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Abstract: This study proves that the new developed zinc-doped hydroxyapatite (ZnHAp) colloids by
an adapted sol-gel method can be widely used in the pharmaceutical, medical, and environmental
industries. ZnHAp nanoparticles were stabilized in an aqueous solution, and their colloidal
dispersions have been characterized by different techniques. Scanning Electron Microscopy (SEM)
was used to get information on the morphology and composition of the investigated samples.
Energy-dispersive X-ray spectroscopy (EDX) analysis confirmed the elemental compositions of
ZnHAp colloidal dispersions. The homogeneous and uniform distribution of constituent elements
(zinc, calcium, phosphorus, oxygen) was highlighted by the obtained elemental mapping results.
The X-ray diffraction (XRD) results of the obtained samples showed a single phase corresponding to
the hexagonal hydroxyapatite. The characteristic bands of the hydroxyapatite structure were also
evidenced by Fourier-transform infrared spectroscopy (FTIR) analysis. For a stability assessment of
the colloidal system, ζ-potential for the ZnHAp dispersions was estimated. Dynamic light scattering
(DLS) was used to determine particles dispersion and hydrodynamic diameter (DHYD). The goal
of this study was to provide for the first time information on the stability of ZnHAp particles in
solutions evaluated by non–destructive ultrasound-based technique. In this work, the influence of
the ZnHAp colloidal solutions stability on the development of bacteria, such as Escherichia coli (E. coli)
and Staphylococcus aureus (S. aureus), was also established for the first time. The antimicrobial activity
of ZnHAp solutions was strongly influenced by both the stability of the solutions and the amount
of Zn.

Keywords: zinc-doped hydroxyapatite; nanoparticles; ultrasound technique; antibacterial activity

1. Introduction

Over the last decades, due to the population aging and the increase in bone-related affections,
as well as the multitude of degenerative diseases and recurrence injuries, the need for effective
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regenerative or replacement tissues has become pronounced worldwide. These facts have driven
both the scientific and industrial communities to focus their attention on developing successful and
cost-effective materials that could, in the medical field, replace damaged tissue, organs and also
improve their functions [1–3].

One of the most studied materials with suitable biocompatibility and osteoconductivity properties
used in bone reconstruction is hydroxyapatite (HAp) [3,4]. Synthetic hydroxyapatite, Ca10(PO4)6(OH)2,
is similar to the human hard tissue and due to its outstanding biocompatibility and osteoconductive
properties, it has been successfully used in dentistry, reconstruction surgery, repair surgery, dental
implantology, pharmacy, cosmetics, food industry, etc. [4–8]. Hydroxyapatite is also known for its
use as a coating for different medical devices [9]. Nowadays, one of the major problems in the area
of medical implants is represented by the apparition of post-operatory infections caused by bacterial
contamination due to the adherence and colonization of bacterial cells on the biomaterial surface [10].
These types of infections are often caused by antibiotic-resistant bacterial strains, and conventional
antibiotic therapy is not always efficient, thereby increasing the rate of morbidity and mortality and
health care costs [10]. In order to minimalize the risk of implant-related infections, many authors
have encouraged the improvement of the biomaterial used as a coating with different antibacterial
agents [5]. Recent studies have reported the use of certain ions, including silver (Ag+) [11,12], copper
(Cu2+) [13], and zinc (Zn2+) [14,15], to create hydroxyapatite with antibacterial properties [5]. Zinc is
one of the essential microelements found in the human body and is also involved in the metabolism of
bones. Zinc ions have also been reported to possess antibacterial activity and to be involved in the
proliferation of osteoblast cells [16]. Therefore, developing hydroxyapatite doped with zinc ions will
allow the obtaining of a material with both biocompatible and osteoconductive properties, having the
capability to stimulate the osteointegration of bones and possessing antimicrobial activity.

Nowadays, the rapid progress of the industrialization process and the competitive market has
imposed the need of improved products and better productivity, which has led to more severe
expectations for process and quality control in the industry of material science. In this context,
material characterization has an important role in the development of new materials and essentially
comprises the evaluation of a material’s structure, morphological features, associated mechanical
properties, and the evaluation of its elastic behavior. The characterization techniques used for
materials analysis are the basic tools for quality control, and the quality assurance of materials are
generally based on destructive, semi-destructive, and non-destructive methods [17]. Even though
there is limited recognition of ultrasound phenomena in the characterization of liquids, particulates,
and porous bodies, several studies [18–22] have emphasized that ultrasonic properties play an
important role in material characterization. Moreover, ultrasonic investigations can provide useful
information about the microstructural properties, as well as deformation processes in a material,
and can predict future performances of the materials. Investigations using ultrasound methods are
very precise and much less sensitive to contamination and, therefore, can provide accurate information
about the investigated samples. Another important aspect of these techniques is that sound can
propagate through various types of samples, such as concentrated, opaque liquid systems, and porous
bodies [23,24], offering exceptional insight. Particularly, ultrasound measurements could be used
to characterize also concentrated dispersions and emulsions as they are, excluding the need for
dilution, which is a requirement in other traditional characterization techniques [23–26]. In this
context, considerable attention has been directed towards the use of ultrasonic methods in material
characterization. Ultrasonic investigations are already involved in many fields, such as geology,
speleology, oceanography, and medicine. These techniques are becoming of utmost importance in
medicine, as both diagnostic tools as well as a therapeutic method. Even though the use of ultrasounds
in medicine dates from 1930, it is only quite recently that these techniques have become recognized
as important tools in medical practice in ultrasonic imaging, bone evaluation, ophthalmology,
intravascular investigations, lithotripsy, hyperthermia, focused ultrasound surgery [27–29].
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Obtaining nanoscale materials has allowed miniaturization of components, which has led
to the possibility of achieving more efficient devices with faster functions and much lower costs.
Thus, nanotechnology has come to play a major role in key areas that affect everyday life, such as
pharmaceuticals, cosmetics, medical, and environmental applications. This paper aims to provide
information on the influence of stability of zinc-doped hydroxyapatite (ZnHAp) colloidal dispersions
on the antimicrobial properties of hydroxyapatite doped with various metal ions for researchers
conducting studies on finding alternative solutions to the antibiotic used for the treatment of
microbial infections.

The present study focuses on the stability and morphology of Zn-doped hydroxyapatite colloidal
dispersions, with various zinc concentrations (xZn = 0; xZn = 0.07, and xZn = 0.2). Their morphology
and stability were evaluated by SEM, Energy-dispersive X-ray spectroscopy (EDX), Dynamic light
scattering (DLS), ζ-potential, and ultrasound measurements. Moreover, the structure of the ZnHAp
samples was also evaluated by X-Ray diffraction (XRD) and Fourier-transform infrared spectroscopy
(FTIR). Another purpose of this study was to highlight the influence of the stability of the dispersions
on the inhibitory effect of ZnHAp against bacterial strains, such as S. aureus ATCC 25923 and E. coli
ATCC 25922.

2. Materials and Methods

2.1. Sample Preparation

2.1.1. Materials

For the synthesis of ZnHAp, precursors of calcium nitrate (Ca(NO3)2·4H2O; Sigma Aldrich,
St. Louis, MO, USA), ammonium hydrogen phosphate ((NH4)2HPO4; Wako Pure Chemical Industries
Ltd., Richmond, VA, USA), Zn(NO3)2·6H2O (Alpha Aesare, Karlsruhe, Germany; 99.99% purity),
ammonium hydroxide (NH4OH; Wako Pure Chemical Industries Ltd., Richmond, VA, USA), absolute
ethanol (C2H6O; Sigma Aldrich, St. Louis, MO, USA; ≥99.8% purity), and double distilled water
were used.

2.1.2. Zinc-Doped Hydroxyapatite (ZnHAp) Solution

Zinc-doped hydroxyapatite, Ca10−xZnx(PO4)6(OH)2, was prepared by an adapted sol-gel
route [30,31] by setting x = 0 (HAp), x = 0.07 (7ZnHAp), and x = 0.2 (20ZnHAp) and (Ca + Zn)/P as
1.67 [15,32]. The synthesis was carried out under atmospheric conditions at a temperature of 100 ◦C.

In the first step, the (NH4)2HPO4 was dissolved in absolute ethanol using a magnetic stirrer
to make P-containing solution. In the second step, the (Ca + Zn)-containing solution was obtained
by dissolving Ca(NO3)2·4H2O and Zn(NO3)2·6H2O in a beaker of distilled water under continuous
agitation. The P-containing solution was added drop by drop into the (Ca + Zn)-containing solution
under continuous agitation at 100 ◦C. The pH value of the solution was preserved to at 11 by the
addition of NH4OH. The resulting solution was stirred slowly for 24 h at 100 ◦C, until the formation of
a gel. The aged gels were washed five times using double distilled water and ethanol according to
previous studies [30–32] and redispersed in double distilled water. The biological and physicochemical
properties of the ZnHAp final solution were studied.

2.2. Characterization Methods

The morphology of the ZnHAp samples, as well as the chemical composition, was investigated
by scanning electron microscopy (SEM) using a HITACHI S4500 (Hitachi, Ltd., Chiyoda, Japan)
microscope equipped with an EDX attachment operating at 20 kV.

The structure of the ZnHAp samples was investigated by XRD measurements using a Bruker
D8 Advance diffractometer (Bruker, Karlsruhe, Germany) with a nickel-filtered Cu Kα (λ = 1.5418 Å)
radiation in the 2θ ranging from 20◦ to 80◦. Furthermore, the functional groups of the prepared
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samples were identified using FTIR spectroscopy with a Perkin Elmer Spectrum BX spectrometer
(Waltham, MA, USA).

DLS analysis and ζ-potential were performed at 25 ± 1 ◦C using an SZ-100 Nanoparticle
Analyzer (Horiba, Ltd., Kyoto, Japan). All samples were diluted in double distilled water 10 times
before measurements of DLS and ζ-potential. The dynamic light scattering (DLS) technique is
based on Rayleigh scattering from suspended nanoparticles that are subject to Brownian motion.
The hydrodynamic diameter of the nanoparticles can be determined by illuminating the sample
with a laser source that allows us to appreciate the particle diffusion velocity. To record the
scattered signals, ZnHAp solutions were placed in the disposable cuvettes. For each analyzed
sample, three determinations were recorded. The final value was established by mediating the
three measurements.

The ultrasound studies took place in a specialized laboratory, using two identical ultrasonic
transducers H5K (General-Electric, Krautkramer, Hürth, Germany) of 5 MHz central frequency as
previously reported in Predoi et al. [7]. The experimental set-up is depicted in Figure 1.
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Figure 1. Experimental setup for ultrasound measurements. Schematics (a) and image (b) [7].

In order to quantify the zinc present in the samples, flame atomic absorption spectrometry (AAS)
studies were conducted on the ZnHAp solutions. For this purpose, AAS studies have been performed
using a Zeeman HITACHI Z-8100 from Japan Hitachi (Tokyo, Japan) on stable solutions of ZnHAp.
The experiments were performed in triplicate.

2.3. Antimicrobial Assays on Staphylococcus Aureus and Escherichia Coli Strain

The quantitative assay regarding the antimicrobial effect of ZnHAp colloidal dispersions (xZn = 0,
xZn = 0.07, and xZn = 0.2) was done using adapted two-fold serial dilutions, previously described
in [15]. The bacterial strains used in the antimicrobial studies were Staphylococcus aureus ATCC 25923
and Escherichia coli ATCC 25922.

3. Results and Discussions

The purpose of this study was to analyze the influence of zinc substitution for calcium from
hydroxyapatite on the morphology and colloidal stability of ZnHAp nanoparticles in aqueous solutions.
In previously reported studies by J. Lyklema, colloid was defined as “an entity” having at least one
direction, and a dimension between 1 nm and 1 mm [33] has been taken into account. According to
the definition given by J. Lyklema, these entities may be solid, liquid or gaseous, with a wide variety
of systems meeting this broad definition of colloids. In our study, the dispersal medium was water.
For the first time, particular attention was paid to the influence of ZnHAp nanoparticles in aqueous
solutions on the development of bacteria, such as E. coli and S. aureus.



Nanomaterials 2019, 9, 515 5 of 22

The morphological study of the ZnHAp samples with different Zn concentrations was performed
using the electronic scanning microscope, while the EDX analysis was used to determine the elemental
composition of the ZnHAp samples. The morphology and size of the ZnHAp (with different Zn2+

concentrations) samples were revealed from the high-resolution SEM micrographs. The SEM images
recorded with a magnification of ×100,000, 30 kV (a spot of 3.5), and the particle size distribution is
shown in Figure 2. The images of the prepared ZnHAp nanoparticles (Figure 2a–c) suggested that the
substitution of Zn2+ in HAp did not produce significant changes in HAp morphology. All the powders
(HAp, 7ZnHAp, and 20ZnHAp) were made up of nanoparticles with elongated morphology. Average
particle diameter (DSEM) deduced from the particle size distribution of ZnHAp samples (Figure 2d–f)
decreased as the zinc concentration increased. The DSEM for HAp samples was 26.2 ± 0.1 nm, while
the DSEM for 7ZnHAp and 20ZnHAp dropped from 22.8 ± 0.2 to 13.6 ± 0.2 nm, respectively.
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EDX analysis was accomplished for the ZnHAp (in order to establish the elemental composition
(Figure 3). In Figure 3a–c, the EDX analysis of HAp, 7ZnHAp, and 20ZnHAp are presented. The spectra
of 7ZnHAp and 20ZnHAp showed the characteristic peaks of Zn, Ca, P, and O, while in the HAp
spectrum, only the characteristic peaks associated with O and P were evidenced. The results of EDX
analysis of HAp, 7ZnHAp, 20ZnHAp samples are presented in Table inserted in Figure 3. The EDX
analysis indicated that the intensity of Ca decreased when the intensity of zinc increased as the
zinc content was increased in the hydroxyapatite structure. According to previous studies [34],
the decreasing of Ca intensity as Zn content increases may be due to the fact that CaO has been
substituted by ZnO [34].
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Figure 3. Energy-dispersive X-ray spectroscopy (EDX) spectra of hydroxyapatite (HAp) (a), 7ZnHAp
(b), and 20ZnHAp (c) samples. ZnHAp: zinc-doped hydroxyapatite.

Information regarding the uniformity of the constituents of the analyzed samples and the
homogeneity of the samples were provided by the elemental mapping analysis. 2D conventional
images can be transformed into 3D images for accurate morphology assessments of the samples
using special software programs [35,36]. Therefore, in our study, we have used 2D SEM selected
images in order to obtain 3D surface maps of the ZnHAp dispersions for elemental cartographic
analysis. The 3D surface maps were realized starting from the selected area of SEM images of the
samples (HAp, 7ZnHAp, and 20ZnHAp) of approximately 9.5 µm × 7.5 µm in dimension using
Image J software [37]. The 3D representation selected areas of SEM images of the HAp, 7ZnHAp,
and 20ZnHAp powders surface morphology are presented in Figure 4. Furthermore, the 3D SEM
surface topographies suggested that the particles present the tendency to agglomerate and that the
particles show a slight decrease in size when Zn concentration increases (Figure 4a–c).
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(a) 7ZnHAp (b), and 20ZnHAp (c) samples. ZnHAp: zinc-doped hydroxyapatite.

The elemental mapping analysis provided information on both the uniform distribution of the
elements sample and the homogeneity of the samples. The 3D topographies of the EDX elemental
mapping analysis obtained using Image J software of the HAp, 7ZnHAp, and 20ZnHAp samples are
presented in Figures 5–7. In Figure 5, from the elemental mapping represented in 3D, it can be clearly
seen that the main constituents of hydroxyapatite, O, Ca, and P were uniformly distributed in the
sample. The 3D representation of the elemental mapping revealed that the HAp powder is composed of
oxygen, phosphorus, and calcium, the main constituents of hydroxyapatite. The uniform distribution
of Zn, Ca, P, and O was also observed (Figures 6 and 7) in the 3D topographies of the elemental maps
of the 7ZnHAp and 20ZnHAp samples. More than that, the 3D surface images evidenced that the
distribution of O(K), P(K), Ca(K), and Zn(K) elements in the ZnHAp was homogenous and uniform.
All the SEM analysis results obtained in this study were in good agreement with previously reported
studies on ZnHAp powders [14,38]. Furthermore, in order to assess the quantity of zinc from the
ZnHAp samples, flame atomic absorption spectrometry studies were conducted on the stable solutions
of 7ZnHAp and 20ZnHAp. The results of the AAS investigation revealed that the measured zinc
concentrations from the samples 7ZnHAp and 20ZnHAp were 0.996 ± 2.7 wt.% and 2.375 ± 3.6 wt.%,
respectively. In agreement with previous studies [39], slightly different values obtained for the
molar ratio, (Ca + Zn)/P, following AAS and EDX studies could suggest that this ratio was lower
on the surface of the particles than inside them. Moreover, studies on surface characterization of



Nanomaterials 2019, 9, 515 8 of 22

hydroxyapatite related calcium phosphate [40] showed that the powders of the analyzed samples had
surface stoichiometries similar to their bulk crystal compositions when the composition of the surface
represented 1–10% of the bulk.

Nanomaterials 2019, 9, x FOR PEER REVIEW 8 of 23 

 

20ZnHAp were 0.996 ± 2.7 wt.% and 2.375 ± 3.6 wt.%, respectively. In agreement with previous 
studies [39], slightly different values obtained for the molar ratio, (Ca + Zn)/P, following AAS and 
EDX studies could suggest that this ratio was lower on the surface of the particles than inside them. 
Moreover, studies on surface characterization of hydroxyapatite related calcium phosphate [40] 
showed that the powders of the analyzed samples had surface stoichiometries similar to their bulk 
crystal compositions when the composition of the surface represented 1–10% of the bulk. 

 
Figure 5. The 3D images of elemental mapping analysis of the hydroxyapatite (HAp) samples, oxygen 
(a), phosphorus (b), calcium (c). 

 
Figure 6. 3D images of elemental mapping analysis of the 7ZnHAp samples oxygen (a), phosphorus 
(b), calcium (c) and zinc (d). ZnHAp: zinc-doped hydroxyapatite. 

 
Figure 7. The 3D images of elemental mapping analysis of the 20ZnHAp samples. oxygen (a), 
phosphorus (b), calcium (c) and zinc (d) ZnHAp: zinc-doped hydroxyapatite. 

Figure 5. The 3D images of elemental mapping analysis of the hydroxyapatite (HAp) samples, oxygen
(a), phosphorus (b), calcium (c).

Nanomaterials 2019, 9, x FOR PEER REVIEW 8 of 23 

 

20ZnHAp were 0.996 ± 2.7 wt.% and 2.375 ± 3.6 wt.%, respectively. In agreement with previous 
studies [39], slightly different values obtained for the molar ratio, (Ca + Zn)/P, following AAS and 
EDX studies could suggest that this ratio was lower on the surface of the particles than inside them. 
Moreover, studies on surface characterization of hydroxyapatite related calcium phosphate [40] 
showed that the powders of the analyzed samples had surface stoichiometries similar to their bulk 
crystal compositions when the composition of the surface represented 1–10% of the bulk. 

 
Figure 5. The 3D images of elemental mapping analysis of the hydroxyapatite (HAp) samples, oxygen 
(a), phosphorus (b), calcium (c). 

 
Figure 6. 3D images of elemental mapping analysis of the 7ZnHAp samples oxygen (a), phosphorus 
(b), calcium (c) and zinc (d). ZnHAp: zinc-doped hydroxyapatite. 

 
Figure 7. The 3D images of elemental mapping analysis of the 20ZnHAp samples. oxygen (a), 
phosphorus (b), calcium (c) and zinc (d) ZnHAp: zinc-doped hydroxyapatite. 

Figure 6. 3D images of elemental mapping analysis of the 7ZnHAp samples oxygen (a), phosphorus
(b), calcium (c) and zinc (d). ZnHAp: zinc-doped hydroxyapatite.

Nanomaterials 2019, 9, x FOR PEER REVIEW 8 of 23 

 

20ZnHAp were 0.996 ± 2.7 wt.% and 2.375 ± 3.6 wt.%, respectively. In agreement with previous 
studies [39], slightly different values obtained for the molar ratio, (Ca + Zn)/P, following AAS and 
EDX studies could suggest that this ratio was lower on the surface of the particles than inside them. 
Moreover, studies on surface characterization of hydroxyapatite related calcium phosphate [40] 
showed that the powders of the analyzed samples had surface stoichiometries similar to their bulk 
crystal compositions when the composition of the surface represented 1–10% of the bulk. 

 
Figure 5. The 3D images of elemental mapping analysis of the hydroxyapatite (HAp) samples, oxygen 
(a), phosphorus (b), calcium (c). 

 
Figure 6. 3D images of elemental mapping analysis of the 7ZnHAp samples oxygen (a), phosphorus 
(b), calcium (c) and zinc (d). ZnHAp: zinc-doped hydroxyapatite. 

 
Figure 7. The 3D images of elemental mapping analysis of the 20ZnHAp samples. oxygen (a), 
phosphorus (b), calcium (c) and zinc (d) ZnHAp: zinc-doped hydroxyapatite. 
Figure 7. The 3D images of elemental mapping analysis of the 20ZnHAp samples. oxygen (a),
phosphorus (b), calcium (c) and zinc (d) ZnHAp: zinc-doped hydroxyapatite.



Nanomaterials 2019, 9, 515 9 of 22

In Figure 8, both the experimental data (marked in blue) and the calculated data (gray line)
obtained by Rietveld refining of the obtained samples are presented. The Rietveld refinement was
achieved using MAUD (Material Analysis Using Diffraction) program [41].
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and 20ZnHAp (c). The blue line marks the experimentally observed pattern, while the gray line marks
the calculated diffraction pattern. The positions of the calculated Bragg peaks were marked with the
vertical lines. The difference pattern between observed and calculated patterns was represented by the
gray line at the bottom of the figure. ZnHAp: zinc-doped hydroxyapatite.

The positions of the diffraction lines of the hexagonal hydroxyapatite (ICDD-PDF No. 9-432) are
represented by the vertical lines. The difference between experimental data and those calculated is
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represented by the gray line at the bottom of the figure. It was noted that between the experimental
data and the calculated data, a good similarity was observed. Following the use of the Rietveld refining
method for the XRD analysis of the obtained samples, a single phase corresponding to the hexagonal
hydroxyapatite was revealed. The calculated lattice parameters of HAp, 7ZnHAp, and 20ZnHAp
samples are in good accord with the standard data of a = b = 9.418 Å, c = 6.884 Å. For the HAp sample,
the values of a = b and c were 9.4320 Å and 6.8838 Å, respectively. The calculated lattice parameters of
7ZnHAp sample were a = b = 9.4362 Å and c = 6.8806 Å. For 20ZnHAp sample, the calculated values
of lattice parameters were a = b = 9.4387 Å and c= 6.8736 Å. The average crystallite sizes decreased
with the increase of zinc concentration from 23.18 ± 0.3 nm for HAp sample to 19.38 ± 0.5 nm and
9.96 ± 0.8 nm for 7ZnHAp and 20ZnHAp sample, respectively. For the analyzed samples, an increase
in the network parameter “a” was observed with increasing zinc concentration in the sample, while
for parameter “c” a decrease was observed.

The correctness of the Rietveld refinement of the obtained samples is monitored by a number
of parameters, such as the index of the weighted profile Rwp and the index χ. The χ index is given
by the ratio of statistically estimated Rwp and Rexp factors and represents the “correctness of the
overlap between experimental and calculated data”. On the other hand, the RBragg factor that can be
determined using the Rietveld method for data processing is very useful because its value depends
on the fit of the structural parameters. The values obtained for Rwp factor were 2.412 for HAp,
2.329 for 7ZnHAp, and 2.220 for 20ZnHAp. For HAp, 7ZnHAp, and 20ZnHAp samples, the values
obtained for Rexp factor were 0.934, 0.918, and 0.900. The values of RBragg factor were 1.847 for HAp
and 1.752 for 7ZnHAp, while for 20ZnHAp, it was 1.7692. The theoretical values of the factors R
obtained for all ZnHAp samples are consistent with Toby’s theory [42]. Moreover, the processing of
the diffraction spectrum of the samples has shown that the analyzed samples exhibit the characteristics
of the hexagonal hydroxyapatite without revealing another supplemented phase and having a good
crystallinity. Our results were confirmed by previous studies on the formation and structure of
zinc-substituted calcium hydroxyapatite that have shown that crystallinity decreases when the Zn
concentration increases [43].

The results we have identified, in this study, are confirmed by previous studies by A. Bigi et al. [44]
in their research on the inhibitory effect of zinc on the crystallization of hydroxyapatite. On the other
hand, the same authors [44] have missed that both the synthesis method and the pH at which the
synthesis is performed can influence the values of the lattice parameters “a” and “c”. Furthermore,
a major role in obtaining a single phase corresponding to hexagonal hydroxyapatite is played by
synthesis parameters, the temperature being one of the most important. pH also plays a very important
role. More of that, the time at which the two solutions are mixed, and the temperature at which the
mixture takes place, also play an important role in obtaining a stable structure characteristic of the
hexagonal hydroxyapatite. Z. Salima et al. [45] in studies on characterization of magnesium-doped
hydroxyapatite prepared by sol-gel process reported that all powders are composed of pure apatite
phase even after heat treatment at 500 ◦C. S. Kannan et al. [46,47] also reported the presence of
beta-tricalcium phosphate phase. Wilcock et al. [48] in their studies on silver-doped hydroxyapatite
reported the presence of additional phases. Moreover, in the calcined samples at 1200 ◦C, with an
increased amount of silver doping [48], a greater amount of β-tricalcium phosphate (β-TCP) was
detected. On the other hand, studies conducted by C.L. Popa et al. [49] suggested that the structure of
the silver-doped hydroxyapatite (xAg = 0.5) changes gradually, from hydroxyapatite (sample dried
at 40 ◦C) to a predominant β-TCP structure achieved when the thermal treatment temperature was
1000 ◦C. C. S. Ciobanu et al. [50] in their studies regarding the influence of annealing treatment on the
bioceramics properties showed that the hydroxyapatite structure did not change after heat treatment at
600 ◦C. Furthermore, it has been found that with the rise in temperature, the peaks of hydroxyapatite
were sharpened, and at temperatures of 800 ◦C, a weak peak of calcium oxide (CaO) appeared, and the
concentration of calcium oxide increased after thermal treatment at 1000 ◦C [50]. M.F. Hsieh et al. [51],
showed that the occurrence of CaO at high temperatures (≥800 ◦C) might be due to the chemical
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decomposition of the remaining calcium nitrate. Both the temperature in the first stage of the synthesis
process and the pH during the synthesis process could influence the stability of the hydroxyapatite
structure and could lead to the presence of β-TCP.

In Figure 9, the FTIR spectra for prepared samples are shown. According to previous
studies [46,52], the bands located at around 604 and 563 cm−1 represent the triply degenerated bending
modes of the O–P-O bond (ν4), while the band at 960 cm−1 can be attributed to the symmetric stretching
mode of the P–O bond (ν1). The bands localized at around 1095, 1033 indicated the presence of PO4

3−

group [47]. In the spectral range 870–880 cm−1, the band attributed to the HPO4
2− was found.

The bands in the spectral range 1414–1450 cm−1 could be attributed to the carbonate functional
group [53]. The presence of bands describing C-O vibrations suggests that when synthesis is carried
out at low temperatures, a certain amount of carbonate has been incorporated into samples [53].
The spectrum presented in Figure 9 also indicates the existence of H2O (1641 cm−1). The FTIR spectra
of the analyzed samples show a widening of the peaks and a smoothing as the zinc concentration
increases in the sample. This behavior could suggest a decrease in the crystallinity of the samples with
increasing zinc concentration. These results are consistent with previous experimental results [54]
which showed that crystal size and crystallinity decreased when Zn concentration increased.
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In order to calculate the hydrodynamic diameter, the Stokes-Einstein equation [55] was used.
Particle size distribution of HAp, 7ZnHAp, and 20ZnHAp particles in solution determined by DLS
method is presented in Figure 10. The average hydrodynamic diameter of the particles (DHYD)
achieved for HAp by DLS was 51.8 ± 0.3 nm, while for 7ZnHAp and 20ZnHAp, it was 47.5 ± 0.3 and
26.81 ± 0.4 nm, respectively. The results of DLS studies accomplished on prepared samples revealed
that the average hydrodynamic diameter of the particles decreased when Zn concentration increased
in agreement with structural analysis.

A decrease in nanoparticle size was established by both SEM studies and DLS measurements.
The decrease in particle size could be attributed to the increase of Zn content incorporated in
HAp [11,14,56]. The difference could be explained by the fact that the SEM method determines the
diameter of the metallic core of the particles as the shell representing the coating of the metallic core is
destroyed over the drying and in the vacuum chamber of the SEM. The hydrodynamic particle size
calculated from DLS technique is given by the metallic core of the particles, the adsorbed substances
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on their surface, and the thickness of the electrical double layer that moves along with the particle,
which leads to a larger particle size [57].

Nanomaterials 2019, 9, x FOR PEER REVIEW 11 of 23 

 

process could influence the stability of the hydroxyapatite structure and could lead to the presence 
of β-TCP. 

In Figure 9, the FTIR spectra for prepared samples are shown. According to previous studies 
[46,52], the bands located at around 604 and 563 cm−1 represent the triply degenerated bending modes 
of the O–P‒O bond (ν4), while the band at 960 cm−1 can be attributed to the symmetric stretching 
mode of the P–O bond (ν1). The bands localized at around 1095, 1033 indicated the presence of PO43− 
group [47]. In the spectral range 870–880 cm−1, the band attributed to the HPO42− was found. The 
bands in the spectral range 1414–1450 cm−1 could be attributed to the carbonate functional group [53]. 
The presence of bands describing C-O vibrations suggests that when synthesis is carried out at low 
temperatures, a certain amount of carbonate has been incorporated into samples [53]. The spectrum 
presented in Figure 9 also indicates the existence of H2O (1641 cm−1). The FTIR spectra of the analyzed 
samples show a widening of the peaks and a smoothing as the zinc concentration increases in the 
sample. This behavior could suggest a decrease in the crystallinity of the samples with increasing 
zinc concentration. These results are consistent with previous experimental results [54] which 
showed that crystal size and crystallinity decreased when Zn concentration increased. 

 
Figure 9. FTIR spectra for the different Zn-doped hydroxyapatite. 

In order to calculate the hydrodynamic diameter, the Stokes-Einstein equation [55] was used. 
Particle size distribution of HAp, 7ZnHAp, and 20ZnHAp particles in solution determined by DLS 
method is presented in Figure 10. The average hydrodynamic diameter of the particles (DHYD) 
achieved for HAp by DLS was 51.8 ± 0.3 nm, while for 7ZnHAp and 20ZnHAp, it was 47.5 ± 0.3 and 
26.81 ± 0.4 nm, respectively. The results of DLS studies accomplished on prepared samples revealed 
that the average hydrodynamic diameter of the particles decreased when Zn concentration increased 
in agreement with structural analysis. 

 
Figure 10. Dynamic light scattering (DLS) particle size distribution curve of hydroxyapatite (HAp) 
(a), 7ZnHAp (b) and 20ZnHAp (c) nanoparticles. ZnHAp: zinc-doped hydroxyapatite. 
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In addition, the ζ-potential of the HAp, 7ZnHAp, and 20ZnHAp aqueous solutions were
appraised. The ζ-potential and ultrasound measurements can allow us to obtain information about
the stability of a colloidal system. It is well known that the ζ-potential is one of the key parameters
that give us information on the stability of colloidal dispersions. In agreement with the previously
presented studies [58,59], colloidal solutions with high potential zeta were electrically stable (the net
electrical charge on the surface of the particles is higher and thus the electrostatic repulsion between
the particles). On the other hand, colloidal solutions that have a low ζ-potential have a tendency
to coagulate or flocculate. The determined ζ-potential value of HAp, 7ZnHAp, and 20ZnHAp was
−7.83 mV, −23.16 mV, and −34.65 mV, respectively (Figure 11).
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Figure 11. The behavior of the ζ-potential of hydroxyapatite (HAp) (a), 7ZnHAp (b), and 20ZnHAp (c)
particle suspensions. ZnHAp: zinc-doped hydroxyapatite.

For HAp (xZn = 0), the value of ζ-potential is lower than −30 mV. When the zinc concentration
increases in the sample, ζ-potential increases reaching a value of −34.65 mV for 20ZnHAp (xZn = 0.2),
the system arrives in a state of moderate stability. The value of ζ-potential for HAp is in agreement
with the results obtained previously. The value of ζ-potential for pure HAp reported by Liu et al. [60]
was −5 mV, while Wahba et al. [61] showed that ζ-potential of pure HAp was −9 mV, and the value
increased for cerium-doped hydroxyapatite to −20 mV. Predoi et al. [62] also reported a value of
ζ-potential equal to −8.19 mV for zinc-doped hydroxyapatite (xZn = 0.01) synthesized by an adapted
co-precipitation method.

In order to obtain supplementary information about the ZnHAp (xZn = 0, xZn = 0.07, and xZn = 0.2)
particle suspensions, ultrasound measurements were performed. Ultrasound measurements are a
major advantage compared to other techniques, such as DLS or ζ-potential, as ultrasounds can
propagate through concentrated suspensions, allowing characterization of concentrated dispersions
without dilution. Dilution of suspensions for DLS or ζ-potential measurements can destroy aggregates
or flocculation, which could lead to unclear information. The ultrasonic signals have been recorded
every 5 s, and 5 to 7 echoes were recorded. The number of echoes recorded during this interval was
dependent on the signal-to-noise ratio. The first recorded signal was the direct signal between the
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first transducer and the second transducer. We can mention here that the first transducer is the signal
generator, while the second transducer is just a receiver. The rest of the signals are the consecutive
echoes identified by the two transducers, as the ultrasonic chirp is reflected by the transducers circular
surfaces and traveling along the distance between these surfaces. The distance between transducers
was selected d = 25 mm. The reference fluid is double distilled water (H2O). In Figure 12a seven
recorded echoes, repeating the recording every 5 s, for an experiment which lasted 40 s are shown.
As expected, the signals were identical since, during the 40 s, the fluid properties remained unchanged
(Figure 12b). For samples HAp (xZn = 0) to 20ZnHAp (xZn = 0.2), the recorded signals are shown in
Figure 13.
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Figure 13. Signals recorded for samples hydroxyapatite (HAp) (a), 7ZnHAp (b), and 20ZnHAp (c).
ZnHAp: zinc-doped hydroxyapatite.

For each sample, the first recorded chirp that represents the direct signal, arriving after around
0.017 ms, was amplified up to the saturation of the amplifier. The purpose was to record five echoes
even for the most attenuative sample. For this reason, the investigation was focused on the second echo,
which traveled twice the distance between the transducers and was thus more attenuated. In Figure 14,
the selected echoes for the three samples are shown. Apparently, a sample exhibits different behavior
from the other. Sample HAp exhibits a continuous increase of signal amplitude at three stages (i) bulk
precipitation lasting 110 s for HAp in this experiment, (ii) transition of the separation surface in front
of the transducers (from 110 s to 150 s in this experiment), (iii) slow precipitation of remaining particles
behind the separation surface, during which the amplitude of the signal increases slowly, up to the
level reached in the pure solvent (H2O).



Nanomaterials 2019, 9, 515 15 of 22

Nanomaterials 2019, 9, x FOR PEER REVIEW 15 of 23 

 

echo, which traveled twice the distance between the transducers and was thus more attenuated. In 
Figure 14, the selected echoes for the three samples are shown. Apparently, a sample exhibits 
different behavior from the other. Sample HAp exhibits a continuous increase of signal amplitude at 
three stages (i) bulk precipitation lasting 110 s for HAp in this experiment, (ii) transition of the 
separation surface in front of the transducers (from 110 s to 150 s in this experiment), (iii) slow 
precipitation of remaining particles behind the separation surface, during which the amplitude of the 
signal increases slowly, up to the level reached in the pure solvent (H2O). 

 
Figure 14. The same 2nd echo of hydroxyapatite (HAp) (a), 7ZnHAp (b), and 20ZnHAp (c) samples 
selected for investigation. ZnHAp: zinc-doped hydroxyapatite. 

Figure 14. The same 2nd echo of hydroxyapatite (HAp) (a), 7ZnHAp (b), and 20ZnHAp (c) samples
selected for investigation. ZnHAp: zinc-doped hydroxyapatite.

Samples 7ZnHAp and 20ZnHAp were selected after (a) an initial stage during which the signal
amplitude varies slowly and (b) the reach stage during which there is a drop in signal amplitude.
This behavior could be due to particles concentration in front of the advancing separation surface
and also the variation of the acoustic wave velocity. It was remarked as a significant variation of the
acoustic wave velocity in the suspension and in the solvent. It was also found that the different record
time was used for the three samples: from 300 s (H2O) to 1500 s (HAp) and 5500 s (7ZnHAp).

The most significant parameter, defining the suspension stability, is the amplitude variation
during the initial stage (a). It is necessary to mention that this variation can be an increase or a decrease
of amplitude, due to acoustic waves dispersion.
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Consequently, we can say that stability can be quantified by the absolute value of the amplitude
variation during the initial stage. It has been observed that both the transducer generated signal
amplitude and the received signal amplification are influencing the measured amplitude of the signal.
As a result, the slope of the amplitude-time function was normalized by the average amplitude during
the stage (a). In this study, the stability parameter will be calculated according to the equation:

s =
1

Am

∣∣∣∣dA
dt

∣∣∣∣ (1)

Figure 15 shows the absolute value of amplitudes due to the second echo for the three studied
samples. The red line revealed the linear best fit, calculated using the proposed method, to calculate
the stability parameter. It can be seen that stability over time was different from one sample to
another. This behavior shows that the stability of the studied samples is strongly influenced by
zinc concentration.

The reference fluid (H2O), after taking sufficient samples, is proven to be stable as expected
(s = 0). The stability parameter has decreased from 0.00000 ± 1 × 10−6 in reference fluid to 0.00066 s−1

in sample HAp. Moderate stability was observed in sample 7ZnHAp when the stability parameter
was equal to 0.00021 s−1. A very stable parameter of only 0.00007 s−1 was determined for sample
20ZnHAp. The sample 20ZnHAp has a short initial period when the amplitude increases, followed by
a linear decrease of amplitude, attributed to the fluid turbulence after the intense stirring preceding
the experiment.

As a conclusion of these experimental techniques, we mention the possibility to assess the
suspension stability from ultrasonic amplitude variation in time. During the first stage, the amplitudes
showed a linear variation in time, so that a relatively short duration of the experiment (1–2 min) is
sufficient to determine the stability parameter. The results obtained by ultrasound-based technique
realized on ZnHAp final solution resulted after synthesis (concentrated dispersions without any
dilution) confirmed the stability of the tested solutions revealed by the traditional ζ-potential
characterization method. Establishing the stability of solutions obtained as such without dilution is
very important because the dilutions required to use traditional ζ-potential method can destroy the
aggregates and the dilution changes the suspension medium. Results obtained in this study revealed
that the stability of nanoparticles was influenced by the Zn/(Zn + Ca) ion ratios. It has been found that
the stability of ZnHAp solutions increases with the increase in zinc content. ZnHAp is of major medical
interest since the presence of hydroxyapatite and Zn was revealed in biological tissues, such as bone
and enamel of human teeth [62]. Moreover, it has been shown that besides the biological properties,
Zn-doped hydroxyapatite has an inhibitory effect on the development of bacteria and pathogenic
yeasts and fungi, such as E. coli, S. aureus, Candida albicans, and Streptococcus mutans [63]. In our study,
we wanted to highlight, for the first time, the influence of zinc-doped hydroxyapatite dispersions on
the development of bacteria, such as S. aureus ATCC 25923 and E. coli ATCC 25922. The antibacterial
activity of ZnHAp colloidal dispersions (xZn = 0, xZn = 0.07, and xZn = 0.2) at concentrations ranging
between 1000 and 1.95 µg/mL against S. aureus ATCC 25923 and E. coli ATCC 25922 were investigated.
S. aureus ATCC 25923 and E. coli ATCC 25922 cell growth in LB at 30 ◦C for 12 h in the presence of
the tested compounds at various concentrations are presented in Figure 16a,b. The biocidal effect of
the 7ZnHAp and 20ZnHAp samples was observed on the two studied strains. Inhibition of S. aureus
ATCC 25923 cell growth was observed starting from 15.62 µg/mL. A relevant inhibition of S. aureus
ATCC 25923 cell growth was observed from 62.5 µg/mL. In the case of E. coli ATCC 25922 cells,
inhibition of growth was observed from 125 µg/mL. Antibacterial activity was maximal in 20ZnHAp
followed by 7ZnHAp compared to control (Figure 16a,b). It was observed that S. aureus ATCC 25923
was more sensitive than E. coli ATCC 25922 to zinc-doped hydroxyapatite solutions compared to
control. 20ZnHAp showed higher activity against S. aureus ATCC 25923 compared to 7ZnHAp and
control. The growth of S. aureus ATCC 25923 and E. coli ATCC 25922 cells was not influenced by
the presence of pure hydroxyapatite (xZn = 0) at concentrations ranging from 1000 to 1.95 µg/mL.
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The results of the antimicrobial assays have emphasized that the best inhibitory activity against the
tested microbial strains was achieved for the 20ZnHAp sample, which was also depicted as having
the best stable parameter from the tested samples. These studies have revealed that the antimicrobial
activity of the tested solutions was influenced both by the solution’s stability and zinc concentration.
The antimicrobial activity of ZnHAp solutions is influenced by both the stability of the solutions and
the amount of Zn.Nanomaterials 2019, 9, x FOR PEER REVIEW 17 of 23 
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presence of zin-doped hydroxyapatite (ZnHAp) with xZn = 0, xZn = 0.07 or xZn = 0.2 at concentrations
between 1.95 and 1000 µg/mL.

According to previous studies [11–14,61,62], the antimicrobial activity of hydroxyapatite doped
with different ions, such as Zn2+ and Ag+, were strongly influenced by various factors, such as particle
size, surface area, surface composition, and its structure. As observed in recent studies [14], the stability
of colloidal dispersions is a major factor in cell viability assay. The results of this research have shown
that the stability of the dispersions used in this study significantly influences the biocidal effect of
ZnHAp. Compared to recent studies [14,61], the results presented in this work revealed a significant
decrease in E. coli cell growth in the presence of ZnHAp solutions. On the other hand, the antimicrobial
activity due to Zn ions present in the HAp structure may be due to the way these ions interact with the
microbial membrane, which causes structural changes and permeability [64].

The morphology and stability of these samples were estimated to better understand the stability
and aggregation of the ZnHAp with different zinc concentrations (xZn = 0, xZn = 0.07, and xZn = 0.2) in
suspensions and to facilitate their targeting to inferior applications in the pharmaceutical, medical,
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or environmental industries. The studies presented in this paper can help nanomaterials researchers in
the process of obtaining and characterizing materials made for applications in different commercial
areas according to their unique physical and chemical properties.

4. Conclusions

The influence of the stability of the ZnHAp solutions on antimicrobial properties was also
evaluated for the first time. The suspension of ZnHAp particles was analyzed by different technics.
The nanoparticle size was determined by both SEM studies and DLS measurements, while the stability
of the tested solutions was evaluated by ζ-potential and ultrasound-based technique. The results of the
Rietveld refining method for the XRD analysis revealed a single phase corresponding to the hexagonal
hydroxyapatite. The calculated lattice parameters of HAp, 7ZnHAp, and 20ZnHAp samples from the
XRD were also in good agreement with the standard data for the hexagonal hydroxyapatite. FTIR
studies highlighted that the spectra of the analyzed samples showed a widening of the peaks and a
smoothing with the increase of the zinc concentration. Additionally, particular attention was paid to
the colloidal studies of ZnHAp dispersions for the first time by the use of ultrasounds as a technique
to characterize dispersion stability. These studies have shown that the stability of ZnHAp solutions
is strongly influenced by zinc content. Moreover, the studies presented in this paper have revealed
that S. aureus ATCC 25923 was more sensitive than E. coli ATCC 25922 to zinc-doped hydroxyapatite
solutions compared to the control. The development of S. aureus ATCC 25923 and E. coli ATCC 25922
cells was not influenced by solutions in which xZn was equal to zero (pure HAp). The biocidal effect of
ZnHAp solutions was influenced by both solution stability and Zn content.
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