapping and interface
tracking.
2.1.4.2. Trapping rules:
Trapping of the defending fluid, at or above the length scale of a site, is

taken into account (Yang et al., 2016); this means that the defending fluid-occupied sites that are surrounded
by the invading fluid become uninvadable, stationary blobs. An efficient bidirectional search algorithm is
implemented to check the trapping condition after each time step. Note that in this model, we do not consider
remobilization of the trapped defending phase.

2.2. Brief Description of the Experiment
In section 3.2 below we confront recently published experimental data (Y.-F. Chen et al., 2017) to
numerical simulations of the experimental geometry. Here, we briefly describe these experiments.
Y.-F. Chen et al. (2017) carried out visualization experiments of immiscible displacement using transpar-
ent resin replicas of a rock fracture obtained from a Brazilian test. The transparent fracture had rough walls
and a mean aperture of 0.66 mm measured by the total fluid volume method. The reported standard devi-
ation of the aperture field was 0.12 mm. This standard deviation was considered an underestimation due
to the inaccurate aperture calculations from the absorbed light by the dye. It is not possible to obtain the
exact standard deviation, but it is deemed reasonable that the real standard deviation could be at least 50%
higher. Therefore, in the simulations here, we also consider a second fracture geometry with a higher stan-
dard deviation of 0.18 mm. The aperture field with the higher standard deviation is obtained by scaling the
difference between the originally reported aperture field and its mean by a factor of 0.18∕0.12 = 1.5. Since
the fracture replicas were hydrophobic, the invading water was the nonwetting phase and the defending
fluid of silicone oil is the wetting phase, so all runs of the experiment were under drainage condition. Sili-
cone oils of different viscosities and different water injection rates were used, resulting in an experimental
parameter space encompassing various viscosity ratios and capillary numbers. The invading water entered
the fracture from its left edge through an inlet reservoir and displaced the defending silicone oil toward its
right edge subjected to atmospheric pressure conditions. The top and bottom edges of the domain were no
flow boundaries. The viscosity of water is lower than that of silicon oil, so that the displacement is expected
to generate fingering patterns both in the capillary- and the viscous-dominated flow regimes. The aperture
field (of standard deviation of 0.12 mm) and the boundary conditions are depicted in Figure 4a. The simula-
tion parameters are listed in Table 1. In the simulations, a flux boundary is applied at one side of the domain,
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Table 1
Parameters Used to Simulate the Experimental Parallel Flow Configuration

Parameters Value
Mean aperture ⟨b⟩ 0.66 mm
Aperture field standard deviation 𝜎b 0.12, 0.18 mm
Fracture size Lx ,Ly 200, 100 mm

Viscosity of silicone oil 𝜇def 500, 100 mPa·s
Viscosity of water 𝜇inv 1.0 mPa·s
Interfacial tension 𝛾 35.0 mN/m
Equilibrium contact angle 𝜃 46◦ (drainage)
Injection rate Q 0.01, 0.1, 0.3, 1, 10 ml/min
Capillary number log10Ca −7.07, −6.07, −5.59, −5.07, −4.07
Grid size of simulations l 0.4 mm

a constant pressure condition at the opposite side and no flow boundaries at the remaining sides. A column
of cells with large volume, representing the inlet reservoir, is placed at the constant flux boundary side. Due
to the small resistance of these cells, the fluid pressure does not vary much between these cells. The fluxes
into the individual adjacent cells in the fracture are determined by the capillary pressure thresholds and the
pressure gradients from the inlet cells to the adjacent cells.

2.3. Simulations of a Radial Injection Scenario
In addition to the validation of the numerical model by comparison to parallel flow experiments, we have
simulated immiscible displacement in a scenario where the injection happens at the center of the fracture
domain. In these radial injection simulations, spatially correlated random aperture fields have been gener-
ated according to the model proposed by Brown (1995). The topography of the fracture wall surfaces has a
power spectrum of the form

G(𝜉x, 𝜉𝑦) ∝ (𝜉2
x + 𝜉2

𝑦
)−(H+ 1

2 ), (7)

where 𝜉x and 𝜉y are the wave numbers in the x and y dimensions, H is the Hurst exponent, which is charac-
teristic of the fracture walls' self-affinity (H = 0.8 here). An inverse fast Fourier transform method is used to
generate the topography of these walls. We define a cutoff wave number (spatial frequency) 𝜉c below which
two rough-wall surfaces have identical Fourier spectra. This way, the two surfaces are matched at small wave
numbers (i.e., long wave lengths), resulting in apertures (gaps between two surfaces) that are spatially cor-
related at length smaller than a correlation length lc ∝ 1∕𝜉c, and do not vary significantly above that length.
We set the mean and the standard deviation of apertures to be ⟨b⟩ = 200 𝜇m and 𝜎b = 40 𝜇m, respectively.
We first generate an aperture field of 256 × 256 and then consider only the region inside a circle of radius
D∕2. The aperture field and the associated boundary conditions for flow are depicted in Figure 4b. Compared

Table 2
Parameters Used for Simulations of the Radial Scenario

Parameters Value
Fracture aperture b, (mean ± std) (0.2 ± 0.04) mm
Fracture size D 51.2 mm
Cutoff wave number 𝜉c 16
Hurst exponent H 0.8
Viscosity ratio M = 𝜇inv∕𝜇def 0.005, 0.05, 0.5, 5
Interfacial tension 𝛾 35.0 mN/m
Equilibrium contact angle 𝜃 0◦, 60◦ (drainage)
Injection rate Q 0.01, 0.1, 1, 10, 100 ml/min
Capillary number (radial) log10Ca∗ −6.83, −5.83, −4.83, −3.83, −2.83
Grid size l 0.2 mm
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Figure 5. (a) Invasion pattern obtained when simulating high M drainage in a geometry analogous to that of a 2-D
random porous medium (of width W and length L, 256*512 pixel units) and without accounting for the in-plane
curvature contribution in the capillary pressure. (b) Average box-counting plot obtained from eight independent
simulations similar to that of (a). (c) Average map of the occupancy probability in the reference frame of the most
advanced fingertip, obtained from these eight experiments. (d) Transverse profile of the occupancy probability map (c),
obtained by averaging it along the longitudinal direction; the width at half-maximum of the profile filtered for high
wavelength noise is 0.39.

with the aperture field measured in the experiment, the synthetic aperture field here has a well-defined spa-
tial correlation and a smaller mean aperture, while the coefficient of variation 𝜎b∕⟨b⟩ is almost the same.
The parameters used for the simulations in this scenario are listed in Table 2.

3. Results
3.1. Simulation of Viscous Fingering in a Random Noncorrelated Aperture Field
In order to validate the model and show that it accounts for viscous effects properly, we first consider high
capillary number drainage (log10Ca = −3.7) in a random, Gaussian, aperture field that has no spatial cor-
relations, and in which 25% of the grid sites have been assigned a zero aperture. We thus consider fracture
configurations that are akin to a two-dimensional porous medium. We furthermore deliberately turn off the
accounting of the capillary pressure contribution from the in-plane curvature, and consider a large viscosity
ratio M = 1, 000. We thus expect to address flow phenomenologies that are perfectly analogous to viscous
fingering at large M in random two-dimensional porous media. The properties of invasion patterns obtained
in such configuration, such as the one shown in Figure 5a, are well known, in particular we expect a fractal
dimension close to 1.62 (as first measured by Måløy et al., 1985, with a 0.04 uncertainty), and the dynamics
of the growth process has been studied in detail by Løvoll et al. (2004) and Toussaint et al. (2005). From eight
different porous media of identical statistical properties, we measure the average box-counting curve shown
in Figure 5b, which yields a fractal dimension of 1.61 ± 0.03, in excellent agreement with the value from
the literature. From the eight independent numerical runs we also measure the average map of occupancy
probabilities 𝜋(x, y) for the displacing fluid in the reference frame attached to the tip of its most advanced
finger (see Toussaint et al., 2005). A cut of the 𝜋(x, y) topography (see Figure 5d) at its half-maximum value
provides the shape of the envelope of the flow pattern, which looks similar to a Saffman-Taylor finger but
with a width 0.39 W, where W is the width of the medium, as evidenced from the mean transverse cut of the
topography presented in Figure 5d. This value differs from the 0.5 W value expected for the Saffman-Taylor
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Figure 6. Immiscible displacement patterns at breakthrough for the case M = 1∕500. (a, d, g, j, and m) experimentally patterns observed for flow rate of 0.01,
0.1, 0.3, 1, 10 ml/min (corresponding to capillary numbers log10Ca = −7.07, −6.07, −5.59, −5.07, −4.07) from top to bottom. (b, e, h, k, and n) simulated
patterns obtained with the aperture field of standard deviation 0.12 mm. (c, f, i, l, and o) simulated patterns obtained with the aperture field of standard
deviation 0.18 mm. The flow rates are identical to those used in the experiments. Colors from blue to yellow represent invading times from start to
breakthrough.

configuration (i.e., in a parallel plate geometry; Saffman & Taylor, 1958). The width of the envelope has been
shown to be a subtle measure of the invasion dynamics, hence we demonstrate here that our numerical
model describes the action of viscous forces properly.

3.2. Comparison of Displacement Patterns Between Experiments and Simulations
Two sets of simulations are reported here, using two aperture fields of standard deviations 0.12 and 0.18 mm,
respectively. In the following, we refer to these two sets as simulation set 1 and simulation set 2. Figure 6
presents the comparison between experimental observations and simulated results in terms of the displace-
ment patterns at breakthrough for the case of a viscosity ratio M = 1/500. The capillary number spans three
orders of magnitude in these experiments, ranging from log10Ca = −7.07 to log10Ca = −4.07. It is shown
in Figure 6 that in general the numerical model is able to reproduce the essential features of experimen-
tally observed patterns using both aperture fields, of different standard deviations. In particular, both the
experiments and the simulations show that the invading finger of the nonwetting phase becomes thinner
as the capillary number (or flow rate) increases. When the capillary number is small (log10Ca < −5.59,
Figures 6a–6c), the invasion is dominated by capillary forces, and the invading nonwetting fluid tends to
occupy the large-aperture regions along the flow pathway, which is characteristic of capillary fingering. As
the capillary number gradually increases, viscous forces become more and more important compared to cap-
illary forces. When log10Ca ≥ −5.07 (Figures 6j–6l), the invasion pattern can be characterized as being in a
crossover regime according to Y.-F. Chen et al. (2017), thus approaching a viscous fingering regime. Compar-
ison between the two sets of simulations reveals that increasing the standard deviation of the aperture field
leads to displacement patterns that better match the experiment in terms of the front roughness and fluid
trapping. Note that it is not possible to match all the fine details of the patterns between the experiments and
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Figure 7. Immiscible displacement patterns at breakthrough for the case M = 1∕100. (a, d, g, j, and m) experimentally patterns observed for flow rate of 0.01,
0.1, 0.3, 1, 10 ml/min (corresponding to capillary numbers log10Ca = −7.07, −6.07, −5.59, −5.07, −4.07) from top to bottom. (b, e, h, k, and n) simulated
patterns obtained with the aperture field of standard deviation 0.12 mm. (c, f, i, l, and o) simulated patterns obtained with the aperture field of standard
deviation 0.18 mm. The flow rates are identical to those used in the experiments. Colors from blue to yellow represent invading times from start to
breakthrough.

the simulations, because the aperture field measurement technique induces measurements errors (Detwiler
et al., 1999; in addition to instrumental uncertainties on the measurements) and the invasion pathways are
sensitive to perturbations in the aperture field. This is no surprise as it was already shown, in similar unstable
flow configurations in two-dimensional porous media, that even uncertainties on an experimental geome-
try are sufficient to prevent full deterministic prediction of the displacement pattern by CFDs (Ferrari et al.,
2015). The simplifying assumptions relevant to the comparison between the simulated and experimentally
observed patterns will be discussed further in section 4.

For the case of M = 1/100, we have also compared the breakthrough displacement patterns between the
experiments and the simulations using the two aperture fields of different standard deviations (Figure 7).
It can be seen that again the simulated results show an overall good match with the experimental patterns.
The invasion patterns shift from capillary fingering regime at low capillary numbers (log10Ca < −5.07) to
a transitional regime at the much higher capillary number (log10Ca = −4.07). The capillary-dominated fin-
gering regime extends to a higher capillary number than in the previous case, which can be explained by
the smaller viscous effects at identical flow rate, resulting from the weaker viscosity contrast. It can also be
seen that the set of simulations using the aperture field of higher standard deviation results in a displace-
ment pattern that is more similar to the experimental pattern. In the following, we perform quantitative
comparison between the simulations and the experiment in terms of displacement efficiencies, invading tip
advancement, and fractal dimensions.
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Figure 8. Comparison of areal saturation at breakthrough for cases of (a) viscosity ratio M = 1∕100 and (b)
M = 1∕500. Two sets of simulations are shown with “Sim 1” (respectively, “Sim 2”) denoting those using the aperture
field of standard deviation 0.12 mm (respectively, 0.18 mm).

3.3. Displacement Efficiency
We now compare the displacement efficiency Ed between the simulations and the experiments; Ed is defined
as the ratio of the area occupied by the nonwetting phase at breakthrough to the total fracture area. In
other words, the displacement efficiency is equal to the areal saturation of the nonwetting phase (Sn) at
breakthrough time. Figure 8 shows that the evolution of the areal saturation with varying capillary number
predicted by the numerical simulations is generally consistent with the measurements for both cases of vis-
cosity ratio. The simulations with the aperture field of higher standard deviation give Sn values that match
the experiment more closely. For the case of M = 1/100 (Figure 8a), the relative error in areal saturation at
breakthrough for simulation set 2 (with higher aperture standard deviation) mostly ranges between 0.3%
and 12.5%, with the exception of log10Ca = −4.07 where the simulation strongly overestimates the areal
saturation due to the thicker fingers simulated. For the case of M = 1∕500 (Figure 8a), the saturation com-
parison is not as good as in the previous case; the relative error for simulation set 2 ranges between 15%
and 20% with the exception at log10Ca = −5.07 where the simulated fingers are thicker than those in the
experiment. Note that the saturation could also be computed by the volumetric way, that is volume of non-
wetting phase—computed as l2∑

(i,𝑗)in nw phaseai,𝑗—divided by total volume of the fracture at breakthrough.
This saturation is slightly higher (by 0.02–0.04) than the displacement efficiency (areal saturation) since the
nonwetting fluid prefers to occupy the large-aperture regions.

3.4. Invading Tip Advancement
The effect of the competition between capillary and viscous forces can also be studied by considering the
characteristics of the invading tip advancement along the x direction. Here we do so by plotting the normal-
ized invading phase saturation (Sinv∕max(Sinv)) as a function of the normalized tip location x∗tip = xtip∕Lx. In
Figure 9 such plots are shown both for the experiments (Figures 9a and 9b) and for the numerical results
(Figures 9c–9f), and for two viscosity ratios (Figures 9a, 9c, and 9e: M = 1∕100, Figures 9b, 9d, and 9f:
M = 1∕500). The behavior as seen in the simulations is generally consistent with that in the experiments.
For strongly capillary-dominated flows (e.g., log10Ca =−7.07), the Sinv–x∗tip curve is characterized by frequent
vertical jumps of various sizes controlled by the distribution of apertures in the fracture. In the simulations
with log10Ca = −7.07, the average size of largest five jumps in Sinv∕max(Sinv) is about 0.067 (for M = 1∕100)
and 0.055 (for M = 1∕500) for Simulation set 1 and 0.065 (for M = 1∕100) and 0.059 (for M = 1∕500) for
Simulation set 2. These results are in reasonably good agreement with the experiment (0.058 for M = 1∕100
and 0.069 for M = 1∕500). As the flow rate (capillary number) gradually increases, the jumps decrease in
size and eventually disappear for log10Ca = −4.07. Figure 9 also shows that the stronger the viscosity con-
trast, the smoother the Sinv–x∗tip curve for a given capillary number. The staircase-like structure of the Sinv–x∗tip
curve in the capillary-dominated invasion can be explained by the flow of the nonwetting invading phase
in all directions, especially in the transverse and backward directions, after the front overcomes a relatively
large capillary resistance of a narrow aperture site and sees connected large-aperture zones. Viscous forces
tend to smoothen the staircase-like structure, as they promote invasion toward the outlet and suppress the
front advancement in the transverse and backward directions to minimize viscous pressure drops from the
front to the outlet through the more viscous defending phase.
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Figure 9. Evolution of the normalized invading phase saturation (Sinv∕max(Sinv)) as a function of the normalized tip
location (x∗tip) in the experiments (a and b) and numerical simulations (c, d, e, and f) and for two viscosity ratios:
M = 1/100 and M = 1/500. Two sets of simulations are shown with “Sim 1” (respectively, “Sim 2”) denoting those
using the aperture field of standard deviation 0.12 mm (respectively, 0.18 mm).

3.5. Box-Counting Fractal Dimension
The invading patterns resulted from the competition between capillary and viscous forces exhibit differ-
ent space-filling characteristics which can be measured by fractal dimension. Figure 10 presents the fractal
dimension of the invading fluid calculated using the box-counting method. It can be seen that the simula-
tions well capture the general trend that the fractal dimension decreases with increasing capillary number.
For M = 1∕100, the fractal dimension for both the experiment and simulation drops from Df ≈ 1.84 at
log10Ca = −7.07 to Df ≈ 1.63 at log10Ca = −4.07. These fractal dimensions fall in the respective ranges of
values for the classical capillary fingering and viscous fingering regimes in 2-D porous media (see e.g., King,
1987; Måløy et al., 1985; Wilkinson & Willemsen, 1983). For M = 1∕500, the fractal dimensions show good
agreement between the experiment and the simulations for log10Ca ≤ −5.59. For the two high capillary
number cases, the match in fractal dimensions is not as good.
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Figure 10. Comparison of box-counting fractal dimension between experiments and simulations. Two sets of
simulations are shown with “Sim 1” (respectively, “Sim 2”) denoting those using the aperture field of standard
deviation 0.12 mm (respectively, 0.18 mm).

3.6. Fluid Pressure
Our numerical simulations provide information on fluid pressure distributions which could not be mea-
sured in the experiment. Here, we only show the simulated pressure distribution using the aperture field
with standard deviation of 0.18 mm, since the results for the low aperture standard deviation are similar.
Figure 11 presents the pressure distributions where a few observations can be made: (i) as expected, the
invading pressure and the pressure gradient are higher for flows with larger capillary numbers (note the
different colorbar scales); (ii) when the capillary number is very small (Figure 11a), the pressure is almost
uniform (pressure gradient 𝛥p is almost zero) within each phase, and the pressure difference between the
two phases is mostly equal to the capillary pressure at the interface; as the capillary number increases
(Figures 11c, 11e, 11g, and 11i), the pressure gradient within each viscous phase also increases; (iii) since
the viscosity is much larger in the defending phase than in the invading phase, the pressure drop is mainly
visible in the defending phase.

To better understand the competition between capillary and viscous forces, it is useful to compare the cap-
illary pressure with the viscous pressure drop over a certain length scale (e.g., the front width extension,
taken as the distance, in the x direction, between the advancing tip and the trailing front). The capillary
pressure calculated according to equation (1) using the mean aperture as a characteristic length is on the
order of 102 Pa. The capillary pressure variation over one standard deviation of the local apertures is about
35 Pa. The viscous pressure drop through the more viscous defending phase is proportional to the mean
flow velocity; for example, when log10Ca = −5.07 (V = 1.26 × 10−4), the viscous pressure drop is estimated
to be w𝑓𝜇de𝑓V∕k̄ = 35 Pa for a front width wf = Lx∕2 and choosing the viscosity to 𝜇def = 100 mPa·s.
These calculations indicate that for log10Ca ≤ −5.59 and M = 1/100, the flow is dominated by the capillary
forces. For log10Ca = −5.07, the viscous pressure drop is only comparable to the capillary pressure variation
at a length scale larger than Lx∕2, meaning that capillary forces have a stronger influence on the invasion
dynamics than viscous forces. Starting with the case of log10Ca = −4.07, the viscous forces will start to play
a more and more dominant role in shaping the invasion pattern.

The simulated pressure distributions for the case M = 1/500 are presented in Figure 12. Similar trends can
be noted as in the case of M = 1/100 (Figure 11), and are explained similarly (see above). However, with the
increased defending phase viscosity (𝜇def = 500 mPa·s), the viscous effect starts competing with the capillary
effect at a smaller capillary number (here at log10Ca =−5.07). The displacement patterns for log10Ca =−5.07
and −4.07 are in the transitional regime between capillary fingering and viscous fingering.

It is notable in Figures 11 and 12 that when the invading fluid has a much smaller viscosity than the defend-
ing phase, the pressure gradient in the invading fluid is negligible, even at high capillary numbers. Thus, in
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Figure 11. Simulated pressure distributions at two different stages of the displacement process for M = 1/100, and for
different capillary numbers (log10Ca = −7.07, −6.07, −5.59, −5.07, −4.07 from top to bottom). The aperture field
standard deviation is 0.18 mm. (a, c, e, g, and i) Pressure at an early stage of the invasion process, when fingers are
starting to develop; (b, d, f, h, and j) pressure at a later stage, when the prominent finger has developed and extended to
x∗tip > 0.5.

this case it is possible to simplify the solution of pressure distribution by assuming that the pressure is the
same as the inlet pressure through the invading phase of a high viscosity contrast.

It is also interesting to see how fluid pressure evolves during the whole invasion process. For this, we record
inlet pressure pin throughout the simulations (pin is calculated as the average of pressure of all inlet grids).
The inlet pressure also equals to the pressure difference between the inlet and outlet, considering that the
outlet pressure boundary is zero. Expectedly, the inlet pressure is higher for larger capillary numbers. For
the case M = 1/100 (Figure 13a), when log10Ca = −4.07 the inlet pressure decreases significantly as the
invading phase saturation increases until breakthrough. This is because the pressure gradient in the more
viscous defending phase decreases as the distance from the invading tip to the outlet is gradually shortened
due to the front advancement. As the capillary number decreases, capillary forces become more and more
important, leading to considerable relative fluctuations in the inlet pressure. In our model runs with constant
inflow rate, the inlet pressure oscillates as it must adjust to satisfy the capillary pressure jump conditions
along the fluid-fluid interface while the pressure distribution is solved in both phases. Qualitatively, one
can also distinguish the viscous-dominated displacement (log10Ca = −4.07) from capillary-dominated flow
(log10Ca <−5.07) by judging the fluctuation patterns in the inlet-outlet pressure difference and whether the
inlet pressure decreases substantially with flow.

For high capillary number flow (log10Ca = −4.07), when M = 1/500 (Figure 13b), the inlet pressure is
significantly higher (by a factor of 5) than that obtained in the case M = 1/100, because of the increased
defending phase viscosity, from 100 to 500 mPa·s. A comparison of Figures 13a and 13b also shows that
viscous-dominated flow starts to occur for a lower capillary number when the viscosity contrast is stronger,
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Figure 12. Simulated pressure distributions at two different stages of the displacement process for M = 1/500, and for
different capillary numbers (log10Ca = −7.07, −6.07, −5.59, −5.07, −4.07 from top to bottom). The aperture field
standard deviation is 0.18 mm. (a, c, e, g, and i) pressure at an earlier stage of the invasion process, when fingers are
just starting to develop; (b, d, f, h, and j): pressure at a later stage, when the prominent finger has developed and
extended to x∗tip > 0.5.

which is consistent with the observations of displacement patterns and with the theoretic phase diagram of
drainage in two-dimensional porous media (Lenormand et al., 1988).

3.7. Pattern Formation of Immiscible Displacement in Radial Scenario
Most of the experiments and simulations of two-phase flow in rough fractures in the literature have
employed a rectangular shape of the fracture domain, and usually, the boundaries have been set by injection

Figure 13. Evolution of inlet pressure with invading phase saturation viscosity ratios (a) M = 1/100 and (b) M = 1/500.
The aperture field's standard deviation is 0.18 mm.

YANG ET AL. 16



Water Resources Research 10.1029/2018WR024045

Figure 14. Immiscible displacement patterns at breakthrough for the radial injection scenario with contact angle = 0◦ (drainage). The injection rate increases
from bottom to top for each column. (a, e, i, m, and q) the viscosity ratio M = 0.005; (b, f, j, n, and r) M = 0.05; (c, g, k, o, and s) M = 0.5;(d, h, l, p, and t) M = 5.
Colors from blue to yellow represent invading times from early to late (breakthrough).
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Figure 15. Immiscible displacement patterns at breakthrough for the radial injection scenario with contact angle = 60◦ (drainage). The injection rate increases
from bottom to top for each column. (a, e, i, m, and q) the viscosity ratio M = 0.005; (b, f, j, n, and r) M = 0.05; (c, g, k, o, and s) M = 0.5;(d, h, l, p, and t) M = 5.
Colors from blue to yellow represent invading times from early to late (breakthrough).
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of the invading fluid at one edge with a fixed pressure value assigned to opposite edge, while other two edges
were no-flow boundaries. In this scenario, the fluid-fluid displacement is forced to occur along a preset direc-
tion. But in many practical subsurface injection scenarios, the displacement occurs in a radial setting. Here,
in addition to the scenario considered in the comparison and validation of the numerical model against
experiments, we simulate immiscible displacement in a scenario where the injection happens at the center
of the fracture domain. Since the flow diverges, a mean velocity cannot be calculated as in the parallel flow
configuration addressed in section 3.2. Here, we define the capillary number Ca∗ for the radial scenario as
Ca∗ = (𝜇invUinv)∕𝛾 with the characteristic invading velocity Uinv = Q∕(𝜋R0b̄) where Q is the injection rate,
R0 is a characteristic length here taken to be half of the radius of the domain, and b̄ is the mean aperture.

Figure 14 presents drainage patterns in the radial scenario simulated using different injection rates and
viscosity ratios under strong drainage condition (zero contact angle). We observe that the invading pattern
exhibits a higher degree of radial symmetry for larger capillary numbers. For the highest capillary number
considered (log10Ca∗ = −2.83, top row), the invading pattern shifts from viscous fingering at small viscosity
ratio (M = 0.005) to stable displacement at M > 1. For M = 0.005 (left column), the invading pattern
gradually changes from viscous fingering to capillary fingering. For high capillary numbers, the pattern
changes from fingering (viscous unstable) to compact (viscous stabilizing) with increasing M. In total, the
model produces a visual phase diagram for the radial scenario in the Ca∗-M space, covering the three regimes
of viscous-capillary flows.

Immiscible displacement patterns have been shown to be influenced by the wetting conditions (e.g., Dou
et al., 2013; Holtzman & Segre, 2015; Hu et al., 2017a, 2017b; Jung et al., 2016; Trojer et al., 2015). Here,
we have also simulated the displacement patterns under weak drainage condition (contact angle 60◦), as
shown in Figure 15. Again, the three regimes of stable displacement, viscous fingering, and capillary fin-
gering can be observed. Compared with the pattern for the strong drainage condition (Figure 14), we see
that generally, the invading phase is more compact in the weak drainage case. This behavior is due to
the interface-smoothening effect of the in-plane curvature (Glass et al., 2003; Yang et al., 2016), which is
analogous to the stabilization effect due to cooperative filling in porous media (Holtzman & Segre, 2015;
Hu, Wan, et al., 2018; Trojer et al., 2015). In fact, the simulated patterns with the strong viscosity con-
trast (M = 0.005) for both the strong and weak drainage cases qualitatively resemble those observed in the
experiment by Trojer et al. (2015) where M = 0.003.

4. Discussion
The key components of the numerical model presented here include (1) the calculation of the local capillary
pressure jump according to the Young-Laplace equation and (2) the computation of the pressure field and its
evolution as the interface advances based on mass balance and a quasi-steady assumption. We have shown
that this model, albeit simple, is capable of simulating immiscible displacement patterns for a range of flow
rates spanning over three orders of magnitude, and for immiscible fluids of arbitrary viscosity ratio. It is also
capable of accounting properly for capillary pressure resulting from the in-plane curvature of the interface.
It should be emphasized that the contribution of in-plane curvature to the local capillary pressure threshold
is important in invading patterns, especially in the low capillary number regime (Yang et al., 2016).

It should also be pointed out that in this model film flow and corner flow are not accounted for. According
to the experimental study by Zhao et al. (2016) on two-dimensional porous media consisting of cylindrical
pillars, performed with a ratio of the defending fluid's viscosity to that of the injected fluid of ∼340, film and
corner flow occurs for strong imbibition (i.e., when the displacing fluid wets the solid surfaces sufficienly
strongly) and this all the more as the capillary number is higher. The mechanism for this high velocity film
flow has been demonstrated by Levaché and Bartolo (2014) in a Hele-Shaw geometry reminiscent of the
Saffman-Taylor experiments (Saffman & Taylor, 1958); they show that the critical capillary number above
which an interface instability leads to film flow decreases strongly when the viscosity ratio falls below 10−2.
On the other end of the Ca spectrum, both Lenormand (1990) in his seminal phase diagram for 2-D imbi-
bition and Zhao et al. (2016) observe occurrence of film or corner flow at very low Ca under conditions of
strong imbibition, in synthetic 2-D porous media. Thus, the present model is not expected to be suitable for
predicting two-phase flow that involves sufficiently strong imbibition in particular at sufficienty large Ca,
though for a fracture geometry, and depending on the viscosity ratio, the range of capillary numbers and
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wetting angles for which our model still correctly predicts the physics at play may be rather significant in
imbibition conditions as well. This remains to be investigated in detail. In any case the model is suitable for
most drainage conditions. Drainage is a dominant process for NAPL migration in aquifers, a process which
controls the contamination source zone characteristic, which is a critical issue in aquifer remediation. In
geological sequestration, the injection and migration of CO2 displaces the ambient brine, which is consid-
ered a drainage process for most rocks. In a leakage scenario, the displacement by CO2 of the brine in a
fracture within the caprock is also a drainage process.

The current model ignores the effect of gravity/buoyancy forces which may become important if the two flu-
ids have a large density difference. This is rather simple to implement and will be the subject of later studies.
Furthermore, assuming impermeable walls, the model does not consider fracture-matrix interaction which
may alter the displacement dynamics. Given that typical matrix pore sizes are significantly smaller than
fracture apertures, fracture-matrix interaction is mostly relevant for imbibition in fractured porous media
(see, e.g., Arshadi et al., 2018; Kazmouz et al., 2016). In drainage configurations, the fluid-fluid interfaces
are very unlikely to enter the matrix.

In the simulations against the experimental data, the model, when using the aperture field of the smaller
standard deviation (0.12 mm), underestimates the amount of trapped defending fluid and in general results
in more compact invading fluid structures than found in the experiments. When using the aperture field
with the standard deviation of 0.18 mm, the simulations produce displacement patterns showing better
resemblance to the experimental ones. These results thus demonstrate the role of aperture variation in con-
trolling the fluid invasion patterns. Wettability can also influence the displacement dynamics. We find that
decreasing the contact angle also leads to increased trapping and interface roughness (see Figure S3). As can
also be seen in the simulations with radial geometry, the model would result in stronger trapping and less
compact structures in different configurations. The focus is here, however, on the crossover from capillary
to viscous fingering, which is well captured with the model when compared to the experiments.

It is also worth mentioning that the experiments conducted in Y.-F. Chen et al. (2017) considered even
higher flow rates/capillary numbers. With the highest capillary number log10Ca = −3.07, the displacement
exhibited fingering patterns with branching and fragmentation of the invading fluid, producing blobs as
the invading front advances (Y.-F. Chen et al., 2017, 2018). Such effects could be caused by locally high
Reynolds numbers. For log10Ca = −3.07, the superficial velocity V ≈ 0.25 m/s, the Reynolds number Re =
2⟨b⟩𝜌invV∕𝜇inv ≈ 3.3 × 102; however, since the invading phase travels in thin fingers and does not occupy the
entire cross-section area, the actual velocity of the invading fluid tips can be even higher, resulting in locally
high Reynolds numbers manifesting the role of inertial forces which can promote formation of eddies and
counterinvasion (i.e., situations where the defending phase displaces the invading phase). High flow rates
can also lead to the increased pressure gradient within each phase which might lead to remobilization of
trapped ganglia. The viscous pressure gradient (𝛥p) in the invading phase corresponding to the superficial
velocity can be estimated as

𝛥p = 12𝜇invV∕⟨b⟩2 = 12𝜇invQ∕A⟨b⟩2 , (8)

where A is the inlet area. For log10Ca = −3.07 (Q = 100 ml/s), 𝛥p is approximately 696 Pa/m. For a trapped
ganglion of 1 cm (which is a typical ganglion length), the viscous pressure drop through the invading phase is
about 7 Pa, which is very small due to the low viscosity of the invading fluid. But, locally the viscous pressure
drop can be larger, and thus can be comparable to the characteristic capillary pressure variation estimated
to be 2𝛾 cos 𝜃⟨b⟩ 𝜎b⟨b⟩ = 20.1 Pa, meaning that remobilization of trapped ganglia becomes possible. However, as Ca
increases, trapping diminishes to nearly nothing: there are much less trapped ganglia and they become much
smaller. Thus, the issue of trapped ganglia remobilization becomes much less significant. In the numerical
model presented in this study, we do not take the counterinvasion process into account. Thus, the model
is not expected to reproduce well the flow patterns at very high capillary numbers when the fragmentation
mechanism has a big impact on the invasion pattern. However, we emphasize that the model is shown to
faithfully capture the crossover from capillary dominated to viscous-dominated flows. Especially, the model
can reliably deal with low capillary number flows. In contrast, capillary-dominated flows still present a
major numerical challenge in the CFD approach with the widely used interface capturing methodologies,
including volume of fluid method and Level Set method (Y.-F. Chen et al., 2018; Deshpande et al., 2012;
Roman et al., 2016), due to the unphysical, spurious currents near the fluid-fluid interfaces resulting from
lack of a discrete force balance and inaccurate calculation of interface curvature (Francois et al., 2006).
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The strong advantage of the numerical model presented in this study is its computational efficiency over a
three-dimensional (3-D) CFD approach such as that used by Y.-F. Chen et al. (2018), that is, an approach
based on the resolution of the (Navier-)Stokes equations in the 3-D geometry. First, no discretization
is needed in the z direction, which makes the numerical mesh much smaller. Second, the solution of
(Navier-)Stokes equations is not involved, it is replaced by a Darcy law formulation that makes the numeri-
cally solution easy and efficient. In addition, in the planar direction, there is no need to use grid sizes much
smaller than the mean aperture as the mean aperture sets a minimum length scale for the radius of in-plane
curvature (Neuweiler et al., 2004). This makes the method much more efficient than even a (2+1)-D CFD
approach (see, e.g., Ferrari & Lunati, 2013; Ferrari et al., 2015), where the Stokes equation is solved in 2-D
with an additional force accounting for the friction of the top and bottom walls and a volume of fluid method
to track the interface displacement. Here the simulations are all performed with serial computing, taking
CPU time of a few hours, which can be further reduced without discernible loss of accuracy if we optimize
the number of iterations and solutions of pressure distribution. Given the same scenarios (M = 1∕100,
log10Ca = −5.59, −5.07, and −4.07), the full 3-D CFD approach of Y.-F. Chen et al. (2018) required tens of
CPUs and took several days to even weeks (in the low capillary number displacements), resulting in compu-
tational times ranging between 5 × 103 and 5 × 104 core hours. Thus, the modeling approach presented here
is at least 102 to 104 times faster than a full 3-D CFD model (and consequently, about 10 to 103 times faster
than a (2+1)-D CFD model). In addition, the model is particularly efficient at large capillary numbers for
which viscous pressure drops play an important role. Its computational efficiency decreases as the capillary
number is decreased toward the capillary fingering regime, but in this regime the modeling approach can
be easily reduced to a modified invasion percolation model by turning off the calculation of viscous pressure
drops, in which case the computational time drops to just a few minutes or less.

5. Conclusions
We have developed a computational model capable of simulating emergent fluid invasion patterns in
rough-walled fractures, governed by the interplay between capillary and viscous forces. This 2-D model
takes into account the effect of capillary force on the fluid-fluid interfaces and viscous pressure drop
in both fluid phases. The pressure distribution at each time step is solved based on mass balance and
local cubic law, and an imposed pressure jump condition at the fluid-fluid interface according to the
Young-Laplace equation, which includes both effects from the out-of-plane (aperture-spanning) curvature
and the in-plane curvature. Characterization of the growth of invasion patterns in configurations that emu-
late viscous fingering drainage in 2-D random porous media shows that the effect of viscous forces is very
well accounted for. Direct comparison with experimental results previously obtained in a rough fracture
shows that the model can reproduce the observed patterns in terms of crossover behavior between capillary-
and viscous-forces-dominated regimes. The evolutions of tip location and inlet pressure calculated from
the model have been analyzed to characterize the transition from capillary fingering to viscous fingering
regimes. In addition, a radial injection scenario of immiscible invasion has been simulated with varying
modified capillary number and viscosity ratio to show the displacement patterns that fall into regimes whose
dependence on the viscosity ratio and capillary number is similar to that of the classical phase diagram of
Lenormand et al. (1988). Simulations in this radial configuration using two contact angles show that the
invading phase becomes more compact when the wetting condition changes from strong to weak drainage.
Future theoretic and modeling work is needed to systematically examine the important factors controlling
the stabilization of the front during immiscible displacement in fractures.

This efficient, intermediate-scale model has been shown to capture the essential features of the
capillary-viscous two-phase flow in rough-walled fractures, especially in drainage conditions. It is also
expected to perform well in imbibition conditions for which corner or film flow do not significantly impact
the invasion patterns. In contrast, pore-scale well-resolved two-phase flow CFD approaches, either 3-D or
(2+1)-D require a much more significant amount of computational resources and are thus restrictive to
address such studies at the relevant, mesoscopic, spatial scale. We therefore believe that this model can be
used to bridge the gap in spatial scales between the full 3-D CFD modeling approaches and continuum
Darcy-scale models. Future developments of the model will include accounting for the impact of density
differences between the two fluids.
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