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Abstract 

Residence Times in aquifers result from their internal structure, from the hydrodynamic transport 

processes and from the recharge conditions to which they are exposed. Beyond the already known 

residence time distributions (RTD) for either constant aquifer thickness and/or uniform recharge, we 

investigate the effect of both distributed aquifer thickness and distributed recharge. We develop a 

semi-analytical approximation of the RTD for generic trapezoidal aquifers exposed to linearly-variable 

recharges. The solution is derived for a homogeneous 2D cross-sectional aquifer in steady-state 

conditions following the Dupuit-Forchheimer assumption according to which the vertical head 

gradients are much smaller than the horizontal head gradients. Close agreement with 2D numerical 

simulations demonstrates the relevance of the Dupuit-Forchheimer assumption to estimate RTDs as 

long as the aquifer thickness remains an order of magnitude smaller than the aquifer length. At 

equivalent aquifer volume, geometrical structure and recharge conditions result in non-trivial and 

complex RTD shapes that may be uniform, Gamma-like, power-law-like shapes as well as any 
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intermediary shapes. The variety of RTD shapes encountered show the need to systematically include 

the aquifer structure and recharge conditions in the assessment of RTDs and for their subsequent 

use for problematics related to water quality. The semi-analytical approximation can be further used 

in a variety of aquifer systems in complement with other existing solutions as a Lumped Parameter 

Model for RTDs. 

1. Introduction 

Characterizing residence times in hydrologic systems is critical to both fundamental and applied 

issues of water quality and risk assessment. In groundwater systems, residence times range from a 

few days to several hundreds of thousands of years following the differences in permeability and 

aquifer structures (Cirpka and Kitanidis, 2001; Cook and Böhlke, 2000; Eberts et al., 2012; Koh et al., 

2018; Luo and Kitanidis, 2004; Visser et al., 2013). Residence time distributions (RTDs) are 

fundamental intermediaries between geology, geochemistry and water quality (Leray et al., 2016). 

On one side, RTDs can be related to the geological structures, to the hydrodynamic forcing terms and 

flow patterns and to the transport of chemical species (Bethke and Johnson, 2002; Campana, 1987). 

On the other side, RTDs provide invaluable constraints on the fate of contaminants, on their dilution 

in the groundwater systems and on their potential degradation and transformation with time (Cook 

and Herczeg, 2000; Pinay et al., 2015). 

Unlike geology or any chemical species, RTDs cannot be mapped or measured. Some of their 

characteristics can be determined by deconvoluting natural or anthropogenic tracer concentrations, 

providing essential indications on the range of residence times (Cook and Herczeg, 2000; Kazemi et 

al., 2005). Beyond these ranges, the shape of the RTDs cannot be measured. Shapes have been 

independently approached as the result of calibrated numerical models (Eberts et al., 2012; Ginn et 

al., 2009; McGuire and McDonnell, 2006) or postulated as analytical solutions that can be expressed 

on simplified aquifer cases (Amin and Campana, 1996; Małoszewski and Zuber, 1982). Such 

expressions explicitly relate the RTD to the aquifer structure. They are used as interpretation 
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frameworks of measured tracer concentrations to predict the full RTD on the basis of reasonable 

assumptions of the aquifer structure. Even if they cannot be accurate as numerical models, they can 

be straightforwardly used to provide first estimates of the RTD. 

Among the existing analytical expressions, the exponential model is among the simplest and most 

widely used solutions (Ivey et al., 2008; Knowles et al., 2010; Koh et al., 2006; Long and Putnam, 

2006; Manning and Caine, 2007; Osenbrück et al., 2006; Solomon et al., 2010). It has been first 

obtained for a continuously stirred tank reactor (Danckwerts, 1953; Eriksson, 1958). Later it has been 

shown to be also the solution of the flows to a well in a 2D homogeneous aquifer under the 

assumption of vertical integration of flows (Dupuit-Forchheimer assumption) (Haitjema, 1995; Vogel, 

1967). The exponential model is constrained by a unique parameter usually taken as the mean 

residence time (MRT). For both of the cases mentioned above, the MRT is equal to the volume 

divided by the renewal flux. In the 2D aquifer case, the volume can be expressed as the product of 

the porosity   by the mean saturated thickness   and the renewal flux by the recharge rate   

leading to the well-known MRT  :  

  
  

 
. 1 

As shown by equation 1, both recharge and aquifer structure through the aquifer thickness 

determine the MRT although not independently. In unconfined aquifers for instance, because high 

recharge rates increase the saturated thickness, eventual compensations between saturated volume 

(  ) and recharge ( ) occur (Haitjema and Mitchell‐Bruker, 2005) without any systematic increase of 

the MRT. More generally, the MRT results from the interacting effects of topography, aquifer 

hydrodynamic properties and recharge patterns.  

Most studies based on controlling factors of RTDs have so far focused on the effects of recharge 

rates, on their temporal and spatial evolutions related to orographic effects and climate change 

(Engdahl, 2017; Engdahl and Maxwell, 2015; Goderniaux et al., 2013; Jing et al., 2019; Maxwell et al., 
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2016; Niu et al., 2017; Warrier et al., 2012). Comparatively fewer studies have explored the constrain 

of aquifer structures and their dependence on recharge facing the challenge of consistently 

incorporating them and their consequences on residence times (Cardenas, 2007; Chesnaux et al., 

2005; Kolbe et al., 2016; Leray et al., 2012). Even more fundamentally, relating the shape of RTDs to 

aquifer structure requires some concepts of groundwater flow organizations. Topography-driven 

flow and transport have been historically organized in nested local, intermediary and regional 

circulation patterns (Cardenas, 2007; Tóth, 1963; Welch et al., 2012) resulting in multiple exponential 

or power-law RTDs (Goderniaux et al., 2013; Kirchner et al., 2001; Wang et al., 2016). While relevant 

for thick unconfined aquifers under high recharge rates, shallower systems result in stronger 

correlations between climate, geology and geomorphology to shape the organization of flows under 

free-surface controls uphill and topographic controls downhill (Bresciani et al., 2016a; Condon and 

Maxwell, 2015; Gleeson et al., 2011; Haitjema and Mitchell‐Bruker, 2005). Consequences on RTDs 

remain to be investigated to establish the role of variable saturated thickness ( ) and recharge rate 

( ). Aquifer response to transient forcing terms is another pressing challenge (Engdahl, 2017; Jing et 

al., 2019; Maxwell et al., 2016). Finally, it should be investigated to which extend RTDs can still be 

analytically approached by combining simple recharge and aquifer characteristics. While analytical 

models have first been derived from analytical solutions of the flow equations with various boundary 

and sampling conditions (Jurgens et al., 2016, 2012; Leray et al., 2016; Małoszewski and Zuber, 1982; 

Turnadge and Smerdon, 2014), RTD models have been extended to more general shapes known as 

Lumped Parameter Models including Lognormal and Gamma distributions and potentially SAS-STOP 

formalisms for transient evolutions. They are not per se solutions of the flow equation but their 

flexibility can approach a wide range of distributions found in theoretical and field studies (Botter et 

al., 2010; Kirchner, 2016; Małoszewski and Zuber, 1982; Velde et al., 2012).  

In this study, we propose to investigate both the effects of aquifer structure and spatially-distributed 

recharge on RTDs through a semi-analytical solution of the flow equation. Aquifer structure is 

modelled as a 2D trapezoid shape. Recharge is linearly evolving along the aquifer. The solution is 
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developed for homogeneous aquifer in steady-state conditions under the Dupuit-Forchheimer 

assumption, i.e. under dominant horizontal flows over vertical flows (Dupuit, 1863; Forchheimer, 

1886). It extends previous developments for variable recharge or trapezoidal aquifers (Chesnaux et 

al., 2005; Etcheverry, 2001; IAEA, 2006; Leray et al., 2016). After deriving the analytical solution in 

section 2, we analyse the shape of the resulting RTDs, relate them to the aquifer structure and 

recharge parameters and discuss their domain of validity (section 3). We eventually discuss their 

relevance to natural systems with respect to the main drivers of groundwater flow and transport 

(section 4). 

2. Model and Methods  

We successively state the assumptions made on aquifer structure and recharge conditions, the 

analytical developments and the numerical methods used for validation.  

2.1 Aquifer structure and recharge conditions 

First, the aquifer is uniform. Its porosity is noted   [-]. The aquifer is 2D cross-sectional, extending 

from its upstream to downstream limits at respectively     and     (Figure 1). The aquifer 

shape is assumed to be trapezoidal with a saturated thickness      linearly evolving with   

according to: 

        
     

 
  2 

where    and    are its thicknesses [L] at its downstream and upstream limits, respectively.  

Second, the recharge is imposed on its upper boundary according to the following linear function 

either increasing or decreasing towards the discharge zone: 

        
     

 
  3 
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where    and    are the recharge rate [L.T-1] at the downstream and upstream boundaries, 

respectively. Third, the discharge occurs at the downstream limit considered as a head-imposed 

boundary condition. Fourth, it is assumed that the Dupuit-Forchheimer assumption holds with 

horizontal flows dominant over vertical flows. The head gradient is essentially horizontal resulting in 

a horizontal flow only function of   and uniformly distributed over the aquifer thickness. Fifth, the 

solution is derived downstream at the aquifer outlet (   ), which captures every single flow line 

because of the Dupuit-Forchheimer approximation. Hence, the RTD results from the fully-mixed 

capture of the flow lines. 

It should be noted that imposing recharge and saturation implicitly constrains the permeability and 

its evolution along the aquifer. For example, both increasing recharge and decreasing aquifer 

thickness from upstream to downstream concur to let permeability increase. Under these conditions, 

the flow equation does not have to be explicitly solved, enabling the transport equation to be 

explicitly solved for various aquifer and recharge conditions. 

2.2 Semi-Analytical derivation 

Through Dupuit–Forchheimer assumption, the flow   is assumed to be essentially horizontal as a 

function of the position   only: 

            

 

 

     
     

 

  

 
 4 

The flow   has a quadratic form increasing from   at the inlet up to    
     

 
  at     (Figure 

2a).  

The transit time      from the recharge location   to the outlet   is obtained by integrating the 

inverse of pore velocity, i.e. the ratio of the flow   to the porous thickness   : 
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Decomposing the integrand into irreducible factors and integrating them lead to: 
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The transit time      increases from downstream (   ) to upstream (   ). Indeed, when the 

recharge location is close to the outlet, the flow path length is infinitesimal, so does the transit time: 

        . When the recharge location is next to the upstream boundary, the horizontal 

component of velocity itself tends to zero because of the impervious boundary condition and 

consequently the transit time diverges to infinity there:              . The time      is thus a 

function of the hydrodynamic properties though  , of the recharge conditions through    and    

and of the aquifer geometry through    and   . It has a S-shaped form due to the logarithm function 

of eq. 6. (Figure 2b). 

Using the dimensionless terms    
 

 
 (        ) and    

 

 
, where   is the MRT expressed as: 

   
  

  

    

    
, 

8 

where    
  

  
 and    

  

  
 are two dimensionless ratios characterizing the aquifer structure and 

recharge conditions,        can be derived from eq. 6 and solely expressed as a function of these 

two dimensionless ratios: 

        
    

    
       

    

    
  

    

    
      

    

            
9 

 



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

8/43 

 

As    and    are independent variables, we can express the RTD as a function of the probability 

distribution of the recharge location      : 

            
   

     
10 

 

The distribution of the recharge location, noted      , is directly derived from the flow and varies 

linearly with    from      to      (Figure 2c): 

      
    

       
    

    

 
11 

 

The derivative of the recharge location    with the residence time 
   

    (Figure 2d) is obtained by 

deriving eq. 9 with respect to    and by taking the inverse: 

   

   
   

   

   
 

  

  
    

    
 

  

 
 

          

           
12 

 

Because the relation        is non-linear and complex, it cannot be obtained analytically. 
   

    and then 

      cannot be explicitly stated as a function of   .        is consequently derived numerically using 

root finding algorithms - e.g. fzero of Matlab® (MATLAB and Statistics Toolbox, 2012) or fsolve of 

SciPy in Python language (Jones et al., 2001; Millman and Aivazis, 2011; Oliphant, 2007). This step 

makes the derivation semi-analytical and not fully analytical. Figure 2e displays the resulting 

residence time distribution     . The RTD has a non-trivial form resulting from the complex interplay 

of recharge conditions and aquifer structure. 

2.3 Numerical methods 

Numerical simulations for validating the analytical developments have been performed for confined 

aquifers with the same structure and boundary conditions. Aquifers have been uniformly discretized 

both horizontally and vertically to test the vertical integration of the Dupuit-Forchheimer 

assumption. Flow simulations have been performed with the finite difference methods implemented 
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in Modflow (Harbaugh et al., 2017). Mesh resolutions are 1,000 and 50 in the horizontal and vertical 

directions. A mean ratio of aquifer depth to aquifer length of 1/10 has been chosen. The smaller this 

aspect ratio, the more relevant is the Dupuit-Forchheimer assumption (Bresciani et al., 2016b; 

Haitjema, 2006, 1987). Residence times have been derived with Modpath from 1,000 particles 

uniformly injected over the top boundary of the aquifers and weighted according to the local 

recharge in a postprocessing step (Pollock, 2016). Numerical RTDs are finally obtained by building the 

histogram of the residence times for the entire set of particles. Complementary simulations have 

been performed for higher aspect ratios and unconfined aquifers to investigate possible extensions 

of the proposed approach. In unconfined conditions, simulations have been performed with the 

same upstream and downstream boundary conditions, the same discretization and the same 

porosity, and with a permeability of         . 

3. Results 

The semi-analytical solutions are first compared to numerical simulations to assess the quality of the 

analytical approximations. Parametric studies are further performed on the validated semi-analytical 

solutions to investigate the moments and the shape of the distributions.  

3.1 Validation of the semi-analytical RTDs against numerical simulations 

The semi-analytical solutions of equations 6 and 10 for the residence time function of the recharge 

location and the RTD have been tested against numerical simulations performed as detailed in 

section 2.3 within the         parameters space. To illustrate the validity of the solution, we present 

four cases where both recharge and thickness simultaneously vary.    and    are either equal to     

or    leading to the case presented in Figure 3 and three other cases in Figure A1 in Appendices. In 

all cases, analytical and numerical solutions are close both for the recharge position versus residence 

time relation          (Figure 3a and each a) in Figure A1) and for the RTD (Figure 3b and each b) 
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in Figure A1). Some numerical imprecisions are observed but are not significant to alter the 

predominance of horizontal flows over vertical flows (each e) in Figure A1). 

The assumption of the semi-analytical approximation according to which flow lines are horizontal is 

however not respected. Flow lines obtained numerically are indeed not horizontal as shown by the 

flowlines pattern of Figure 3c (and each c) in Figure A1). Some curvature is observed because of the 

shape of the aquifer and of the specific boundary conditions (upper recharge and lateral discharge), 

as previously pointed out by Raats (1977). Despite this curvature, the time-coloured flow paths show 

mainly horizontal or sub-horizontal isochrones. Only slight deviations are observed, either upstream 

(cases A and B) or downstream (cases C and D) of the system. More importantly, the horizontal 

component of the velocity appears mainly constant over any vertical section. It is not stratified and 

depends only on the distance to the outlet (Figure 3d and each d) in Figure A1). It is also one to two 

orders of magnitude larger than the vertical component with only marginal possibilities to vary 

vertically to respect the flow continuity equation. With much smaller values, the vertical velocity 

varies much more with the depth    and position    following the constraints imposed by the 

evolving aquifer thickness and the boundary conditions (Figure 3e and each e) in Figure A1).  

The relatively smaller vertical velocity comes from the assumption of the relatively thin aquifer. In 

fact, we further tested the solution for an aspect ratio closer to 1 (cases E and F of Figure B. 1 in 

Appendices). For such higher but unrealistic aspect ratios, the analytical approximation diverges from 

the numerical solution. The uniformity of the horizontal velocity is no longer guaranteed and the 

vertical velocity tends to be as important as the horizontal velocity. When the aspect ratio remains 

smaller than 1/10 as used here for most simulations, the residence time from the inlet to the outlet 

is driven by the recharge location which can be explicitly related to the depth of the flow line. The 

assumption of vertical integration at the root of the flow equation of Dupuit-Forchheimer holds for 

the advective transport conditions investigated. The relation          proposed in eq. 9, and all 

the following equations, can be taken as valid approximations.  
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We have further confirmed that the key assumption is the small aspect ratio by investigating 

unconfined aquifer cases. Numerical simulations of unconfined conditions indeed show that the 

analytical approximation remains valid as long as the head differences remains moderate in 

comparison to the thickness of the aquifer with no significant differences between the linear and 

parabolic free surface shapes of the analytical and numerical solutions (case A of Figure 3 and case G 

of Figure C. 1 in Appendices). When free surface gets more convex, times tend to be systematically 

underestimated by the analytical approximation as a result of the linear free-surface assumption 

(cases H and I of Figure C. 1 in Appendices). It might be partially corrected by generalizing the semi-

analytical approach to parabolic aquifer profiles.  

3.2 Shapes and typology of RTDs 

The four cases presented in Figure 3 and Figure A1 show marked differences between RTDs, evolving 

from a peaked unimodal distribution for case A to widely distributed functions for cases B or C. 

Systematic sampling of the aquifer thickness and recharge conditions in the    and    parameter 

space confirms the broad range of RTDs and the strong impact of both factors, consistently with 

previous studies (Basu et al., 2012; Engdahl and Maxwell, 2015; Jing et al., 2019; Maxwell et al., 

2016). Rather than the RTD itself, we display the product of the RTD with the MRT,        , as a 

function of the normalized residence time   to highlight the range of time scales spanned by the 

distributions, the proportion of water types (young, intermediate, old…) and their different shapes. 

Because the parameter space covered is large, over six orders of magnitude, we display the RTDs for 

a few emblematic cases only and evidence how modifications of the RTD shape follow the aquifer 

structure and recharge conditions. Figures 4a-c show normalized RTDs for three recharge patterns 

(constant, strongly decreasing downstream, strongly increasing downstream) with varying aquifer 

thicknesses, from the highest    to the lowest ones. Figures 4d-f similarly show normalized RTDs for 

three emblematic aquifer structures (uniform, converging and diverging) with varying recharge 

patterns, from the highest    to the lowest ones. 
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A downstream-pinched aquifer, i.e. a converging aquifer, tends to generate younger water than an 

aquifer of constant thickness. Converging flow lines let velocity increase so as to maintain the overall 

flow rate and consequently reduce residence times. Figure 4b shows such structural effects for a 

uniformly recharged aquifer. While decreasing   , the probability of occurrence of times smaller 

than the MRT - in short, young water - strongly increases as also shown by Etcheverry (2001) and 

Leray et al. (2016). The resulting RTD exhibits a power-law-like shape with less probable short times 

and a longer tail (purple curve of Figure 4b) than with the exponential model (black curve of Figure 

4b). Inversely, an upstream-pinched aquifer, i.e. a diverging aquifer, tends to enhance the proportion 

of older water while slowing down flow upstream comparatively to an aquifer of constant thickness. 

In such diverging aquifers, where     , the RTD is thus close to a uniform distribution (black dash-

dot curve of Figure 4b), known as the linear model (IAEA, 2006; Małoszewski and Zuber, 1982). 

Recharge gradients have qualitatively similar effects. Increased recharge close to the outlet tends to 

generate much younger water than a uniform recharge. Velocity is higher for the shorter flow paths 

close to the discharge (Etcheverry, 2001; Leray et al., 2016). It is what is shown in Figure 4e for a 

constant thickness aquifer. While increasing the ratio   , the youngest waters are favoured and the 

RTD exhibits a power-law-like shape with a long tail to account for the large times induced by the low 

flows upstream (purple curve of Figure 4e). Inversely, increased recharge upstream tends to focus 

the distribution on older water and consequently drives the RTD to a unimodal distribution with 

residence times clustered around the MRT (black dash-dot curve of Figure 4e). 

The aforementioned cases explore geometry and recharge rate effect independently. If both factors - 

geometry and recharge rate - are variable, they can either compensate or accumulate and 

accordingly strongly impact the RTD. When the aquifer is diverging (Figure 4d), i.e.     , 

increasing the ratio    tends to reduce the effect of the divergence of flow by the increase of 

recharge downstream. Both factors compensate and result in an RTD close to the exponential model. 

When recharge and geometry follow exactly the same variation, i.e.      , they fully compensate 
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and the classical exponential model is retrieved (black curve in Figures 4a-f). These conclusions 

extend previous works, including Haitjema’s (1995), according to which the exponential model 

remains relevant as long as both the ratio   
  

 
 and the recharge   remain constant. We show here 

that the recharge does not have to be constant to recover the exponential model as long as the ratio 

remains constant.  

When the aquifer is diverging -      - and the recharge is decreasing downstream -     , both 

trends increase the residence times by slowing down the flow downstream. In such a case, the RTD is 

typically controlled by the upstream oldest waters and becomes much narrower (black dash-dot 

curve of Figure 4d). In comparison to an aquifer of constant thickness with decreasing recharge 

downstream (black dash-dot curve of Figure 4e), the clustering of residence times close to the MRT is 

even more marked as both effects cumulate and the RTD becomes close to a Gamma distribution. 

Similarly-shaped RTD can be observed on Figure 4c. When the aquifer is converging (Figure 4f), i.e. 

    , increasing the ratio    further amplifies the increase of velocity close to the outlet. In that 

case, the RTD is typically controlled by the downstream and youngest waters. The RTD shifts towards 

lower residence times and has a strongly decreasing power-law-like shape with a long tail (black 

dash-dot curve of Figure 4f and Figure 4a). 

3.3 Range and proportion of residence times 

Except in very specific cases where      , aquifer recharge and thickness provide a wide range of 

distribution shapes covering Gamma-like, uniform and truncated power-law shapes as well as any 

intermediary shapes. As a more quantitative assessment of the RTD variety, we have systematically 

computed a deviation criterion     to the exponential model, defined as: 

    
  

  
 

13 
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where    is the variance of the RTD and    is the expected variance in the exponential framework in 

which the variance is merely equal to the square of the MRT  .     is equal to one when the RTD is 

an exponential distribution. It is greater than 1 for wider RTDs, i.e. RTDs for which the standard 

deviation is larger than the MRT. Inversely, it is lower than 1 for narrower RTDs, i.e. RTDs for which 

the standard deviation is smaller than the MRT. 

Figure 5 confirms the typology observed in the previous section. The RTD remains exponential on the 

diagonal line for      . Deviations occur in all other cases and can be significant. They are more 

pronounced for wider RTDs (upper left corner) than for narrower RTDs (lower right corner), the 

contour map having in proportion more greater values than lower values. Deviations to the expected 

variance in the exponential framework can reach almost 10 (upper left corner) corresponding to a 

ratio of variance to the squared MRT ten times higher than that of the exponential model. On the 

contrary, Gamma-like RTDs result in much narrower distributions up to one order of magnitude 

lower (lower right corner). 

Looking at the first quartile of the RTDs leads to consistent conclusions. Figure 6 shows the deviation 

of the first quartile    
, defined as: 

   
 

  

  
    

14 

 

where    is the first quartile of the RTD and   
   

    
 

      
 is the expected quartile in the 

exponential framework. Similar features as for     are observed. Except when      , the first 

quartile of the RTD significantly diverges from the exponential framework, leading up to almost a 

value of 3 for Gamma-like RTDs (lower right corner) and 0.03 for power-law-like RTDs. (upper right 

corner). The fraction of younger groundwater, is thus significantly higher or lower than given by the 

exponential framework. Taking the example of a converging aquifer with increasing recharge rate, 

the RTD is power-law-like with a long tail resulting in a wider RTD as mentioned above. In such 

conditions, disregarding system’s complexity and applying the exponential model instead would lead 
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to an under-representation of young waters and consequently in an overestimation of the first 

quartile of the RTD by an order of magnitude approximately. Most importantly, the quartile deviates 

quickly from the exponential model. This means that even a moderate variation of structure or 

recharge pattern may lead to substantial deviations. For instance,      and        leads to a 

deviation    
 close to 2. Both deviations quantitatively confirm the significant impact of the aquifer 

shape and recharge distribution on the variance of the distribution as well as on its shape. 

4. Discussion 

4.1 Practical interest of simple RTDs 

The analysis above shows that many mixing models can be obtained for aquifers with varying 

thicknesses under spatially evolving recharges. More precisely, the distribution results from a more 

complex weighting of the distance and velocity distributions complying with the flow continuity 

principle. As such, it can represent a wide variety of natural cases traducing the relative proportion of 

younger and older waters at the sampling location as well as the MRT as a function of the 

distribution of the volume within the aquifer following the equation 8. In this panel of RTD models, 

the exponential shape relevance is strictly limited to the very specific cases where the distribution of 

recharge distance from the sampling location is fully balanced by the distribution of velocity. More 

importantly, the standard deviation is not necessarily linked to the mean and the distribution cannot 

be fully defined by a unique parameter, requiring more than a single tracer to be measured. 

The potentially large variations of RTD metrics, variance and first quartile of Figures 5 and 6, show 

that additional information beyond the MRT are required to assess the fraction of younger or older 

waters represented for example by the first and last quartile of the distribution. Such information 

may be brought up by additional tracers or by a priori knowledge of the aquifer structure and 

recharge conditions, and, more generally, by the distribution of the recharge location and aquifer 

structure provided that the analytical developments presented in section 2 be consistently adapted. 
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Without requiring to build a full aquifer model for flow and transport, the present Lumped 

Parameter Model can already account for various conditions and be used for management purposes 

as to evaluate the young water fraction, first quartile of the distribution. Such an evaluation may also 

be assessed in hydrogeological terms by the implicit representation of the flow line structure related 

to the shape of the RTD and illustrated in Figures 3 and 4. As a first approach, it might be used in a 

number of applications like the management of the groundwater quality, the restoration of 

hydrogeological systems or the assessment of the resource vulnerability. 

4.2 Domain of applicability 

Figure 7 shows the main characteristics of Figure 5 by superimposing aquifer types or morphologies. 

Without pretending to be exhaustive or specific to real sites, it presents some large aquifer classes 

thus forming a framework for the applicability of the semi-analytical solution. The latter possibly 

serving as a counterpart to advanced simulations of physically-distributed models that integrate 

more complexity - including for instance some heterogeneity. Few strongly divergent aquifers are 

represented in Figure 7. The reason for this is rather methodological given that the complete 

sampling of flowlines can hardly be achieved in such systems and consequently the present solution 

difficult to apply. 

Regional alluvial basins such as the Paris (France) or Santiago (Chile) Basins are amongst the simplest 

systems in terms of structure (Cavelier and Pomerol, 1979; Iriarte et al., 2009; Millot et al., 2011). 

Such basins are also generally relatively thick, allowing to consider the saturated thickness of the 

upper, semi-confined or unconfined, aquifers as being relatively constant (Alluvial Basin of Figure 7). 

Natural recharge of such systems, if not close to major orogens, may be relatively uniform. 

Anthropized recharge conditions, on the other hand, can be more complex. Urbanization tends to 

waterproof surfaces, confine aquifers and thus localize recharge, e.g. the Upper Indus and Upper-Mid 

Ganges basins in the Indo-Gangetic basin alluvial aquifer (Bonsor et al., 2017). In rural contexts, 

agriculture modulates the recharge conditions according to irrigation and surface water 
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management, e.g. the Walla Walla Basin in Oregon (Scherberg et al., 2018). At the catchment scale, 

delimited by local topographic highs, one can thus expect that in urban context, the recharge 

decreases towards the centre of the basin because of a greater proportion of impervious surface. To 

the opposite, in agricultural context, it might grow towards the centre of the basin due to a higher 

agricultural cover (Anthropized Alluvial Basin of Figure 7). 

In mountainous context, orographic gradients are the first control of recharge. The increase in 

precipitation, together with the decrease in evapotranspiration, causes positive recharge gradients 

upstream of up to ten or more, e.g. the central Andes or the Rocky Mountains (Garreaud, 2009; 

Houston, 2009). If the mountainous block is sufficiently permeable, an aquifer with decreasing 

thickness downstream - following the geometry of the orogen - may eventually form (Mountain Block 

of Figure 7), e.g. the Salar de Atacama basin (Marazuela et al., 2019). On the other hand, if the 

mountainous block is not permeable enough, the effective precipitation is mainly converted into 

runoff. It can thus be diverted to the mountain front and in this case feed an alluvial basin located 

downstream (Piedmont with MFR of Figure 7). The Californian Central Basin aquifers (USGS, 2000) 

are a good example. The vast majority of the recharge comes from the mountain range upstream and 

the thickness of the basin increases downstream, e.g. the San Joaquin Valley. 

In coastal context, the saltwater-freshwater interface determines the saturated thickness of the 

system which is decreasing and leads to a convergent flow towards the sea. If the aquifer is relatively 

local without a significant top-down topographic gradient, the recharge pattern remains relatively 

simple and uniform (Local or lowland coast of Figure 7). The Coastal Basin aquifers (California, 

(Barlow and Reichard, 2010; USGS, 2000)) may illustrate these conditions: they develop in intra-

mountainous graben or depressions where the lateral mountains feed the aquifer with a continuous, 

more or less uniform, lateral recharge, converging to the Pacific Ocean. At regional scale, coastal 

ranges such as the Coast Cordillera in Chile or Sierra Nevada in Columbia (Houston, 2007; Lobo-
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Guerrero and Gilboa, 1987; Squeo et al., 2006) may include additional orographic effects increasing 

recharge upstream (Regional Coastal range of Figure 7). 

At the more local hillslope scale, aquifer depth and saturated thickness may strongly evolve because 

of the weathering profile and dynamics (Rempe and Dietrich, 2014). With the additional convergence 

or divergence of the hillslopes towards the rivers (Troch et al., 2003), velocity generally evolves from 

uphill to downhill and conditions both the partition between the subsurface and surface flows and 

the transit times to the hydrographic network (Marçais et al., 2017). In crystalline basement 

especially where the unconfined aquifers remain relatively shallow within the weathered zone, the 

distribution of the residence time might thus be more controlled by the geomorphological structures 

of the catchment (Kolbe et al., 2016) and by major shifts in the permeability profile between soil and 

aquifer layers (Berghuijs and Kirchner, 2017) than by the vertical velocity profile. The depth reached 

by solutes may however be determinant for the degradation of other non-conservative solutes like 

nitrates, as the presence of reactive reduced elements may sharply increase with depth (Kolbe et al., 

2018). 

5. Conclusions 

We have developed a semi-analytical approximation for trapezoidal aquifers exposed to linearly-

variable recharges. This new solution aims at complementing existing analytical RTDs and thereby 

further understanding the role and interaction of recharge conditions and aquifer structure. The 

solution has been developed for homogeneous 2D aquifer cross-sections in steady-state conditions 

following the Dupuit-Forchheimer assumption i.e. negligible vertical head gradient. Numerical 

simulations for 2D aquifers using Modflow and Modpath have been performed to validate the 1D 

approximation. 

Validated against numerical simulations, the semi-analytical approximation proposed here presents 

all the distinguishing features of close-formed equations. It is formulated with a few parameters only, 

explicit and straightforward to use. It differentiates from existing solutions by its greater generality 
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and flexibility. It can be used in a variety of aquifer configurations and recharge conditions. 

Accounting for aquifer structure and recharge gradients significantly modify the residence time 

distribution shape and properties. Apart from the very few cases where aquifer shape and recharge 

conditions have counterbalancing effects leading to classical exponential distributions, RTDs take a 

variety of non-trivial forms covering Gamma-like, truncated power-law-like and uniform 

distributions, amongst others.  

Accounting for aquifer structures and recharge gradients appears critical to improve the prediction 

capacity in issues related to residence times including groundwater quality, vulnerability and 

management. It is as well pertinent for constraining RTDs from environmental tracer measurements, 

given their sensitivity to aquifer structure as identified in numerous studies. Further developments in 

this regard could imply a generalization of recharge and thickness conditions as well as the 

consideration of aquifer width variations. Numerical tools would allow in such conditions to cover in 

particular non-monotonic or parabolic variations and explore more complex aquifer structures. The 

impact of transient forcings on RTD could be as well more extendedly studied so as to quantify the 

relative effect of boundary conditions and hydrodynamic properties. 

Figures 

Figure 1: Sketch of the 2D trapezoidal aquifer of thickness      under linearly-evolving recharge rate     . Under the 
assumption of Dupuit-Forchheimer, flow   is a function of longitudinal position   only and increases up to    at the outlet 
   .  

Figure 2: a) Normalized flow    
 

  
 as a function of recharge location; b) Normalized residence time as a function of 

recharge position; c) Recharge position distribution as a function of recharge location; d) Derivative of the recharge position 

to residence time; e) Residence time distribution scaled by the mean residence time  with the following simulation 

parameters:    
     

         ,    
      

             and           corresponding to the sketch of Figure 1. 

Figure 3: Validation of the semi-analytical solution for Case A:       and       . a) Analytical (red dash line) and 
numerical (blue filled line) residence time as a function of recharge position; b) Analytical (red dash line) and numerical (blue 
filled line) RTDs with mean residence time   and standard deviation  ; c) Spatial evolution of transit time along flow lines in 

numerical simulations, including sketch to scale; d) Normalized horizontal velocity   
  

   

 
 and e) Normalized vertical 

velocity   
  

   

 
. 

Figure 4: Normalized RTDs for various    from      to     when: a)   significantly increases towards the discharge i.e. 
    ; b)   is uniform i.e.     ; c)   significantly decreases towards the discharge i.e.     ; and for various    from 
     to     when: d)   significantly increases towards the discharge i.e.      (diverging aquifer); e)   is constant i.e. 
    ; f)   significantly decreases towards the discharge i.e.      (converging aquifer). When the RTD has an 
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exponential shape, it is represented with black filled lines. Additional typical RTDs are represented with dash-dot lines: a) 
and f) truncated power-law-like; b) uniform; c) to e) Gamma-like. 

Figure 5: Deviation of the variance of the semi-analytical RTDs in comparison to the exponential model,     as defined by 
equation 13, displayed within the    and    space interpolated from simulation results performed on a       parameter 
space regular gird. The full line       leads to the exponential distribution and a value of 1. Dash lines correspond to 
configurations where either recharge or thickness is kept constant (RTDs of Figure 4b and Figure 4e respectively). Four 
simple sketches of extreme configurations are further displayed at the corners where they apply. 

Figure 6: Deviation of the first quartile of the semi-analytical RTDs in comparison to the exponential model,    
 as defined 

by equation 14. The additional features are the same as in Figure 5. 

Figure 7: Domain of applicability of the semi-analytical solution exemplified with a few aquifer morphologies. The 
background is the same as in Figure 5. 

Appendices 

A. Validation of the solution in confined conditions 

Figure A1: Validation of the semi-analytical solution. Case B:        and       ; Case C:        and      ; Case 
D:       and      . The layout is the same as in Figure 3. 

 

B. Validation of the solution for high aspect ratio 

Figure B. 1: Validity of the semi-analytical solution for an aspect ratio close to 1. Case E:       and       ; Case F: 
      and      . The layout is the same as in Figure 3. 

 

C. Validation of the solution in unconfined conditions 

Figure C. 1: Validity of the semi-analytical solution for unconfined aquifers. Case G:         and     ; Case H:        
and      and Case I:        and     . The layout is the same as in Figure 3. 

 

Acknowledgments 

Sarah Leray acknowledges funding from the project CONICYT/Fondecyt de Iniciación 11170380. 

 

References 

Amin, I.E., Campana, M.E., 1996. A general lumped parameter model for the interpretation of tracer 
data and transit time calculation in hydrologic systems. Journal of Hydrology 179, 1–21. 
https://doi.org/10.1016/0022-1694(95)02880-3 



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

21/43 

 

Barlow, P.M., Reichard, E.G., 2010. Saltwater intrusion in coastal regions of North America. 
Hydrogeol J 18, 247–260. https://doi.org/10.1007/s10040-009-0514-3 

Basu, N.B., Jindal, P., Schilling, K.E., Wolter, C.F., Takle, E.S., 2012. Evaluation of analytical and 
numerical approaches for the estimation of groundwater travel time distribution. Journal of 
Hydrology 475, 65–73. https://doi.org/10.1016/j.jhydrol.2012.08.052 

Berghuijs, W.R., Kirchner, J.W., 2017. The relationship between contrasting ages of groundwater and 
streamflow. Geophysical Research Letters 44, 8925–8935. 
https://doi.org/10.1002/2017GL074962 

Bethke, C.M., Johnson, T.M., 2002. Paradox of groundwater age. Geology 30, 107–110. 
https://doi.org/10.1130/0091-7613(2002)030<0107:POGA>2.0.CO;2 

Bonsor, H.C., MacDonald, A.M., Ahmed, K.M., Burgess, W.G., Basharat, M., Calow, R.C., Dixit, A., 
Foster, S.S.D., Gopal, K., Lapworth, D.J., Moench, M., Mukherjee, A., Rao, M.S., 
Shamsudduha, M., Smith, L., Taylor, R.G., Tucker, J., van Steenbergen, F., Yadav, S.K., Zahid, 
A., 2017. Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia. 
Hydrogeol J 25, 1377–1406. https://doi.org/10.1007/s10040-017-1550-z 

Botter, G., Bertuzzo, E., Rinaldo, A., 2010. Transport in the hydrologic response: Travel time 
distributions, soil moisture dynamics, and the old water paradox. Water Resources Research 
46. https://doi.org/10.1029/2009WR008371 

Bresciani, E., Gleeson, T., Goderniaux, P., de Dreuzy, J.R., Werner, A.D., Wörman, A., Zijl, W., 
Batelaan, O., 2016a. Groundwater flow systems theory: research challenges beyond the 
specified-head top boundary condition. Hydrogeol J 24, 1087–1090. 
https://doi.org/10.1007/s10040-016-1397-8 

Bresciani, E., Goderniaux, P., Batelaan, O., 2016b. Hydrogeological controls of water table-land 
surface interactions. Geophysical Research Letters 43, 9653–9661. 
https://doi.org/10.1002/2016GL070618 

Campana, M.E., 1987. Generation of Ground-Water Age Distributions. Groundwater 25, 51–58. 
https://doi.org/10.1111/j.1745-6584.1987.tb02115.x 

Cardenas, M.B., 2007. Potential contribution of topography-driven regional groundwater flow to 
fractal stream chemistry: Residence time distribution analysis of Tóth flow. Geophysical 
Research Letters 34. https://doi.org/10.1029/2006GL029126 

Cavelier, C., Pomerol, C., 1979. Chronologie et interprétation des évènements tectoniques 
cénozoïques dans le Bassin de Paris. Bulletin de la Société Géologique de France 7, 33–48. 

Chesnaux, R., Molson, J.W., Chapuis, R.P., 2005. An analytical solution for ground water transit time 
through unconfined aquifers. Ground Water 43, 511–517. https://doi.org/10.1111/j.1745-
6584.2005.0056.x 

Cirpka, O.A., Kitanidis, P.K., 2001. Travel-Time Based Model of Bioremediation Using Circulation 
Wells. Groundwater 39, 422–432. https://doi.org/10.1111/j.1745-6584.2001.tb02326.x 

Condon, L.E., Maxwell, R.M., 2015. Evaluating the relationship between topography and 
groundwater using outputs from a continental-scale integrated hydrology model. Water 
Resources Research 51, 6602–6621. https://doi.org/10.1002/2014WR016774 

Cook, P.G., Böhlke, J.-K., 2000. Determining Timescales for Groundwater Flow and Solute Transport, 
in: Cook, P.G., Herczeg, A.L. (Eds.), Environmental Tracers in Subsurface Hydrology. Springer 
US, Boston, MA, pp. 1–30. https://doi.org/10.1007/978-1-4615-4557-6_1 

Cook, P.G., Herczeg, A.L., 2000. Environmental Tracers in Subsurface Hydrology. Springer. 



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

22/43 

 

Danckwerts, P.V., 1953. Continuous flow systems: Distribution of residence times. Chemical 
Engineering Science 2, 1–13. https://doi.org/10.1016/0009-2509(53)80001-1 

Dupuit, J., 1863. Etudes Théoriques et Pratiques sur le mouvement des Eaux dans les canaux 
découverts et à travers les terrains perméables, Second Ed. ed. Dunod, Paris. 

Eberts, S.M., Böhlke, J.K., Kauffman, L.J., Jurgens, B.C., 2012. Comparison of particle-tracking and 
lumped-parameter age-distribution models for evaluating vulnerability of production wells to 
contamination. Hydrogeol J 20, 263–282. https://doi.org/10.1007/s10040-011-0810-6 

Engdahl, N.B., 2017. Transient effects on confined groundwater age distributions: Considering the 
necessity of time-dependent simulations. Water Resources Research 53, 7332–7348. 
https://doi.org/10.1002/2016WR019916 

Engdahl, N.B., Maxwell, R.M., 2015. Quantifying changes in age distributions and the hydrologic 
balance of a high-mountain watershed from climate induced variations in recharge. Journal 
of Hydrology 522, 152–162. https://doi.org/10.1016/j.jhydrol.2014.12.032 

Eriksson, E., 1958. The Possible Use of Tritium’ for Estimating Groundwater Storage. Tellus 10, 472–
478. https://doi.org/10.1111/j.2153-3490.1958.tb02035.x 

Etcheverry, D., 2001. Une approche déterministe des distributions des temps de transit de l’eau 
souterraine par la théorie des réservoirs. Neuchâtel, Neuchâtel. 

Forchheimer, P., 1886. Über die Ergiebigkeit von Brunnen-Anlagen und Sickerschlitzen. Z. Architekt. 
Ing.-Ver. 32, 539–563. 

Garreaud, R.D., 2009. The Andes climate and weather, in: Advances in Geosciences. Presented at the 
4th EGU Alexander von Humboldt Conference “The Andes: Challenge for Geosciences” - 4th 
Alexander von Humboldt International Conference on The Andes: Challenge for Geosciences, 
Santiago de Chile, Chile, 24&ndash;28 November 2008, Copernicus GmbH, pp. 3–11. 
https://doi.org/10.5194/adgeo-22-3-2009 

Ginn, T.R., Haeri, H., Massoudieh, A., Foglia, L., 2009. Notes on Groundwater Age in Forward and 
Inverse Modeling. Transp Porous Med 79, 117–134. https://doi.org/10.1007/s11242-009-
9406-1 

Gleeson, T., Marklund, L., Smith, L., Manning, A.H., 2011. Classifying the water table at regional to 
continental scales. Geophysical Research Letters 38. https://doi.org/10.1029/2010GL046427 

Goderniaux, P., Davy, P., Bresciani, E., de Dreuzy, J.-R., Le Borgne, T., 2013. Partitioning a regional 
groundwater flow system into shallow local and deep regional flow compartments: 
GROUNDWATER PARTITIONING. Water Resources Research 49, 2274–2286. 
https://doi.org/10.1002/wrcr.20186 

Haitjema, H., 2006. The Role of Hand Calculations in Ground Water Flow Modeling. Groundwater 44, 
786–791. https://doi.org/10.1111/j.1745-6584.2006.00189.x 

Haitjema, H.M., 1995. On the residence time distribution in idealized groundwatersheds. Journal of 
Hydrology 172, 127–146. https://doi.org/10.1016/0022-1694(95)02732-5 

Haitjema, H.M., 1987. Comparing a three-dimensional and a Dupuit-Forchheimer solution for a 
circular recharge area in a confined aquifer. Journal of Hydrology 91, 83–101. 
https://doi.org/10.1016/0022-1694(87)90130-2 

Haitjema, H.M., Mitchell‐Bruker, S., 2005. Are Water Tables a Subdued Replica of the Topography? 
Groundwater 43, 781–786. https://doi.org/10.1111/j.1745-6584.2005.00090.x 



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

23/43 

 

Harbaugh, A.W., Langevin, C.D., Hughes, J.D., Niswonger, R.G., Konikow, L.F., 2017. MODFLOW-2005: 
USGS three-dimensional finite-difference groundwater model. 
https://doi.org/10.5066/F7RF5S7G 

Houston, J., 2009. A recharge model for high altitude, arid, Andean aquifers. Hydrological Processes 
23, 2383–2393. https://doi.org/10.1002/hyp.7350 

Houston, J., 2007. Recharge to groundwater in the Turi Basin, northern Chile: An evaluation based on 
tritium and chloride mass balance techniques. Journal of Hydrology 334, 534–544. 
https://doi.org/10.1016/j.jhydrol.2006.10.030 

IAEA, 2006. Use of Chlorofluorocarbons in Hydrology. 

Iriarte, S., Atenas, M., Aguirre, E., Tore, C., 2009. Aquifer recharge and contamination determination 
using environmental isotopes: Santiago basin, Chile: A study case. Presented at the Studies of 
isotopic hydrology in Latin America 2006, International Atomic Energy Agency, Isotope 
Hydrology Section, Vienna (Austria), pp. 97–112. 

Ivey, S., Gentry, R.W., Anderson, J., 2008. Inverse Application of Age-Distribution Modeling Using 
Environmental Tracers H3 ∕ He3. Journal of Hydrologic Engineering 13, 1002–1010. 
https://doi.org/10.1061/(ASCE)1084-0699(2008)13:11(1002) 

Jing, M., Heße, F., Kumar, R., Kolditz, O., Kalbacher, T., Attinger, S., 2019. Influence of input and 
parameter uncertainty on the prediction of catchment-scale groundwater travel time 
distributions. Hydrology and Earth System Sciences 23, 171–190. 
https://doi.org/10.5194/hess-23-171-2019 

Jones, E., Oliphant, E., Peterson, P., others, 2001. SciPy: Open Source Scientific Tools for Python 
[WWW Document]. URL http://www.scipy.org/ (accessed 12.31.18). 

Jurgens, B.C., Böhlke, J., Eberts, S.M., 2012. TracerLPM (Version 1): An Excel® workbook for 
interpreting groundwater age distributions from environmental tracer data (No. 2328–7055). 
US Geological Survey. 

Jurgens, B.C., Böhlke, J.K., Kauffman, L.J., Belitz, K., Esser, B.K., 2016. A partial exponential lumped 
parameter model to evaluate groundwater age distributions and nitrate trends in long-
screened wells. Journal of Hydrology, RESIDENCE TIMES IN SUBSURFACE HYDROLOGICAL 
SYSTEMS: Signature of hydrological processes and impact on environmental applications 543, 
109–126. https://doi.org/10.1016/j.jhydrol.2016.05.011 

Kazemi, G.A., Lehr, J.H., Perrochet, P., 2005. Groundwater Age, John Wiley & Sons, Inc. ed. 

Kirchner, J.W., 2016. Aggregation in environmental systems - Part 1: Seasonal tracer cycles quantify 
young water fractions, but not mean transit times, in spatially heterogeneous catchments. 
Hydrology and Earth System Sciences 20, 279–297. https://doi.org/10.5194/hess-20-279-
2016 

Kirchner, J.W., Feng, X., Neal, C., 2001. Catchment-scale advection and dispersion as a mechanism for 
fractal scaling in stream tracer concentrations. Journal of Hydrology 254, 82–101. 
https://doi.org/10.1016/S0022-1694(01)00487-5 

Knowles, L., Katz, B.G., Toth, D.J., 2010. Using multiple chemical indicators to characterize and 
determine the age of groundwater from selected vents of the Silver Springs Group, central 
Florida, USA. Hydrogeol J 18, 1825–1838. https://doi.org/10.1007/s10040-010-0669-y 

Koh, D.-C., Niel Plummer, L., Kip Solomon, D., Busenberg, E., Kim, Y.-J., Chang, H.-W., 2006. 
Application of environmental tracers to mixing, evolution, and nitrate contamination of 
ground water in Jeju Island, Korea. Journal of Hydrology 327, 258–275. 
https://doi.org/10.1016/j.jhydrol.2005.11.021 



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

24/43 

 

Koh, E.-H., Lee, E., Kaown, D., Green, C.T., Koh, D.-C., Lee, K.-K., Lee, S.H., 2018. Comparison of 
groundwater age models for assessing nitrate loading, transport pathways, and management 
options in a complex aquifer system. Hydrological Processes 32, 923–938. 
https://doi.org/10.1002/hyp.11465 

Kolbe, T., De Dreuzy, J.-R., Abbott, B.W., Marçais, J., Babey, T., Laverman, T., Labasque, T., Aquilina, 
L., Thomas, Z., Pinay, G., 2018. Structure of groundwater denitrification. Proceedings of the 
National Academy of Sciences. https://doi.org/In press 

Kolbe, T., Marçais, J., Thomas, Z., Abbott, B.W., de Dreuzy, J.-R., Rousseau-Gueutin, P., Aquilina, L., 
Labasque, T., Pinay, G., 2016. Coupling 3D groundwater modeling with CFC-based age dating 
to classify local groundwater circulation in an unconfined crystalline aquifer. Journal of 
Hydrology, RESIDENCE TIMES IN SUBSURFACE HYDROLOGICAL SYSTEMS: Signature of 
hydrological processes and impact on environmental applications 543, 31–46. 
https://doi.org/10.1016/j.jhydrol.2016.05.020 

Leray, S., de Dreuzy, J.-R., Bour, O., Labasque, T., Aquilina, L., 2012. Contribution of age data to the 
characterization of complex aquifers. Journal of Hydrology 464–465, 54–68. 
https://doi.org/10.1016/j.jhydrol.2012.06.052 

Leray, S., Engdahl, N.B., Massoudieh, A., Bresciani, E., McCallum, J., 2016. Residence time 
distributions for hydrologic systems: Mechanistic foundations and steady-state analytical 
solutions. Journal of Hydrology, RESIDENCE TIMES IN SUBSURFACE HYDROLOGICAL SYSTEMS: 
Signature of hydrological processes and impact on environmental applications 543, 67–87. 
https://doi.org/10.1016/j.jhydrol.2016.01.068 

Lobo-Guerrero, A., Gilboa, Y., 1987. Groundwater in Colombia. Hydrological Sciences Journal 32, 
161–178. https://doi.org/10.1080/02626668709491175 

Long, A.J., Putnam, L.D., 2006. Translating CFC-based piston ages into probability density functions of 
ground-water age in karst. Journal of Hydrology 330, 735–747. 
https://doi.org/10.1016/j.jhydrol.2006.05.004 

Luo, J., Kitanidis, P.K., 2004. Fluid residence times within a recirculation zone created by an 
extraction–injection well pair. Journal of Hydrology 295, 149–162. 
https://doi.org/10.1016/j.jhydrol.2004.03.006 

Małoszewski, P., Zuber, A., 1982. Determining the turnover time of groundwater systems with the aid 
of environmental tracers: 1. Models and their applicability. Journal of Hydrology 57, 207–
231. https://doi.org/10.1016/0022-1694(82)90147-0 

Manning, A.H., Caine, J.S., 2007. Groundwater noble gas, age, and temperature signatures in an 
Alpine watershed: Valuable tools in conceptual model development. Water Resources 
Research 43. https://doi.org/10.1029/2006WR005349 

Marazuela, M.A., Vázquez-Suñé, E., Ayora, C., García-Gil, A., Palma, T., 2019. Hydrodynamics of salt 
flat basins: The Salar de Atacama example. Science of The Total Environment 651, 668–683. 
https://doi.org/10.1016/j.scitotenv.2018.09.190 

Marçais, J., de Dreuzy, J.-R., Erhel, J., 2017. Dynamic coupling of subsurface and seepage flows solved 
within a regularized partition formulation. Advances in Water Resources 109, 94–105. 
https://doi.org/10.1016/j.advwatres.2017.09.008 

MATLAB and Statistics Toolbox, 2012. . The MathWorks, Inc., Natick, Massachusetts, United States. 

Maxwell, R.M., Condon, L.E., Kollet, S.J., Maher, K., Haggerty, R., Forrester, M.M., 2016. The imprint 
of climate and geology on the residence times of groundwater. Geophysical Research Letters 
43, 701–708. https://doi.org/10.1002/2015GL066916 



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

25/43 

 

McGuire, K.J., McDonnell, J.J., 2006. A review and evaluation of catchment transit time modeling. 
Journal of Hydrology 330, 543–563. https://doi.org/10.1016/j.jhydrol.2006.04.020 

Millman, K.J., Aivazis, M., 2011. Python for Scientists and Engineers. Computing in Science 
Engineering 13, 9–12. https://doi.org/10.1109/MCSE.2011.36 

Millot, R., Guerrot, C., Innocent, C., Négrel, P., Sanjuan, B., 2011. Chemical, multi-isotopic (Li–B–Sr–
U–H–O) and thermal characterization of Triassic formation waters from the Paris Basin. 
Chemical Geology 283, 226–241. https://doi.org/10.1016/j.chemgeo.2011.01.020 

Niu, Y., Castro, M.C., Hall, C.M., Aciego, S.M., Arendt, C.A., 2017. Characterizing glacial meltwater 
sources in the Athabasca Glacier, Canada, using noble gases as tracers. Applied Geochemistry 
76, 136–147. https://doi.org/10.1016/j.apgeochem.2016.11.015 

Oliphant, T.E., 2007. Python for Scientific Computing. Computing in Science & Engineering 9, 10–20. 
https://doi.org/10.1109/MCSE.2007.58 

Osenbrück, K., Fiedler, S., Knöller, K., Weise, S.M., Sültenfuß, J., Oster, H., Strauch, G., 2006. 
Timescales and development of groundwater pollution by nitrate in drinking water wells of 
the Jahna-Aue, Saxonia, Germany. Water Resources Research 42. 
https://doi.org/10.1029/2006WR004977 

Pinay, G., Peiffer, S., De Dreuzy, J.-R., Krause, S., Hannah, D.M., Fleckenstein, J.H., Sebilo, M., Bishop, 
K., Hubert-Moy, L., 2015. Upscaling Nitrogen Removal Capacity from Local Hotspots to Low 
Stream Orders’ Drainage Basins. Ecosystems 18, 1101–1120. 
https://doi.org/10.1007/s10021-015-9878-5 

Pollock, D.W., 2016. MODPATH: A particle-tracking model for MODFLOW. 
https://doi.org/10.5066/F70P0X5X 

Raats, P.A.C., 1977. Convective transport of solutes by steady flows II. Specific flow problems. 
Agricultural Water Management 1, 219–232. https://doi.org/10.1016/0378-3774(77)90002-6 

Rempe, D.M., Dietrich, W.E., 2014. A bottom-up control on fresh-bedrock topography under 
landscapes. PNAS 111, 6576–6581. https://doi.org/10.1073/pnas.1404763111 

Scherberg, J., Keller, J., Patten, S., Baker, T., Milczarek, M., 2018. Modeling the impact of aquifer 
recharge, in-stream water savings, and canal lining on water resources in the Walla Walla 
Basin. Sustain. Water Resour. Manag. 4, 275–289. https://doi.org/10.1007/s40899-018-0215-
y 

Solomon, D.K., Genereux, D.P., Plummer, L.N., Busenberg, E., 2010. Testing mixing models of old and 
young groundwater in a tropical lowland rain forest with environmental tracers. Water 
Resources Research 46. https://doi.org/10.1029/2009WR008341 

Squeo, F.A., Aravena, R., Aguirre, E., Pollastri, A., Jorquera, C.B., Ehleringer, J.R., 2006. Groundwater 
dynamics in a coastal aquifer in north-central Chile: Implications for groundwater recharge in 
an arid ecosystem. Journal of Arid Environments 67, 240–254. 
https://doi.org/10.1016/j.jaridenv.2006.02.012 

Tóth, J., 1963. A theoretical analysis of groundwater flow in small drainage basins. Journal of 
Geophysical Research 68, 4795–4812. https://doi.org/10.1029/JZ068i016p04795 

Troch, P.A., Paniconi, C., Loon, E.E. van, 2003. Hillslope-storage Boussinesq model for subsurface flow 
and variable source areas along complex hillslopes: 1. Formulation and characteristic 
response. Water Resources Research 39. https://doi.org/10.1029/2002WR001728 

Turnadge, C., Smerdon, B.D., 2014. A review of methods for modelling environmental tracers in 
groundwater: Advantages of tracer concentration simulation. Journal of Hydrology 519, 
3674–3689. https://doi.org/10.1016/j.jhydrol.2014.10.056 



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

26/43 

 

USGS, 2000. Ground water atlas of the United States. James A. Miller, Reston, Virginia. 

Velde, Y. van der, Torfs, P.J.J.F., Zee, S.E.A.T.M. van der, Uijlenhoet, R., 2012. Quantifying catchment-
scale mixing and its effect on time-varying travel time distributions. Water Resources 
Research 48. https://doi.org/10.1029/2011WR011310 

Visser, A., Broers, H.P., Purtschert, R., Sültenfuß, J., Jonge, M. de, 2013. Groundwater age 
distributions at a public drinking water supply well field derived from multiple age tracers 
(85Kr, 3H/3He, and 39Ar). Water Resources Research 49, 7778–7796. 
https://doi.org/10.1002/2013WR014012 

Vogel, J.C., 1967. Investigation of groundwater flow with radiocarbon. Presented at the Symposium 
on isotopes in hydrology, International Atomic Energy Agency, Vienna (Austria), pp. 355–369. 

Wang, J.-Z., Wörman, A., Bresciani, E., Wan, L., Wang, X.-S., Jiang, X.-W., 2016. On the use of late-
time peaks of residence time distributions for the characterization of hierarchically nested 
groundwater flow systems. Journal of Hydrology, RESIDENCE TIMES IN SUBSURFACE 
HYDROLOGICAL SYSTEMS: Signature of hydrological processes and impact on environmental 
applications 543, 47–58. https://doi.org/10.1016/j.jhydrol.2016.04.034 

Warrier, R.B., Castro, M.C., Hall, C.M., 2012. Recharge and source-water insights from the Galapagos 
Islands using noble gases and stable isotopes. Water Resources Research 48. 
https://doi.org/10.1029/2011WR010954 

Welch, L.A.A., Allen, D.M.M., Meerveld, H.J. (Ilja) van, 2012. Topographic Controls on Deep 
Groundwater Contributions to Mountain Headwater Streams and Sensitivity to Available 
Recharge. Canadian Water Resources Journal / Revue canadienne des ressources hydriques 
37, 349–371. https://doi.org/10.4296/cwrj2011-907 

 

  



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

27/43 

 

 

  



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

28/43 

 

 

  



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

29/43 

 

 

  



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

30/43 

 

 

  



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

31/43 

 

 

  



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

32/43 

 

 

  



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

33/43 

 

 

  



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

34/43 

 

 

  



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

35/43 

 

 

  



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

36/43 

 

 

  



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

37/43 

 

 

  



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

38/43 

 

 

  



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

39/43 

 

 

  



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

40/43 

 

 

  



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

41/43 

 

 

  



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

42/43 

 

Graphical abstract 

 

  



  

Residence Time Distributions in non-uniform aquifer recharge and thickness conditions 

43/43 

 

Highlights: 

- A depth-integrated semi-analytical approximation for residence times is proposed 

- The solution is validated by 2D discretized flow simulations with high consistency  

- Compensating recharge and thickness trends lead to an exponential distribution  

- Non-compensating effects lead to nontrivial and variedly shaped distributions 

- Distributions shape may be Gamma-like or truncated power-law-like, amongst others  

 


