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ABSTRACT
In this work we study in details the influence of pure astronomical refraction on solar metro-
logical measurements made from ground-based full disc imagery and provide the tools for
correcting the measurements and estimating the associated uncertainties. For a given standard
atmospheric model, we first use both analytical and numerical methods in order to test the
validity of the commonly or historically used approximations of the differential effect of re-
fraction as a function of zenith distance. For a given refraction model, we provide the exact
formulae for correcting solar radius measurements at any heliographic angle and for any zenith
distance. Then, using solar images recorded in the near-infrared between 2011 and 2016, we
show that these corrections can be applied up to 70◦ using the usual approximate formulae
and can be extended up to 80◦ of zenith distance provided that a standard atmospheric model
and a full numerical integration of the refraction integral are used. We also provide estimates
of the absolute uncertainties associated with the differential refraction corrections and show
that approximate formulae can be used up to 80◦ of zenith distance for computing these uncer-
tainties. For a given instrumental setup and the knowledge of the uncertainties associated with
local weather records, this can be used to fix the maximum zenith distance one can observe
depending on the required astrometric accuracy.

Key words: Atmospheric effects – Astrometry – Sun: fundamental parameters.

1 IN T RO D U C T I O N

Ground based solar astrometric measurements have historically
been made from transit instruments or astrolabes using the so-called
equal altitudes method (Débarbat & Guinot 1970). Several instru-
ments, derived from Danjon astrolabe, have been dedicated to solar
diameter measurements such as DORaySol experiment (Morand
et al. 2010). Observations consist in determining the transit times,
through the same equal zenith distance circle, of the two solar limbs
which are the extremities of a vertical solar diameter. As the two
limbs are observed at equal zenith distances, influence of astronom-
ical refraction is inherently reduced (e.g. Laclare et al. 1996). Only
the small climatic conditions variations (temperature, pressure, and
relative humidity) between the two crossings, distant from a few
minutes of time, can still play a role.

Recent work in the field of solar metrology involve measure-
ments from space using full disc solar images (Damé et al. 1999;
Kuhn et al. 2012; Meftah et al. 2015b, 2018) and planetary transits
(Hauchecorne et al. 2014; Emilio et al. 2015). These measurements
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have however been made over a relatively short period of time
and ground-based instruments were set up in parallel to probe the
long-term variations of solar radius, their potential link with solar
irradiance variations, and their influence on Earth climate. In order
to test our ability to perform such measurements from ground on
the long term, similar techniques and instruments were used simul-
taneously from ground and space during the time of the PICARD
space mission (Meftah et al. 2014, 2015b). This helped us to model
and understand how the atmosphere affects ground-based metro-
logic measurements. The main effect of atmospheric turbulence has
been monitored with a dedicated instrument (Ikhlef et al. 2016) and
calibrated corrections to radius measurement applied (Meftah et al.
2018). However, using full imagery from ground instead of the tra-
ditional astrolabe technique also raises the question of the effect of
refraction and how well we can attain corrections from it. Previ-
ous work used approximate formulae for refraction correction and
a limit of 60◦ for the maximum observed zenith distance (Meftah
et al. 2014, 2015b, 2018). With this conservative limit, no uncer-
tainties were associated to the refraction corrections. The goal of
this work is to use existing observations in order to test the validity
of this observing limit and to associate uncertainties to refraction
corrections as a function of the observing zenith distance.
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The solar radius at any heliographic angle can be measured ac-
curately at low zenith distances and we know from space measure-
ments that the Sun is an almost perfect sphere with an oblateness
less than 10−5 (e.g. Meftah et al. 2015a). Solar astrometry can
therefore be used to test our ability to correct the effect of field
differential refraction as a function of zenith distance. In Section 2
we first recall the fundamental refraction integral which gives the
link between the curvature of a light path in a given atmosphere and
the apparent elevation of a celestial object. Some usual approxima-
tions of this integral, including the one that was historically used
for solar astrometric measurements at Calern observatory are given
in Section 3. The field differential refraction is then applied to the
shape of the Sun. In Section 4 we first recall the usual approximate
formula which gives the refracted shape of the Sun as an ellipse, and
then we establish the exact formula valid for any heliographic angle
and zenith distance. We give in particular the inverse formula which
allows to retrieve the true solar radius from the observed ones. In
Section 5 we use the full numerical integration of the refraction
integral and the exact equation for the shape of the Sun for a given
standard atmosphere in order to discuss the validity limits of the
usual approximate formulae as a function of zenith distance. Fi-
nally, in Section 6 we use solar images recorded in the near-infrared
in order to validate our correction of the differential refraction ef-
fects and to test our ability to recover the true solar radius from
the observed radii for zenith distances up to 80◦. Our conclusions
are given in Section 7, where we outline the full procedure that we
advocate for correcting solar radius measurements from differential
refraction effects and estimating the associated uncertainties.

2 FU N DA M E N TA L EQUAT I O N S F O R
A S T RO N O M I C A L R E F R AC T I O N

The effect of atmospheric refraction is to change the true topocentric
zenith angle, zt, of a celestial object to a lower observed one, z. The
refraction function R(z) is defined by

z = zt − R(z). (1)

Alternatively, we may take the true angles as argument and define
the associated refraction function R̄ by

z = zt − R̄(zt ). (2)

If the refraction function R(z) is known, the associated function
R̄(zt ) can easily be evaluated for any true zenith distance zt by
solving the non-linear equation x − R(zt − x) = 0.

From Snell’s law of refraction applied to a spherical atmosphere,
the curvature of a light path is linked to the local refractive index n
through the so-called refractive invariant,

n r sin(ξ ) = constant, (3)

where ξ is the local zenith distance, i.e. the angle between the
light ray and the radius vector r from Earth centre. From this, the
differential refraction along the light ray is obtained by

dR = − tan ξ
dn

n
. (4)

In order to find the total amount of refraction at observer position,
we can integrate along the full ray path from n = nobs and ξ = z at
observer position up to n = 1 outside the atmosphere,

R =
∫ nobs

1
tan ξ

dn

n
. (5)

This can be done either by direct numerical integration of equa-
tion (5) after an appropriate change of variable (Auer & Standish

2000) or by using a full ray-tracing procedure solving the system
of coupled differential equations provided by equation (4) and the
differentiation of equation (3; van der Werf 2003, 2008). This, in
principle, requires a model of the full atmosphere, i.e. temperature,
pressure, density, etc. at any point through the light path. In the
next section we recall why this is in fact not needed if we avoid
areas close to the horizon and give some usual approximations of
the refraction integral.

3 A PPROX I MATI ON TO THE REFRAC TI O N
I N T E G R A L

For zenith distance up to 70◦, the refraction integral can be evaluated
with good accuracy without any hypothesis about the structure of
the atmosphere: it depends only on temperature and pressure at the
observer (Oriani’s theorem; see also Ball 1908; Young 2004, 2006).
This justifies that, over time, a large number of nearly equivalent
approximate formulae have been derived that do not require the full
knowledge of the structure of the real atmosphere. A development
of the refraction integral into semiconvergent series of odd power of
tan (z) is what is commonly found in textbooks (Ball 1908; Smart
1965; Woolard & Clemence 1966; Danjon 1980). An example of
this will be given in Section 3.1. In fact the first two terms of such
expansion (up to tan 3) corresponds to what is known as Laplace
formula of which Fletcher and Smart (1931) said that no reasonable
theory differs by more than a few thousandths, hundredths, tenths
of a second at z = 60◦, 70◦, and 75◦, respectively.

For large zenith distance, tan (z) power series will diverge at the
horizon and are not appropriate. Closed formula valid at low zenith
distance and that which are finite at the horizon can however still
be found (see e.g. Wittmann 1997). Assuming an exponential law
for the variation of air density with height, it’s possible for instance
to derive a formula involving the error function (Fletcher & Smart
1931; Danjon 1980). Another example is Cassini’s exact formula
for a homogeneous atmosphere model. While physically unrealis-
tic, the model of Cassini, thanks to Oriani’s theorem, gives also
excellent results up to at least 70◦ of zenith distance while re-
maining finite down to the horizon (Young 2004). For large zenith
distances however, Young (2004) has shown that the lowest layers
of the atmosphere, and especially the lapse rate at observer, be-
comes progressively dominant as one observe closer to the horizon.
This therefore should be included in atmospheric models, and we
cannot avoid anymore the full numerical evaluation of the refraction
integral.

In the following sub-sections we present first in details the re-
fraction model as it was used for reducing solar astrolabe data at
Calern observatory, then we give the full error function model from
which the Calern model was actually derived, and finally we recall
Cassini’s formula. In Section 5, these three approximations will then
be compared to full numerical integration of the refraction integral
using a standard atmosphere model.

3.1 Refraction model used at Calern observatory for solar
metrology

The refraction model that was used for the reduction of astrolabe
measurements at Calern observatory is a truncation of the expansion
in odd power of tan (z) (Danjon 1980). For an observer at geodetic
latitude, ϕ, and altitude, h, above the reference ellipsoid, the re-
fraction R is obtained as a function of the observed zenith angle,
the wavelength, (λ), and local atmospheric conditions, i.e. pressure,
(P), absolute temperature, (T), and relative humidity, (fh ∈ [0, 1]),
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by

R(z, λ, P , T , fh, h, ϕ) = α(1 − β) tan(z) − α(β − α

2
) tan3(z)

+ 3α
(
β − α

2

)2
tan5(z), (6)

where

α(T , P , fh, λ) = nobs − 1 (7)

is the air refractivity for local atmospheric conditions and the given
wavelength, and

β(T , h, ϕ) = �(T )/rc(ϕ, h) (8)

is the ratio between the height, �, of the homogeneous atmosphere
and the Earth radius of curvature, (rc), at observer position. The
homogeneous atmosphere has by definition a constant air density,
ρ, equal to the one at observer position and its height is such that
it would give the same pressure as the one recorded at observer
position. Note that we do not assume here that the atmosphere is
homogeneous, we just use the reduced height that can be obtained
for any real atmosphere just from the pressure and density at ob-
server. Assuming furthermore ideal gas law for dry air we have

�(T ) = P

ρ g
= P0

ρ0 g0

T

T0
, (9)

where ρ0 = 1.293 kg m−3 for T0 = 273.15 K, P0 = 101325 Pa and
normal gravity g0 = 9.80665 m s−2. The radius of curvature for
Calern observatory (ϕ = 43◦45

′
7′′, h = 1323 m) was approximated

by the minimum reference ellipsoid curvature at latitude 45◦ and
sea level (Chollet 1981; see Appendix A),

rc(45◦, 0) = 6367.512 km. (10)

Ambient air refractivity was deduced from the refractive index n0(λ)
under standard conditions and the partial pressure of water vapour,
p, by applying the formula recommended by the first resolution of
the 13th General Assembly of the International Union of Geodesy
and Geophysics (Baldini 1963; IUGG 1963). After conversion to
Pa (Pascal) as the pressure unit, the equation becomes

α(T , P , fh, λ) = T0

T

{
(n0(λ) − 1)

P

P0
− 4.13 10−10 p(fh, T )

}
.

(11)

Refractivity under standard condition (sea level, T = T0, P = P0,
0 per cent humidity, and 0.03 per cent of carbon dioxide) was taken
from the work of Barrell and Sears (1939),

n0(λ) − 1 =
{

2876.04 + 16.288

(106λ)2
+ 0.136

(106λ)4

}
10−7. (12)

Partial pressure of water vapour for the current temperature and rel-
ative humidity was deduced from a fit of water vapour pressure data
published by the Bureau Des Longitudes (1975) for temperatures
between −15 ◦C and +25 ◦C. The resulting equation converted to
Pa is (Chollet 1981)

p(fh, T ) = fh 610.75 e7.292 10−2(T −T0)−2.84 10−4(T −T0)2
. (13)

Finally, we note that local atmospheric pressure, P, was measured
from the height, H, (in mm) of a mercurial barometer and its tem-
perature θ (in ◦C). Taking into account corrections for local gravity
(latitude and altitude) and for temperature (through the volume
thermal expansion of mercury and the coefficient of linear thermal

Table 1. Refraction in arcseconds as a function of the observed zenith
distance for different approximations of the refraction integral. ‘tan5’ refers
to equation (6), ‘Cassini’ to equation (17), ‘Erf’ to equation (15), and ‘Full
integration’ to the full numerical integration of equation (5) using a standard
atmosphere model (see Section 5.1). We took λ = 782.2 nm, T=15◦C,
P = 875 hPa, and fh = 50 per cent. The corresponding air refractivity is
α = nobs − 1 = 2.373 10−4 and the reduced height is � = 8430 m which
corresponds to β = 0.00132 at Calern observatory.

z
tan 5

(arcsec)
Cassini
(arcsec) Erf (arcsec)

Full integration
(arcsec)

10◦ 8.618 8.618 8.618 8.618
30◦ 28.207 28.208 28.208 28.208
50◦ 58.149 58.149 58.150 58.150
70◦ 133.097 133.084 133.104 133.094
80◦ 267.683 267.054 267.553 267.411
85◦ 512.185 487.335 495.780 494.176

expansion of the tube), P was obtained by1 (see Appendix B)

P=H
{

1−2.64 10−3 cos(2ϕ)−1.96 10−7h−1.63 10−4 θ
}

. (14)

3.2 Error function formula

In fact, in equation (6), only the first two terms which correspond
to Laplace formula can be found without any hypothesis on the
real atmosphere (only the reduced height, �, and the refractivity at
observer are needed). The term in tan 5 comes from an additional
assumption, namely the fact that air density follows an exponential
decrease with height (actually with a well chosen variable, which
vary almost linearly with height). This leads to the following equa-
tion (see Danjon 1980; Fletcher & Smart 1931):

R = α

(
2 − α√
2β − α

)
sin(z) �

(
cos(z)√
2β − α

)
, (15)

with

�(x) = ex2
∫ ∞

x

e−t2
dt =

√
π

2
ex2

(1 − erf(x)) , (16)

from which equation (6) was derived by keeping only the first three
terms of its asymptotic expansion.

3.3 Cassini

By comparing the results with a full integration method, Young
(2004) shows the superiority of Cassini’s formula over the series–
expansion approach and advocates its use by astronomers. Cassini
(1662) assumed a homogeneous atmosphere for which he obtained
the exact formula:

R = asin

(
nobs rc sin(z)

rc + �

)
− asin

(
rc sin(z)

rc + �

)
. (17)

The demonstration of this formula can also be found in Young
(2004). Again, it can be shown (Ball 1908) that expanding this
formula also leads to the first two terms of equation (6), i.e. to
Laplace formula.

In Table 1 the three formulae discussed above are compared to
the full numerical integration of equation (5) with a standard at-
mospheric model for six observed zenith distances and average
weather conditions at Calern observatory. This illustrates the use of

1Chollet (1981) used erroneously 2.64 10−4 in this equation.
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Figure 1. Geometry for the solar shape due to astronomical refraction. The
dashed circle represents the true solar disc of centre Ct and radius R�, while
the elliptical shape (full line) represents the observed Sun of centre C. The
point at the top represents observer’s zenith.

the three approximate formulae which are fully determined by the
evaluation of α and β for the actual weather conditions at the ob-
serving station. At 85◦, the tan 5 expansion diverge while Cassini’s
and the error function formulae remain closer to the result of the
full numerical integration.

4 O N THE OBSERV ED SHAPE O F THE SUN
D U E TO P U R E A S T RO N O M I C A L R E F R AC T I O N

In this section, we assume that the Sun is a perfect sphere of angular
radius R� at 1 au and that there is no other effect affecting its
observed shape than astronomical refraction defined by equation (2).

In the horizontal coordinate system (zenith distance–azimuth),
we note (zt�, A�) the true position of the Sun centre (Ct) observed
at zenith angle z�; (zt, A) the true position of a point (Lt) of the solar
limb observed at zenith angle z; δz = z − z� and δA = A − A�.
Fig. 1 shows all the angles involved. Each true limb point position
can be defined by the angle ψ t ∈ [−π , π ] between the direction
CtLt and the vertical circle. Similarly, each observed limb point
can be located by the angle ψ ∈ [−π , π ] between the observed
direction CL and the vertical circle. However, because the figure is
symmetric with respect to the vertical circle, we consider only the
interval [0, π ] for ψ and ψ t in the following. For observation with
an Alt–Az mount this would correspond directly to the angle with
one of the CCD axis. For an equatorial mount, one CCD axis is
aligned with the hour circle passing through the celestial poles and
the Sun, and therefore the vertical circle can be materialized on the
solar image by computing first the parallactic angle between these
two circles.

If d(ψ) = d̄(ψt ) is the angular distance between the observed
position of the Sun centre and the observed limb points, we define
by

< d >= 1

π

∫ π

0
d(ψ)dψ = 1

π

∫ π

0
d̄(ψt )dψt , (18)

the geometric mean radius of the observed Sun. The horizontal and
vertical angular extent of the observed Sun are noted Dh and Dv,

respectively, and the flattening is given by

f = Dh − Dv

Dh

. (19)

Following Mignard (2010), we define the magnification � as the
ratio between the vertical size of the image (δz) of a small object
to its true size (δzt), i.e. in differential form � ≡ dz/dzt. From
equations (1) and (2), we have respectively:

� =
(

1 + dR

dz

)−1

and � = 1 − dR̄

dzt
. (20)

The distortion � is then defined as the rate of change of the mag-
nification, i.e. � ≡ d�/dz. By derivating the two relations in equa-
tion (20), we obtain respectively:

� = −�2 d2R

dz2
and � = − 1

�

d2R̄

dzt 2 . (21)

4.1 Approximate formulae for all zenith angles

Any limb point true position can be located by its projections on
the vertical circle passing through the true Sun centre, and on the
great circle perpendicular to this vertical circle passing through the
limb point (see Fig. 1). Because all the angles involved are small,
we can write:

xt = R� cos(ψt ), (22)

yt = R� sin(ψt ), (23)

and

xt 2 + yt 2 = R2�. (24)

By looking at the expression of the observed values x and y of these
projections, one can obtain an approximate formula for the observed
shape of the Sun.

The projection xt on the vertical circle can be approximated by
keeping the two first terms of a Taylor expansion of the refraction:

xt 
 zt − zt� = δz + R(z) − R(z�),


 δz

(
1 + dR

dz

)
+ (δz)2

2

d2R

dz2
. (25)

The observed projection y is linked to z and δA both by the cosine
and sine rules:

cos(yt ) 
 cos2(zt ) + sin2(zt ) cos(δA), (26)

sin(yt ) = sin(δA) sin(zt ). (27)

Differentiating equation (26) and using equation (27) with
sin (yt) 
 yt, sin (δA) 
 δA, and dzt = −R̄(zt ) leads to:

dyt = −yt R̄(zt )

tan(zt )
. (28)

The observed distance y is then obtained by

y 
 δA sin(z) = yt + dyt = yt

(
1 − R̄(zt )

tan(zt )

)
. (29)
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Finally, by reporting equations (25) and (29) in equation (24) and
using equations (20) and (21), we obtain:

[
δz

�
− �

2

(
δz

�

)2
]2

+

⎡
⎢⎣ δA sin z

1 − R̄(zt )
tan(zt )

⎤
⎥⎦

2

= R2�, (30)

where the magnification and distortion are taken at z�. From this
we can deduce the position of the two vertical limb points and the
observed vertical extent of the image. For � � R� and δA = 0, we
find

d(π ) 
 � R�
(

1 + �R�
2

)
, (31)

d(0) 
 � R�
(

1 − �R�
2

)
, (32)

and thus

Dv = d(0) + d(π ) 
 2 � R�. (33)

In the horizontal direction we obtain from equation (30) with δz= 0,

Dh = 2d(π/2) 
 2R�

⎛
⎝1 −

R̄
(
zt�

)
tan

(
zt�

)
⎞
⎠ . (34)

4.2 Approximate formulae for small zenith angles–elliptic
shape

Keeping only the first term in equation (6) is equivalent to neglecting
Earth curvature. We obtain the following approximation valid close
to the zenith only

R(z) = k tan(z) with : k = α(1−β). (35)

For the conditions of Table 1 we have k 
 49 arcsec (from equa-
tions 7 and 8). For sea level pressure P0 (other parameters being
unchanged), we would obtain k 
 57 arcsec. For this flat-Earth
approximation we can also write

R̄(zt ) 
 k′ tan(zt ) with : k′ = k
(
1 − k sec2(zt )

)
. (36)

In that case and if we neglect the distortion, equation (30) is reduced
to the equation of a simple ellipse (see also, e.g. Dionis Du Séjour
1786; Ball 1908):

x2(
1 − k′ sec2

(
zt�

))2 + y2

(1 − k′)2
= R2�, (37)

where x = δz and y = sin(z) δA can be assimilated to Cartesian
coordinates on two perpendicular axes on the image. The major
axis of the observed ellipse is thus given by

Dh

2
= R�(1 − k′), (38)

while the observed minor axis is

Dv

2
= R�

(
1 − k′ sec2

(
zt�

))
. (39)

We note from these equations that the Sun is shrunk in all directions.
The observed horizontal diameter is smaller than the true diameter
but remains the same for all zenith angles (cf. Fig. 7), while the ob-
served vertical diameter decreases with increasing zenith distance.
The combination of these two effects leads to the apparent flatten-
ing of the setting Sun (but keeping in mind that this approximate

formula is not valid close to the horizon). From equations (19), (38),
and (39), the flattening for small zenith angles is

f 
 k tan2(zt�), (40)

while, near the horizon, equation (30) implies that the flattening is
simply given by the vertical magnification taken at the the Sun’s
centre. For small zenith angles, the observed elliptic shape can be
written as

d(ψ) = Dv

2
√

1 − (2f − f 2) sin2(ψ)
, (41)

which can be approximated by

d(ψ) 
 R�
(

1 − k′
(

1 + cos2(ψ) tan2(zt�)
))

, (42)

and the mean radius is obtained by

< d >
 R�
(

1 − k′ − k′

2
tan2(zt�)

)
= Dv + Dh

4
. (43)

The validity of this approximation as a function of the zenith dis-
tance will be discussed in Section 5 and checked against observa-
tions in Section 6.

4.3 Exact formulae for all zenith angles

The classical approximate formulae above are useful for under-
standing the shape of the observed Sun in terms of magnification
and distortion induced by refraction. Equation (30) shows that the
general shape is a distorted ellipse with more flattening in the lower
part than in the upper’s. However, for a given refraction law, the
shape of the observed Sun can also be easily obtained, in the gen-
eral case, without any approximation. In the following, we obtain
first the solution of the forward problem: for given true Sun radius
R� and true zenith distance zt�, we obtain the shape of the observed
Sun for any given refraction model. Then, we give the solution of the
inverse problem: from the observed solar shape, the knowledge of
zt� (from ephemeris) and assuming a refraction model, we deduce
the true angular solar radius.

4.3.1 Forward problem

Here we assume that the true zenith distance of the Sun centre,
zt�, and its true angular radius, R�, are known. For any refraction
model, R̄(zt ), and true angle, ψ t, we deduce the observed angle, ψ ,
and angular distance, d(ψ). Applying the cosine and sine formulae
respectively, we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩
zt =acos

[
cos

(
zt�

)
cos

(
R�

)+sin
(
zt�

)
sin

(
R�

)
cos(ψt )

]

δA= asin

(
sin(R�) sin(ψt )

sin(zt )

) .(44)

From equation (2), we can get the observed zenith distances:

z = zt − R̄
(
zt
)

and z� = zt� − R̄
(
zt�

)
, (45)

and finally angular distances d̄(ψt ) between the observed Sun cen-
tre and the observed positions of each limb point are obtained by
application of the cosine rule:

d̄(ψt ) = d(ψ)=acos
(

cos(z) cos(z�) + sin(z) sin(z�) cos(δA)
)
,

(46)
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where the observed angle ψ can be deduced from the true one by
applying the sine rule:

ψ =asin

(
sin(δA) sin(z)

sin(d̄(ψt ))

)
=asin

(
sin(z)

sin(zt )

sin(R�)

sin(d̄(ψt ))
sin(ψt )

)
.

(47)

The smallest observed diameter of the Sun is obtained on the
vertical direction ,

Dv =d(0)+d(π )=2R�−
(
R̄
(
zt�+R�

)
−R̄

(
zt�−R�

))
,

(48)

and the largest angular extent, observed in the direction parallel to
the astronomical horizon is obtained by

Dh = 2d(π/2). (49)

We note that equations (44) and (45) lead back to the approxi-
mation equation (34) for the largest observed angular extent. This
is however more easily obtained using the sine rule rather than
equation (46). With sin (d(π /2)) 
 d(π /2), sin (R�) 
 R� and
cos (R�) 
 1, we obtain

d(π/2) 
 sin(z) sin(δA) = sin
(
zt� − R̄

(
zt�

)) R�
sin(zt�)

, (50)

which, with a first-order expansion of the sine function around zt�,
leads to equation (34).

4.3.2 Inverse problem

Here we give the solution of the inverse problem: given a refraction
model (R(z), R̄(zt )), knowing zt� from ephemeris and the observed
angular distance, d(ψ) between the observed Sun centre and a limb
point at an observed angle ψ with the vertical circle, we deduce the
true angular radius R�. For ψ �= 0 and ψ �= π , one can compute
successively:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z� = zt� − R̄
(
zt�

)
,

δA = atan

[
sin(ψ)

sin(z�)cot(d(ψ)) − cos(z�) cos(ψ)

]
,

z = asin
[

sin(ψ) sin(d(ψ))
sin(δA)

]
,

zt = z + R(z),

ψt = atan

⎡
⎣ sin(δA)

sin
(
zt�

)
cot(zt )− cos

(
zt�

)
cos(δA)

⎤
⎦ ,

R� = asin

[
sin(δA) sin(zt )

sin(ψt )

]
.

(51)

For ψ = 0 or ψ = π , we have: δA = 0; z = z� ∓ d(ψ); ψ t = ψ

and R� = ±
(
zt� − zt

)
.

5 R ESULTS

5.1 On the absolute value of refraction

We first look at the absolute value of refraction and compare the
various approximate formulae of Section 3 to the full numerical

integration of the refraction integral using a standard atmosphere
(Sinclair 1982). This atmosphere is assumed to be spherically sym-
metric in hydrostatic equilibrium and made of a mixture of dry air
and water vapour that follows the perfect gas law. It is made of
two layers: the troposphere with a constant temperature gradient,
which extends from the ground up to the tropopause at 11 km, and
an upper isothermal stratosphere. Like in the US Standard Atmo-
sphere (NOAA 1976), the temperature and pressure at the surface
are 288.15 K and 101325 Pa, respectively, and the constant tropo-
spheric lapse rate is 6.5 K km−1. In the troposphere, the relative
humidity fh is assumed constant and equal to its value at the ob-
server. The partial pressure of water vapour in a tropospheric layer
at temperature T is then obtained by

p(fh, T ) = fh

(
T

247.1

)δ

102, (52)

which, with δ = 18.36 (Sinclair 1982), never depart by more than
0.5 hPa from equation (13) for temperature lower than 30◦. Dry
air is assumed in the stratosphere. Finally, equation (11) and its
derivatives with respect to T and P are used to find air refractivity
along the integral path.

The numerical integration was performed by using the method of
Auer and Standish (2000) also recommended by the Astronomical
Almanac (Seidelmann 1992). The program used is based on the
one published by Hohenkerk and Sinclair (1985), but adapted in
order to use a dispersion equation based on the work of Peck and
Reeder (1972) in replacement of the less accurate equation of Bar-
rell and Sears (1939; equation 12). For the standard air defined by
Ciddor (1996), i.e. T = 15◦C, P = P0, 0 per cent humidity, and
0.045 per cent of carbon dioxide, we take

n0(λ) − 1 =
{

0.05792105

238.0185 − (
106λ

)−2 + 0.00167917

57.362 − (
106λ

)−2

}
.

(53)

This dispersion equation was also used by Ciddor (1996), who de-
rived a new set of equations for calculating the refractive index of
air, which was subsequently adopted by the International Associa-
tion of Geodesy (IAG 1999) as a new standard. In the following, all
computations have been made using λ = 782.2 nm, which is one of
the wavelengths used by the PICARD-SOL project and that will be
used in Section 6.

Fig. 2 shows the absolute differences in milliarcsec (mas) be-
tween the approximate formulae and the exact integral evaluation
for zenith distances up to 80◦. We immediately see that for zenith
distance lower than 75◦, all the approximate formulae lead to less
than 50 mas of absolute error. The full line corresponds to the tan 5

formula equation (6) described in Section 3.1, while the dashed line
corresponds to the same formula but using the new Ciddor (1996)
equations instead of equations (11)–(13) for computing air refrac-
tivity. For zenith distances lower than 80◦, the impact of using the
old formula for refractivity never exceed 80 mas. The superiority
of Ciddor equations to better fit observations and this for a wider
range in wavelengths is however clearly established. The two other
lines correspond to the error function (dot–dashed) and Cassini
(triple dot–dashed) formulae both using the Ciddor (1996) equa-
tion for refractivity. These two last formulae were selected mainly
because, unlike the series expansions in tan (z), they are finite at
the horizon. The full integration with standard atmosphere con-
ditions leads to a refraction of about 1980 arcsec at the horizon.
The error function and Cassini formulae lead respectively to 2088
and 1180 arcsec, corresponding to relative errors of 5 per cent and
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On the importance of astronomical refraction 3871

Figure 2. Absolute differences (in mas) between a reference model and the
different approximate refraction formulae as a function of the true zenith
distance. The reference model is obtained by full numerical integration of
a Standard Atmosphere (Sinclair 1982) and Ciddor (1996) equation for air
refractivity. From top to bottom: tan 5 expansion equations (6)–(13), full
error function equation (15), tan 5 expansion equation (6), and Cassini’s
formula equation (17). All approximate formulae but the top one use Ciddor
(1996) air refractivity.

40 per cent, respectively. This tends to favour the use of the error
function formula over Cassini’s one very close to the horizon. The
hypothesis made to derive the error function formula are indeed
more realistic than Cassini’s hypothesis of a homogeneous atmo-
sphere. However, it has been shown that refraction below 5◦ of the
horizon is variable and strongly depends on the local lapse rate and
properties of the boundary layer above or below the observer’s eye
(e.g. Young 2004). Within few degrees from the horizon, refraction
may be influenced by thermal inversion boundary layers, ducting
or other phenomena leading to extreme refraction. In this range,
the local lapse rate must be known and it is not expected that any
formula using just the temperature and pressure at observer could
give an accurate absolute refraction.

It is however probably more interesting to look in the range be-
tween 60◦ and 80◦ of zenith distance, which is more important to
astronomers willing to push in that range the limits of their astro-
metric measurements using only temperature and pressure recorded
at observer position. We first note from Fig. 2 that, between 60◦ and
77◦, the tan 5 expansion formula is actually giving slightly better
absolute refraction values than the error function formula. If we
now assume that temperature and pressure at observer position are
perfectly known, the only remaining important unknown in the at-
mospheric model is the tropospheric lapse rate. We can however fix
limits for a realistic lapse rate: it must lie between an isothermal
model and a lapse rate of 10 K km−1 which would correspond to
an adiabatic atmosphere (Young 2004). Fig. 3 shows the relative
error for such models with lapse rate ranging from 0 to 10 K km−1

when they are compared to the standard model with a lapse rate of
6.5 K km−1. From this we can deduce that no matter what is the real
atmosphere, if the conditions at observer are known the relative er-
ror on refraction is lower than 0.01 per cent for zenith angles below
77◦ and lower than 0.4 per cent for zenith angles between 77◦ and
85◦.

5.2 On the mean solar radius correction

Fig. 4 shows the difference between the true radius of the Sun and
the mean radius of the observed Sun as defined by equation (18)
as a function of the true zenith distance of the centre of the Sun.
The exact formula equation (46) was used and we took standard
conditions for Calern observatory (T = 15 ◦C and P = 875 hPa).

Figure 3. Relative error on refraction as a function of zenith distance for
different tropospheric lapse rate. The reference model uses the US Standard
Atmosphere (NOAA 1976) with a lapse rate of 6.5 K km−1. The top curve
corresponds to an isothermal model and other atmosphere models have
lapse rate of 2.5, 5, 7.5, and 10 K km−1 (from top to bottom at high zenith
distance). All models are computed using full numerical integration.

Figure 4. Difference between the true solar radius and the mean observed
one as a function of the true zenith distance. The full line corresponds
to average weather conditions at Calern (T = 15◦C and P = 875 hPa).
The dot–dashed and dashed lines correspond, respectively, to T = −10◦C,
P = 900 hPa and T = 30◦C, P = 850 hPa. All calculations are made using
the exact formulae equations (18) and (46) for Calern station assuming
50 per cent humidity.

The dashed and dot–dashed lines are for T = −10 ◦C, P = 900 hPa
and T = 30 ◦C, P = 850 hPa, respectively, in order to illustrate the
maximum amplitude of the effect at Calern station. The difference
in the mean radius correction between the two extreme weather con-
ditions range from 50 mas at the zenith up to 1850 mas at zt = 85◦.
It reaches 100 mas around zt = 55◦ and 200 mas around zt = 70◦.
This always represents less than 0.2 per cent of the correction.

Fig. 5 shows the difference between the exact formula obtained by
integrating equation (46) and the approximate formula equation (43)
corresponding to an elliptical shape. The dashed line illustrates the
result if k

′
is approximated by k (see equation 36). In both cases the

difference remains less than 20 mas for zenith distances lower than
70◦. For larger zenith distances however, errors increase rapidly
and the refraction function should be evaluated using full numerical
integration.
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Figure 5. Difference between the correction due to refraction on the mean
solar radius as calculated from integrating the exact formula equation (46)
or using the approximate formula equation (43). The dashed line is obtained
by replacing k

′
by k in equation (43).

Figure 6. Difference between the true solar radius and the angular distances
between the observed Sun centre and the observed positions of each limb
points between the vertical (north for ψ = 0◦ and south for ψ = 180◦) and
the horizon (ψ = 90◦). The full lines are for zt� = 70◦, 50◦, 30◦, and 10◦,
respectively, from top to bottom and are for average weather conditions at
Calern. The dashed and dot–dashed lines are for zt� = 70◦ and the same
extreme weather conditions as in Fig. 4.

5.3 On the angular dependence of solar radius correction

For precise metrologic measurements of the Sun and in order to
correct for other effects (optical aberrations, turbulence, etc.) that
are dependent on the position on the image, one may want to cor-
rect not the mean radius but each individual radius measured at all
angles ψ . This can be done by following the procedure given in
Section 4.3.2. Fig. 6 is obtained from equation (46) and illustrates
the amplitude of the correction as a function of ψ for different val-
ues of zt�, the true zenith distance of the Sun centre. We see that the
horizontal diameter (ψ = 90◦) is affected by refraction (by about
2 × 0.23 arcsec = 0.46 arcsec for the chosen weather conditions)
in agreement with equation (34). The north and south vertical cor-
rections (ψ = 0◦ and 180◦, respectively) are also slightly different
in agreement with equations (31) and (32). Fig. 7 shows that the
contraction of the horizontal radius lies between 210 and 260 mas
depending on the actual weather conditions and remains constant
for all zenith distances below 80◦ in agreement with equation (38). It
then decreases rapidly towards zero at the horizon as expected from
equation (34). Physically the horizontal contraction results from the
fact that meridians are not parallel lines (they cross at zenith). Near
the horizon however they become parallel.

Figure 7. Contraction of the horizontal radius (R� − d(π /2)) as a function
of the true zenith distance zt�. The full line is for average weather conditions
at Calern. The dashed and dot–dashed lines are for the same extreme weather
conditions as in Fig. 4.

Figure 8. Partial derivatives of the vertical diameter correction (∂Dv /∂X)
as a function of the true zenith distance. Partial derivatives in tempera-
ture, pressure, zenith distance, and relative humidity are given in mas K−1,
mas h Pa−1, mas arcmin−1 and mas/ per cent from top to bottom (at 40◦),
respectively. The full, dashed and dot–dashed lines are for the same weather
conditions as on Fig. 4.

5.4 On uncertainties associated to radius corrections

We have shown that, apart from weather conditions at observer’s
position, differences in atmospheric models and especially different
tropospheric lapses rate will not play any significant role at least
up to 85◦ of zenith distance. The four main contributions are there-
fore uncertainties in temperature, pressure, humidity, and, for large
zenith distance, uncertainties on the true zenith distance itself.

�d(ψ) =
√√√√ 4∑

i=1

∣∣∣∣∂d(ψ)

∂Xi

∣∣∣∣
2

�X2
i X =

{
T , P , fh, z

t�
}

. (54)

It should be noted that we assume here observations made using
filters with a narrow bandwidth around λ. For broad-band filters,
an additional term ∂d(ψ)/∂λ should be added by differentiating
equation (53). The largest uncertainty will be obtained for the ver-
tical diameter (Dv = d(0) + d(π )) which is the most affected by
refraction. Fig. 8 shows the four partial derivatives contributing to
�Dv between the two extreme weather conditions chosen above for
Calern (see Section 5.2). The partial derivatives shown have been
obtained by numerically differentiating equation (46), but we have
also checked that the analytical expressions that can be derived from
the approximate elliptical shape equation (42) are actually valid up
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On the importance of astronomical refraction 3873

Figure 9. Uncertainties on the vertical diameter correction assuming
�T = 0.5 K (dotted line), �P = 1 hPa (dashed line), �fh = 5 per cent
(dot–dashed line), and �zt� = 5.4, 1.0, or 0.2 arcmin (full lines from top to
bottom). The total error is obtained by summing the four contributions.

to 80◦ of zenith distance. Closer to the horizon the partial derivative
over the zenith distance becomes significantly overestimated (cf.
Fig. 13). From equation (42) and taking k

′ 
 k, we obtain:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣∣∂d(ψ)
∂Xi

∣∣∣ =
∣∣∣ ∂k
∂Xi

∣∣∣ (1 + cos2(ψ) tan2
(
zt�

))
R� i = 1..3,

∣∣∣∣∂d(ψ)
∂zt�

∣∣∣∣ = 2k cos2(ψ)sec2
(
zt�

)
tan

(
zt�

)
R�,

(55)

and from equations (8), (9), (11), (36), and (52), we obtain:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂k
∂T

= −C1
P

T 2 (n0(λ) − 1) + C3T
δ−1fh

(
δC2 − δ−1

T

)
,

∂k
∂P

= C1(T −1 − C2)(n0(λ) − 1),

∂k
∂fh

= −C3(T −1 − C2)T δ,

(56)

where:

C1 = T0/P0, C−1
2 = C1rcρ0g0, and C3 = 4.13 10−8T0(247.1)−δ.(57)

For temperature, pressure, and humidity, we assume uncertainties
of �T = 0.5 K, �P = 1 hPa, and �fh = 5 per cent, which are
typical for a standard weather station. The precision on the true
zenith distance relies on ephemeris calculations and a correct timing.
At any given time ephemeris can give not only zt� but also the
instantaneous rate dzt�/dt and, from the knowledge of the image
exposure time �t, one can deduce an uncertainty on zt� by

�zt� =
∣∣∣∣∣
dzt�
dt

∣∣∣∣∣�t. (58)

The maximum rate is about 650 arcsec min−1 at summer solstice.
Image exposures of 1, 5.5, or 30 s would then correspond to a maxi-
mum uncertainty �zt� of 0.18, 1, or 5.4 arcmin, respectively. These
values are taken as illustrative examples. In the case of SODIM-II
images, we use attenuation filter of about 20, the spectral filters are
narrow (0.5–6.4 nm) and the exposure times range from 1.28 to
8.90 s depending on the filter (Meftah et al. 2014). Fig. 9 shows
the contribution of these uncertainties to the total uncertainty on
vertical diameter correction for large zenith distances. We can see
for instance that for 1 arcmin precision on the zenith distance (or
5.5 s exposure), the uncertainty coming from zenith distance can
become above 70◦ of the same importance as the combined uncer-

tainties coming from temperature and pressure records. The total
relative error on the vertical diameter correction (�Dv/(2R� − Dv))
remains however below 1 per cent up to zt� = 85◦.

6 A PPLI CATI ON TO R EAL DATA

The solar radius is very accurately determined for low zenith dis-
tances and the measurements obtained at high zenith distances cor-
rected from the differential refraction effect should agree with this
value. Solar astrometry is therefore a very good way to test the valid-
ity of a differential refraction model. For this, we analysed a series of
31 711 near-infrared solar images (782.2 and 1025.0 nm) recorded
at zenith distances ranging from 20◦ to 80◦. This includes 7978 im-
ages recorded at zenith distances above 60◦, which are normally ex-
cluded from our solar astrometry pipeline. These observations were
performed at Calern Observatory using SODISM-II solar imager
(Meftah et al. 2014). We selected these two wavelengths because
the atmospheric turbulence effects, which also affect astrometric
measurements and are much lower in the infrared than in the visible
range.

For each image, after the usual CCD radiometric calibrations,
we detect the inflexion points of the centre to limb profiles and
thereby extract 3600 values of the solar radius as a function of the
heliographic angle. Because the SODISM-II mount is equatorial,
we obtain the observed angle ψ for each inflexion point using the
parallactic angle given by the ephemeris. Meteorological data (P, T,
fh, and wind speed) are recorded simultaneously for each image by
a weather station located close to the instrument.

In order to test the efficiency of the differential refraction estima-
tion, we first compared the refracted solar images to the theoretical
refracted solar shape obtained for the same zenith distances using
the direct procedure of equations (44)–(46). The input solar radius
in equation (44) is taken equal to the mean value of the observed
radii. Fig. 10 shows the good agreement for two sample images
recorded at z = 64.6◦ and 79.5◦ on 2013 november 25 . For this
particular day, Fig. 11 shows, as a function of the zenith distance,
the observed difference between the mean corrected solar radius
obtained by integration of the exact formula equation (46) and the
one obtained using the approximation equation (43) applied to the
mean of the observed radii. As expected, we recover the curve of
Fig. 5 in the range of the zenith distances covered by the observa-
tions. It can be seen that beyond 70◦ of zenith distance, the use of the
exact formulation is in principle necessary if we want to maintain
the correction bias less than 50 mas.

We analysed the full set of images following the two approaches.
In the first case we compute a mean radius for each image and
then apply the approximate mean correction equation (43). In the
second case, we apply the full inverse procedure equations (51) to
each individual radii of each image. The results are then grouped by
class of 4◦ of zenith distances and a robust estimate of the mean and
of the standard deviation is made for each class of zenith distances.
On Fig. 12 the raw measurements are shown by the black crosses
and the two corrections are shown in blue and red, respectively.
For the raw measurements we took zenith distance intervals of 2◦

only because of the strong variation at high zenith distance. We see
first that the second approach leads to better results for the highest
zenith distances covered. The corrected value is in better agreement
with the value obtained at low zenith distances. This shows that
beyond 75◦ we have reached the limit of validity of the approximate
formula. The standard deviation is also significatively lowered. This
is a direct consequence of the fact that in the first approach the mean
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Figure 10. Observed solar shape (bottom) and the theoretical ones (top).
These plots give two examples of solar shape observed at 782 nm and
z = 64.6◦ (left) or z = 79.5◦ (right) with the SODISM-II ground-based
instrument on 2013 november 25. Black dots give the measured inflexion
points of the observed limb darkening function. These are Fourier filtered
(8 terms) to produce the blue lines which can be compared to the theoretical
blue lines shown on the top figures. The red circles give the mean of the
observed refracted radii in each case for reference. In order to visualize the
small differences from the mean radius we rescaled the mean radius to a
value of 10 arcsec while keeping the differences to the true scale, i.e. we
plot d(ψ) − < d > +10 arcsec for the theoretical curves (top) and Robs −
< Robs > +10 arcsec for the observations (bottom). The scale on both axes
give the distance from the mean radius in arcsec. The horizontal refraction
being smaller than the vertical refraction, the observed horizontal diameter
is larger than the mean observed one while the vertical diameter is smaller
than the mean observed one.

Figure 11. Comparison between mean radius values obtained after re-
fraction correction using exact and approximated formulas. Observations
were performed using SODISM-II telescope at Calern Observatory on 2013
november 25.

Figure 12. Observed solar radii at 782.2 nm (top) and 1025.0 nm (bot-
tom) during the period 2011–2016 as a function of the true zenith distance.
The raw measurements are in black. The blue crosses give the measure-
ments corrected for differential refraction by applying approximate formula
equation (43) on the mean radius of each image. The red crosses give the
measurements corrected for differential refraction by applying the formulae
equation (51) on each individual radius of each image. The red crosses have
been artificially horizontally shifted by 0.2◦ for clarity.

correction applied to each individual radius leads to overestimated
horizontal radii and underestimated vertical radii.

7 C O N C L U S I O N S

The motivation of this work was to address the reliability of the dif-
ferential refraction correction currently applied to solar astrometric
measurements made using full disc imaging. An approximate for-
mula is routinely used for this purpose and for conservative reasons
we reject images recorded at zenith distance above 60◦. In this work
we have analysed about 8000 images recorded above 60◦ over a pe-
riod of 5 yr and we show that the approximate formula for correcting
differential refraction from the mean radius is reliable at least up to
70◦. For higher zenith distances a more rigorous correction applied
to each individual radius as a function of the heliographic angle and
using the full computation of the refraction integral for a standard
atmosphere is able to produce better results up to 80◦. We have
obtained in Section 4.3.2 the exact formulae that can be used to
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Figure 13. Maximum absolute uncertainties on differential refraction cor-
rection for radius measurements in the vertical direction. This curves are
obtained for λ = 782.2 nm, T = (15 ± 0.5)◦C, P = (875 ± 1) hPa,
fh = 50 per cent ± 5 per cent, dzt�/dt = 650 arcsec min−1, and 1.43 s of
exposure time. Full lines give the results from full numerical derivatives
calculations while dashed lines are obtained using approximate formulae
equations (54)–(58). The curves for 1025 nm (not shown) are similar.

correct solar radius measurements at any heliographic angle and
any zenith distance from the effect of astronomical refraction for
a given atmospheric model. Absolute uncertainties on these cor-
rections are also derived that allows us to fix the maximum zenith
distance one should observe depending on the needed metrologic
accuracy. Fig. 13 shows the maximum total absolute uncertainty ob-
tained on the solar radius assuming that the vertical radii have been
observed at different zenith distances. Because we took the maxi-
mum value for dzt�/dt , these curves represent only upper limits,
the actual value of dzt�/dt should be used for each measurement.
From this, one can deduce that observing below 70◦, 75◦, or 80◦ of
zenith distances will keep the absolute uncertainties on refraction
corrections below 10, 20, and 50 mas, respectively. The comparison
between numerical derivatives (full lines) and the use of approxi-
mate formulae equations (54)–(58) (dashed lines) shows that even
if the approximate formulae should not be used above 70◦ for cor-
recting the measurements (cf. Fig. 5), they can be used at least up
to zt� = 80◦ for estimating the uncertainties.

In summary, the process that we suggest to correct ground-based
radii measurements from refraction for true zenith distances up to
80◦ is as follow. Inputs are the measurements d(φ) and eventually
their associated errors δd(φ), where φ is an arbitrary angle defined
on the solar image; the time of image record and the exposure time
�t; weather records (P, T, and fh) and their associated uncertainties
(�T, �P, and �fh); the wavelength (λ) and observer’s geodetic
coordinates (ϕ and h). One can then successively:

(i) Find the direction of the zenith on the image and associate
each angle φ to its corresponding angle ψ (cf. Fig. 1). Depending
on the instrumental setup, this may require the computation of the
parallactic angle from ephemeris.

(ii) Determine zt� and dzt�/dt from ephemeris at the time of
image record.

(iii) Calculate R� using equation (51) and full numerical integra-
tion for the refraction function R(z, λ, P, T, fh, h, and ϕ).

(iv) Estimate �d(ψ) from equations (54)–(58) and the knowl-
edge of �T, �P, �fh, �t, and dzt�/dt .

(v) Estimate �R� from

�R� = R�
√

�d(ψ)2 + δd(ψ)2

d(ψ)
. (59)

For zenith distances lower than 70◦ full numerical integration can be
replaced by equation (6) in order to evaluate the refraction function
(cf. Fig. 2). In both cases Ciddor (1996) equations should be used for
computing air refractivity at observer position. The corresponding
codes are available from the authors upon request.

It is important to keep in mind that, at all zenith distances, other
phenomena such as extinction or optical turbulence must be taken
into account for ground-based solar metrology. We know that they
will dominate refraction effects at low zenith distances. Close to the
horizon extinction is proportional to refraction (Laplace’s extinction
theorem) and effects of optical turbulence (e.g. Ikhlef et al. 2016;
and reference therein) will become increasingly important knowing
that the Fried parameter varies as sec(z)−0.6. It is interesting how-
ever to know that for any zenith distance up to 80◦ refraction can
be reliably corrected and uncertainties on this correction estimated.
After these correction are applied, all other phenomena impact-
ing metrologic measurements can therefore be investigated without
fearing contamination by astronomical refraction even at high zenith
distances. The mean radius correction presented here (cf. Fig. 4) as
well as mean turbulence corrections have been applied to correct the
first PICARD-SOL measurements (Meftah et al. 2014, 2018). The
corrections that can be applied individually for each heliographic
angles should be used in future work in order to disentangle the dif-
ferent effects. In some cases the best seeing conditions are obtained
early in the morning when the Sun is still low. This work shows
that in such cases the uncertainty associated to refraction correction
will be higher but we can still have a good confidence on its mag-
nitude when computed using the rigourous approach instead of the
approximate formula. Keeping images recorded between 60◦ and
70◦ of zenith distances when the seeing conditions are good also
potentially provides a way to increase the measurement statistic
over the winter periods.

Finally we note that we have considered only the radial
symmetric-component of refraction also called pure or normal re-
fraction. There also exists an asymmetric component known as
anomalous refraction (e.g. Teleki 1979) resulting from the tilted
atmospheric layers. Anomalous refraction may depend not only on
zenith distance but also on azimuth and it can lead to seasonal or
high-frequency effects (see e.g. Hirt 2006; and references therein).
The amplitude of such effect has however been found to be lower
than 0.2 arcsec for local effects and one order of magnitude less for
regional effects that may originate higher in the atmosphere (e.g.
Hu 1991). Moreover it has been shown that anomalous refraction is
spatially coherent at scales of at least 2◦ (Pier et al. 2003) and it has
been established from dedicated observations that its main source
is confined in the layer immediately above ground level (less than
60 m; see Taylor et al. 2013). It is therefore difficult to believe that
differential effects of anomalous refraction and especially the one
that may be triggered in the Upper Troposphere Lower Stratosphere
(UTLS) interface (cf. Badache-Damiani et al. 2007) could lead to
significant bias on solar astrometric measurements relying on direct
solar disc imaging.

AC K N OW L E D G E M E N T S

This work utilizes data obtained by the PICARD-SOL instru-
ments which are operated by the Observatoire de la Côte d’Azur
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A P P E N D I X A : N OTE O N TH E R A D I U S O F
CURVATURE AT CALERN O BSERVATO RY

According to the WGS84 reference ellipsoid, the Earth’s equato-
rial and polar radii are given respectively by a = 6378.137 km
and b = 6356.752 km. The curvature in the (north–south) meridian
and at the geodetic latitude of Calern solar astrometric instruments
ϕ = 43◦45

′
7′′ is then given by

r0
c = (ab)2(

a2 cos2(ϕ) + b2 sin2(ϕ)
)3/2 = 6365.985 km. (A1)

One could also consider the mean radius of curvature calculated
for Calern. From the curvature in the prime vertical (normal to the
meridian)

r90
c = a2√

a2 cos2(ϕ) + b2 sin2(ϕ)
= 6388.371 km, (A2)

we can deduce the radius of curvature for any azimuth angle A by

rA
c = 1

cos2(A)
r0
c

+ sin2(A)
r90
c

(A3)

from which we can deduce the mean radius of curvature, averaging
over all directions, by

<rc> =
√

r0
c r90

c = a2b

a2 cos2(ϕ) + b2 sin2(ϕ)
= 6377.168 km. (A4)

If, instead of the radius of curvature, one considers the distance
from geocenter, we have

R =
√

a4 cos2(ϕ) + b4 sin2(ϕ)

a2 cos2(ϕ) + b2 sin2(ϕ)
= 6367.955 km. (A5)

One should add to these values the elevation of the observer above
the reference ellipsoid (h = 1.323 km for Calern observatory). If we
consider that, on average, we observe the sun closer to the north–
south direction than east–west direction, we can take

rc = r0
c + h = 6367.308 km, (A6)

which is very close to the value used by Chollet (1981).
Finally we note that, for ephemeris calculations, the geodedic

latitude should be corrected for the local gravimetric deflection.
For Calern solar astrometric instruments this lead to an astronomic
latitude ϕast = 43◦44

′
53′′ which is also compatible within 1′′ with
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the direct measurements made using a full entry pupil astrolabe
on the same site. Similarly, we note that taking into account the
local undulation with respect to the reference ellipsoid leads to a
height above sea level of hsl = 1.271 km for Calern solar astrometric
station.

A P P E N D I X B: N OTE O N TH E C O R R E C T I O N S
APPLIED TO MERCURIAL BA RO METER
R E A D I N G

The two corrections (for gravity and barometer temperature) can be
written as multiplicative factors (e.g. Princo 2007):

P = H

(
1 + L θ

1 + M θ

)
g

g0
, (B1)

where P is the corrected atmospheric pressure, H is the barometer
reading, M = 1.818 10−4 K−1 is the coefficient of volume thermal
expansion of mercury, and L = 1.84 10−5 K−1 is the coefficient of
linear thermal expansion of brass. According to the 1967 reference
system formula (Helmert’s equation), we have

g = g45

(
1 − a cos(2ϕ) − b cos2(2ϕ)

)
, (B2)

where g45 = 9.8061999 ms−2 is the gravity acceleration at mid-
latitude, a = 2.64 10−3 and b = 1.96 10−6. This can be cor-
rected from the so-called Free Air Correction which accounts

for the fact that gravity decreases with height above sea level
(CFAC = −3.086 10−6 s−2), itself corrected in order to take into
account the increasing gravity due to the extra mass assumed for a
flat terrain (Bouger correction, CB = 4.2 10−10 m3 s−2 kg−1). For a
mean rock density of ρr = 2.67 103 kg m−3, this leads to:

Cg = (CFAC + ρrCB) = −1.96 10−6 s−2. (B3)

Close to 45◦ of latitude, the second term of equation (B2) can be
neglected and, if we note ε = 1 − g45/g0 = 4.6 10−5, equation (B1)
can be approximated by

P = H (1 − ε)
(
1 − (M−L) θ

) {
1 − a cos(2ϕ) + Cg

g45
h

}
. (B4)

Neglecting second order terms leads to equation (14).
We note that absolute gravity measurements have now

been made at Calern geodetic observatory leading to
g = (980215549.2 ± 12.6) 10−8 m s−2 (Nicolas et al. 2006). This
shows that the relative error on the correction g/g0 discussed above
and previously used for refraction calculations was less than 5 10−5.
One could however now directly use equation (B1) with the mea-
sured value of local gravity.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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