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Abstract. The Mediterranean region and the Levant have re-
turned some of the clearest evidence of a climatically dry
period occurring around 4200 years ago. However, some re-
gional evidence is controversial and contradictory, and is-
sues remain regarding timing, progression, and regional ar-
ticulation of this event. In this paper, we review the evi-
dence from selected proxies (sea-surface temperature, pre-
cipitation, and temperature reconstructed from pollen, δ18O
on speleothems, and δ18O on lacustrine carbonate) over the
Mediterranean Basin to infer possible regional climate pat-
terns during the interval between 4.3 and 3.8 ka. The values
and limitations of these proxies are discussed, and their po-
tential for furnishing information on seasonality is also ex-

plored. Despite the chronological uncertainties, which are the
main limitations for disentangling details of the climatic con-
ditions, the data suggest that winter over the Mediterranean
involved drier conditions, in addition to already dry sum-
mers. However, some exceptions to this prevail – where wet-
ter conditions seem to have persisted – suggesting regional
heterogeneity in climate patterns. Temperature data, even if
sparse, also suggest a cooling anomaly, even if this is not
uniform. The most common paradigm to interpret the pre-
cipitation regime in the Mediterranean – a North Atlantic
Oscillation-like pattern – is not completely satisfactory to in-
terpret the selected data.
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1 Introduction

In recent years, it has become paradigmatic that the Holocene
was a relatively stable climatic epoch when compared to
the last glacial period (e.g., Dansgaard et al., 1993). How-
ever, long-term, astronomically driven changes in insola-
tion produced changes in temperature (Marcott et al., 2013,
but see also Marsicek et al., 2018), associated with a pro-
gressive southward shift of the Intertropical Convergence
Zone (ITCZ) and a weakening of Northern Hemisphere sum-
mer monsoon systems (e.g., Wright et al., 1993; Fleitmann
et al., 2003; Braconnot et al., 2007). A number of short,
multidecadal- to centennial-scale climatic events, the origin
of which often remains unclear, are superimposed over this
long-term trend (e.g., Denton, and Karlén, 1973; Bond et
al., 1997; Mayewski et al., 2004; Wanner et al., 2011). At
the regional-to-global scale, some events appear synchronous
and linked to specific changes in circulation patterns (e.g.,
Trouet et al., 2009; Dermody et al., 2012; Zanchetta et al.,
2014). A good example is the Medieval Climate Anomaly
in the Atlantic region, which has been explained in terms
of an anomalously persistent positive mode of the North At-
lantic Oscillation (NAO) (Trouet et al., 2009). However, the
synchronicity and therefore the origin of many such events
remain challenging. A major and much-discussed example
of a multidecadal- to century-scale event is the so-called
“4.2 ka BP Event”. The detection of this event over an exten-
sive region, and its common expression as an interval of cool-
ing and drying (e.g., Cullen et al., 2000; Drysdale et al., 2006;
Dixit et al., 2014), points to a global “megadrought” (Weiss,
2015, 2016). The significance of the climate event at 4.2 ka
at the global scale has been accepted recently as the for-
mal boundary of Late and Middle Holocene at 4250 ka b2k
(http://www.stratigraphy.org/, last access: 11 March 2019).
Despite its near-pervasive recognition, the timing, duration,
and progression of this event have yet to be defined in de-
tail, whilst its origin in terms of changes in ocean and at-
mospheric circulation remains elusive (Booth et al., 2005;
Zanchetta et al., 2016; Carter et al., 2018). Moreover, not all
the palaeoclimate records preserve evidence of the 4.2 ka BP
Event, at least as a prominent feature of the Late Holocene
(e.g., Seppa et al., 2009; Göktürk et al., 2011; Roland et al.,
2014) and not necessarily as a cold and dry event (e.g., Rails-
back et al., 2018). Some researchers have suggested that this
event is best described as a complex succession of dry/wet
events, rather than a single long, dry event (Magny et al.,
2009; Railsback et al., 2018), further complicating the matter.
The Mediterranean region shows some of the most consis-
tent evidence of the 4.2 ka BP Event. It is mostly recognized
as a dry interval and is identified in pollen records (e.g., Ma-
gri and Parra, 2002; Di Rita and Magri, 2009; Kaniewski et
al., 2013), speleothems (Drysdale et al., 2006; Cheng et al.,
2015; Zanchetta et al., 2016; Finné et al., 2017), lakes (e.g.,
Zanchetta et al., 2012b), and marine sediments (e.g., Mar-
garitelli et al., 2016). However, the chronology of the event

is not precisely defined and, in many records, the event is not
evident (Finné et al., 2011), challenging the view of a gener-
alized period of significant drought. In this paper, we review
the evidence, nature and chronology of the 4.2 ka BP Event
in the Mediterranean region by comparing different marine
and terrestrial proxy records. This will serve to identify gaps
in the regional coverage, to expose aspects that should be ad-
dressed in future research on this topic, and to determine if
coherent regional/subregional climatic patterns are present,
what their links are to regions further afield, and if such pat-
terns can be plausibly explained in a coherent meteoclimatic
framework.

2 Methods and terminology

In this paper, we use the term “4.2 ka BP Event” to indicate a
period of time between approximately 4.3 and 3.8 ka cal BP
(close to the definition of Weiss (2015, 2016), whilst be-
ing mindful that this does not necessarily correspond to the
true temporal evolution of the climatic event but the chrono-
logical interval where often this event is recognized. We
have considered a large set of records for this review. In
the end, the records selected for inclusion are those possess-
ing robust age models and high-resolution time series (i.e.,
at least subcentennial). It has been recognized that chronol-
ogy for some Mediterranean records could be problematic, as
demonstrated, for instance, using tephra layers as chronolog-
ical points (Zanchetta et al., 2011, 2016, 2018). However, in
the absence of these chronological control points, the ques-
tion of exclusion or inclusion of records involves a degree of
subjectivity. For example, we argue that only records dated
by radiocarbon using terrestrial remains should be selected.
Marine records dated using radiocarbon on foraminifera can
show millennial-scale change of the reservoir effect (Siani et
al., 2001), and different degrees of bioturbation, which can
complicate comparisons between different archives. Some
speleothem records, dated in the past with uranium–thorium
(U–Th) methods, have chronologies inconsistent with more
recent accurate age determinations (e.g., Grotta di Ernesto;
McDermott et al., 1999; Scholz et al., 2012). However, to
have a wide regional coverage with proxy records, we have
also included records with relatively low resolution and with
age control that is not necessarily optimal. With this in mind,
we are also aware that our selection of records could ap-
pear incomplete for some archives/proxies. Among a copi-
ous number of data showing, even if with different expres-
sion, the 4.2 ka BP Event and its impact in the Mediterranean
Basin (e.g., Magny et al., 2009; Margaritelli et al., 2016;
Blanco-Gonzalez et al., 2018), we have decided to select
only the proxies that can give, in our opinion, more com-
plete information on the hydrological variability like oxygen
isotope composition of continental carbonates (e.g., Roberts
et al., 2010) and on the temperature conditions at regional
scale, as reconstructed by pollen data and marine proxies
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Figure 1. Location of selected records discussed in the text. For the numbers and references, refer to Table 1. The dotted red line corresponds
to the limit of the growth of olive trees, taken as a rough indication of Mediterranean climate.

(Jalali et al., 2016; Kaniewski et al., 2018). It is obvious
that many archives are suitable for a multiproxy approach,
but some proxies can be related more to local processes
and correlate with climatic variables less directly than oth-
ers can. Moreover, it would be useful to use similar prox-
ies in different environments, even if they do not necessar-
ily have the same meaning (Roberts et al., 2010). We must
also consider that the scale and longevity of human activ-
ity around the Mediterranean may create locally serious dif-
ficulties in distinguishing climate change from human im-
pact (e.g., deforestation, erosion) in many proxy records of
past environmental change (England et al., 2008; Roberts et
al., 2004, 2010). The 4.2 ka BP Event in the Mediterranean
(including the Levant) is strictly related to complex societal
evolution and development at the basin scale (Weiss, 1993;
Zanchetta et al., 2013), and care is necessary in interpreting
proxy records where local factors override regional climate
changes. Pollen records are surely one of the most important
sources of information on past environment in the Mediter-
ranean and they will be used in this review, but they are
one of the proxies that have been suggested to be seriously
compromised by human activity (e.g., Roberts et al., 2004;
Fyfe et al., 2015, 2018). Given the importance of having es-
timates of past temperature and precipitation reconstruction,
we have selected pollen-based quantitative reconstructions
(e.g., Peyron et al., 2017). In terrestrial archives, in addition
to pollen data, we selected the oxygen isotope composition
of lacustrine carbonates and speleothems as the main prox-
ies of past climate due to their potential for preserving strong
hydrological signals (Bar-Matthews et al., 1996; Roberts et
al., 2008, 2010). For marine records, sea-surface tempera-
ture (SST) reconstruction was preferred to oxygen isotope
composition of planktonic foraminifera, for the unavoidable
limitation of the latter to represent the mixing signal of tem-

perature and changes in local seawater isotopic composition
(i.e., salinity). These are the main proxies considered for our
reconstruction: they show the largest coverage and the most
complete, in our opinion, climate information. These proxies
also permit, to some extent, the disentanglement of climate
signals between the cooler and warmer seasons, as we will
propose. We are aware that there are limitations in this, but
it is necessary to understand more details about the 4.2 ka BP
Event. There are other proxies which can give potentially fur-
ther important information, like lake-level changes (Magny
et al., 2007, 2011) and, although discontinuous, isotopes on
paleosols (Zanchetta et al., 2000, 2017) or paleofloods (Ziel-
hofer and Faust, 2008). Although rare, dust records appear
of particular relevance in informing about past circulation
patterns and hydrological conditions (e.g., Zielhofer et al.,
2017b). However, these records still have low regional cov-
erage and will only be referred to briefly in the discussion.

2.1 Selected archives and proxies

Table 1 and Fig. 1 show the complete list of selected records,
including the original references and the proxies considered.

2.1.1 Speleothems

The number of speleothem records covering the Holocene
with appropriate resolution has dramatically increased in re-
cent years, although they are geographically unevenly dis-
tributed (e.g., McDermott et al., 2011; Deininger et al.,
2017). Multiple proxies obtained from speleothem calcite
are often interpreted as hydrological indicators and, in par-
ticular, the oxygen isotope composition (δ18O) is the most
common proxy utilized (Lachniet, 2009). In the Mediter-
ranean Basin, in many instances, the δ18O records are seen
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Table 1. Sites and proxy records selected in this paper for investigating the 4.2 ka BP Event. Resolution is reported only for selected proxies
and is intended as the average during the Holocene.

No. Site (archive) Proxy Resolution (years)∗ Region Reference

Caves

1 Soreq Cave δ18O 16 Israel Almogi-Labin et al. (2009);
Bar-Matthews and Ayalon (2011)

2 Jeita Cave δ18O 16 Lebanon Cheng et al. (2015)
3 Solufar Cave δ18O 8 Turkey Göktürk et al. (2011)
4 Skala Marion Cave δ18O 20 Greece Psomiadis et al. (2018)
5 Mavri Trypa Cave δ18O 6 Greece Finné et al. (2017)
6 Ascunsa Cave δ18O 55 Romania Drǎguşin et al. (2014)
7 Poleva Cave δ18O 76 Romania Constantin et al. (2007)
8 Corchia Cave δ18O, Mg/Ca 12 Italy Regattieri et al. (2014);

Zanchetta et al. (2007)
9 Renella Cave δ18O, Mg/Ca 9 Italy Drysdale et al. (2006);

Zanchetta et al. (2016)
10 Grotta di Ernesto δ18O – Italy Scholz et al. (2012)
11 Kaite Cave δ18O 10 Spain Dominguez-Villar et al. (2017)
12 Ejulve Cave δ18O, Mg/Ca 13 Spain Moreno et al. (2017)
13 Molinos Cave δ18O, Mg/Ca 17 Spain Muñoz et al. (2015)
14 Cueva de Asiul δ18O 15 Spain Smith et al. (2016)
15 Grotte de Piste δ18O, Mg/Ca 15 Morocco Wassenburg et al. (2016)
16 Gueldaman Cave δ18O 13 Algeria Ruan et al. (2016)

Lakes

17 Lake Mirabad δ18O end. calcite 258 Iran Stevens et al. (2006)
18 Lake Zeribar δ18O end. calcite 188 Iran Stevens et al. (2001)
19 Lake Van δ18O end. calcite 90 Turkey Wick et al. (2003)
20 Lake Acıgöl δ18O end. calcite 88 Turkey Roberts et al. (2001)
21 Nar Gölü δ18O end. calcite/

aragonite
19 Turkey Dean et al. (2015)

22 Lake Gölhisar δ18O end. calcite 97 Turkey Eastwood et al. (2007)
23 Lake Dojran δ18O end. calcite 89 Republic of

Macedonia
Francke et al. (2013)

24 Ioannina (Lake Pamvotis) δ18O ostracod 149 Greece Frogley et al. (2001);
Roberts et al. (2008)

25 Lake Prespa δ18O end. calcite 157 Republic of
Macedonia

Leng et al. (2010)

26 Lake Ohrid δ18O end. calcite 38 Republic of
Macedonia

Lacey et al. (2015)

27 Lake Shkodra δ18O end. calcite 28 Albania/
Montenegro

Zanchetta et al. (2012)

28 Lago del Frassino δ18O freshwater
mollusk

136 Italy Baroni et al. (2006)

29 Lake Hula δ18O end. calcite 287 Israel Stiller and Hutchinson (1980)
30 Laguna de Medina δ18O ostracod 130 Spain Roberts et al. (2008)
31 Lake Sidi Ali δ18O ostracod;

dust record
144 Morocco Zielhofer et al. (2017a, b)

32 Lake Tiguelmamine δ18O ostracod 278 Morocco Roberts et al. (2008)

Clim. Past, 15, 555–577, 2019 www.clim-past.net/15/555/2019/
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Table 1. Continued. “P” indicates precipitation and “T” indicates temperature.

No. Site (archive) Proxy Resolution (years)∗ Region Reference

Pollen

33 Acre Pollen (P, T) 85 Israel Kaniewski et al. (2013)
34 Maliq Pollen (P, T) 87 Albania Bordon et al. (2009);

Peyron (this paper)
35 Lake Pergusa Pollen (P, T) 154 Italy Sadori et al. (2013);

Peyron et al. (2017)
36 Lago Trifoglietti Pollen (P, T) 73 Italy Peyron et al. (2013)
37 Lago dell’Accesa Pollen (P, T) 97 Italy Peyron et al. (2013)
38 Ledro Pollen (P, T) 66 Italy Peyron et al. (2013)
39 Burmarrad Pollen (P, T) 138 Aegean Sea Gambin et al. (2016);

Peyron et al. (2017)
40 SL152 Pollen (P) 76 Aegean Sea Dormoy et al. (2009);

Peyron et al. (2017)
41 MD95-2043 Pollen (P) 106 Alboran Sea Peyron et al. (2017)
42 ODP-976 Pollen (P) 129 Alboran Sea Dormoy et al. (2009);

Peyron et al. (2017)

Marine

41 MD95-2043 Alkenone SST 110 Alboran Sea Cacho et al. (2001)
42 ODP-976 Alkenone SST,

Mg/Ca SST
34 Alboran Sea Martrat et al. (2014);

Jimenez-Amat and Zahn (2015)
43 KSGC-31 Alkenone SST 15 Gulf of Lion Jalali et al. (2016)
44 BS79-38 Alkenone SST 59 Tyrrhenian Sea Cacho et al. (2001)
45 M25/4-KL11 Alkenone SST 260 Ionian Sea Emeis et al. (2000)
46 M40/4-SL78 Alkenone SST 160 Ionian Sea Emeis et al. (2000)
47 MD90-917 Alkenone SST 40 Adriatic Sea Essallami et al., 2007
48 AD91-17 Alkenone SST 190 Adriatic Sea Giunta et al. (2001)
49 GeoB 7702-3 Alkenone SST 210 Levantine Basin Castaneda et al. (2010)
50 ODP 160-967D Alkenone SST 94 Levantine Basin Emeis et al. (2000)
51 MD04-2726 Alkenone SST 57 Nile prodelta Jalali et al. (2017)

Other records

52 Mohos Bog Dust record Romania Longman et al. (2017)
53 Petit Lac Detrital fraction France Brisset et al. (2013)
54 Scǎrişoara Ice Cave D excess in ice Romania Perşoiu et al. (2017)
55 Alìmini Pìccolo Pollen Italy Di Rita and Magri (2009)
56 Gemini Lake July T Italy Samartin et al. (2015)
57 Lake Mezzano Pollen Italy Sadori (2018)
58 Lakes Albano and Nemi Pollen Italy Mercuri et al. (2002)
59 Calderone glacier Glacier record Italy Zanchetta et al. (2012b)
60 Lake Qarun Lake level Egypt Marks et al. (2018)
61 BP-06 Storminess record France Sabatier et al. (2012)
62 Tunisia Flood record Tunis Zielhofer and Faust (2008)

∗ Average resolution during the Holocene.

as an indicator of the amount of precipitation recharging the
cave (the so-called “amount effect”; Bar-Matthews et al.,
1996; Bard et al., 2002; Zanchetta et al., 2014; Finné et al.,
2017), with higher (lower) δ18O values of calcite indicat-
ing drier (wetter) conditions. This is true only when con-
sidered in terms of long-term changes in the isotopic com-
position of seawater sources of the precipitation (“source

effect”; e.g., Cheng et al., 2015). The interpretation of the
δ18O record as an indicator of hydrological changes is sup-
ported, in some instances, by other proxies like trace ele-
ments (Drysdale et al., 2006; Regattieri et al., 2014; Wassen-
burg et al., 2016) which should be more common in the fu-
ture. More refined interpretations indicate that the δ18O com-
position of cave recharge is in some cases related to NAO

www.clim-past.net/15/555/2019/ Clim. Past, 15, 555–577, 2019
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Figure 2. Selected speleothem δ18O records. For location, refer to
Fig. 1 and for references to Table 1.

(Smith et al., 2016; Wassenburg et al., 2016), even if investi-
gations of δ18O composition of precipitation do not always
reproduce a fidelity with NAO pressure patterns (Field, 2010;
Baldini et al., 2008). Dominguez-Villar et al. (2017) suggest
that most of the isotopic signal in Iberian speleothems is not
principally related to the amount of precipitation but rather
to changes in the ratio of recycled precipitation, and is corre-
lated to pressure patterns over the North Atlantic. Therefore,
some authors suggest that the δ18O of the speleothem cal-
cite is a direct expression of the North Atlantic influence and
state, especially in the western Mediterranean (e.g., Smith
et al., 2016; Wassenburg et al., 2016) during winter months.
However, a change in provenance of precipitation (Holmes et
al., 2010) and precipitation amount during winter and sum-
mer months can further complicate the interpretation of the
δ18O records. Therefore, a unifying and completely satis-
factory explanation for δ18O of calcite is probably not yet
available throughout the Mediterranean area and surround-
ing regions (Moreno et al., 2014). It is important also to re-
member that the δ18O signal is skewed towards the period
of calcite precipitation and its relation with cave recharge.
As anticipated, the authors tend to assume that most of the
cave recharge occurs during winter (or autumn–winter) and
most of the δ18O signal should be related to this condition
(Deininger et al., 2017). In some instances, the complex in-
terpretation of δ18O as a direct climatic proxy has led dif-
ferent authors to prefer δ13C of speleothem calcite as a bet-
ter hydrological indicator of local conditions (e.g., Genty et
al., 2006; Göktürk et al., 2011). The number of factors in-
fluencing the final δ13C value of a speleothem (e.g., Müh-
linghaus et al., 2009) make this proxy probably just as, if not
more, complicated as δ18O, and in addition, for the strong
influence of soil-CO2 production on the final 13C/12C ratio
on speleothems, a change in land use and deforestation can
have a particularly prominent effect, making it particularly
sensitive to human impact above and within the cave. It is
usually reported that speleothems possess a superior chronol-
ogy compared to other archives thanks to the U–Th technique
(e.g., Richards and Dorale, 2003). However, this assumption
is strictly true for speleothems acting as a closed system for
the uranium (Bajo et al., 2016) and with only minor clastic
contamination (Hellstrom, 2006). For this review, we have
selected 16 records (Fig. 2; Table 1). The main reason for ex-
cluding some records is the presence of long hiatuses (thou-
sands of years) over the 4.2 ka BP Event that may not nec-
essarily relate to climatic conditions, e.g., Villars, Chauvet,
and La Mine caves (Genty et al., 2006) and Carburangeli
Cave (Frisia et al., 2006). Some records have been rejected
for their U–Th chronologies, as shown in later studies (e.g.,
Savi Cave; Frisia et al., 2005), with ages disputed in Belli et
al. (2013). However, shorter hiatuses coherent with isotopic
changes are considered here as evidence of particularly dry
and potentially cooler climate conditions (i.e., Mavri Trypa
Cave; Finné et al., 2017). In this regard, Stoll et al. (2013)
interpreted the growth cessation of many speleothems at ap-
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proximately 4.1 ka in northwest Spain to be caused by in-
creased aridity since this time. However, this is a general sig-
nal and not specifically related to a short interval, suggesting
that eventual increasing in aridity during the 4.2 ka BP Event
is within a general frame of increasing aridification.

2.1.2 Lacustrine settings

The oxygen isotope composition of lacustrine carbonates in
the Mediterranean region is usually interpreted as mainly be-
ing controlled by changes in the isotopic composition of lake
water (Roberts et al., 2008), which is controlled by differ-
ent factors, including changes in the isotopic composition of
precipitation and the degree of evaporation (Zanchetta et al.,
2007b; Leng et al., 2010a). Each lacustrine setting has a dif-
ferent set of responses and different water 18O enrichment
(Roberts et al., 2008; Leng et al., 2010a, b) due to evapora-
tive effects, which depend on several factors, namely tem-
perature, relative humidity, wind fetch and strength, and res-
idence time of body water (e.g., Craig et al., 1965). Different
types of carbonates (e.g., ostracods, freshwater shells, bio-
induced carbonates) may precipitate during different parts of
the year, with bio-induced calcite (endogenic) often related
to spring–summer algal bloom (Leng and Marshall, 2004).
Therefore, the δ18O of endogenic carbonate will tend to be
weighted towards the summer conditions, although care is
necessary for their interpretation and more complex options
have been proposed (e.g., Zielhofer et al., 2018). Endogenic
carbonates can be contaminated by clastic carbonates (Leng
et al., 2010b) and/or early diagenetic minerals (i.e., siderite;
Lacey et al., 2016), which can degrade the paleoclimate sig-
nal and must be carefully evaluated case by case. Despite
these possible complications, trends toward higher (lower)
δ18O values are generally explained as an indication of drier
(wetter) conditions (Zanchetta et al., 1999, 2007b; Roberts
et al., 2008; Leng et al., 2010a, 2013). Reduction in gen-
eral lake recharge and particularly arid conditions during the
warmer part of the year favor higher δ18O values of endo-
genic carbonate. As is the case of speleothem records, lacus-
trine δ18O records are unevenly distributed over the Mediter-
ranean Basin (Fig. 1, Table 1) and this represents an impor-
tant limitation to regional interpretations. Following the list
proposed in the important review of Roberts et al. (2008),
very few new lacustrine records have been added since, e.g.,
Lake Ohrid (Lacey et al., 2015), Lake Prespa (Leng et al.,
2010a, 2013), Lake Yammouneh (Develle et al., 2010), Lake
Shkodra (Zanchetta et al., 2012b), and Sidi Ali (Zielhofer et
al., 2017a). Some of the records reported in Roberts et al.
(2008) and some new records that were too short or with too-
low resolution or poor chronologic accuracy (e.g., Lake Per-
gusa, Zanchetta et al., 2007b; Valle di Castiglione, Zanchetta
et al., 1999; Lake Yammouneh, Develle et al., 2010) have
been excluded from this review. We have to note that some
records (particularly in the past) used different kinds of or-
ganic matter and carbon (i.e., shells) for radiocarbon dating

Figure 3. Selected lacustrine δ18O records. For location, refer to
Fig. 1 and for references to Table 1.

(e.g., Baroni et al., 2006), which can be affected by different
reservoir and hard-water effects of unknown amount, lead-
ing to significant offsets between records. Figure 3 shows the
selected lacustrine records.

2.1.3 Marine records

For marine records, we selected SST. Figure 4 shows a com-
pilation of 12 published SST records from coastal and deep-
sea sites of the Mediterranean Sea. Apart from Fig. 4b, which
is based on the Mg/Ca ratios in planktonic foraminifera Glo-
bigerina bulloides, all the records are based on alkenone pa-
leothermometry. As for other archives, the comparison of
multiple proxies and site compilation require consideration
of potential seasonal biases (Emile-Geay et al., 2017). Max-
imum production of alkenones in the Ligurian, Alboran, and
Adriatic seas would take place mainly in spring and autumn
(Ternois et al., 1997; Totti et al., 2000; D’Ortenzio and Rib-
era d’Alcalà, 2009), while in other sub-basins, such as the
Balearic Sea and the Bannock Basin, primary production ex-
hibits a less clear pattern, with maximum algal blooms during
spring (D’Ortenzio and Ribera d’Alcalà, 2009; Ziveri et al.,
2000). However, several high-resolution alkenone-derived
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Figure 4. Selected SSTs (◦C). For location, refer to Fig. 1 and for
references to Table 1.

SST records, which overlap with the post-industrial period
and allow comparison with SST observations, highlight a
consistent match between alkenone SST and average annual
sea-surface temperature (Sicre et al., 2016; Jalali et al., 2018;
Nieto-Moreno et al., 2013; Moreno et al., 2012; Cisneros et
al., 2016). The single Mg/Ca SST record from the Alboran
Sea is mainly believed to reflect spring SSTs (Jiménez-Amat
and Zahn, 2015). Cisneros et al. (2016) observe that modern
regional oceanographic data indicate that Globigerina bul-
loides Mg/Ca is mainly controlled by SST of April–May re-
lated to the primary bloom productivity.

2.1.4 Pollen data

The selection of pollen data is probably more complex con-
sidering the elevated number of the sedimentary successions
analyzed over the basin and in different settings (marine and
lacustrine cores). Using only records with acceptable res-
olution (i.e., resolution chronologically higher than the in-
terval considered; Peyron et al., 2017), with the reconstruc-
tion of precipitation and temperature, the number of records
is, however, strongly reduced. The basic assumption in the
pollen-based climate reconstructions (assemblage approach
or transfer function) is that modern-day observations and re-
lationships can be used as a model for past conditions and
that the pollen–climate relationships have not changed with
time (Birks, 2005). Among the main approaches available
to quantitatively reconstruct past climate from pollen data,

most of the selected records have been performed using the
modern analogue technique (MAT) (Guiot, 1990), an “as-
semblage approach” frequently used in climate reconstruc-
tions. This method was successfully used for the Holocene
climate reconstructions from terrestrial and marine records
(e.g., Peyron et al., 2011, 2017; Mauri et al., 2014, 2015).
MAT is based on a comparison of past assemblages to mod-
ern pollen assemblages. An important requirement is the
need for a high-quality training set of modern samples. The
training set should be representative of the likely range of
variables, of highest possible taxonomic detail, of compa-
rable quality and from the same sedimentary environment
(Brewer et al., 2013). It must cover a wide environmental
range. Limitations of using MAT are the occurrence of no
analogues or multiple analogues (Birks et al., 2010), and the
potential problem of the spatial autocorrelation with MAT
but also in the transfer functions (Telford and Birks, 2005).
All these interpretations hold if minor human impact is con-
sidered in vegetation and pollen production, which may be
a major concern for some reconstructions (Fyfe et al., 2015,
2018). Figure 5 shows the reconstructed temperatures (an-
nual) and precipitation (annual, winter, and summer) through
the 4.2 ka BP Event.

3 Discussion

3.1 Chronology: the Achilles heel of the problem

The first general observation is that, for many of the records,
chronological uncertainties and different, and sometimes
poor, chronological resolution are the main obstacles in the
precise identification of the event, its timing, duration, and
progression. At this stage, both aspects seem to be an un-
avoidable limitation for an in-depth understanding of this in-
terval. For example, we show selected pollen records (ar-
boreal pollen, AP %) containing the Avellino tephra plot-
ted with their published age model (Fig. 6) in the cen-
tral Mediterranean. Quite apparent are the century-scale dif-
ferences in age models presented, considering the well-
constrained ages of this tephra layer (approximately 3.8 ka;
see discussion and references in Zanchetta et al. (2018). It
is reasonable to assume that similar levels of uncertainties
may be present in other records. We note that, in Fig. 6, the
identification of the 4.2 ka BP Event appears problematic (at
least using AP % signal), which is not in the case for other
pollen records in Italy (Magri and Parra, 2002; Di Rita and
Magri, 2009; Di Rita et al., 2018a), the Iberian Peninsula
(e.g., Blanco-Gonzalez et al., 2018; Lillios et al., 2016), or
the Levant (e.g., Kaniewski et al., 2013, 2018). Interestingly,
some records may suggest that the 4.2 ka interval is charac-
terized by several important oscillations rather than one sim-
ple long interval of specific (usually drier) climatic condi-
tions (see, for instance, Skala Marion and Solufar or GLD1
in Fig. 2, or SST in the Gulf of Lion and Alboran Sea in
Fig. 4), as it has been suggested for other parts of the world
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Figure 5. Selected temperature (T , ◦C) and precipitation (P ,
mm year−1) records obtained from pollen records. Tma: mean an-
nual temperature; Pma: mean annual precipitation; PS: average
summer precipitation; PW: average winter precipitation. For loca-
tion, refer to Fig. 1 and for references to Table 1.

(Railsback et al., 2018) and in this issue (Kaniewski et al.,
2018). However, there is no clear and coherent evidence of
this in many of the different selected records. A good exam-
ple of the complexity of the evidence and the link to chrono-
logical accuracy is the lake-level record at Lago dell’Accesa.
This was used as the archetypal example to demonstrate
that, in reality, the event is “tripartite” (Magny et al., 2009),
where a phase characterized by drier conditions at approxi-
mately 4100–3950 cal BP appeared bracketed by two phases
marked by wetter conditions and dated to approximately
4300–4100 and 3950–3850 cal BP, respectively (Magny et
al., 2009). Magny et al. (2009) reported a significant number
of records over the Mediterranean showing reasonably the
same climatic evidence. However, subsequent works using
tephra layers (Avellino and other tephras are present in Lago
dell’Accesa; Magny et al., 2007) showed the inconsistency
of this detailed correlation, and the 4.2 ka BP Event should
be dominated by lower lake level (Zanchetta et al., 2012a, b,
2016), supporting the existence of a prominent drier phase.
To circumvent some of the complex issues related to chrono-
logical problems, the authors have used two different ap-
proaches. The first, and the most common, is an accurate
selection of records which show conspicuous and chronolog-
ically consistent evidence of the event (e.g., Drysdale et al.,
2006; Magny et al., 2009; Kaniewski et al., 2018). Records in
which the expression of the event is equivocal are usually re-
moved. A different approach is more “climatostratigraphic”,
which is used instead of a simple chronological selection of
a time window to correlate the event on the basis of similar-
ity of the climatic curve. This has the obvious limitation that
any regional articulation and/or timing progression will be
lost. For instance, we can force the correlation of Skala Mar-
ion δ18O record with those of the Renella, Mavri Trypa, and
Solufar caves (Fig. 7; for instance, Psomiadis et al., 2018, im-
plicitly followed this approach in their Fig. 6, for Skala Mar-
ion, Renella, and Solufar cave records), to assume that the
interval at approximately 3.9–3.4 ka characterized by higher
δ18O values at Skala Marion corresponds to a similar interval
at approximately 4.3–3.8 ka that is well identified in Renella
and Mavri Trypa. Therefore, we are aware that the chrono-
logical issue can heavily contaminate the following discus-
sion. In the following sections, we separate proxies on the
basis of their presumed meaning: annual average vs. seasonal
component. Maps are produced (Fig. 8) specifying the lo-
cal record condition (i.e., warmer/cooler and/or drier/wetter).
For reasons that may depend on chronology, proxy sensitiv-
ity, and/or local response to climatic change, it is not always
obvious to define the specific environmental conditions of the
considered interval. In some instances, changes lasted longer
than the interval considered, or during the interval there is
a clear change in conditions, or the interval is characterized
by invariant conditions and/or by trends. Once again, some
margin of subjectivity may have existed in the evaluation of
a single record. Generally, for each site, if most of the inter-
val is dominated by specific conditions (wetter, drier, colder,
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Figure 6. Compilation of pollen records containing the Avellino tephra layer (dated at approximately 3.8 ka; for review, see Zanchetta et
al., 2018). All the records are plotted with their original age model: Lago dell’Accesa (Drescher-Schneider et al., 2007); Lago di Mezzano
(Sadori, 2018); Lago Albano and Lago di Nemi (Mercuri et al., 2002); RF93-30 (Mercuri et al., 2012). For core RF93-30, the correlation
with Avellino tephra is not certain (Lowe et al., 2007).

and/or warmer), this is represented in the maps accordingly.
If the environmental trend moves toward a specific state, the
site is defined by this trend (e.g., if the trend during the in-
terval is toward drier conditions, the site is deemed “drier”
during the event). Ambiguities are still possible and are indi-
cated where appropriate.

3.2 The annual average conditions

Based on SST and pollen reconstructions, it is possible
to gain some insights on the average conditions during
the 4.2 ka interval (Fig. 8a and b). As can be seen from
Fig. 4, SST records from 8000 to 2000 BP show strong dif-
ferences in their temporal resolution. Some poorly resolve
the 4.2 ka BP Event (e.g., Fig. 4d, e). In the Alboran Sea
cores, MD95-2043 and ODP-976 show substantially invari-
ant alkenone temperatures, despite their rather high resolu-
tion, whereas the Mg/Ca SSTs record from the Alboran Sea
(ODP-976, Fig. 4b; Jiménez-Amat and Zahn, 2015) doc-
uments a cooling during spring rather than the mean an-
nual conditions. The cooling in the Alboran Sea has been
confirmed by high-resolution Mg/Ca SST by Català et al.
(2018). The alkenone SSTs from the Gulf of Lion (Jalali
et al., 2016) (Fig. 4c) indicate several SST oscillations with
some important cooling in the final part of the interval. BS79-
38 in the Tyrrhenian Sea (Fig. 4d) shows essentially invari-
ant SSTs, whereas in the Ionian Sea, cores M25/Kl11 and
M40/4-SL78 (Fig. 4f), despite their low resolution, show
an opposite trend. In the Adriatic Sea, an apparent mod-
est warming is present only in core AD91-17 (Giunta et
al., 2001). In the Levantine Basin, an apparent general ten-
dency for cooling seems to be present in core GeoB7702-3
(Fig. 4g) (Castaneda et al., 2010), after a phase of warm-
ing even if the interval considered comprises the descend-
ing part of a longer SST trend. In the Nile prodelta area,
a warmer interval seems to be present in core MD04-2726
(Fig. 4h) (Jalali et al., 2017), even if with some oscillations.

Figure 5 shows reconstructed annual average temperatures
in different parts of the basin using pollen records. Most of
the central Mediterranean records (except Lago Trifoglietti,
which shows some intermediate behavior, with a tendency
of warming) show a cooling at this time. Lake Maliq shows
a long-term cooling, rather a precise interval of cooling. In
contrast, in the Acre record, there is first a period of warmer
conditions, followed by a later period with a prominent cool-
ing, and this trend, according to Kaniewski et al. (2018), is
consistent with other sites in the eastern Mediterranean. Fig-
ure 8a shows that the few records selected show generally
lower average temperatures in the western–central Mediter-
ranean, whereas towards the eastern part higher temperatures
seem to prevail. Annual precipitation estimated from pollen
shows several records with clear evidence of reduced precip-
itation (Maliq, Lake Pergusa, Lago Trifoglietti, Acre), even if
this signal is generally complex (Fig. 5), with part of the se-
lected records not suggesting drier conditions (e.g., Malta,
SL152, MD95-2043). Indeed, Fig. 8b highlights that poor
data coverage for estimating past annual precipitation pre-
vents any detailed considerations.

3.3 Winter records

In this reconstruction, we have included speleothems and
pollen data, whilst being aware of the limitations discussed in
Sect. 2.1.1 and 2.1.4. Most of the records indicate drier con-
ditions in winter during the 4.2 ka BP Event. Speleothems are
the most conspicuous record. Qualitatively, 6 out 15 records
show that during the considered interval there is a clear in-
crease in δ18O values (Fig. 2; Jeita, Ascunsa, Poleva, Mavri
Trypa, Renella, and Gueldaman caves). Soreq and Corchia
can be added to this group (stalagmite CC26), showing a
modest increase of values at that time. Two caves (Grotte
de Piste and Kaite) show a clear interval of decreasing δ18O
values (Fig. 2). Solufar and Skala Marion show a similar pat-
tern of oscillating behavior, with an important part of the
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Figure 7. Chronologic approach (green field) and climatostrati-
graphic approach (yellow field) applied on speleothem records
(based on Psomiadis et al., 2018): Renella Cave (after Zanchetta et
al., 2016); Mavri Trypa Cave (after Finné et al., 2017); Skala Mar-
ion Cave (after Psomiadis et al., 2018); Solufar Cave (after Göktürk
et al., 2011).

period characterized by a marked decrease in the δ18O val-
ues. A similar, but not identical, pattern is present in the
Iberian caves, Ejulve and Cueva de Asiul. Invariance defines
the Grotta di Ernesto record. This apparently contradictory
behavior is regionally well defined with the central Mediter-
ranean (Algeria, central Italy, Romania, and western Greece)
and part of the Levant, characterized by the most marked and
significant interval characterized by higher δ18O values. In-
stead, the north Iberian Peninsula and north Morocco show a
tendency to lower or oscillating values, as does the opposite
end of the basin with the records from the Solufar and Skala
Marion caves. Accepting the fact that δ18O represents the
amount of precipitation during the winter recharge period,
we observe that the central part of the basin, with some exten-

sion to the Balkans and Romania, shows decisively drier con-
ditions compared to the other analyzed sectors, where they
show wetter or at least more variable conditions. Winter pre-
cipitation reconstructed from pollen shows clear indications
of decreased precipitation at Ledro, Lake Pergusa, MD90-
917, and MD95-2043 (even if modest). Drier conditions are
evident for most of the interval at Lago Trifoglietti (with a
late recovery toward wetter conditions), whereas in Malta
most of the interval shows wetter conditions compared to the
previous period. Lago dell’Accesa shows a strong oscillatory
behavior, with the central part of the drier interval bracketed
by two wetter intervals. However, the general trend of Lago
dell’Accesa cannot be classified unambiguously as wetter or
drier. Figure 8c shows the prevailing precipitation conditions
(wetter/drier for the interval considered) during winter for the
proxy in question. Geographically, it seems quite consistent
that most of the Mediterranean records show drier conditions
during winter. Despite the poor coverage, the possible excep-
tions are Morocco and the Iberian Peninsula, as well as some
sectors of the eastern Mediterranean, possibly indicating a
regional articulation.

3.4 Summer conditions

As discussed in Sect. 2.1.2, endogenic lacustrine carbonates
can be considered reasonably as a first-order hydrological
(precipitation minus evaporation) signal of summer, even if
influenced by the effect of recharge during previous periods.
Some records (Sidi Ali, Ohrid, Hula) show no peculiar trends
during the period considered, although for a very short inter-
val centered at approximately 4.2 ka, Zielhofer et al. (2018)
observe a minor oscillation in δ18O values interpreted as in-
creased winter recharge (Fig. 3). Other records show a clear
peak towards more positive values (Medina, Frassino, Shko-
dra, Prespa, Dojran, Nar Gölü, Gölhisar), whereas others
show a tendency to decrease values (e.g., Van) or a clear
peak of lower δ18O values (i.e., Ioannina). Instead, Zeribar
and Mirabad records show a trend towards lower δ18O val-
ues, even if the resolution of the two records for this interval
is rather poor. A number of records show a well-marked peak
of increasing δ18O values within the considered interval but
show a different duration, possibly due to differences in age
models and resolution. It is surprising to note that the two
sister lakes (Prespa and Ohrid) (Lacey et al., 2015; Leng et
al., 2010a, b, 2013) exhibit, for this interval, significantly dif-
ferent trends (Fig. 3). This can be explained by the effect of
higher residence time and more dampened isotopic composi-
tion of the lake water at Lake Ohrid due to its large recharge
by karst springs (more than 50 %; Wagner et al., 2017) in
comparison to Lake Prespa (Leng et al., 2010a). This renders
the latter much more sensitive to hydrological changes, as
demonstrated by its dramatic lowering of lake-level changes
in recent years (van der Schriek and Giannakopoulos, 2017).
Regional, and consistent with Lake Prespa, are the data from
Lake Dojran and Shkodra (Fig. 3), which show drier condi-
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Figure 8. Maps of (a) annual average temperature, (b) annual average precipitation, (c) winter precipitation, and (d) summer precipitation.
See Figs. 2–5 and Table 1 for data. Circles indicates data from pollens, lozenges indicate data from alkenones, squares indicate data from
speleothems, and triangles indicate data from the lake. Meaning of filled symbols: blue indicates colder conditions, red indicates warmer
conditions, yellow indicates drier conditions, green indicates wetter conditions, and grey indicates unchanged conditions; unfilled symbols:
symbols with a red border indicate likely warmer conditions, those with a yellow border indicate likely drier conditions, and those with a
green border indicate likely wetter conditions.
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tions. Interestingly, the Ioannina record shows a very marked
phase of lower δ18O values in an almost perfect antiphase
with the other nearby lakes. We note that Ioannina is a record
obtained using ostracods; instead, the others were obtained
by measuring the isotopic composition of endogenic cal-
cite, which may integrate the isotopic signal of a number
of years. Possibly, the Ioannina record intercepts a period
of particularly pronounced snow melting in spring, while
the other lakes record a significantly longer period of evap-
orated waters during spring/summer. Progressive trends to-
wards lower values shown by Zeribar and Mirabad are diffi-
cult to interpret because of their relatively low resolution, al-
though there is regional coherence. Some pollen reconstruc-
tions show evidence of drier conditions (Fig. 5; Ledro, Lago
Trifoglietti, SL152-PA, and MD95-2043, even if the last is
within a longer period of summer-reduced precipitation), but
others indicate a tendency towards increasing precipitation
and/or are decisively wetter than the previous interval (Fig. 5;
Maliq, Lago dell’Accesa, Lake Pergusa, and MD95-2043).
Figure 8d shows the regional pattern of the considered sum-
mer conditions. Despite the large gaps in record coverage,
once again, most of the records indicate drier conditions,
even if, in the central sector (Italian Peninsula and possibly
some sectors of Greece) and in the eastern end, a tendency
toward wetter conditions may exist.

3.5 Is a synthesis possible?

The Mediterranean Basin is located in a transitional zone
between north Africa and the Arabian arid regions, domi-
nated by the subtropical high-pressure system, and central
and northern Europe where midlatitude westerly circulation
dominates. The basin is also exposed to the indirect effect
of the Asian and African monsoons in summer and to west-
ern Russian/Siberian High systems in winter (e.g., Lionello
et al., 2006, and references therein). Therefore, to look for
a simple mechanism for explaining the 4.2 ka BP Event is
not a simple task. The uneven distribution of many proxy
records, and the previously discussed concerns on chronol-
ogy, can make general conclusions and detailed regional ar-
ticulation difficult. It is beyond the scope of this contribu-
tion to discuss the detailed mechanism and forcing; however,
considering the discussion made in previous sections regard-
ing the limitations of proxies and our approach in their inter-
pretation, some interesting points emerge. Based on Fig. 8a,
the average annual temperature seems to show a tendency
of cooling for most of the basin. Even when moving from
west to east, there seems to be an increase in the number of
records showing an increase in temperature, instead of cool-
ing, suggesting a possible coherent trend. Data for average
annual precipitation are sparse and make syntheses difficult
(Fig. 8b). Figure 8c shows the situation regarding winter pre-
cipitation inferred from speleothem δ18O records and pollen
reconstructions. They are of particular relevance for most of
the basin, which is strongly controlled by NAO, in particu-

lar in the western and central parts of the basin (Lionello et
al., 2006; López-Moreno et al., 2011), with winter precipita-
tion being negatively correlated with NAO. On the contrary,
areas of the southeastern Mediterranean show an anticorrela-
tion with western Mediterranean precipitation, resulting in a
seesaw pattern known as the Mediterranean Oscillation (MO;
e.g., Conte et al., 1989). This clearly opens the possibility
that seemingly complex patterns in precipitation are not just
an artifact of the proxies and/or chronology but can be a real
and robust climatic pattern.

On the other hand, the present climatic configuration can
have different past regional expressions due to a combina-
tion of multiple factors. Indeed, antiphasing between differ-
ent sectors of the Mediterranean Basin has been found dur-
ing the Medieval Climate Anomaly and the Little Ice Age
between the Iberian Peninsula and Turkey, with the latter
not the present-day center of action of the MO (Roberts et
al., 2012). This has also been suggested during several Late
Holocene oscillations including the 4.2 ka BP Event, in an-
tiphase in the southwestern and the south–central Mediter-
ranean regions (Di Rita et al., 2018b). The pattern described
in Fig. 8c, with the main distribution indicating pervasive
drier conditions over most of the Mediterranean during win-
ter, is consistent as a NAO-like positive mode, where west-
erly sourced vapor masses shift northward due to a pro-
nounced Azores High. NAO positive mode during this period
is also supported by the concentration of terrestrial n-alkanes
(TERR-alkanes) in the Gulf of Lion shelf sediment (Jalali et
al., 2016). However, the presence of a pole of possibly wet-
ter conditions over Morocco (as indicated by the Grotte de
Piste; Figs. 6 and 8c, and partly also by Sidi Ali) and the
northern Iberian Peninsula, and a less evident and question-
able wetter area in the eastern sector (Solufar and Skala Mar-
ion caves; Fig. 2), suggests a different configuration. Indeed,
at Grotte de Piste, periods characterized by lower δ18O val-
ues have been interpreted as a period of negative NAO-like
conditions (Wassenburg et al., 2016), which is also suggested
by other authors for this period (e.g., Di Rita et al., 2018a).
However, this interpretation runs counter to the speleothem
evidence from central Mediterranean indicating drier condi-
tions (Renella, Corchia, and Mavri Trypa; Drysdale et al.,
2006; Regattieri et al., 2014; Finné et al., 2017).

This is further confirmed by new speleothem data (sta-
ble isotopes and trace elements) reported by Isola et al.
(2019), from Apuan Alps in central Italy. Figure 9 shows
the NAO index inferred by Olsen et al. (2011); during the
4.2 ka BP Event, the NAO is mostly positive, if not partic-
ularly prominent, suggesting that NAO configuration alone
would not be particularly useful to interpret this period of
time. Moreover, Fig. 10 shows that a negative NAO-like con-
figuration with a similar pattern of precipitation like today is
unlikely considering the data of Fig. 8c. It is interesting to
note that the distribution of Figs. 8c and 10 seems to find
some similarity with the reconstruction proposed by Der-
mody et al. (2012) during Roman time. According to Der-
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Figure 9. Selected additional records to illustrate the general sit-
uation over the basin during the 4.2 ka BP Event. Summer insola-
tion curve at 65◦ N (Berger and Loutre, 1991); NAO index (Olsen
et al., 2011); storm activity in the Gulf of Lion (Sabatier et al.,
2012); Renella Cave (Zanchetta et al., 2016); Mohos peat dust
flux (Longman et al., 2017); Scărişoara Ice Cave, d excess in the
ice cave (Perşoiu et al., 2017); probability flood frequency from
north Tunisia (Zielhofer and Faust, 2008); Sidi Ali dust flux (Ziel-
hofer et al., 2017b); clastic input at Petit Lac (Brisset et al., 2013);
Gemini Lake July temperature (Northern Apennines) (Samartin et
al., 2017); Alìmini Pìccolo arboreal pollen (AP %) record (Di Rita
and Magri, 2009); Calderone glacier expansion (Zanchetta et al.,
2012a); Qarun Lake (Marks et al., 2018).

Figure 10. Correlation between the December–January–February
NAO index (modified after Perşoiu et al. (2018)) and precipita-
tion amount during negative NAO conditions. A negative corre-
lation (brown) indicates that during negative conditions precipi-
tation amounts are lower than usual, while a positive correlation
(green) indicates that, during negative NAO conditions, precipita-
tion is above average. Yellow circles: records indicating drier con-
ditions during winter; blue circles: records indicating wetter condi-
tions during winter (see Fig. 8c).

mody et al. (2012), the dominant pattern of variability in hu-
midity between 3.3 and 1.0 ka shows a seesaw pattern with
Spain and Israel on one side and the central Mediterranean on
the other. The patterns in climatic humidity are similar to pre-
cipitation anomalies associated with the east Atlantic/west
Russia pattern, which today represents a secondary mode of
precipitation pattern during winter within the dominance of
the NAO pattern (Xoplaki et al., 2004). It is clear that the cen-
ter of action of the seesaw pattern may have changed in time
with configuration not precisely similar to today. It is inter-
esting to note that Perşoiu et al. (2018) suggested that part of
the drier and cold conditions over the Mediterranean during
the 4.2 ka BP Event was caused by the strengthening and ex-
pansion of the Siberian High, which effectively blocked the
moisture-carrying westerlies and enhanced outbreaks of cold
and dry winds. Summer proxies (Fig. 8d) indicate a prolon-
gation of drier conditions also during the warmer part of the
years, suggesting a persistent Azores High during summer.

However, in the central Mediterranean, some records in-
dicate a possible increase of precipitation, possibly as incur-
sions of North Atlantic perturbations, which suggests weak-
ening of the Azores High for some areas, possibly as an effect
of change in its positions (e.g., Di Rita et al., 2018b). Consid-
ering that the position of the ITCZ exerts a control on sum-
mer aridity and the temperature in the Mediterranean Basin
(Eshel et al., 2002; Alpert et al., 2006; Gaetani et al., 2011),
a southward shift of the ITCZ may have locally weakened
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the Azores High, favoring incursion of wetter air from North
Atlantic. A southward shift of the ITCZ during the 4.2 ka BP
Event is supported by several lines of evidence (e.g., Welc
and Marks, 2014; Dixit et al., 2014), and this would have
an effect on summer weather over the Mediterranean. Mar-
riner et al. (2012) have shown a decrease in Nile Delta flood-
driven accretion between approximately 4.4 and 4.1 ka in re-
sponse to weakening of ITCZ, related to changes in El Niño–
Southern Oscillation (ENSO)-type variability. This may indi-
cate an indirect influence of ENSO variability on climate of
the Mediterranean during 4.2 ka BP Event. Brayshaw et al.
(2010) discussed the influence of the position of the midlati-
tude westerly jet (MLWJ) over the winter precipitation in the
Mediterranean. Their modeling indicates a southward shift
of the MLWJ during the second part of the Holocene, with
related changes in cyclogenesis over Mediterranean. The im-
portance in the shift of the position of the MLWJ is also doc-
umented in dust proxy records from the Middle East and east
Asia (e.g., Nagashima al., 2011; Sharifi et al., 2015, 2018).
According to Sharifi et al. (2018), evidence from the dust
record from the Neor peat mire in Iran and climate model-
ing shows that at approximately 4.2 ka there is a migration
of the main axis of the MLWJ towards the Equator allowing
the transport of higher fluxes of dust from west Asia as well
as from the northeast Africa. This indicates a complex but
possibly correlated interplay between the ITCZ, MLWJ, and
Mediterranean precipitation. Despite evidence being weak,
it is also reasonable to assume that conditions during sum-
mer are also important in defining the final “feature” of the
4.2 ka BP Event. Evidence of environmental and climatic de-
terioration around or coincident with the 4.2 ka BP Event is
apparent but chronologically compromised considering a dif-
ferent selection of records (Fig. 9; see also Fig. 1 and Ta-
ble 1). Reduced temperature (Fig. 8a) is also consistent with
the start of the Neoglacial over the Apennines with the first
appearance during the Holocene of the Calderone glacier
(Zanchetta et al., 2012a). Interestingly, exposure ages in the
western Alps also indicate a first “Neoglacial advance” at
4.2 ka (Le Royet al., 2017). This is geographically consistent
with lower temperatures during summer, as inferred from
chironomids from central Italy (Fig. 9; Samartin et al., 2017).
Also, on the French side of the Mediterranean Alps, lakes
show evidence of high-frequency environmental instabilities
during this period. Rapid alternation of drop and rise of the
lake level are suggested by a switch in the benthic/planktonic
diatom ratio at Lac d’Allos (Cartier et al., 2019), while at Pe-
tit Lac, more frequent heavy rainfall triggered soil erosion
(Fig. 9; Brisset et al., 2013) and ecosystem shift (Cartier et
al., 2015). This complex pattern is well explained by oxy-
gen isotope composition performed on diatom cells of Petit
Lac that indicates that the period is marked by drier mean
conditions (in terms of annual lake balance), associated with
short-term heavy rainfall (Cartier et al., 2019) rather than just
wetter conditions. This is in good agreement with the other
records of the central Mediterranean.

The pollen records from Alìmini Pìccolo (Fig. 9; Di Rita
and Magri, 2009) and from the Gulf of Gaeta (Di Rita et al.,
2018b) show a prominent decrease in AP, suggesting drier
conditions. Drier conditions can be inferred also from a mul-
tiproxy record from Qarun Lake in the Faiyum Oasis (Egypt;
Figs. 1, 9). In Qarun, the interval between approximately 4.4
and 4.0 ka shows an increase in aridity and dust supply, as
shown by several proxies (Marks et al., 2018). In northeast-
ern Africa, there is further evidence of climate change at
about 4.2 ka associated with the collapse of the ancient Old
Kingdom in Egypt (Welc and Marks, 2014, and references
therein). Dust deposition increases in the Eastern Carpathi-
ans, as documented by the Mohos peat succession (Long-
man et al., 2017), although an increase of clastic material in
a peat succession in a volcanic caldera can be explained also
by an increase in local soil erosion. This phase is marked
by a change in the d excess in the ice in the Scărişoara Ice
Cave (Carpathian Mountains; Fig. 9; Perşoiu et al., 2017),
suggesting a change in the arrival of cyclones sourced from
the Mediterranean region. The dust record in Sidi Ali Lake
(Fig. 9) suggests a measurable trans-Saharan aridity event,
with increased dust transport at approximately 4.2 ka (Ziel-
hofer et al., 2017b). Changes in circulation are also suggested
by exotic pollen of cedar, arriving from north Africa, in some
pollen successions of central Italy (e.g., Magri and Parra,
2002). Between approximately 4.4 and 4.0 ka, there is ev-
idence for an increase in storm activity, as documented by
several records in the central Mediterranean (Sabatier et al.,
2012; Kaniewski et al., 2016; Marriner et al., 2017), possibly
suggesting an increase of occasional strong southward incur-
sion of westerlies. This is not in contrast with a trend towards
increased flooding in central Tunisia in this period correlated
with a colder period in the North Atlantic (Fig. 9; Zielhofer
and Faust, 2008).

4 Final remarks and trajectories of future research

The analyses of many records show that between 4.3 and
3.8 ka climatic and environmental changes occurred in the
Mediterranean Basin. In many records, it appears evident that
an important change in the hydrological regime occurred,
with more arid conditions, but locally this evidence is con-
founded. Cooling can be inferred from different records, but
this is not a common feature. Despite contradictions, which
is not questioning the evidence of this event, there is the pos-
sibility that it is regionally articulated as having a locally dif-
ferent climatic expression. This expression would be also re-
lated to different seasonal conditions. From the selected data,
the possibility emerges that this event is in reality marked by
some oscillations which cannot be resolved in an unequivo-
cal way on the basis of available records. However, regional
coverage is still low, even if our record selection is incom-
plete. The emerging patterns need to be confirmed by future
research, but well-positioned and well-resolved new records
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can also change our view. By comparing the distribution of
the selected records with one of the most important climatic
modes like NAO, which impact Mediterranean climate, in
particular in winter, we did not find complete and satisfy-
ing matches. We can agree that different working hypothe-
ses investigating the role of potential climatic teleconnec-
tions can be inferred from single records or regionally well-
constrained groups of records, but none seem convincing to-
day. However, this review indicates that many pieces of this
complex puzzle are still lacking. Most urgently, new records
at a higher resolution with a firm chronological basis are re-
quired.
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Aurel Perşoiu was funded by UEFISCDI Romania, trough grant no.
PN-III-P1-1.1-TE-2016-2210.

Marie-Alexandrine Sicre and Bassem Jalali were financially
supported by the MISTRALS/PaleoMex program. The research
leading to this study has received funding from the French National
Research Agency HAMOC project (ANR-13-BS06-0003).

Edited by: Harvey Weiss
Reviewed by: three anonymous referees

References

Almogi-Labin, A., Bar-Matthews, M., Shriki, D., Kolosovsky, E.,
Paterne, M., Schilman, B., Ayalon, A., Aizenshtat, Z., and
Matthews, A.: Climatic variability during the last 90 ka of the
southern and northern Levantine Basin as evident from marine
records and speleothems, Quaternary Sci. Rev., 28, 2882–2896,
2009.

Alpert, P., Baldi, M., Ilani, R., Krichak, S., Price, C., Rodo, X., Saa-
roni, H., Ziv, B., Kishcha, P., Barkan, J., Mariotti, A., and Xo-
plaki, E.: Relations between climate variability in the Mediter-
ranean region and the tropics: ENSO, South Asian and African
monsoons, hurricanes and Saharan dust, in: Developments in
Earth and Environmental Sciences, Elsevier, 4, 149–177, 2006

Bajo, P., Hellstrom, J., Frisia, S., Drysdale, R., Black, J., Wood-
head, J., Borsato, A., Wallace, M. W., Regattieri, E., and Haese,
R.: “Cryptic” diagenesis and its implications for speleothem
geochronologies, Quaternary Sci. Rev., 148, 17–28, 2016.

Baldini, L. M., McDermott, F., Foley, A. M., and Baldini, J. U.: Spa-
tial variability in the European winter precipitation δ18O–NAO
relationship: Implications for reconstructing NAO-mode climate
variability in the Holocene, Geophys. Res. Lett., 35, L04709,
https://doi.org/10.1029/2007GL032027, 2008.

Bard, E., Delaygue, G., Rostek, F., Antonioli, F., Silenzi, S., and
Schrag, D.: Hydrological conditions in the western Mediter-
ranean basin during the deposition of Sapropel 6 (ca. 175 kyr),
Earth Planet. Sc. Lett., 202, 481–494, 2002.

Bar-Matthews, M. and Ayalon, A.: Mid-Holocene climate vari-
ations revealed by high-resolution speleothems records from
Soreq Cave, Israel and their correlation with cultural changes,
Holocene, 21, 163–171, 2011.

Bar-Matthews, M., Ayalon, A., Matthews, A., Sass, E., and Hal-
icz, L.: Carbon and oxygen isotope study of the active water–
carbonate system in a karstic Mediterranean cave: implications
for paleoclimate research in semiarid regions, Geochim. Cos-
mochim. Ac., 60, 337–347, 1996.

Baroni, C., Zanchetta, G., Fallick, A. E., and Longinelli, A.: Mol-
luscs stable isotope record of a core from Lake Frassino (northern
Italy): hydrological and climatic changes during the last 14 ka,
Holocene, 16, 827–837, 2006.

Belli, R., Frisia, S., Borsato, A., Drysdale R., Hellstrom, J., Zhao J.-
X., and Spötl, C.: Regional climate variability and ecosystem re-
sponses to the last deglaciation in the northern hemisphere from
stable isotope data and calcite fabrics in two northern Adriatic
stalagmites, Quaternary Sci. Rev., 72, 146–158, 2013.

Berger, A. and Loutre, M. F.: Insolation values for the climate of the
last 10 million years, Quaternary Sci. Rev., 10, 297–317, 1991.

Birks, J., Battarbee, R., Mackay, A., and Oldfield, F.: Global Change
in the Holocene, Routledge, 544 pp., 2005.

Clim. Past, 15, 555–577, 2019 www.clim-past.net/15/555/2019/

https://doi.org/10.1029/2007GL032027


M. Bini et al.: The 4.2 ka BP Event in the Mediterranean region 571

Birks, H. J. B., Heiri, O., Seppa, H., and Bjune, A.: Strengths and
weaknesses of quantitative climate reconstructions based on late-
Quaternary biological proxies, Open Ecol. J., 3, 68–110, 2010.

Blanco-Gonzalez, A., Lillios, K. T., López-Sáez, J. A., and Drake,
B. L.: Cultural, demographic and environmental dynamics of the
Copper and Early Bronze Age in Iberia (3300–1500 BC): to-
wards an interregional multiproxy comparison at the time of the
4.2 ky BP event, J. World Prehist., 31, 1–79, 2018.

Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., de Meno-
cal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G.: A per-
vasive millennial-scale cycle in the North Atlantic Holocene and
glacial climates, Science, 294, 2130–2136, 1997.

Booth, R. K., Jackson, S. T., Forman, S. L., Kutzbach, J. E., Bettis
III, E. A., Kreig, J., and Wright, D. K.: A severe centennial-scale
drought in midcontinental North America 4200 years ago and
apparent global linkages, Holocene, 15, 321–328, 2005.

Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Pe-
terchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E.,
Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., Laîné,
A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes,
P., Weber, S. L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled
simulations of the Mid-Holocene and Last Glacial Maximum –
Part 1: experiments and large-scale features, Clim. Past, 3, 261–
277, https://doi.org/10.5194/cp-3-261-2007, 2007.

Brayshaw, D. J., Hoskins, B., and Black, E.: Some physical drivers
of changes in the winter storm tracks over the North Atlantic
and Mediterranean during the Holocene, Philos. Tr. R. Soc. S.-
A, 368, 5185–5223, 2010.

Brewer, S., Guiot J., and Barboni, D.: Pollen methods and stud-
ies, Use of Pollen as Climate Proxies, Encyclopedia of Qua-
ternary Science, 805–815, https://doi.org/10.1016/B978-0-444-
53643-3.00180-1, 2013.

Brisset, E., Miramont, C., Guiter, F., Anthony, E.J., Tachikawa,
K., Poulenard, J., Arnaud, F., Delhon, C., Meunier, J.-D., Bard,
E., and Suméra, F.: Non-reversible geosystem destabilisation
at 4200 cal. BP: Sedimentological, geochemical and botanical
markers of soil erosion recorded in a Mediterranean alpine lake,
Holocene 23, 1863–1874, 2013.

Cacho, I., Grimalt, J. O., Canals, M., Sbaffi, L., Shackleton, N.,
Schönfeld, J., and Zahn, R.: Variability of the western Mediter-
ranean Sea surface temperature during the last 25 000 years and
its connection with the Northern Hemisphere climatic changes,
Paleoceanography, 16, 40–52, 2001.

Carter, V. A., Shinker, J. J., and Preece, J.: Drought and veg-
etation change in the central Rocky Mountains and western
Great Plains: potential climatic mechanisms associated with
megadrought conditions at 4200 cal yr BP, Clim. Past, 14, 1195–
1212, https://doi.org/10.5194/cp-14-1195-2018, 2018.

Cartier, R., Brisset, E., Guiter, F., Sylvestre, F., Tachikawa, K.,
Anthony, E. J., Paillès, C., Bruneton, H., Bard, E., and Mi-
ramont, C.: Multiproxy analyses of Lake Allos reveal syn-
chronicity and divergence in geosystem dynamics during the
Lateglacial/Holocene in the Alps, Quaternary Sci. Rev., 186, 60–
77, 2018.

Cartier, R., Sylvestre, F., Paillès, C., Sonzogni, C., Couapel, M.,
Alexandre, A., Mazur, J.-C., Brisset, E., Miramont, C., and
Guiter, F.: Diatom-oxygen isotope record from high-altitude
Lake Petit (2200 m a.s.l.) in the Mediterranean Alps: shedding

light on a climatic pulse at 4.2 ka, Clim. Past, 15, 253–263,
https://doi.org/10.5194/cp-15-253-2019, 2019.

Cartier, R., Brisset, E., Paillès, C., Guiter, F., Sylvestre, F., Ru-
audel, F., Anthony, E. J., and Miramont, C.: 5000 yr of la-
custrine ecosystem changes from Lake Petit (Southern Alps,
2200 m a.s.l.): Regime shift and resilience of algal communities,
Holocene, 25, 1231–1245, 2015.

Castaneda, I. S., Schefuß, E., Pätzold, J., Sinninghe Damsté, J.
S., Weldeab, S., and Schouten, S.: Millennial-scale sea surface
temperature changes in the eastern Mediterranean (Nile River
Delta region) over the last 27 000 years, Paleoceanography, 25,
PA1208, https://doi.org/10.1029/2009PA001740, 2010.

Català, A., Cacho, I., Frigola, J., Pena, L. D., and Lirer,
F.: Holocene hydrography evolution in the Alboran Sea: a
multi-record and multiproxy comparison, Clim. Past Discuss.,
https://doi.org/10.5194/cp-2018-163, in review, 2018.

Cheng, H., Sinha, A., Verheyden, S., Nader, F. H., Li, X. L., Zhang,
P. A., Yin, J. J., Yi, L., Peng, Y. B., Rao, Z. G., Ning, Y. F., and
Edwards, R. L.: The climate variability in northern Levant over
the past 20,000 years, Geophys. Res. Lett., 42, 8641–8650, 2015.

Cisneros, M., Cacho, I., Frigola, J., Canals, M., Masqué, P., Mar-
trat, B., Casado, M., Grimalt, J. O., Pena, L. D., Margaritelli,
G., and Lirer, F.: Sea surface temperature variability in the
central-western Mediterranean Sea during the last 2700 years: a
multi-proxy and multi-record approach, Clim. Past, 12, 849–869,
https://doi.org/10.5194/cp-12-849-2016, 2016.

Constantin, S., Bojar, A.-V., Lauritzen, S.-E., and Lundberg, J.:
Holocene and Late Pleistocene climate in the sub-Mediterranean
continental environment: A speleothem record from Poleva Cave
(Southern Carpathians, Romania), Palaeogeogr. Palaeocl., 243,
322–338, 2007.

Conte, M., Giuffrida, S., and Tedesco, S.: The Mediterranean Os-
cillation: Impact on Precipitation and Hydrology in Italy, Con-
ference on Climate and Water Academy of Finland, 121–137,
1989.

Craig, H. and Gordon, L. I.: Deuterium and oxygen 18 variations
in the ocean and marine atmosphere, in: Proc. Stable Isotopes in
Oceanographic Studies and Paleotemperatures, edited by: Ton-
giogi, E., V. Lischi & F. Pisa, 9–130, 1965.

Cullen, H. M., deMenocal, P., Hemming, S., Hemming, G., Brown,
F. H., Guilderson, T., and Sirocko, F.: Climate change and the
collapse of the Akkadian empire: Evidence from the deep sea,
Geology, 28, 379–382, 2000.

Dansgaard, W., Johnsen S. J., Clausen, H. B., Dahl-Jensen, D., Gun-
derstrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J.
P., Sveinbjörnsdottir, A. E., Jouzel, J., and Bond G.: Evidence
for general instability of past climate from a 250-kyr ice-core
record, Nature, 364, 218–222, 1993.

Dean, J. R., Jones, M. D., Leng, M. J., Noble, S. R., Metcalfe, S. E.,
Sloane, H. J., Sahy, D., Warren, J., Eastwood, W. J., and Roberts,
N.: Eastern Mediterranean hydroclimate over the late glacial and
Holocene, reconstructed from the sediments of Nar lake, central
Turkey, using stable isotopes and carbonate mineralogy, Quater-
nary Sci. Rev., 124, 162–174, 2015.

Deininger, M., McDermott, F., Mudelsee, M., Werner, M., Frank,
N., and Mangini, A.: Coherency of late Holocene European
speleothem δ18O records linked to North Atlantic Ocean circu-
lation, Clim. Dynam., 49, 595–618, 2017.

www.clim-past.net/15/555/2019/ Clim. Past, 15, 555–577, 2019

https://doi.org/10.5194/cp-3-261-2007
https://doi.org/10.1016/B978-0-444-53643-3.00180-1
https://doi.org/10.1016/B978-0-444-53643-3.00180-1
https://doi.org/10.5194/cp-14-1195-2018
https://doi.org/10.5194/cp-15-253-2019
https://doi.org/10.1029/2009PA001740
https://doi.org/10.5194/cp-2018-163
https://doi.org/10.5194/cp-12-849-2016


572 M. Bini et al.: The 4.2 ka BP Event in the Mediterranean region

Denton, G. H. and Karlén, W.: Holocene climatic variations – Their
pattern and possible cause, Quaternary Res., 3, 155–205, 1973.

Dermody, B. J., de Boer, H. J., Bierkens, M. F. P., Weber, S. L.,
Wassen, M. J., and Dekker, S. C.: A seesaw in Mediterranean
precipitation during the Roman Period linked to millennial-
scale changes in the North Atlantic, Clim. Past, 8, 637–651,
https://doi.org/10.5194/cp-8-637-2012, 2012.

Develle, A.-L., Herreros, J., Vidal, L., Sursock, A., and Gasse, F.:
Controlling factors on a paleo-lake oxygen isotope record (Yam-
mouneh, Lebanon) since the Last Glacial Maximum, Quaternary
Sci. Rev., 29, 865–886, 2010.

Di Rita, F. and Magri, D.: Holocene drought, deforestation and ev-
ergreen vegetation development in the central Mediterranean: a
5500 year record from Lago Alimini Piccolo, Apulia, southeast
Italy, Holocene, 19, 295–306, 2009.

Di Rita, F., Lirer, F., Bonomo, S., Cascella, A., Ferraro, L., Florindo,
F., Insinga, D. D., Lurcock, P. C., Margaritelli, G., Petrosino, P.,
Rettori, R., Vallefuoco, M., and Magri, D.: Late Holocene forest
dynamics in the Gulf of Gaeta (central Mediterranean) in relation
to NAO variability and human impact, Quaternary Sci. Rev., 179,
137–152, 2018a.

Di Rita, F., Fletcher, W. J., Aranbarri, J., Margaritelli, G., Lirer, F.,
and Magri, D.: Holocene forest dynamics in central and western
Mediterranean: periodicity, spatio-temporal patterns and climate
influence, Sci. Rep., 8, 8929, https://doi.org/10.1038/s41598-
018-27056-2, 2018b.

Dixit, Y., Hodell, D. A., and Petrie, C. A.: Abrupt weakening of the
summer monsoon in northwest India 4100 yr ago, Geology, 42,
339–342, 2014.

Dominguez-Villar, D., Wang, X., Krklec, K., Cheng, H., and Ed-
wards, R. L.: The control of the tropical North Atlantic on
Holocene millennial climate oscillations, Geology, 45, 303–306,
2017.

Dormoy, I., Peyron, O., Combourieu Nebout, N., Goring, S., Kot-
thoff, U., Magny, M., and Pross, J.: Terrestrial climate variabil-
ity and seasonality changes in the Mediterranean region between
15 000 and 4000 years BP deduced from marine pollen records,
Clim. Past, 5, 615–632, https://doi.org/10.5194/cp-5-615-2009,
2009.

D’Ortenzio, F. and Ribera d’Alcalà, M.: On the trophic regimes of
the Mediterranean Sea: a satellite analysis, Biogeosciences, 6,
139–148, https://doi.org/10.5194/bg-6-139-2009, 2009.
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