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ExoMars Trace Gas Orbiter observes atmospheric dust, H20 and HDO

during the 2018 dust storm
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Global dust storms develop at Mars at irregular intervals of several years?. They have major effects,
causing an inflation of the atmosphere and changes in the dynamical behaviour, primarily due to
solar heating of the dust. Recently published observations of Mars’ atmospheric water abundance
during dust storm conditions revealed a high-altitude increase, more pronounced at high northern
latitudes®*, and a decrease in the water column at low latitudes>®. These results, however, lacked
concurrent measurements of atmospheric dust loading®, had a poor vertical resolution®, or were
indirect®. The start of science operations with the ESA/ROSCOSMOS ExoMars Trace Gas Orbiter

spacecraft coincided with the onset of a global dust storm on Mars. We provide new evidence of the
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impact of this dust storm on the vertical distribution of dust and water vapour. Also, for the first
time, the vertical distribution of the HDO/H,O ratio is determined from high spectral resolution solar
occultation measurements of water — H,0 and HDO — obtained simultaneously by both NOMAD’ and
ACS8. Before the storm, HDO abundances drop below detectability at 40-45 km altitude. This
decrease in HDO is shown to be correlated with the presence of H,O ice clouds. During the storm,
higher abundances of both H,O and HDO are observed above 40 km and up to 60-80 km. These
increased abundances are a result of the warmer temperatures during the dust storm, causing a
stronger atmospheric circulation and preventing cloud formation. The transition was sudden and
occurred in 1-2 days while the dust storm was developing, indicating a swift atmospheric reaction to

the dust storm.

Although dust is ubiquitous in Mars’ atmosphere, global-scale dust storms (GDS) are relatively rare
events®? which only occurred twice in the last 17 years (in 2001 and 2007). The effects of such global
storms on the Martian atmosphere can last several months. The physical processes responsible for
these phenomena are not yet fully understood, although several mechanisms have been proposed®.
The ExoMars Trace Gas Orbiter (TGO) arrived at Mars in October 2016 and started its first science
observations in April 2018, just before the beginning of the 2018 global dust storm. The NOMAD’
and ACS® instruments on board TGO witnessed the onset and development of this global dust storm

and its impact on water vapour abundance in the Martian atmosphere.

The 2018 GDS started on 30 May near the northern autumn equinox (Ls~185°) and, within a few
weeks, the planet was covered with atmospheric dust. Instruments on other Mars-orbiting and
landed spacecraft also witnessed the storm’s evolution (e.g. PFS and VMC on board Mars Express,
MARCI and MCS* on Mars Reconnaissance Orbiter and THEMIS!2 on Mars Odyssey). Observations by

Curiosity!? in Gale Crater indicated that the dust opacity rose from 0.65 on 7 June to 6.7 on 24 June,
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consistent with the values found by NOMAD and ACS which observed dust opacity to increase by a

factor larger than 10 (see Methods).

TGO has a 2-hour orbit and can perform atmospheric measurements during two solar occultation
events per orbit when the geometry is favourable. The NOMAD and ACS instruments measure the
solar radiation spectrum that is filtered by the atmosphere and from which the vertical distribution
of atmospheric compounds, in particular water vapour (both isotopologues, H,O and HDO), can be
retrieved. Atmospheric opacity variation with altitude can also be obtained directly from the
decrease in the continuum part of the transmitted solar intensity, thus allowing the instruments to

monitor the onset and further evolution of the dust storm (Figure 1).

In solar occultation mode, while the TGO-to-Sun line of sight sweeps tangent altitudes above the top
of the atmosphere, the sampled line-of-sight optical depth is zero (i.e., no attenuation of the solar
signal). When the line of sight to the Sun transects the atmosphere, the line-of-sight optical depth
gradually increases, owing to the presence of dust and ice particles, until the atmosphere becomes
completely opaque at some tangent altitude. Here the transmittance drops to zero and the line-of-
sight optical depth increases to infinity, which usually occurs due to enhanced dust presence in the
lowermost part of the atmosphere or, in rarer cases, by the planetary surface. Dust and/or cloud
layers in the atmosphere cause local increases in optical depth, with the effect being most
pronounced in the equatorial region (Figure 1.D-F). The characteristics of the individual vertical

profiles of optical depth vary with latitude before, during and after the dust storm.

The observations in Figure 1.A-C were made north of 60° latitude, and indicate that the continuum
line-of-sight optical depth remains low down to 10-20 km tangent altitude throughout the dust
storm. The apparent increase with time of the tangent altitude at which the atmosphere becomes

opaque is mainly a latitude effect, indicating that the global dust storm does not impact much the
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northern latitudes. Some features at 25-40 km altitude were observed from June onwards that were
not present before the dust storm: these could be layers of dust that are transported from lower

latitudes.

In the mid-latitudes (Figure 1.D-F), before the dust storm, many layers were observed around 40 km.

1416 3nd their existence has been

Detached dust layers were previously identified on many occasions
explained by uplifting during strong convection processes’?°. Water ice clouds may be responsible
for some of the observed layers, as indicated by observations at other wavelengths and by previous

investigations?23,

The layers disappear during the dust storm when the atmosphere is utterly
opaque below 40 km because of high dust abundances, and water ice clouds are expected to

disappear due to the atmospheric warming in the dust storm?.

Furthemore, Figure 1.G-1 shows the impact of dust/ice clouds in the high southern latitudes, from
the beginning of southern spring to the onset of the dusty southern summer season. During the GDS,
dust ascended to higher altitudes, comparable to the situation in the mid-latitudes but with more

local variability.

On Mars, water vapour has a wide variety of effects on atmospheric photochemistry and climate. Its
dissociation by sunlight into hydroxyl radicals controls the overall stability cycle of CO,. As frost on
the surface or as ice clouds in the atmosphere, water exerts a strong influence, leading to large

departures from the otherwise dust-controlled radiative balance?.

Here we present the first water vapour profiles that reach down to the planetary boundary layer,
with a high vertical resolution (~1 km) and extent up to ~80 km (Figure 2 and Figure 3.A). Besides,
for the first time, the vertical profile of HDO could be measured (Figure 3.B). The first observations

from TGO were carried out prior to the 2018 GDS, and the impact of the global dust storm on the
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vertical distribution of water vapour and HDO could be monitored. The ACS observations shown in
Figures 2 and 3 were performed at high southern and northern latitudes, while the NOMAD profiles
were obtained in northern mid-latitudes. During the northern autumnal season, when these
measurements were carried out, previous column-integrated measurements>® indicated a dry
atmosphere at high latitudes caused by the developing seasonal polar cap in the North and its
receding counterpart in the South. The seasonal cap development therefore explains the very low
water abundances in the lowest 20 km for the sub-polar profiles (Figure 2). The profiles observed
before the dust storm indicate low abundances of water vapour above 60 km, with values below 10
ppm, and with large error bars. Profiles from the southern hemisphere are shown in Figure 2(Right)
and Figure 3.A; they correspond to the southern summer season with a lot of dust present in the
atmosphere already before the GDS, explaining the lack of data below ~15 km. Northern

hemisphere profiles were taken in more dust-free conditions and reach down to ~4 km.

Water profiles, both H,O and HDO, show a large enhancement in the middle atmosphere after the
onset of the dust storm. The increase in water abundance is observed above 20 km, with water
vapour being lifted upwards up to at least 80 km. Previous studies have reported a sharp decrease of
the total water column in the equatorial region®®, indicative of redistribution of water vapour in a
dust storm. Previous measurements® of water vapour profiles already exhibited an increase of the
atmospheric water content at high altitudes and latitudes, as is confirmed by these new data. This
phenomenon was also linked to an increase in the escape of hydrogen from Mars’ atmosphere®?.
What is remarkable in the observations presented here (Figure 2), is that this enhancement is
happening very fast, in the course of just a few days during the onset of the dust storm (around 7-8

June, Ls~188-190°).

The observed changes in the distribution of atmospheric water reported here can be understood as

resulting from a variety of processes. The higher abundance of dust heats large parts of the
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atmosphere because of the absorption of solar radiation by the dust particles. Dust absorption and
subsequent warming of surrounding gas causes an expansion of the atmosphere, which leads to a
redistribution of water vapour to a wider vertical range. The higher atmospheric temperatures at
low and middle latitudes and the resulting higher thermal contrast between the equatorial and polar
regions also strengthen the mean meridional circulation, this leads to an additional redistribution of
water vapour across latitude. Also because of the higher temperatures, fewer water ice clouds are
expected to be present during a dust storm. Under normal conditions, the formation of clouds acts
to confine water vapour to lower altitudes due to the gravitational fall and subsequent sublimation
of ice crystals. In addition, numerical modelling has also demonstrated that solar heating of

1819 and larger scale ascent of dust layers® that

atmospheric dust can drive localized deep convection
would, along with the dust, also transport water vapour to higher altitudes. All these processes that
contribute to explaining the observed changes in the water vapour profiles have been quantitatively
demonstrated with global circulation models (GCMs) and by data assimilation of water vapour in
previous years on Mars?*#?628_ For a more quantitative understanding of the 2018 GDS, more detailed
modelling and assimilation studies that simulate the transition from normal to global dust storm

24,26,27,29

conditions will have to be performed, using dust constraints derived from instruments that

monitored the GDS, including TGO instruments.

The fractionation between H,0 and HDO is an important process in planetary atmospheres. The D/H
ratio is a marker of the evolution of the water inventory on Mars®°. On this planet, the D/H budget is
dominated by H,0 and HDO which are the unique precursors of the escaping D and H atoms above

h333 and in

the exobase. HDO was previously measured as column-integrated abundances from Eart
situ* by the Mars Science Laboratory. NOMAD and ACS provide for the first time the capability to
observe the vertical distribution of HDO simultaneously with water vapour, thereby providing key

information on the fractionation processes that are expected to control the amount of hydrogen and

deuterium atoms escaping to space?®. H,O and HDO are fractionated during photolysis and ice
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formation®. The fractionation during ice formation is expected to reduce the D/H ratio above the
hygropause and keep HDO more strongly confined in the lower atmosphere. Indeed, condensation
will enhance D/H in ice particles, that sediment and subsequently sublimate, preventing HDO even

more than H,0 to reach higher altitudes.

NOMAD observations (Figure 3) reveal that the HDO density profiles during the pre-storm period
exhibit a sudden decline at 40-45 km altitude, just below a thick layer of water ice clouds, consistent
with this view (see Methods and Figure 9). ACS observations show this decrease to occur at 50 km
but were taken at a different latitude, where the hygropause may be located at a different altitude.
Moreover, ACS data have larger error bars near the top of the profile. The HDO/H,0 ratio is similar in
both profiles below 45 km: 4-6 VSMOW. HDO is distinctly more abundant at high altitudes during the
dust storm than before the storm. This is explained by the strong atmospheric warming during the
GDS, which causes the hygropause to ascend to higher altitudes. The HDO/H,O ratio is relatively
similar before and during the GDS, which demonstrates that HDO is advected along with H,O to

higher altitudes and latitudes during the onset of the GDS.

The first observations of H,O and HDO, leading to the determination of vertical profiles of D/H, have
shown that these two species are very sensitive to the presence of ice clouds which suppress them
and prevent them to reach the atmospheric layers above the clouds. This fractionation-based
mechanism was theoretically predicted by models for a long time but never demonstrated®. The
effect of the dust storm is to expand the atmosphere and to lift the hygropause. Continued

measurements by TGO shall permit us to unveil both the spatial and the seasonal trends of D/H.
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Continuum Line-of-sight Optical Depths for SO Diffraction Order 121:
Variations by Time and Tangent Point Latitude

Northern Latitudes April-May (Ls: 163-185) Northern Latitudes June-July (Ls: 185-221)  Northern Latitudes August-September (Ls: 221-2461”
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Figure 1: Evolution of the dust/cloud extinction obtained by the NOMAD SO channel during the onset of the global dust
storm: from the first observations in April and May (left panels) to the August-September 2018 timeframe (right panels),
spanning Ls = 163° to 246° (late northern summer to autumn). The data is split into 3 latitude bins, with the colour of
the line indicating the latitude within each bin. The latitudinal coverage is dependent on the orbit and solar position,
and so the latitude ranges were selected based on the data available: northern profiles for latitude > 60°N (upper
panels); mid-latitude profiles for latitudes between -30°S and 30°N (middle panels); and southern profiles for latitudes
between -70°S and -50°S (lower panels). In the early phase of the TGO mission, more solar occultations occurred near
the northern pole, as is evident in the figures. Plotted here is the continuum line-of-sight optical depth versus tangent
altitude of the centre of the line of sight above the Mars reference areoid. The line-of-sight optical depth is inferred from
the transmittance after the removal of atmospheric absorption lines. Diffraction order 121 was used for this study,
covering the 2720-2740 cm™ spectral range. Horizontal error bars are not shown here, as they are very small (0.003 units

for optical depth = 1; 0.06 units for optical depth = 4; for an SNR of 1000).
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Figure 2: H,0 volume mixing ratio (vmr) profiles observed by ACS NIR, during the onset of the global dust storm . Left:
northern latitudes; black: Ls = 188.28° — Lat = 77.5° N; blue: Ls = 188.75° — Lat = 76.4° N; green: Ls = 189.41° — Lat = 74.8°
N; yellow: Ls = 189.90° — Lat = 73.8° N. Right: southern latitudes; blue: Ls = 188.62° — Lat = 68.2° S; cyan: Ls = 189.19° —
Lat = 70.0° S; yellow: Ls = 189.67° — Lat = 71.3° S; orange: Ls = 190.05° — Lat = 72.4° S; red: Ls = 190.50° — Lat = 73.8° S.
Water abundances were deduced from ACS NIR observations (order 56 covering the 1.38 um band, 7225-7300 cm™; the

CO, density was measured in order 49, 6320-6390 cm™?).
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Figure 3: H,0, HDO and D/H detections before and during the storm. Panel A: NOMAD H,0 observations before the
storm (blue: Ls: 171.45°, Lat: 43°N to 68°N), and during the storm (red: Ls: 196.64°, Lat: 51°N to 59°N,) and ACS MIR
observations before the storm (cyan: Ls: 168.75°, Lat: 39°S to 43°S), and during the storm (yellow: Ls: 196.64°, Lat: 80°S
to 83°S). The corresponding HDO VMR profiles are shown in Panel B. Panel C shows the D/H ratio obtained for each of
the H,0-HDO observations. All errors in Panel A—-C are 1. VSMOW is the Vienna Standard Mean Ocean Water reference

value, 312 ppm HDO/H,0.
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Methods
The NOMAD instrument and dataset. NOMAD, the “Nadir and Occultation for MArs Discovery”

73637 is part of the payload of the ExoMars 2016 Trace Gas Orbiter mission3%. The

spectrometer suite
instrument is conducting a spectroscopic survey of Mars’ atmosphere in ultraviolet (UV), visible and
infrared (IR) wavelengths covering large parts of the 0.2-4.3 um spectral range. NOMAD is composed
of three spectrometers: a solar-occultation-only spectrometer (SO — Solar Occultation) operating in
the infrared (2.3-4.3 um), a second infrared spectrometer (2.3-3.8 um) capable of nadir, but also
solar occultation and limb observations (LNO — Limb Nadir and solar Occultation), and an
ultraviolet/visible spectrometer (UVIS — UV visible, 200-650 nm) that also has all three observation
modes. The spectral resolution of SO (0.15 cm™ at 3000 cm™) surpasses previous surveys from orbit
in the infrared by at least one order of magnitude. NOMAD offers an integrated instrument
combining a flight-proven concept and innovations based on existing instrumentation: SO is a copy
of the Solar Occultation in the IR (SOIR) instrument®® on Venus Express (VEx*®), LNO is a modified
version of SOIR, and UVIS has heritage from the development in the context of the Humboldt lander.
NOMAD provides vertical profiling for atmospheric constituents at unprecedented spatial and
temporal resolution. Indeed, in solar occultation, the vertical resolution is less than 1 km for SO and
UVIS, with a sampling rate of 1 s (one measurement every 1 km), and occultations range from the
surface to 200 km altitude. NOMAD also provides mapping of several constituents in nadir mode

with an instantaneous footprint of 0.5 x 17 km? (LNO spectrometer) and 5 km? (UVIS spectrometer),

with a repetition rate of 30 Martian days.

For this work we analysed SO channel data measured between April 21t and September 30%. SO

measures 4 spectra for 5 or 6 different diffraction orders per second.
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The ACS instrument and dataset. ACS® consists of three infrared channels featuring high accuracy,
high resolving power, and a broad spectral coverage (0.7 to 17 um). The near-infrared (NIR) channel
is based on the principle of echelle-spectrometer with selection of diffraction orders by an acousto-
optical tuneable filter (AOTF). The same principle was employed by SOIR on VEx* and by the infrared
channels of NOMAD described above. ACS NIR covers a spectral range of 0.7-1.7 um in diffraction
orders 101 through 49. The instrument capitalises at the science heritage of SPICAM-IR* on board
ESA’s Mars Express, benefiting from much higher resolving power of A/AA=25,000. During an
occultation, ACS NIR measures 10 preselected diffraction orders in two seconds, including the
absorption bands of H,0 at 1.13, 1.38, and 1.40 um, and CO; at 1.27, 1.43, 1.54, and 1.57 um. The
mid-infrared (MIR) channel is a newly developed crossed dispersion echelle spectrometer dedicated
to solar occultation measurements in the 2.3-4.5 um range. The spectral resolving power is
A/AA=50,000. For each acquired frame, MIR measures up to 20 adjacent diffraction orders, covering
an instantaneous spectral range of 0.15-0.3 um. To achieve the full spectral coverage a secondary
dispersion grating can be rotated to one out of 11 positions. The H,O and HDO profiles can be

measured simultaneously by MIR using the positions 4, 5 and 11.

The concept of Fourier-transform spectrometer TIRVIM is close to that of Planetary Fourier
Spectrometer (PFS*?) on board MEx, though TIRVIM features a cryogenic detector and the solar
occultation capability. In occultation, TIRVIM is operated mostly in ‘climatology’ mode, covering
instantaneously, each 0.4 s, the full spectral range of 1.7-17 um (effectively 1.7-5 um) with spectral
resolution €1 cm™. These three channels are used to observe in solar occultation; NIR and TIRVIM
are operated also in nadir to measure atmospheric gases and to characterise the atmospheric state:
dust loading and condensation clouds. The atmospheric temperature profile is retrieved from the

15-um CO; band measured by TIRVIM in nadir.
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In this work we used NIR occultation profiles (Figure 2) obtained at high latitudes in the southern
and northern hemispheres (see Table 1). MIR simultaneous H,0 and HDO profiles (Figure 3) were
obtained in the southern hemisphere in order 224 (position 4 of secondary grating). TIRVIM aerosol
profiling (Figure 10) was done using solar occultation data obtained in the southern hemisphere,
orbit 2556, Ls=197°, latitude 81°S during the egress (local time 9:26), i.e. during the same occultation

of the MIR results shown in Figure 3.

Solar occultation technique. The solar occultation technique is a powerful method to gain
information on the vertical structure of atmospheres. At sunset, the recording of spectra starts well
before the occultation occurs (the solar spectrum outside the atmosphere is used for referencing),
and continues until the line of sight crosses the planet. At sunrise, the recording of spectra continues
well above the atmosphere to provide the corresponding reference. Transmittances are obtained by
dividing the spectra measured through the atmosphere by the reference spectrum recorded outside
the atmosphere®. In this way, transmittances become independent of instrumental characteristics,
such as the absolute response or the ageing of the instrument and, in particular, of the detector.
Such observations provide high vertical resolution (< 1 km for NOMAD SO and ACS NIR and 2.0-2.5
km for ACS MIR observations) profiles of the structure and composition of the atmosphere. ACS
TIRVIM observes the full Sun disk during an occultation, resulting in a coarser vertical resolution (~9

km).

Profiles of dust extinction. To calculate the extinction due to dust and/or clouds, it is necessary to
remove the absorption lines of atmospheric gas species, leaving the background continuum. For the
analysis here, diffraction order 121 of NOMAD SO was chosen, as 1) this order is measured routinely,
so has high spatial/temporal coverage; and 2) it is relatively simple to remove the atmospheric
absorption lines. A 4" order polynomial is fitted to the data. The optical depths in Figure 1 are

inferred from the value of the continuum in the centre of the detector (pixel 160). The fitting
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algorithm fails at low and high altitudes, where the absorption lines from molecular species are
saturated or the signal is so low that it is effectively noise. Therefore, any spectra where
transmittance > 99.5% are assumed to have an optical depth of 0, and points where transmittance <
0.5% are not plotted; hence the lines end abruptly at low altitudes when the optical depth becomes
high. The observations in Figure 1 are split into North, South and mid-latitudes using the following
criteria: greater than 60° North, between -70° and -50° South, and between -30° and +30° for the
mid-latitudes. The tangent altitude is calculated as the shortest distance between the line of sight of
the centre of the field of view and the MGM1025 Areoid (i.e. the Mars geoid)*. The latitude is the
point on the areoid closest to the centre of the field of view, i.e. the tangent point, at the midpoint
of the solar occultation measurement. The characteristics of the individual vertical profiles of optical
depth vary with latitude, as seen when optical depth is plotted vs latitude and Mars longitude

(Figure 4).

To further investigate the impact of the dust storm, two orbits covering the same footprint and solar
illumination conditions on Mars have been considered; they were acquired by the nadir channel of
NOMAD, respectively, before (April 26th) and during (July 11th) the global dust storm. Figure 5
compares the dust radiance signature before and after the storm but, in contrast to Figure 1, now in
a nadir geometry and in a different wavelength, at 2.3 um. Comparison with radiative transfer
modelling suggests a factor of ~10 increase in opacity at 2.3 um during the storm. Note also how the
surface albedo features are obscured by the increase of the atmospheric dust load. The radiance
variation with latitude is mainly dominated by the total albedo (surface + atmosphere) and solar
zenith angle, which varies along the track. The radiative transfer model includes multiple scattering
and a layered atmosphere with pressure/temperature profiles from the LMD General Circulation

Model*. Further details on the radiative transfer model can be found in Villanueva, et al. %.
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Vertical profiles of H,O and HDO volume mixing ratio. The vertical profiles of H,O0 and HDO volume
mixing ratio are investigated from the NOMAD dataset shown in Table 1. These NOMAD spectra are
all taken in the northern hemisphere at the same local time (at 18h). The NOMAD SO channel can
record spectra for multiple diffraction orders during an occultation. The occultation performed on 7
May includes the measurements of diffraction order 168 (3775.53 — 3805.63 cm™) and order 136
(3056.39 — 3080.75 cm™) where strong H,0 lines are present and of order 119 (2674.34 — 2695.65
cm™) with strong HDO lines. The occultation measurement on 20 June contains two diffraction
orders for H,O - order 168 and 134 (3011.44 — 3035.44 cm™), and diffraction order 121 for HDO

(2719.28 — 2740.96 cm?) (Figure 6).

We retrieved H,0O volume mixing ratio using the whole spectral range of those diffraction orders, in
order to maximize the information content at every tangent altitude. In this study, CO, and H,0 gas
absorptions were included. The absorption coefficients of these gases are calculated based on a line-
by-line method using the water vapour line list for a CO,-rich atmosphere for H,0*** and HITRAN
2016* for CO,. Temperature, pressure, and CO, volume mixing ratio are taken from the values
predicted by GCMs for each altitude. The calculated synthetic spectra are convolved with a Gaussian
function that corresponds to the spectral resolving power of the NOMAD SO channel (R=11000-
15000). The final synthetic spectra are then built by considering an instrument model that comprises
the effects of the Acousto-Optic Tunable Filter (AOTF) and the grating (i.e., Blaze function)®. The
free parameters in the retrievals are the vertical profiles of volume mixing ratio and the parameters
for the polynomial function to model the continuum of each spectrum. Retrievals are performed
using an Optimal Estimation approach®! implemented in a Gauss-Newton iterative scheme. Figure 7

shows an example of fit results.

The water vapour profiles shown in Figure 2 are retrieved from the ACS NIR spectra (see also Table

1). Wavelength drift is corrected using positions of gaseous absorption lines. The spectra fitting and
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the profile retrieval follow the method described for SPICAM MEx 1.38-um band>°2. All the altitudes
of the profiles are fitted simultaneously (global fit) using a Levenberg—Marquardt iterative

algorithm®3>*

, where Y is a matrix of all spectra changing with altitude and X is a vector of gaseous
densities. A Tickhonov regularization is then applied, customary for vertical inversions in order to
smooth the profile and minimize the errors. The uncertainty in the local number densities is given by
the covariance matrix of the solution errors. The water vapour abundances were retrieved from
spectra acquired in diffraction order 56 (covering the 1.38 um band, or 7220-7300 cm™). Figure 8
shows an example of fit results. The spectral line parameters for H,O are taken from HITRAN 2016%
with a correction coefficient for the CO, rich atmosphere®. Temperature and pressure for the

radiative transfer computations are taken from GCM MCD*. To obtain the VMR profiles of water

vapour, the CO, density was retrieved from ACS NIR spectra in order 49, 6320-6390 cm™.

The vertical profiles of H,O and HDO volume mixing ratio investigated from the ACS dataset (Figure
3. B and C) were obtained in the southern hemisphere at middle and high latitudes (Table 1). During
these observations MIR channels recorded spectra at position 4 (diffraction orders 210-224). To
obtain the H,0 and HDO density, the order 224 (3763-3775 cm™) was used for both observations in
2" May and 20" June. We retrieved H,0 and HDO volume mixing ratio using several lines present in
this diffraction order. The spectral line parameters for H,O are taken from HITRAN 2016 with a
correction coefficient for the CO, braodening®. Temperature and pressure for radiative transfer
computations are taken from GCM MCD*. The calculated synthetic spectra are convolved with a
Gaussian function that corresponds to the spectral resolving power of the ACS MIR channel

(R~30000-35000).

Water ice clouds. Figure 9 shows the aerosol optical depth derived from NOMAD SO on May 7th,

2018 before the dust storm, during which orders 119, 136, 148, 168 and 189 were measured,
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corresponding to the central wavenumbers 2685.0, 3068.0, 3339.0, 3790.0, and 4265.0 cm?,
respectively. The optical depths have been derived by averaging the transmittances with a sampling
of 3 km, and deriving for each tangent height the equivalent optical depth rescaled by the
occultation path. Each optical depth has been determined simultaneously with the abundances of
the gases detectable in each order; hence a full retrieval is used. Each spectrum has been processed
with the Planetary Spectrum Generator (PSG*®) forward model and a retrieval scheme based on
Optimal Estimation in a Gauss-Newton iterative scheme. Optical depth is derived for each tangent
altitude, and is compared to the extinction of water ice with different particle sizes (top panel of
Figure 9). This figure shows that the detached layer observed by NOMAD at 40-50 km can be well

reproduced by a water ice cloud with particle sizes between 0.1 and 1 um.

Aerosol properties from TIRVIM solar occultation data were retrieved from 20 wavenumbers in the
spectral range of 1500-4500 cm™ chosen outside of strong gas absorption bands. The procedure to
obtain transmittances from the TIRVIM dataset is straightforward. This channel is operated
continuously, and therefore remains very stable during an occultation. Slant optical depth is
calculated as (L) = —In(T(L)), where T is the transmittance over the line of sight L. Vertical profiles of
extinction are retrieved using the standard ‘onion peeling’ method in Fedorova et al.>>. Further steps
involve Mie modelling of the spectral dependence of the extinction coefficient assuming known
optical properties for the aerosols®®®’ fit to the experimental data to retrieve vertical profiles of the

size distribution and number density as described in Fedorova, et al. 2

A log-normal size
distribution®® of the aerosol particles with a width (the effective variance) of 0.3 was assumed. To
distinguish between water ice and dust particles, we apply the optimal estimation retrieval scheme
independently for both types, and make the decision based on the fit quality (Figure 10). The

algorithm is able to retrieve the number density (typically ~1 particles cm?3), and the effective radius

(1-1.5 um).
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Supplementary material

Optical depth vs. Latitude
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Figure 4: Continuum optical depth vs latitude and Ls. The colour denotes the lowest altitude at which the optical depth
is less than 1.0, i.e. the lowest altitude where sunlight can still penetrate the atmosphere easily. There is a strong
latitudinal dependence, where northern and southern high latitudes are relatively clear until the line of sight drops
below 10-15km (blue and dark blue) — except during the Ls = 200° — 240° period where the global dust storm appears to

have raised this altitude to 20-25km (light blue and cyan)

24



0.0020 T 0s
0.0008
04
00015
= _ 00006
E 5 03
B 3
5 ]
£ 13 3
£ oootof S 2
8 § oo
3 9 02
o @ .
*
0.0005
0.0002 o1
a0 0 0 E Q000 =% 0 3 oe 50 0 ]
Latitude Latitude Latitude

Figure 5: Impact of the dust storm on NOMAD LNO nadir observations. The calibrated radiance at 2.3 pm is shown for
two orbits before (Panel A) and during (Panel B) the dust event as a function of the latitude. In red, the comparison to a
radiative transfer model is also presented. The dust opacity before the global dust storm is T=0.46 at 3 pm, while during
the event, there is an increase by at least of a factor 10 (1=4.6). Panel C shows the surface albedo, in black OMEGA

albedo at 2.33 um (order 190), in red TES bond albedo scaled to the OMEGA one.

(d) NOMAD spectra at 0-50 km
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Figure 6: Atmospheric transmittances measured by NOMAD during the storm (Ls = 196.64° — Lat = 51° — Lon = 148°E)
showing HDO absorption features (arrows) appearing at tangent heights up to 50 km; most of the other absorption

features originate from CO,.
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NOMAD data at 22.2 km on 7-May, Diffraction Order 136
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Figure 7: Example of results of the H,0 retrieval from NOMAD. Top panel: black: transmittance measured at the tangent
height of 22.2 km; blue: best fit; cyan and green: different simulations with 1 ppm and 50 ppm water respectively.

Bottom panel: residuals between the observation and the best fit.
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Figure 8: Example of results of the H,O retrieval from ACS NIR. Top panel: black: transmittance measured at the tangent

height of 34.07 km; blue: best fit; cyan, red, and green: different simulations with no water, 1 ppm and 50 ppm water

respectively. Bottom panel: residuals between the observation and the best fit.
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Figure 9: Extinction of water ice with different particle sizes (top panel) and slant optical depth for the solar occultation

performed by NOMAD before the dust storm, derived from orders 119, 136, 148, 168 and 189. The occultation has been

performed on May 7'" between 05.40 and 05.46 UTC (local time 18h), and covers the latitude range 44° N to 57° N and

the longitude range -122.6° E to -121.4° E.
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Orbit #08FC01_2018-171T07-38-51_E, Ls 196.6, Lat-81.0, Long -66.1, Local Time 21.4, Date 20-Jun-2018 09:26:11
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Figure 10: lllustration of independent retrieval of dust and water ice aerosol from the TIRVIM dataset for a typical
southern hemisphere occultation (20.06.2018; Lat 81°N; Lon -66°E; egress): a selection of transmission profiles at 5
wavelengths, corresponding slant opacities and extinction profiles (top), retrieved effective radius (res) in pm and
aerosol number density in cm (bottom). The occultation has been performed on June 20% at orbit 2556 (local time
21:25), and covers the latitude range 81°N to 82°N and the longitude range -67°E to -60°E. The observation corresponds
to the MIR H,0-HDO profiles during the dust storm (yellow curves of Fig.3). The water ice and dust are well

distinguished using the 3 um water ice absorption band (wavenumber 3263 cm™ in the figure). In this case the water ice

cloud is detected at 25-30 km.
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Table 1: Overview of the NOMAD and ACS observations of H,0 and HDO used and shown in this study

Instrume | Date (UT) | Solar Latitude East Local Diffraction Note
nt Longitude Longitude solar orders
time
ACS-MIR | 2'"  May | 168.75° 39 °S From 156°to - | 17.7 224 MIR (H,0) Before  global
2018 43°S 157° 224 MIR (HDO) | dust storm
NOMAD |7t May | 171.45° |43°-68° | From -122°to | 18.3 168 (H,0) Before  global
SO 2018 -115° 136 (H,0) dust storm
119 (HDO)
ACS-NIR 6" June | 188.28° 77.5°N -173° 16.8 56 NIR (H,0) In the beginning
2018 of global dust
storm
ACS-NIR | 6™ June | 188.62° 68.2°S 161.6° 5.4 56 NIR (H,0) In the beginning
2018 of global dust
storm
ACS-NIR | 6" June | 188.75° 76.4°N -100.5° 16.9 56 NIR (H,0) In the beginning
2018 of global dust
storm
ACS-NIR 7% June | 189.19° 70°S 176° 5.3 56 NIR (H,0) In the beginning
2018 of global dust
storm
ACS-NIR 7% June | 189.41° 74.8°N -141.3° 17.0 56 NIR (H,0) In the beginning
2018 of global dust

storm
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ACS-NIR 8" June | 189.67° 71.3°S -112.3° 5.2 56 NIR (H,0) In the beginning
2018 of global dust
storm
ACS-NIR 8" June | 189.9° 73.8°N -68° 17.0 56 NIR (H;0) In the beginning
2018 of global dust
storm
ACS-NIR | 8™ June | 190.05° | 72.4°S 16.8° 5.1 56 NIR (H,0) In the beginning
2018 of global dust
storm
ACS-NIR | 8" June | 190.5° 73.8°S 88.11° 4.9 56 NIR (H.0) In the beginning
2018 of global dust
storm
ACS-MIR- | 20" June | 196.64° 80° S From -68° to- | 21.5 224 MIR (H;0) During  global
TIRVIM 2018 83°S 52° 224 MIR (HDO) | dust storm
NOMAD | 20" June | 196.64° 51°-59° | From -148° to | 17.3 168 (H,0) During  global
SO 2018 -148° 134 (H,0) dust storm
121 (HDO)
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