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Abstract 

In tectonically active mountain ranges, landslides triggered by earthquakes mobilise 

large volumes of sediment that affect river dynamics. This sediment delivery can cause 

downstream changes in river geometry and transport capacity that affect the river efficiency to 

export this sediment out of the epicentre area. The subsequent propagation of landslide deposits 

in the fluvial network has implications for the management of hazards downstream and for the 

longer-term evolution of topography over multiple seismic cycles. A full understanding of the 

processes and time scales associated with the removal of landslide sediment by rivers following 

earthquakes however, is still lacking.  Here, we propose a nested numerical approach to 

investigate the processes controlling the post-seismic sediment evacuation at the mountain range 

scale, informed by results from a reach scale model. First, we explore the river morphodynamic 

response to a landslide cascade at the reach-scale using a 2D modelling approach. The results 

are then used to describe empirically the evacuation of a landslide volume which avoids using a 

computationally extensive model in catchments which may have thousands of co-seismic 

landslides. Second, we propose a reduced-complexity model to quantify evacuation times of 

earthquake-triggered landslide clusters at the scale of a mountain range, examining the 

hypothetical case of a Mw 7.9 earthquake and its aftershocks occurring on the Alpine Fault, New 

Zealand. Our approach combines an empirical description of co-seismic landslide clusters with 

the sediment export processes involved during the post-seismic phase. Our results show that the 

inter-seismic capacity of the mountain range to evacuate co-seismic sediment is critical to assess 

the sediment budget of large earthquakes, over one to several seismic cycles. We show that 
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sediment evacuation is controlled by two timescales, 1. the transfer time of material from 

hillslopes to channels and 2. the evacuation time of the landslide deposits once it has reached the 

fluvial network. In turn, post-seismic sediment evacuation can either be connectivity-limited, 

when sediment delivery along hillslopes is the main limiting process, or transport-limited, when 

the transport by rivers is the limiting process. Despite high values of runoff, we suggest that the 

Southern Alps of New Zealand are likely to be in connectivity-limited conditions, for connection 

velocities less than 10 m.yr
-1

. Connection velocities greater than2 m.yr
-1

 are sufficient to allow 

most of co-seismic sediments to be mobilised and potentially exported out of the range within 

less that one seismic cycle. Because of the poorly-constrained rate of sediment transfer along 

hillslopes, our results potentially raise the issue of co-seismic sediment accumulation within 

mountain ranges over several seismic cycles and of the imbalance between tectonic inputs and 

sediment export. We, therefore, call for renewed observational efforts to better describe and 

quantify the physical processes responsible for the redistribution and mobilization of sediment 

from landslide scars and deposits. 

 

Key words: landslide, earthquake, river morphodynamics, landscape evolution. 

 

1. Introduction  

Earthquakes impact the landscapes of active mountain ranges by mobilizing large volumes of 

sediment through widespread landsliding (Malamud et al., 2004b; Ouimet, 2011) (Fig. 1). These 

clusters of landslides can deliver sediment to the fluvial network and affect its dynamics over 

timescales lasting from decades to centuries (Croissant et al., 2017; Hovius et al., 2011; Wang et al., 

2015; Wang et al., 2017; Yanites et al., 2010). Whereas numerous studies have focused on the co-

seismic response of hillslopes to large earthquakes (e.g. Gallen et al., 2015; Keefer, 1984, 1999; 

Malamud et al., 2004a; Marc et al., 2016; Meunier et al., 2007, 2008), comparatively few have 

investigated the post-seismic evolution of landscapes and sediment transport (e.g. Yanites et al., 2010; 

Hovius et al., 2011; Croissant et al., 2017). This probably results from extensive datasets constraining 

co-seismic landsliding and sediment production (Keefer, 1999; Larsen et al., 2010; Li et al., 2014; 
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Malamud et al., 2004a; Marc et al., 2016; Tanyaş et al., 2017, 2018), while it is more challenging to 

obtain measurements of pre- and post-seismic sediment fluxes and topographic changes over tens of 

years. Most of the observations relate to suspended sediment concentration data (Dadson et al., 2004; 

Hovius et al., 2011; Wang et al., 2015; Wang et al., 2017) completed with analytical and numerical 

models of bedload evacuation (Croissant et al., 2017; Yanites et al., 2010).  

Investigating how fluvial systems digest these abrupt and large sediment pulses is critical for 

sediment transfers (Benda & Dunne, 1997), bedrock incision patterns in landslide-dominated 

mountain ranges (Lague, 2010; Yanites et al., 2011), hydro-sedimentary hazards in alluvial fans 

(Croissant et al., 2017; Robinson & Davies, 2013) and even to quantify the feedbacks of surface 

processes on fault stress loading (Steer et al., 2014). They are also relevant to geochemical fluxes 

from mountain belts, particularly those which relate to soil erosion and organic carbon transfer (Wang 

et al., 2016) and inorganic carbon via silicate and carbonate weathering which can take place in 

landslide deposits (Emberson et al., 2016a; Jin et al., 2016). Over short-times scales (i.e. < 1000 

years), the downstream propagation of sediment pulses have been studied principally at the reach 

scale using flume experiments and 1D numerical modelling (Cui et al., 2003; Cui & Parker, 2005; 

Lisle et al., 2001; Sklar et al., 2009; Sutherland et al., 2002). These studies have focused, however, 

primarily on the end-member case of how a low amplitude sediment supply compares to the transport 

capacity of the river. Croissant et al, [2017] proposed a 2D morphodynamic approach that examines 

high-amplitude sediment supplies compared to the transport capacity of the river. In the latter case, 

the role of dynamic river narrowing in accelerating the removal of landslide-driven sediments is 

critical. Despite these recent efforts, a full understanding of post-seismic sediment fluxes at the 

mountain range scale is still lacking.  

Post-seismic sediment export is controlled by the sediment supply delivered by the landslide 

and by the transport capacity of the river receiving the deposit. The quantity of sediment transported 

by the river is, therefore, likely to be strongly dependent on the degree of connectivity of sources 

(landslides) to the fluvial network at the initial stage and through time (Hovius et al., 2000). Several 

studies have provided a quantification of the initial percentage of earthquake-triggered landslides that 

connect to the drainage network, ranging from 8% to nearly full connectivity (Dadson et al., 2004; Li 
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et al., 2016; West et al., 2011). Work on the temporal evolution of connectivity through time, 

however, remains an open question (Zhang et al., 2016). Landslides connected directly to the river 

network can inject an almost instantaneous sediment load to the river. Landslides deposits that remain 

on the hillslope are likely to deliver the sediment in a more progressive manner, depending also on 

post-seismic storms (Fan et al., 2018). Once sediments mobilized by landslides reach the river 

channel, their export time is expected to depend mostly on the river geometry, discharge and on 

sediment grain size (Croissant et al., 2017). Whereas the evacuation of one landslide has already 

received attention, no work has been dedicated to the evacuation of seismically-triggered clusters of 

landslides. 

The distributions of landslides can statistically inform on the dynamics of connectivity and 

subsequent export by river transport. For instance, landslides older than several seismic cycles and 

persisting in the landscapes have been argued to indicate a low efficiency of sediment export (Korup, 

2005b). Such inference, however, cannot be made solely based on individual and old landslides, 

which represent outliers of the total cluster of landslides triggered by earthquakes or rainfall. 

Understanding the triggering and export of landslide clusters over several seismic cycles is required to 

assess the topographic budget of large earthquakes (Parker et al., 2011), the role of aftershocks 

relatively to mainshocks, sediment fluxes at the range scale (Hovius et al., 1997), the geochemical 

signature of these extreme events (Frith et al., 2018; Wang et al., 2016), or the impact and risks 

associated to these natural hazards (Croissant et al., 2017; Keefer, 1999). 

 

 

Figure 1 | Illustration of the geomorphic impact of landslides at different spatial scales a. Aerial 

image of the Hapuku river landslide (taken the 5
th
 Dec. 2016) triggered by the 2016 Kaikoura 
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earthquake, New Zealand (photo credit: D. Townsend, GNS) b. Satellite image of the area affected by 

the Kaikoura earthquake that triggered thousands of landslides (source: Google Earth, imagery date 

22/11/2016). 

 

 In this study, we develop a nested numerical approach which acts to: 1. simulate earthquakes 

over several seismic cycles, 2. trigger landslides across catchments, 3. assign the dynamic 

connectivity to the fluvial network and 4. determine the subsequent sediment transport. Our approach 

is deliberatively simplified to examine the challenges that emerge when investigating post-seismic 

sediment evacuation. The nested model integrates sediment export times defined at the reach scale, 

using the Eros river morphodynamic model (e.g. Davy et al., 2017; Croissant et al., 2017), in a 

statistical model that generates earthquakes and landslides at the mountain range scale, refered to as 

Quakos. The paper is divided in three sections. First, at the reach-scale, we investigate the impact of 

one or a series of landslides on the morphodynamic response of a river, the efficiency of sediment 

export and the persistence of downstream deposits. This allows us to develop a semi-analytical model 

of landslide export. Second, we focus on embedding the reach-scale model outcomes into the 

catchment-scale model. We define a reduced-complexity model that accounts for the different 

processes driving the sediment export of landslide debris that can be applied to clusters of landslides 

triggered by earthquakes. We apply this model to the case of a hypothetical Mw 7.9 earthquake 

occurring in the Southern Alps of New Zealand. Third, we investigate the morphological impact of a 

series of earthquakes on landscape dynamics at the mountain range scale. We focus specifically on the 

roles of the dynamic connectivity of landslide deposits and runoff that modulate river transport 

capacity. Our results illustrate how the model parametrization impacts the number and volume of 

triggered landslides, the time persistence, the sediment fluxes leaving the mountain range and the 

evolution of landslide-size distributions. This leads us to highlight research needs and critical steps 

required to better understand and predict the impact of large earthquakes on landscape evolution and 

sediment fluxes. 

 

2. Morphodynamic modeling  of the export of landslide sediment  
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 In this section, we explore the fine-scale dynamics of sediment export of a river that is 

impacted by a cascade of landslides. We first describe the 2D morphodynamic model Eros that we use 

to quantify the evacuation of individual landslides at the reach scale (Croissant et al., 2017; Davy et 

al., 2017). Following Croissant et al. (2017), we present the mechanisms controlling the downstream 

propagation of a single landslide deposited in a bedrock channel. We then explore the impact of a 

cascade of landslides on sediment export by introducing several landslides along the same river 

channel. In addition to revealing the morphodynamic evolution of the landslide deposits, the results 

from this section will be used in the Quakos study to tackle evacuation of landslide clusters over large 

areas. 

 

 2.1 Model description 

 This study is placed in the context of a bedrock river experiencing a high amplitude sediment 

forcing that causes perturbations of the river geometry including its width and slope. Therefore, an 

accurate quantification of landslide removal at the reach scale requires a model that contains the 

physical processes allowing for the feedbacks between river erosion, transport capacity, flow, 

geometry and sediment supply. Here, we use Eros (Davy et al., 2017), a particle-based model that is 

well-suited to simulate the evolution of a river subjected to large sediment supplies (Croissant et al, 

2017a, b). The particles referred as “precipitons” are elementary volumes of water that move on the 

top of the topography and interact with it along the downstream path by entraining, transporting or 

depositing sediment. This model is composed of: 

- A hydrodynamic model that predicts water depth and flow velocity patterns on high 

resolution topographies (Davy et al, 2017). This model resolves the 2D shallow-water equations under 

the stationary assumption without inertia.  

- A vertical and horizontal sediment transport and deposition model that is coupled with the 

hydrodynamic model. In the following, we only briefly describe the constitutive equations of 

sediment entrainment, transport and deposition, as a more detailed description can be found Davy et 

al., [2017]. The rate of sediment entrainment, 𝑒̇, is defined by the bedload transport law of Meyer-

Peter and Muller [1948]: 
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 𝑒̇ = 𝐸(𝜏 − 𝜏𝑐)1.5 (1) 

with 𝐸 a constant, 𝜏, the shear stress and 𝜏𝑐 the critical shear stress. The rate of sediment deposition 𝑑̇ 

is a function of the sediment specific discharge 𝑞𝑠 and transport length, 𝜉 (Davy & Lague, 2009): 

 𝑑̇ =
𝑞𝑠

𝜉
 (2) 

In the morphodynamic simulations, 𝜉 is set to 2 m to insure a bedload transport regime where the flow 

is close to at-capacity conditions in non-supply-limited cases. The model also includes horizontal 

sediment dynamics. The lateral erosion of neighboring cells is described by: 

 𝑒̇𝑙𝑎𝑡 =  𝑘𝑒𝑆𝑦𝑒̇ (3) 

with 𝑘𝑒 a dimensionless coefficient (here set at 0.05 as in Croissant et al [2017]) and 𝑆𝑦 the slope in 

the transverse direction. The lateral sediment deposition 𝑞𝑠𝑙 is defined as: 

 𝑞𝑠𝑙 = 𝑘𝑑𝑞𝑠𝑆𝑦 (4) 

with 𝑘𝑑  a constant (here set to 0.5). The choice of parameter values emerges from different 

calibrations studies (e.g. Davy et al, 2017, Croissant et al, 2017). 

 The model allows for self-formed channels to emerge and for instabilities, such as bars and 

braiding, to develop (i.e. the river flow to converge in a self-formed width) when the local sediment 

flux is non-linearly correlated with the river discharge. In Eros simulations presenting a simple tilted 

bed as initial topography and no sediment input, Eros shows that the river width that emerges scales 

with discharge at a power 0.5 which is similar to that measured on natural cases and in flume 

experiments (e.g. Métivier et al., 2017).  

 

2.2 Initial topography and boundary conditions 

The model setup is similar to the one used in Croissant et al., [2017]. The initial topography is 

a 3 km long bedrock channel. Its transport capacity is set by its width and slope (Fig. 2a). The water 

enters through the upstream boundary condition at a constant effective discharge. The landslide 

deposit is introduced near the upstream end of the bedrock channel. It has a Gaussian shape in the 

longitudinal direction and is described by its volume, length and median grain size. Bedrock incision 
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is neglected as we assume that rates of bedrock erosion at short times scale (i.e. a seismic cycle) 

would not be large enough to significantly affect the bedrock channel geometry. In the following, we 

also investigate the evacuation of several landslides introduced along the same channel. In these 

cases, the bedrock channel lengthens accordingly to accommodate each landslide based on the inter-

landslide distance that ranges from 0 to 1 km (Fig. 2b). 

 

 

Figure 2 | Eros model set up. a. The case of a single landslide (in brown) evacuated in a bedrock 

channel (in beige). This snapshot illustrates an advanced stage of one simulation where the river 

incise the deposit with a reduced width. b. The case of landslide cascade deposited in the same 

channel. 

  

2.3 Sediment evacuation of a single landslide 

Here, we investigate the export dynamics of a single landslide deposit in a bedrock river. To 

fully understand the mechanisms controlling landslide export, we run 80 simulations exploring the 

parameter space governing the bedrock transport capacity (i.e. width slope, river discharge) and 

landslides properties (i.e. median grain size, volume) (Fig. 2a). In a previous work, Croissant et al 

[2017] identified two end-members in terms of landslide evacuation which depends on the ratio 

between the landslide volume 𝑉𝑙𝑠 and the river initial transport capacity 𝑄𝑇.   

- For low 𝑉𝑙𝑠/𝑄𝑇, the width of the alluvial cover remains equal to the width of the bedrock 

river and the morphodynamic adaptation of the alluvial cover occurs mainly in slope. The 
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landslide is removed by the river at the rate set by the initial transport capacity of the 

bedrock river . 

- For high 𝑉𝑙𝑠/𝑄𝑇, the model predicts an acceleration of the evacuation of a large part of 

the landslide (50 to 70%) compared to the case where the landslide would be exported at a 

constant rate. This acceleration is caused by the dynamic narrowing of the alluvial river 

inside the landslide deposit. The remaining volume of sediment (30-50%) is removed by 

lateral erosion. This phase is less efficient because the lateral entrainment rate is a fraction 

of the rate of vertical incision (eq. 3).  

 

2.4 Sediment evacuation of a cascade of landslides 

After large earthquakes, rivers are likely to receive sediments from multiple co-seismic 

landslides. Here, we investigate the impact of a cascade of landslides on sediment transport and 

evacuation. Two scenarios are explored. In the first one, the total volume of sediment introduced in 

the river remains constant (i.e. 2.10
6
 m

3
) but is distributed along the stream in a cascade of 1 to 4 

landslides separated by the same apex to apex distance. In the second one, we investigate the effect of 

the distance separating two individual landslides on the sediment evacuation dynamics. In both cases, 

sediment export is evaluated at the outlet of the most downstream landslide.  

 

Figure 3 | Morphodynamic evolution of a reach evacuating several landslides. a. Snapshots of 

different stages of the Eros simulation. This is the case of 2 landslides of Vs = 1.10
6
 m

3
 separated by a 
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distance of d = 500 m. b. Evolution of the remaining sediment volume upstream of the ‘gauging 

station’ at constant total volume but for different number of individual landslides. Nls is the number of 

landslides and Vls is the volume of those individual landslides. c. Evolution of the remaining sediment 

volume upstream of the ‘gauging station’ for different distance (d) between the landslides. 

In terms of morphodynamic evolution, the simulations with a cascade of landslide deposits 

(Fig. 2b and 3a) share similarities with those of single deposits. During the first stage, the landslides 

are large enough to create partial or total landslide dams. The lakes forming in between two deposits 

have zero transport capacity. Regressive erosion leads to the progressive and simultaneous incision 

into each landslide deposits by a river narrower than the width of the bedrock channel. Whereas 

sediments eroded from the most downstream landslide are rapidly evacuated, similarly to the 

simulation with one landslide, sediments from the upstream landslide enter the downstream lake and 

form a prograding delta that lasts until the lake is drained. The river eventually incises vertically into 

both deposits until it reaches the bedrock surface and then removes the remaining volume of sediment 

by lateral erosion. 

When multiple landslide deposits enter the channel, the cases where Nls ≥ 2 display similar 

export rates (Fig. 3b). Differences arise when these cases are compared with the evacuation of a single 

large landslide. In the latter, the landslide evacuation is more efficient until ~70% of the deposit is 

evacuated. The period of river increased efficiency (i.e. when the alluvial river width is less than 40% 

the one of the bedrock width) is also longer (Croissant et al, 2017). We then vary the inter-landslide 

distance 𝑑 to 0, 250, 500 and 1000 m. The results show that the distance between successive 

landslides appears to play only a minor role in the efficiency of total sediment evacuation. When we 

examine landslides individually (by setting gauging stations downstream of each deposit), however, 

the downstream landslides are evacuated less efficiently than those upstream, especially during the 

phase of lateral erosion (see Supplementary Figure S1). This is because the high sediment fluxes from 

the evacuation of the upstream landslides slows down the erosion of those downstream as the river is 

already loaded with sediment. Apart from this effect, the time-evolution of sediment transport for 

individual landslides remains relatively similar when considering a cascade of landslides or a single 

landslide. Taken together, when viewed from the downstream gauging station, the overall sediment 
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export response of a cascade of landslides is similar to that of a single landslide in these single 

channel experiments (Fig. 3). 

We, therefore, assume in the following discussions that the removal of landslides can be 

considered independently from each other. This assumption represents a critical step in building an 

upscaling approach where thousands of landslides can be triggered simultaneously in the river stream.  

 

3. A reduced-complexity model for the export of landslide sediment  

Earthquakes generally trigger numerous landslides that will eventually reach the fluvial 

network at locations with varying local transport capacity. As such, a cluster of landslides can be 

described as a distribution of the ratio 𝑉𝑙𝑠/𝑄𝑇 (Croissant et al., 2017) spanning the studied end-

members in the previous section. Whereas morphodynamic modelling provides useful information on 

the mechanisms of landslide removal at the reach scale, it is still too computationally demanding to 

apply it at the scale of a whole mountain range over hundreds to thousands of years and to accounting 

for thousands or more landslides. Therefore, we aim here to define a reduced-complexity model to 

describe the post-seismic evolution of landslide volume for any value of 𝑉𝑙𝑠/𝑄𝑇, informed by the 

results obtained with 80 simulations performed in the previous section for the single landslide 

scenario.  

Using these simulations, we compute the time 𝑇𝑒𝑥𝑝 needed to export 20 to 90% of the initial 

𝑉𝑙𝑠 as a function of 𝑉𝑙𝑠/𝑄𝑇 at a 10% percent interval (Fig. 4a). As described in Croissant et al, 2017, 

the export time computed for each interval follows a trend with 𝑉𝑙𝑠/𝑄𝑇 that can be fitted with a 

function of the form: 

 𝑇𝑒𝑥𝑝,𝑖 = 𝛿𝑖 (𝜇𝑖

𝑉𝑙𝑠

𝑄𝑇
) [1 + (

𝑉𝑙𝑠

𝑄𝑇
)

𝜑𝑖

]

(𝛽−1)

𝜑𝑖

 (5) 

with 𝛿 and 𝜇 constants, 𝜑 a curvature parameter, 𝛽 an exponent (here fixed at 0.1) and 𝑖 corresponds 

to the studied percent interval. The values of these parameters are found by a least-square fitting using 

equation 5 on each percent interval (Fig. 4a, Table 1).  
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We obtain a discrete description of the evolution of a landslide volume for any value of 

𝑉𝑙𝑠/𝑄𝑇 (Fig. 4b, c). The continuous description is obtained by interpolating linearly between the 

points. 

Following this, the temporal evolution of landslide sediment evacuation can be assessed for 

two values of 𝑉𝑙𝑠/𝑄𝑇 which represent two end-members responses (Fig. 4b, c). Simulations 

presenting a high 𝑉𝑙𝑠/𝑄𝑇  ratio never succeed to evacuate 100% of the initial volume of sediment as a 

small fraction of sediment remains captured in lateral terraces. Therefore, to reconstruct fully the 

landslide export, we assume that the last 10% of sediment volume is exported at the same rate as that 

estimated for the last 20% to 10%. This may lead to a slight over-estimation of the efficiency of 

sediment transport during the lateral erosion phase.  

This reduced-complexity method provides a computationally efficient way to appraise the 

post-seismic sediment evolution of landslide clusters. It also has the advantage of implicitly 

accounting for the evolution of the width and slope of the river. This reduced-complexity description 

of sediment export can, therefore, be applied at a larger spatial scale (i.e. a mountain range) provided 

that the distribution of 𝑉𝑙𝑠/𝑄𝑇  is known. In the next section, we combine this method with a newly 

developed large-scale model, Quakos, which determines clusters of earthquake-triggered landslides, 

including the volume and the transport capacity of the river that they are connected to.   

 
Figure 4 | Predicting the dynamic evacuation of landslides using Eros results. a. Series of fitting 

functions applied to predict the landslide export when x% of it has been evacuated. b. and c. 

Comparison between our predictions (yellow dots, green line) and Eros output (grey line) for 2 values 

of 𝑉𝑙𝑠/𝑄𝑇. 
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4. Upscaling to sediment fluxes at the mountain range scale during several 

seismic cycles 

 Here, we propose a statistical approach to quantify post-seismic sediment fluxes at the scale 

of a mountain range. Quakos is composed of three main components that can be used independently 

(Fig. 5a): 1. a statistical earthquake generator; 2. a landslide generator that predicts the 2D distribution 

of co-seismic landslides and the volumes using empirical laws; 3. a sediment evacuation model based 

on the reduced-complexity method described in previous section. The values of the parameters used in 

this section can be found in Table 2.   

 

4.1. Model description 

4.1.1. Study area 

 In the following, we consider a hypothetical failure of the Alpine Fault in the Southern Alps, 

New Zealand as a case study (Fig. 5). The formation of the Southern Alps and its recent morphologic 

evolution has occurred under extreme tectonic and climatic forcing (Tippett & Kamp, 1993). The 

rapid rate of convergence is largely accommodated by the Alpine Fault (Norris et al., 1990) which 

paleo-seismic studies have shown ruptures in large earthquakes (Mw > 7.5) with a recurrence time of 

263 ± 68 years (Berryman et al., 2012; Cochran et al., 2017; Howarth et al., 2012). The` range of the 

Southern Alps extends ~450 km from southwest to northeast and rises from sea level to 3724 m at 

Mount Cook. It forms a natural barrier to western winds which leads to high rates of precipitation up 

to 13 m.yr
-1 

along the west coast (Tait & Zheng, 2007). Landscapes in the Southern Alps are 

characterized by steep hillslopes with modal values averaging at 35° (Korup et al., 2010) and are 

prone to landsliding even during aseismic periods (Hovius et al., 1997). Thousands of landslides are 

expected to be triggered in the next large seismic event, potentially mobilizing ~1 km
3
 of sediment 

(Marc et al., 2016; Robinson et al., 2016). 

The topography of the Southern Alps is obtained from the SRTM3 digital elevation model 

(DEM), with a pixel size set at 100 m. Computations involving operations on the DEM have been 

performed using TopoToolbox_v2 (Schwanghart & Scherler, 2014).  
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4.1.2 Fault, earthquakes and peak ground acceleration 

Here, we design a thrust fault of length FL = 400 km and width FW = 19 km with a dipping 

angle of 60° that approximatively mimics the geometry of the Alpine Fault (Robinson et al., 2016). In 

the Quakos model, earthquakes (mainshocks and aftershocks) are generated on this fault. When 

mainshocks are generated the ruptures cover the entire fault width, leading to earthquakes of 

magnitude Mw = 7.9. The position of each mainshock is randomly sampled along the fault plane. Each 

mainshock triggers a series of aftershocks, which location, date and magnitude are determined using 

the BASS model (Turcotte et al., 2007). The aftershocks series are generated following three 

statistical laws:  

- The difference between the magnitude of the mainshock and its largest associated 

aftershock (∆Mw = 1.25) is determined using a modified version of Båth’s law 

(Shcherbakov et al., 2004). 

- The rate of aftershocks is submitted to a temporal decay described by a generalized form 

of Omori’s law (Shcherbakov et al., 2004). Parameters from this law are the exponent p = 

1.25 and offset c = 0.1 days. 

- The spatial distribution of aftershocks is given by a spatial form of Omori’s law 

(Helmstetter & Sornette, 2003) with the exponent q = 1.35 and offset d = 4 meters. 

All the defined parameter values of the BASS model are taken from Turcotte et al., [2007] and are 

constant for all the simulations performed in this paper.  

The range of simulated magnitudes is bounded by fault dimensions, for the largest magnitude, 

and by the spatial discretization of the fault, for the smallest magnitude. Simulated earthquakes have 

magnitudes ranging from 2.5 to 7.9. For each earthquake (mainshocks and aftershocks), the associated 

rupture length (𝑅𝐿) and width (𝑅𝑊) are estimated as a function of seismic moment, 𝑀𝑂 following a 

consistent set of scaling laws based on empirical observations determined for strike-slip faults 

(Leonard, 2010): 

 𝑅𝐿 = (
𝑀𝑂

𝜇𝐶1
3 2⁄ 𝐶2

)

𝛽

 (6) 
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 𝑅𝑊 =  𝐶1𝑅𝐿
𝛿 (7) 

where 𝜇 = 33 GPa is the shear modulus and 𝐶2 = 3.6.10
-5

, 𝐶1, 𝛽 and 𝛿 are constants which value 

depends on the rupture length:  

- 𝑅𝐿 < 5 km: 𝐶1 = 1, 𝛽 = 1/3 and 𝛿 = 1.  

- 5 km < 𝑅𝐿< 45 km: 𝐶1 = 15, 𝛽 = 2/5 and 𝛿 = 2/3.  

- 𝑅𝐿 > 45 km: 𝐶1 = FW, 𝛽 = 2/3 and 𝛿 = 1.  

For a given earthquake, a map of the synthetic peak ground acceleration (PGA) is computed 

as a function of earthquake magnitude, ruptured fault geometry (rake, dip, dimension), fault 

mechanism, lithological controls and site effects (Fig. 5b) (Campbell & Bozorgnia, 2008). The 

theoretical framework that derives from this work is quite extensive (see equations 1 to 12 in 

Campbell & Bozorgnia, [2008]). Here, we consider the sediment depth Z2.5 = 0 m, a S-wave velocity 

in the first 30 m of the crust Vs,30 = 180 m.s
-1

 and a reference PGA at Vs = 1100 m.s
-1

, A1100 = 0.10 g 

(Robinson et al., 2016). For other parameter values, we refer to Table 2 in Campbell & Bozorgnia, 

[2008]. 
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Figure 5 | Quakos workflow used to predict landsliding pattern at the mountain range scale. a. 

Quakos workflow. b. PGA pattern predicted by the model for a Mw 8 scenario on the Alpine Fault, 

New Zealand. c. Map of the landslide density. d. Landslide pattern predicted by Quakos. The view is 

focused on catchments located on the Central Southern Alps. Yellow dots indicate landslides, the 

sizes are a function of landslide area. White dots outside of the considered catchments only represent 

the location of landslides.  Notation: Vls, landslide volume. 

 

4.1.3 Landslides triggered by earthquakes 

 Modelled maps of PGA are then used to infer the spatial density of triggered landslides, i.e. 

the number of landslides by unit area. Previous studies suggest that the density of earthquake-

triggered landslides is linearly dependent on the PGA (Meunier et al., 2007; Yuan et al., 2013): 
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 𝑃𝑙𝑠 = 𝛼𝑝𝑃𝐺𝐴 − 𝛽𝑝 (8) 

where 𝛼𝑝  and 𝛽𝑝, are two empirical parameters that controls the maximum density of landslide and 

its spatial repartition, respectively. The parameter 𝛽𝑝 is a critical value of PGA under which no or 

very few landslides are triggered. The values of these parameters are highly dependent on the studied 

case and the choice of their value is explained in the result section. Following the work of Meunier et 

al., [2007], locations where the local slope is less than 20% (on a 100m DEM) are not affected by 

landsliding. In our case study, this mostly prevents landslides from being triggered on alluvial fans 

and large river valleys (Fig. 5c, d). 

  The area distribution of earthquake-triggered landslides is commonly given by an inverse 

gamma probability density function:  

 
𝑝𝑑𝑓(𝐴𝑙𝑠) =

1

𝑎𝛤(𝑎)
[

𝑎

𝐴𝑙𝑠 − 𝑠
]

𝜌+1

𝑒𝑥𝑝 [−
𝑎

𝐴𝑙𝑠 − 𝑠
] (9) 

with 𝑎 a parameter controlling the position of the pdf maximum, 𝑠 a parameter controlling the roll-

over for small landslides and 𝜌 is a positive exponent controlling the tail of the pdf (Malamud et al., 

2004a). In Quakos simulations, the area of each landslide belonging to a landslide cluster is 

determined by randomly sampling the 𝑝𝑑𝑓(𝐴𝑙𝑠). The location of landslides is then determined 

according to the map of landslide density (Fig. 5d). At this stage, those two conditions are met and 

then landslides are distributed randomly on slopes above >20%. Future improvements to this 

approach may include methods to preferentially select parts of the landscape where landslides locate, 

and link this to the morphology of the local hillslopes at the ~ km
2
 scale. 

For each individual predicted landslide, its planform area is converted to volume 𝑉𝑙𝑠 by using an 

empirical scaling law: 

 𝑉𝑙𝑠 = 𝛼𝐴𝑙𝑠
𝛾

 (10) 

with 𝛼 and 𝛾 are set to 0.05 and 1.5 (Hovius et al., 1997; Larsen et al., 2010). This parameterization is 

well-suited to infer the volume of deep-seated bedrock landslides which dominate the volume budget 

of a population of triggered-landslides. 

 

4.1.4 Post-seismic evacuation of landslide sediment  
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 After Quakos has provided a distribution of earthquake-triggered landslides, the prediction of 

post-seismic landslide evacuation depends mostly on: 1. the rate of sediment supply to the channel 

network, i.e. the transfer of material from hillslopes to channels, and 2. the rate of sediment transport 

by the river. 

Several studies have pointed out the importance of the initial and dynamic connectivity of 

landslides to the channel network on post-seismic sediment fluxes (Li et al., 2016; Roback et al., 

2018). Some studies provide an estimation of initial connectivity ranging from 8% to 43 % and even 

to full connectivity (Dadson et al., 2004; Li et al., 2016; A. J. West et al., 2011). Based on the data of 

Li et al [2016] and Roback et al., [2018], the initial landslide-channel connectivity 𝐶 of each landslide 

is determined as a function of its area 𝐴𝑙𝑠: 

 𝐶 = 𝑚𝐴𝑙𝑠,𝑏𝑖𝑛
𝜔  (11) 

where 𝑚 is an empirical constant and 𝜔 an empirical exponent (see Supplementary Figure S3). 

Equation (11) applies for landslides presenting an area lower than 1.10
6
 m

2
. Above this threshold, we 

assume that landslides are always initially connected to the drainage network. This assumption is 

supported by empirical data and because larger landslides usually present a longer run out (Lucas et 

al., 2014).  Here, 𝐶 gives the percentage of connected landslides in the considered bin of landslide 

area (𝐴𝑙𝑠,𝑏𝑖𝑛) on a logarithmic scale. 

To consider landslide deposits which locate away from the channel network on steep slopes, 

we consider that transport of loose debris is likely to occur at a velocity that likely depends on the 

climatic and meteorological context and local topographic properties. Unfortunately, studies which 

quantify the post-seismic sediment delivery from hillslopes to channels are scarce because of the 

difficulties of measuring it in the field or using remote sensing (Fan et al., 2018; Zhang et al., 2016).  

We, therefore, develop a simplified approach to account for a “dynamic connectivity” of 

landslides to rivers. This approach first determines the distance (𝑑) between the landslide and the 

closest river connection point using a steepest descent algorithm. The timing of connection is then 

obtained by setting a constant and arbitrary connectivity velocity (𝑢𝑐𝑜𝑛) to each landslide and 

computed as 𝑡𝑐𝑜𝑛 =  𝑑/𝑢𝑐𝑜𝑛 . Once the landslide is connected to the river network, we assume that 

the whole volume is connected, i.e. completely available to be removed by the river. A future 
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modification may be to link this dynamic connectivity to diffusive erosion processes which occur on 

steep surfaces (Roering et al., 1999). Here, for simplicity, we first explore scenarios with a constant 

𝑢𝑐𝑜𝑛. 

 Once a landslide reaches the closest stream, its subsequent evacuation depends on the ratio 

between its volume 𝑉𝑙𝑠 and the local river transport capacity 𝑄𝑇 following equation (5). If the 

landslide volume is determined for each landslide using Quakos, the transport capacity needs to be 

computed. The along-stream transport capacity of bedrock rivers is set by its geometry (width and 

slope), local river discharge and sediment grain size. The bedrock river width (𝑊), slope (𝑆) and 

mean discharge (𝑄̅) are expressed as a function of the local drainage area (𝐴) as: 

 {

𝑊 = 𝑘𝑤𝑛𝐴0.5

𝑆 = 𝑘𝑠𝑛𝐴−0.45

𝑄̅ = 𝑟̅𝐴

 (12) 

with 𝑘𝑤𝑛 the normalized width index, 𝑘𝑠𝑛 the normalized steepness index and 𝑟̅ mean annual runoff 

(Lague, 2014). Here, the critical drainage area used to extract the drainage network is equal to 0.5 

km
2
.  

To ensure the same context as the Eros simulations, the river transport capacity is described 

using an effective daily discharge (Qeff) presenting a return time of one year which is a good 

compromise between frequency of occurrence and the amount of geomorphic work of such events. 

The bedload transport capacity (Meyer-Peter & Müller, 1948) is then computed as: 

 

𝑄𝑇 = 𝑊𝐾 (𝜌𝑤𝑔 (
𝑛𝑄𝑒𝑓𝑓

𝑊
)

0.6

𝑆0.7 − (𝜌𝑠 − 𝜌𝑤)𝑔𝜏𝑐
∗𝐷50)

1.5

 (13) 

with 𝜏𝑐
∗  the critical Shields stress, 𝜌𝑤 the water density, 𝜌𝑠 the sediment density, 𝑛 the Manning 

friction coefficient, 𝐾 an erodability constant and 𝑔 the gravitational constant. For simplicity, the 

grain size distribution of the landslide is reduced to the median grain size descriptor 𝐷50 which is 

chosen to be constant for all landslides.  

To compute the value of Qeff, we assume that the range of daily discharges 𝑄, experienced at 

any point along the river, follows an inverse-gamma probability density function: 

 
𝑝𝑑𝑓(𝑄) =

𝑘𝑘+1

𝛤(𝑘 + 1)
𝑒𝑥𝑝 (−

𝑘

𝑄/𝑄̅
) (𝑄/𝑄̅)−(2+𝑘) (14) 
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with 𝛤 the gamma function and 𝑘 a parameter linked to the variability of the hydrological forcing, 

here, fixed at k = 1, based on empirical data (Croissant et al., 2017; Lague et al., 2005). This 

assumption is supported by empirical data, that demonstrate that the runoff of rivers located along the 

West Coast of New Zealand present a high variability (k = 1) (Croissant et al, 2017b). From this 

distribution, the return time (𝑡𝑟) of a particular daily discharge can be assessed using:  

 𝑡𝑟(𝑄𝑒𝑓𝑓) = 𝛤(𝑘/𝑄𝑒𝑓𝑓, 𝑘 + 1)−1 (15) 

The value of Qeff can be computed using this equation.  

 

4.2 Landslide triggering and sediment export over a seismic cycle 

4.2.1 The volume of triggered landslides by earthquakes on the Alpine Fault 

To assess Quakos outputs, we compare them to natural observations and existing analytical 

models (Keefer, 1999; Odin Marc et al., 2016). We plot the total volume of landslide clusters as a 

function of earthquake magnitude (Fig. 7). Consistent with Marc et al, [2016], Quakos leads to a 

threshold magnitude, here ~4.5, under which no landslides are generated. This threshold results from 

the fact that landslides are only generated if a critical PGA is reached (eq. 6; see Supplementary 

Movie S1). Above this threshold, the total landslide volume triggered by an earthquake increases with 

magnitude and shows a sensitivity to the depth of earthquake nucleation. The variability of total 

landslide volume for earthquakes of equal magnitude results from the depth of the earthquake but also 

from the variability of the topography impacted by landsliding, including the proportion of the 

topography with local slopes greater than 20%. For low magnitudes, total landslide volume is strongly 

sensitive to the depth of the earthquake. Indeed, the width extent of the rupture is small compared to 

fault width, and the depth of the earthquake becomes the controlling factor to generate PGA above the 

critical value for landsliding. This mostly explains the spread in the distribution of total landslide 

volume as a function of magnitude for earthquakes with magnitude lower than ~6.5. Larger 

earthquakes are less prone to this spread in total landslide volume as the rupture width becomes closer 

to fault width. We also note that Quakos outputs asymptotically tend, for large magnitudes, towards 

the analytical model from Marc et al, [2016] for R0 = 15 km, independently from Quakos depth of the 

earthquake. This results from the PGA model in Quakos which depends on rupture extent (Campbell 
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& Bozorgnia, 2008), covering the entire fault width for the largest earthquakes, and not on the depth 

of the earthquake. Whereas Marc et al. [2016] only consider the depth of the sources of seismic 

waves, and not the rupture extent. Total landslide volume is also sensitive to the parameters in 

equations 8 and 9, which control the number of triggered landslides for a given PGA and their volume 

distribution (see supplementary Figure S2).  

For a Mw 7.9 earthquake occurring on the Alpine Fault, without considering aftershocks, the 

total number of landslides generated in the Southern Alps is ~17700 ± 500 landslides with a total 

volume of sediment 0.75 ± 0.07 km
3
 (Fig. 6). Empirical constraints allow for a more accurate 

estimation of the characteristics of a future earthquake on the Alpine Fault.The total number of 

landslides, however, is of the same order of magnitude as most of the natural cases documented in 

Tanyaş et al., [2017] and the total volume is similar to the one estimated by two independent studies 

(Odin Marc et al., 2016; T. R. Robinson et al., 2016).  

 

 

Figure 6 | Relationship between the total volume of landslides triggered by earthquakes and the 

magnitude, in the case of a strike-slip fault. Quakos results (circles) are coloured as a function of 

the depth of the earthquake compared to the surface (R0). Quakos outputs are compared to two 

empirical models from Marc et al, [2016] and Keefer, [1999]. 

 

4.2.2 Sediment export over a seismic cycle 
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Here, we explore the dynamic of sediment export over a single seismic cycle that follows a 

Mw 7.9 earthquake. We only consider the river catchments of the West Coast where the landslide 

number is ~12000 and total volume is ~0.5 km
3
. We focus on the role of the initial and dynamic 

connectivity of landslides to the fluvial network in controlling post-seismic sediment evacuation. 

Based on the morphodynamic modelling results, we assume that landslides located in the same river 

reach are evacuated independently of each other. 

At the initial stage, ~41% of the total volume of landslide sediment is connected to the 

drainage network. Models with 𝑢𝑐𝑜𝑛 equals to 0.1, 1 and 10 m.yr
-1

 lead to 43, 50 and 96% of the total 

volume evacuated over 263 years. The ‘full connectivity’ case leads to the highest rates of sediment 

transport with 70% of the landslide mass evacuated in less than 10 years (Fig. 7a). This value matches 

to order of magnitude the predictions of Croissant et al, [2017] for high mean annual runoff and 

runoff variability and for which the full population of landslides was assumed fully connected. After 

2000 years, most of the sediment volume is removed for 𝑢𝑐𝑜𝑛 ≥ 1 m.yr
-1

, whereas the rivers are 

starved of sediments because of the absence of new connected landslides for 𝑢𝑐𝑜𝑛 = 0.1 m.yr
-1

. This 

illustrates, that landslide connectivity is an important factor limiting sediment evacuation after the 

triggering of landslides by a large earthquake. In turn, landslide connectivity is critical to assess the 

fraction of co-seismic debris evacuated before the next earthquake occurs. 
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Figure 7 | Temporal evolution of the Mw 7.9 earthquake simulations with different connectivity 

properties. a. Temporal evolution of the landslide volume for different connection velocities. b. 

Temporal evolution of the number of landslides. c. Sediment remobilization fluxes. d Temporal 

evolution of the number of active landslides, i.e. landslides that are being connected to the drainage 

network and being actively evacuated by the river. Note: The grey area indicates the estimated return 

time of a Mw 8 earthquake on the Alpine Fault.  

Interestingly, the number of active landslides (Fig. 7d), i.e. connected landslides with 

remaining sediments, do not exactly follow the total landslide volume evolution (Fig. 7a). This occurs 

because the volume of deposits in the landscape is controlled by the largest landslides. For low values 

of 𝑢𝑐𝑜𝑛, model predictions show that a large proportion of the initial landslide population can be 

preserved while having evacuated a moderate to large proportion of the volume of earthquake-

produced sediment (Fig. 7b).  

Connectivity also impacts the amplitude and duration of the rates of sediment remobilization 

(Fig. 7c). The full connectivity case presents rates that are at least one order of magnitude greater than 

any other model during the first years after the earthquake. This rate drops abruptly by three orders of 

magnitude in less than a century. On the contrary, for 𝑢𝑐𝑜𝑛 < 10 m.yr
-1

, the the rate of remobilization 

oscillates during the first 200 years before decreasing progressively. The different rates are controlled 

by the sediment delivery from hillslope to the channels (Fig. 7d). A low value of 𝑢𝑐𝑜𝑛 ensures a 
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progressive and near-constant delivery of sediment with a steady number of landslides being active 

during the first 200 years.  

 

 

Figure 8 | Probability density function of landslide volumes at different time steps. a. For the Full 

connectivity case. b. For the case 𝑢𝑐𝑜𝑛 = 10 m.yr
-1

. c. For the case 𝑢𝑐𝑜𝑛 = 1 m.yr
-1

. 

The velocity of connection has also an impact of the evolution of the distribution of landslide 

volume (Fig. 8). We here account for the volume changes as landslide are being evacuated by river 

sediment export. For the full connectivity case, the temporal evolution of the probability density 

function (pdf) of landslide volume, pdf(Vls), shows that landslides with volumes smaller than 10
3
 m

3
 

disappear from the distribution after only five years as they tend to have characteristic timescales 
 

𝑉𝑙𝑠/𝑄𝑡 < 1 year. Over longer durations, the remaining landslides tend towards the largest areas and the 

distribution shrinks towards these largest areas. There is however no change in the scaling of the tail 

of the pdf(Vls). For 𝑢𝑐𝑜𝑛 = 10 m.yr
-1

 the shape of the pdf is preserved during 50 years until the largest 

landslides start to dominate the long-term signal (Fig. 8b). Moreover, the slope of the tail of the pdf 

changes with time and becomes less steep. This occurs because of the parametrization of the initial 

connectivity in Equation (11) which favors the connection of large landslides and tend to preserve 

small landslides. For 𝑢𝑐𝑜𝑛  ≤ 1 m.yr
-1

, and probably also for lower values of 𝑢𝑐𝑜𝑛, the shape of the 

pdf is preserved through time. This occurs because only a very limited fraction of the landslide 

population is actively connected to the fluvial network, and most landslides are preserved within the 

mountain range. 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

25 

 

4.3 Upscaling to several seismic cycles 

In this section, we extend model duration to several seismic cycles. The scenario is chosen to 

mimic the response observed on the Alpine fault, i.e. a temporal series of 12 Mw = 7.9 mainshocks 

separated by recurrence period randomly sampled in the 263 +/- 68 years range (Fig. 9). The 

production of co-seismic landslides is slightly different for each mainshocks, because ofthe stochastic 

way in which Quakos simulates individual landslide areas and volumes, with a total volume ~0.45 m
3
 

and an average total number of landslides of 13000 on the West Coast.  

Each mainshock is followed by a series of aftershocks with magnitudes varying between 2.5 

and 7.5, some of which mobilise an additional volume of sediment. In most cases, the contribution of 

aftershocks is generally lower than that of mainshocks for two reasons: 1. they mobilize sediment 

volumes that are lower by 1 to 5 orders of magnitude (Fig. 9a) and 2. most of landslide-triggering 

aftershocks are quasi-synchronous with mainshocks and, therefore, the total sediment production is 

dominated by the one of the mainshock. Aftershocks occurring between two mainshocks, however, 

can have a visible impact on the sediment production as highlighted by the Mw 7.5 earthquake at 

~2000 years that mobilize sediment volumes comparable to the mainshocks.  
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Figure 9 | Temporal upscaling over several seismic cycles. a. Times series of earthquakes 

generated on the faults. It is characterised by a series of mainshocks of Mw = 7.9 followed by the 

sequences of aftershocks. The dot size and color are a function of the total volume of the landslide 

population (Vls,tot). The grey dots indicate earthquakes that have not triggered any landslides. b. 

Evolution of the remobilization fluxes. c. Evolution of the total volume of sediment mobilized by the 

successive earthquakes. Grey lines represent the mean sediment thickness that would be deposited on 

the total area affected by landsliding. d. Evolution of the number of landslides in the mountain range.  

Over the 12 seismic cycles, rivers are never able to export all the earthquake-mobilized 

sediment (Fig. 9c). Yet, they progressively reach a dynamic steady-state between new sources of 

sediment, because of landslide triggering during earthquakes, and sediment evacuation of all the 

previous generation of co-seismic landslides. The duration of the transient phase and the average 

volume of sediment remaining in the mountain at steady-state is controlled by 𝑢𝑐𝑜𝑛. For 𝑢𝑐𝑜𝑛 ≥ 10 

m.yr
-1

 the steady-state is reached after three seismic cycles with a sediment storage within the 

mountain range reaching a minimum of 10-20% of one Mw 7.9 earthquake worth of sediment. Most of 

the landslides are evacuated within one seismic cycle reaching a minimum of 50-100 landslides 

remaining in the catchments (Fig. 9d). For 𝑢𝑐𝑜𝑛  ≤ 1 m.yr
-1

, the earthquake-produced sediment 

progressively piles-up inside the mountain range, stored on hillslopes, until an equilibrium situation is 

reached after 1500 years in which only a small proportion of the newly triggered population is 

removed. In these cases, the sediment volume that is stored within the mountain range at the end of 
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each seismic cycle is equivalent to 120% (𝑢𝑐𝑜𝑛 = 1 m.yr
-1

) to 600% (𝑢𝑐𝑜𝑛 = 0.1 m.yr
-1

) of the average 

value of earthquake-triggered initial landslide volume. These cases are also characterized by the 

persistence of several thousands of landslides in the mountain range.  

  

 
Figure 10 | Landslide generations. a. For the Full connectivity case. b. For the case ucon = 1 m.yr

-1
. 

Notation: Ms: mainshocks. 

 

Figure 10 shows the repartition of landslides generation at the occurrence of each mainshocks. 

The repartition is dominated, unsurprisingly, by the i-th generation of landslides at the time of 

occurrence of the i-th mainshock. Despite that, the full connectivity case (Fig. 10a) shows that only a 

few landslides of early generations are preserved over tens of seismic cycles. This is illustrated by the 

presence of two landslides of the 1-th generation at the occurrence of the 12-th mainshock. Because 

no dynamic connectivity occurs in this case, this persistence is explained by rare landslides 

characterized by very low transport capacity and very high 𝑉𝑙𝑠/𝑄𝑡. For low velocities of connection 

(Fig. 10b), preservation of landslides over tens of seismic cycles becomes less exceptional. This is 

illustrated by the wide diversity of generations of landslides preserved when the last mainshock 

occurs. 
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Figure 11 | a. Time necessary to evacuate a landslide cluster as a function of mean annual runoff and 

connection velocity. Black lines represent a 𝑡𝑒𝑥𝑝 value of 25, 50 and 75 % of the duration of a seismic 

cycle. b. Relative importance of the two timescales controlling post-seismic landslide evacuation. 

Based on the results of Figure 9, we aim to define a representative export time of the sediment 

delivered by the whole population of earthquake-triggered landslides. This index is based on the two 

intrinsic timescales that are involved in these simulations: 1. the time, 𝑡ℎ𝑖𝑙𝑙, necessary to transfer 

landslide material from hillslopes to channels by dynamic connectivity and 2. the time, 𝑡𝑟𝑖𝑣,  

necessary to transport landslide sediment by the river network. 𝑡𝑟𝑖𝑣 is computed as the time necessary 

to remove 90% of the total landslide volume for different mean annual runoff intensity under the 

assumption that all the landslides are connected. 𝑡ℎ𝑖𝑙𝑙 is computed as the mean connection time of the 

whole landslide population: 

 𝑡ℎ𝑖𝑙𝑙 =  
∑ 𝑉𝑙𝑠,𝑗𝑡𝑐𝑜𝑛,𝑗

𝑁𝑙𝑠
𝑗=1

∑ 𝑉𝑙𝑠,𝑗
𝑁𝑙𝑠
𝑗=1

 (16) 

With 𝑁𝑙𝑠 the number of landslides, 𝑉𝑙𝑠,𝑗 and 𝑡𝑐𝑜𝑛,𝑗 the volume and connection time of the j-th 

landslide. We then compute the mean export time 𝑡𝑒𝑥𝑝 of the landslide population normalized by the 

average duration of the seismic cycle 𝑇𝑠−𝑐: 

𝑡𝑒𝑥𝑝 =
𝑡ℎ𝑖𝑙𝑙 + 𝑡𝑟𝑖𝑣

𝑇𝑠−𝑐
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The mean export time of the landslide population increases when decreasing the mean annual 

runoff and or the connection velocity 𝑢𝑐𝑜𝑛 (Fig. 11a). 𝑡𝑒𝑥𝑝 is lower than one seismic cycle for 𝑢𝑐𝑜𝑛 

greater than 2 m.yr
-1

, except when the mean annual runoff becomes close to 2 m.yr
-1

, the critical 

runoff below which no sediment transport occurs. For a mean annual runoff greater than 3 m.yr
-1

 and  

𝑢𝑐𝑜𝑛 lower than 2 m.yr
-1

, 𝑇𝑒𝑥𝑝 is almost independent of the mean annual runoff. For this regime 

sediment export is limited by connectivity as 𝑇ℎ𝑖𝑙𝑙 is greater than 𝑇𝑟𝑖𝑣 and the rivers are lacking 

sediments (Fig. 11b). This highlights the importance of hillslope processes in controlling the export 

time of a landslide population. When 𝑢𝑐𝑜𝑛 is greater than 10 m.yr
-1

, sediment export is limited by 

river transport as 𝑇ℎ𝑖𝑙𝑙 is lower than 𝑇𝑟𝑖𝑣 and the rivers are loaded by sediments. The limit between the 

connectivity- and transport-limited regimes tends towards lower values of 𝑢𝑐𝑜𝑛 when the mean annual 

runoff gets closer to its critical value around 2 m.yr
-1

.  

 

5. Discussion 

Our theoretical modelling approach emphasizes the need to integrate various processes 

involved in the production and routing of co-seismic landslide debris across several seismic cycles, 

partly at the expense of individual process complexity. An important novelty is the spatially explicit 

nature of peak ground acceleration, co-seismic landslide and transport, and the inclusion of important 

channel morphodynamic feedback occurring for large landslides. Yet, our model is based on several 

assumptions. We still have a rather limited understanding and/or lack of empirical data for three key 

processes: generation of co-seismic landslide, landslide connectivity and hillslope transfer, and river 

morphodynamics. Here, we discuss these limitations and highlight challenges to overcome. 

 

5.1 Generation of co-seismic landslides  

 Compilations of empirical datasets show that co-seismic landslide cluster properties (total 

volume, area and number) exhibit large variations which mainly depend on the tectonic forcing and 

the topographic properties of the affected mountain range (Tanyaş et al., 2017). Early work has shown 

that these properties are primarily correlated to earthquake magnitude (Keefer, 1994). Other studies 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

30 

 

have improved this analysis by accounting for seismological characteristics and important topographic 

attributes to provide a seismologically-consistent model (Marc et al., 2016). No theoretical 

framework, however, is robust enough to predict with accuracy what would be the properties (volume 

and localisation) of a landslide cluster for a future event. In our modelling approach, we build on the 

previous work by using a PGA-dependent model that also accounts for topographic properties to 

generate co-seismic landslide clusters. The novelty of this approach relies on predictions of 

spatialized landslide distributions within a mountain range while being consistent with previous 

empirical data and analytical model. An accurate prediction of landslide cluster properties is 

important because several components of the post-seismic sediment evacuation depend on them, i.e. 

the dependency of initial connectivity to landslide area and export time to landslide volume (see 

Supplementary Figure S2 and S4).  

In our approach, Quakos generates earthquake-triggered landslide clusters with a spatial 

density that linearly depends on PGA (Meunier et al., 2007). Slope, curvature, and distance from 

ridges are identified as other controlling parameters of landslide initiation (Meunier et al., 2008; 

Robinson et al., 2017; Tanyas et al., 2019). Yet, to date, no consensus exists on a theoretical 

framework to accurately predict the spatial distribution of earthquake-generated landslides 

(Reichenbach et al., 2018). A common theme of these assessments is that they rely primarily on the 

PGA patterns and have to be calibrated against a pre-existing partial co-seismic landslide catalogues. 

These are non-existent for the Alpine Fault. Accounting for more detailed model of landslide 

susceptibility would have an impact on the landslide distances to stream distribution and then on the 

dynamic connectivity. In addition, in our modelling approach the maximum value of the landslide 

density is limited by the transport capacity computed at the outlet of catchments. Indeed, the sum of 

sediment volume exported out of connected landslides within one catchment cannot be greater that the 

transport capacity at the catchment outlet.  

We have also assumed that the generation of co-seismic landslide is independent of the state 

of landslide export from previous events. This is a reasonable assumption in the transport-limited 

regime, but the accumulation of co-seismic material on hillslopes in the connectivity-limited regime 

may at some point reduce the likelihood of landsliding. Similarly, the reactivation of co-seismic 
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landslide is not accounted for in our approach (Marc et al., 2015) and may well contribute to further 

increase the release of debris in the channel network. 

 

 5.2 Evacuation of post-seismic landslide  

A better understanding of the mountain range response to a sudden increase in sediment 

supply requires new data on 1. the initial landslide connectivity, 2. the processes controlling the debris 

transport dynamics on hillslopes and rivers and 3. The export of river sediment, including the 

partitioning between the production of fine and coarse sediment and its implication on the subsequent 

sediment evacuation. We discuss these three main points in the following. 

 

5.2.1 Initial landslide connectivity 

At the landscape scale, our results highlight the role of initial connectivity on the modulation 

of the sediment evacuation and export fluxes during the first few years that follow earthquakes (Fig. 

7b). The assignment of an initial connectivity status to each landslide relies on only two empirical 

relationships between landslide area and connectivity (Li et al., 2016; Roback et al., 2018). The wide 

range of initial connectivity found in the literature, e.g. for earthquakes occurring in mountain ranges 

presenting different tectonic and climatic contexts, however, calls for a more systematic study of this 

process (Dadson et al., 2004; Li et al., 2016; West et al., 2011). The differences in tectonic and 

climatic settings lead to a variety of topographic configurations that could promote (or inhibit) initial 

connectivity and the subsequent sediment transfers from hillslope to channel. For instance, hillslope 

size, valley width, slope distribution, runoff distribution (frequency-magnitude) could all potentially 

impact the initial connectivity by controlling: 1. the abundance of large landslides with long runout, 

thus promoting a higher initial connectivity (see Supplementary Figure S2 and S3) 2. the distance 

required for the landslide to reach the nearest river and 3. the possibility of the river to erode vertically 

(narrow valleys) or horizontally the landslide deposits (wide valleys), the former being more efficient 

(Croissant et al., 2017).  
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5.2.2 Dynamic landslide connectivity 

Over centennial timescales, our modelling framework demonstrates that the distribution of 

connection times determines the efficiency at which earthquake-mobilized sediment is exported from 

a mountain range over a seismic cycle (Fig. 11). However, because of a lack of theoretical and 

empirical constraint, these results are based on a simple description of dynamic connectivity by a 

constant velocity which value varies on a large range encompassing two extreme behaviors. The ‘full-

connectivity’ scenario implies the injection of the totality of landslides immediately during the co-

seismic period leading to extremely high sediment fluxes. On the contrary, the lowest value of the 

connection velocities implies that most of the evacuated landslides are the one initially connected to 

the fluvial network, the remaining of the landslide population being stored on hillslopes during several 

seismic cycles. 

 Potentially, hillslope to channel material transfer could be described by more complex 

physical laws, such as a diffusion law (Roering et al., 2001) or transport laws relevant to colluvial 

processes (e.g., Lague and Davy, 2003). These laws would make the connection times dependent on 

the geometric properties of its path to the river (i.e. local slope) in addition of the distance to the 

stream. It would affect the distribution of connection times and therefore the dynamic of post-seismic 

landslide evacuation (see Supplementary Fig S6 and S7).  However, mean climate variables 

(precipitation, temperature, vegetation growth, storms and co-seismic reactivation, remain difficult to 

include in these geomorphic laws. These limitations call for a better description of this process based 

on a more extensive collection of empirical data (Fan et al., 2018).  

Given the large spatial scales (i.e. > 100 km) and the difficulties of measuring total sediment 

fluxes (i.e. suspended plus bedload) in the field, remote sensing is well-suited to track the post-

seismic evolution of sediment masses (Scaioni et al., 2014). This can benefit from a variety of 

techniques to investigate landscape evolution in 2D (satellite imagery) and 3D (e.g., photogrammetry, 

laser scanning) and, thus, aim toward a detailed quantification of the system through time (Cook et al., 

2018; Fan et al., 2018a; Jaboyedoff et al., 2012). An important issue over centennial timescales is a 

better understanding of the contribution of rare events to long-term dynamics. As remote sensing only 

gives a first order quantification of sediment mass transfer, a full understanding of the processes 
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controlling debris transport on steep hillslopes requires systematic monitoring of other variables such 

as precipitation, local gradient and slope self-healing processes, such as vegetation growth and grain 

coarsening (Fan et al., 2018a; Fan et al., 2018b; Zhang et al., 2016). The numerical modelling 

framework here could be adapted based on such observations, and help calibrate the transport laws 

which allow experiments to run over multiple seismic cycles. 

 

5.2.3 River morphodynamics and sediment export 

    The Quakos post-seismic evacuation model relies on Eros simulation results and, therefore, shares 

its limitations. The Eros model contains the physical components required to simulate the feedbacks 

between a river flow, its geometry and transport capacity, in particular when large supplies of 

sediment are considered (Croissant et al., 2017; Davy et al., 2017). As with any numerical model, 

Eros contains simplifications. For instance, the description of the landslide deposit and its erosion is 

lacking some processes. Once incised, the landslide deposit is not subjected to gravitational forces. 

Therefore, it does not respect a specific angle of repose typical of non-cohesive granular material 

(Cantelli et al., 2004; Carrigy, 1970). Additionally, water seepage through the landslide deposit could 

also structurally weaken the deposit (Hovius et al., 1998; Meyer et al., 1994). Accounting for these 

two processes might lead to more efficient lateral erosion of the deposit during its vertical incision, or 

lead to landslide dam mechanical failure. Ultimately, this would promote a higher sediment removal 

efficiency in Quakos. Contrary to Eros, Quakos does not provide ‘real’ sediment fluxes as the 

assumption implied in the treatment of sediment evacuation is similar to a detachment-limited model, 

i.e. once the sediment is entrained it is exported out of the catchment (Whipple & Tucker, 1999). This 

neglects the role of the deposition and re-entrainment of coarse sediments and the possibility that 

sediment can be stored in mountain valleys and in terrace fills (Pearce & Watson, 1986; Schwanghart 

et al., 2016). The remobilization fluxes can be used, however, as a proxy of the expected amplitude 

and duration of sediment fluxes at catchment outlets when subjected to large sedimentary forcing.  

To simplify computations, we use a median grain size descriptors for the sediment transport 

law, whereas grain size distributions are more complex, i.e. from fine particles to boulders. The 

partitioning between fine and coarse particles and their spatial organisation remains poorly known. It 
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is a critical element to constrain because 1) different timescales are expected for the sediment export 

by bedload and suspended load (Hovius et al., 2011; Yanites et al., 2010; Croissant et al., 2017), 2) 

the proportion of coarse material has an impact on hydro-sedimentary hazards as it propagates 

downstream (see next section) and 3) the relative proportion of sand at the subsurface has an impact 

on the transport rate of coarser sediment (Parker, 1990; Wilcock & Crowe, 2003). Accounting for a 

more complete grain size distribution (GSD) in transport models is an important next step to more 

fully describe the processes at play in landslide evacuation (Cook et al., 2018; Finnegan et al., 2018). 

It is also relevant  to compare model predictions to sedimentary archives of past responses of 

earthquakes in mountain ranges (e.g. Howarth et al., 2012). Linked to this issue, determining the GSD 

of co-seismic debris is an essential step, for which new extensive data may now be extracted from 3D 

remote sensing techniques (e.g. Steer et al., 2016).  

As for the mobilisation of landslide deposits, the role of storms of varying frequency and 

magnitude should be better addressed. If a more complete GSD is included in a model, it should be 

accompanied by the frequency-magnitude distribution of floods because that will modulate the 

entrainment of different grainsizes relative to one another. In addition, large floods may promote the 

removal of landslide deposits by lateral channel migration and influence the connectivity between the 

river and landslide deposits. In a modelling framework, such as Quakos, the threshold mean annual 

runoff of 2 m.yr
-1

 below which no transfer occurs is a limitation of applying a constant effective 

discharge (Lague, 2014). The use of an effective discharge and a median grain size comes with the 

inconvenience that for large D50 values, sediment transport is inhibited leading to the unrealistic 

scenario of infinite sediment storage, A full-stochastic modelling approach, however, would predict 

sediment transport below runoffs of 2 m.yr
-1

, albeit at a reduced rate, because of the action of 

infrequent very large floods. To go beyond the limitations of the constant effective discharge 

approach, a new generation of numerical models, driven by stochastic hydrologic forcing, need to be 

developed  to predict channel morphodynamics at timescales up to several thousands of years. 

 

5.2.4 Upscaling  
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Given the return time of large earthquakes (classically several hundred years), current empirical 

observations can only resolve a small fraction of the duration of a seismic cycle. Other approaches, 

such as geochronological dating (Wang et al., 2017), detrital thermochronology (West et al., 2014), 

source-to-sink analysis (Howarth et al., 2012) and sediment tracking using organic and inorganic 

clasts (Frith et al., 2018; Nibourel et al., 2015), can offer complementary and more integrative 

information. Landscape evolution modelling is, therefore, a useful tool to explore the dynamics of 

mountain ranges over long time scales, provided that they can benefit from the aforementioned data 

collection.  

A successful application of such a modelling approach would give insights on several 

fundamental questions regarding the dynamics of mountain ranges over short time scales. First, how 

co-seismic debris impacts spatial and temporal bedrock incision patterns is still poorly understood. A 

large and sudden sediment supply can have a dual effect: locally protecting the bedrock from particle 

impacts, while providing tools for downstream incision (Lamb et al., 2008;). In that sense, the rates of 

sediment supply from hillslopes to channels seem to be important. A low velocity of connection 

would slowly release the material with time, potentially enhancing the tool effect. On the contrary, a 

high increase of sediment supply could lead to alluviation of the river channels and inhibit the vertical 

erosion of the bedrock (Lague, 2010; Turowski et al., 2007). This calls for a new approach to bedrock 

river incision dynamics at the scale of the seismic cycle, one which includes elements of bank erosion 

and the lateral mobility of river (e.g., Cook et al., 2016) and the emergence of channel width 

(Croissant et al., 2017). Secondly, several studies have hypothesised the potential destructive role of 

earthquakes, i.e. the erosive action of a seismic event could be superior to the material influx brought 

by surface uplift (Li et al., 2014; Marc et al., 2016; Parker et al., 2011). The full mass budget of 

earthquakes (erosion versus uplift), however, can only be estimated if the post-seismic timescale of 

sediment evacuation is known. The scarcity of studies on this matter means that the potential 

destructive effect of earthquakes remains uncertain.  

 

5.3 Earthquake-associated hazards 
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The model Quakos developed in this study integrates three types of potential hazards. Two of 

them describe the primary hazards related to the co-seismic phase with the prediction of PGA and 

landsliding patterns and as a function of magnitude and fault geometry. The third involves the hydro-

sedimentary hazards linked to large increases in sediment supply and removal in the drainage 

network. As such, Quakos can be used as a tool to identify critical areas that could be subjected to a 

series of hazards in co- and post-seismic periods.  

Whereas co-seismic areas has generally received the highest attention, the sediment mass 

movement in the following years after the earthquakes is also of importance. The downstream 

propagation of landslide-derived coarse sediment can trigger a series of potential hydro-sedimentary 

hazards in alluvial fans, such as, riverbed aggradation, river avulsion, bank erosion and increased 

frequency of inundation (Hancox et al., 2005; Korup et al., 2004; Robinson & Davies, 2013). Previous 

work has shown that alluvial fan response to large sediment supply is highly sensitive to sediment 

concentration and the total volume of bedload sediment feeding the fan (Croissant et al, 2017b). 

Therefore, the river’s ability to remobilize sediment immediately after an earthquake controls how the 

fans will respond to the supply. Our results show that the initial and dynamic landslide connectivity, 

as well as the evacuation of sediments by rivers, control the amplitude of sediment fluxes and delivery 

of catchments to the alluvial plains (Fig. 7d). Every scenario considered in this work presents high 

fluxes during the first few years after the seismic event. During this time, the fluxes are controlled by 

the proportions of landslides initially connected to the rivers. After this period, the connection 

velocity controls the temporal persistence and level of hazards. Fast connection velocities promote 

short-lived but high-amplitude sediment fluxes. On the contrary, slower connection velocities see a 

gradual release of sediment at lower rates but over a longer period. Immediate post-seismic risk 

mitigation plans should, therefore, consider the initial degree of connectivity of sediment sources. 

Analyses of the mechanisms controlling the velocity of landslide deposit connection are also critical 

to determine the risk susceptibility of a specific area.  

One feature that is not considered in this work, but that has a large hazard potential, is the 

formation and failure of dams (Costa & Schuster, 1988; T. R. Davies et al., 2007; Korup, 2005a). 

Dam break can cause tremendous damage and geomorphic changes in their downstream pathway, 
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including on alluvial fans (Cook et al., 2018; Hancox et al., 2005b).The inclusion of this process in a 

long-term landscape evolution modelling framework, however, is still a difficult task and we often 

have to rely on event-based approach (Croissant et al., 2017; Davies et al., 2007; Davies & Korup, 

2007). 

 

Conclusion 

 In this paper, we study the post-seismic dynamics of rivers in the aftermath of a large 

injection of sediment by landslides. We first use a 2D modelling framework at the reach-scale to 

develop a model of the sediment export of a population of landslides over the scale of a fault rupture. 

This spatially explicit reduced-complexity approach is justified by the high computational cost of 

numerical simulation of river morphodynamics if applied over large areas for decades or longer. 

 Our 2D morphodynamic modeling shows that the overall evacuation of landslide deposits are 

not significantly affected by the upstream sediment feed from other landslides. We then use the Eros 

modeling results to develop a generic way to predict landslide evacuation for a range of 𝑉𝑙𝑠/𝑄𝑡 values. 

This allows us to account for the morphodynamic adaptation of rivers to the injection of landslide 

debris, without having to describe the width and slope evolution explicitly. 

At the mountain range scale, our newly developed model Quakos is applied to infer post-seismic 

sediment fluxes. For the co-seismic stage, Quakos produces a distribution of earthquake-triggered 

landslide volumes in the landscape, informed by empirical laws. Landslide debris is removed, but 

only when landslides are connected to river channels. We introduce a connection velocity by which 

debris on hillslopes migrates to river channels over time.  Our results show that the post-seismic 

sediment transfers are strongly modulated by dynamic connectivity of landslide sediment to the 

drainage network and the mobilization of co-seismic debris on hillslopes. Two regimes are identified: 

- a transport-limited regime in which the connectivity velocity only affects the transient 

sediment evacuation during a seismic cycle. In this regime, most of the sediment is 

evacuated within a seismic cycle and the duration of landslide evacuation only depends 

on the capacity of rivers to transport the co-seismic debris. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

38 

 

- a connectivity-limited regime in which landsides debris moves slowly on hillslopes 

compared to the return time of a large earthquake. In this regime, a small fraction of 

landslides are exported during a seismic cycle, and co-seismic debris can progressively 

build up in the landscape. A dynamic equilibrium is ultimately reach after a transient 

period whose duration depends on the connection velocity of the landslides. At this stage, 

the sediment flux leaving the mountain range during a seismic cycle equals the co-seismic 

sediment production. 

For instance, our results suggest that the Southern Alps of New Zealand are likely to be in 

connectivity-limited conditions, for connection velocities less than 10 m.yr
-1

. 

The theoretical framework developed here is a first attempt to bridge the gap between the 

timescales of earthquake occurrence and sediment evacuation over seismic cycles. It opens up new 

research directions to better understand the residence time of co-seismic debris in the landscape, and 

the rejuvenation of hillslope surfaces with implications for post-seismic organic carbon mobilization 

and transfer (Frith et al., 2018), weathering fluxes from landslide deposits (Emberson et al., 2016b), 

hydro-sedimentary hazards (Croissant et al., 2017) and the interpretation of sedimentary archives 

(Howarth et al., 2012).   

Overall, this paper points towards the lack of information and physical description of the transfers 

of sediment from hillslopes to river channels and calls for intensifying empirical study, including 

long-term monitoring, and the development of spatially explicit numerical models accounting for 

stochastic forcing and multiple grain size.  

 

Acknowledgments 

T.C., P.S. and L.J. acknowledge supports by the EROQUAKE project funded by the Agence 

Nationale de la Recherche (ANR-14-CE33-0005) and by the Region Bretagne. D.L. acknowledge 

support by CNRS/INSU/ALEAS project SEDIQUAKE. R.G.H. was supported by a NERC Standard 

Grant (NE/P013538/1). We thank the two reviewers whose comments and corrections helped to 

improve the quality of our manuscript. Discussions with Jamie Howarth and Alexander Densmore 

were greatly appreciated. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

39 

 

 

Authors contribution 

All authors contributed equally to the design of the study and the writing of the paper. T.C. designed 

and performed the simulations and processed their results. T.C., P.S. developed the Quakos model. 

P.D. developed the Eros morphodynamic model.  

 

Code availability 

The code, Eros, used to generate the morphodynamic simulations can be accessed at https://osur.univ-

rennes1.fr/eros/. The source code can be obtained by making an inquiry to P.D. (philippe.davy@univ-

rennes1.fr). The code, Quakos, can be obtained by making an inquiry to T.C. or P.S. 

 

References 

Benda, L., & Dunne, T. (1997). Stochastic forcing of sediment supply to channel networks from 

landsliding and debris flow. Water Resources Research, 33(12), 2849–2863. 

https://doi.org/10.1029/97WR02388 

Berryman, K. R., Cochran, U. A., Clark, K. J., Biasi, G. P., Langridge, R. M., & Villamor, P. (2012). 

Major Earthquakes Occur Regularly on an Isolated Plate Boundary Fault. Science, 336(6089), 

1690–1693. https://doi.org/10.1126/science.1218959 

Campbell, K. W., & Bozorgnia, Y. (2008). NGA ground motion model for the geometric mean 

horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for 

periods ranging from 0.01 to 10 s. Earthquake Spectra, 24(1), 139–171. 

https://doi.org/10.1193/1.2857546 

Cantelli, A., Paola, C., & Parker, G. (2004). Experiments on upstream-migrating erosional narrowing 

and widening of an incisional channel caused by dam removal. Water Resources Research, 

40(3), 1–12. https://doi.org/10.1029/2003WR002940 

Carrigy, M. A. (1970). EXPERIMENTS ON THE ANGLES OF REPOSE OF GRANULAR 

MATERIALS1. Sedimentology, 14(3–4), 147–158. https://doi.org/10.1111/j.1365-

3091.1970.tb00189.x 

Cochran, U. A., Clark, K. J., Howarth, J. D., Biasi, G. P., Langridge, R. M., Villamor, P., … 

Vandergoes, M. J. (2017). A plate boundary earthquake record from a wetland adjacent to the 

Alpine fault in New Zealand refines hazard estimates. Earth and Planetary Science Letters, 464, 

175–188. https://doi.org/10.1016/j.epsl.2017.02.026 

Cook, K. L., Andermann, C., Gimbert, F., Adhikari, B. R., & Hovius, N. (2018). Glacial lake outburst 

floods as drivers of fluvial erosion in the Himalaya. Science, 362(6410), 53–57. 

https://doi.org/10.1126/science.aat4981 

Costa, J. E., & Schuster, R. L. (1988). Formation and Failure of Natural Dams. Bulletin of the 

Geological Society of America. https://doi.org/10.1130/0016-

7606(1988)100<1054:TFAFON>2.3.CO 

Croissant, T., Lague, D., Steer, P., & Davy, P. (2017). Rapid post-seismic landslide evacuation 

boosted by dynamic river width. Nature Geoscience, 10(9), 680–684. 

https://doi.org/10.1038/ngeo3005 

Croissant, T., Lague, D., Davy, P., Davies, T., & Steer, P. (2017). A precipiton-based approach to 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

40 

 

model hydro-sedimentary hazards induced by large sediment supplies in alluvial fans. Earth 

Surface Processes and Landforms. https://doi.org/10.1002/esp.4171 

Cui, Y., Parker, G., Pizzuto, J., & Lisle, T. E. (2003). Sediment pulses in mountain rivers: 2. 

Comparison between experiments and numerical predictions. Water Resources Research, 39(9), 

1–11. https://doi.org/10.1029/2002WR001805 

Cui, Y., & Parker, G. (2005). Numerical Model of Sediment Pulses and Sediment-Supply 

Disturbances in Mountain Rivers. Journal of Hydraulic Engineering, 131(8), 646–656. 

https://doi.org/10.1061/(ASCE)0733-9429(2005)131:8(646) 

Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J. C., Hsu, M. L., … Stark, C. P. (2004). 

Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology, 

32(8), 733–736. https://doi.org/10.1130/G20639.1 

Davies, T. R., Manville, V., Kunz, M., & Donadini, L. (2007). Modeling Landslide Dambreak Flood 

Magnitudes: Case Study. Journal of Hydraulic Engineering, 133(July), 713–720. 

https://doi.org/10.1061/(ASCE)0733-9429(2007)133:7(713) 

Davies, T. R. H., & Korup, O. (2007). Persistent alluvial fanhead trenching resulting from large, 

infrequent sediment inputs. Earth Surface Processes and Landforms, 32(5), 725–742. 

https://doi.org/10.1002/esp.1410 

Davy, P., & Lague, D. (2009). Fluvial erosion/transport equation of landscape evolution models 

revisited. Journal of Geophysical Research: Solid Earth, 114(3), 1–16. 

https://doi.org/10.1029/2008JF001146 

Davy, P., Croissant, T., & Lague, D. (2017). A precipiton method to calculate river hydrodynamics, 

with applications to flood prediction, landscape evolution models, and braiding instabilities. 

Journal of Geophysical Research: Earth Surface, 122(8), 1491–1512. 

https://doi.org/10.1002/2016JF004156 

Emberson, R., Hovius, N., Galy, A., & Marc, O. (2016a). Chemical weathering in active mountain 

belts controlled by stochastic bedrock landsliding. Nature Geoscience, 9(1), 42–45. 

https://doi.org/10.1038/ngeo2600 

Emberson, R., Hovius, N., Galy, A., & Marc, O. (2016b). Oxidation of sulfides and rapid weathering 

in recent landslides. Earth Surface Dynamics, 4(3), 727–742. https://doi.org/10.5194/esurf-4-

727-2016 

Fan, X., Domènech, G., Scaringi, G., Huang, R., Xu, Q., Hales, T. C., … Francis, O. (2018). Spatio-

temporal evolution of mass wasting after the 2008 Mw 7.9 Wenchuan earthquake revealed by a 

detailed multi-temporal inventory. Landslides, 15(12), 2325–2341. 

https://doi.org/10.1007/s10346-018-1054-5 

Fan, X., Juang, C. H., Wasowski, J., Huang, R., Xu, Q., Scaringi, G., … Havenith, H. B. (2018). What 

we have learned from the 2008 Wenchuan Earthquake and its aftermath: A decade of research 

and challenges. Engineering Geology, 241(May), 25–32. 

https://doi.org/10.1016/j.enggeo.2018.05.004 

Finnegan, N. J., Broudy, K. N., Nereson, A. L., Roering, J. J., Alexander, L., & Bennett, G. (2018). 

Fluvial boulder transport controls valley blocking by earthflows in the California Coast Range , 

USA ., (October), 1–35. 

Frith, N. V., Hilton, R. G., Howarth, J. D., Gröcke, D. R., Fitzsimons, S. J., Croissant, T., … 

Densmore, A. L. (2018). Carbon export from mountain forests enhanced by earthquake-

triggered landslides over millennia. Nature Geoscience, 11(10), 772–776. 

https://doi.org/10.1038/s41561-018-0216-3 

Gallen, S. F., Clark, M. K., & Godt, J. W. (2015). Coseismic landslides reveal near-surface rock 

strength in a highrelief, tectonically active setting. Geology, 43(1), 11–14. 

https://doi.org/10.1130/G36080.1 

Hancox, G. T., McSaveney, M. J., Manville, V. R., & Davies, T. R. (2005a). The october 1999 mt 

adams rock avalanche and subsequent landslide dam-break flood and effects in poerua river, 

Westland, New Zealand. New Zealand Journal of Geology and Geophysics, 48(4), 683–705. 

https://doi.org/10.1080/00288306.2005.9515141 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

41 

 

Hancox, G. T., McSaveney, M. J., Manville, V. R., & Davies, T. R. (2005b). The october 1999 mt 

adams rock avalanche and subsequent landslide dam-break flood and effects in poerua river, 

Westland, New Zealand. New Zealand Journal of Geology and Geophysics. 

https://doi.org/10.1080/00288306.2005.9515141 

Helmstetter, A., & Sornette, D. (2003). Predictability in the Epidemic-Type Aftershock Sequence 

model of interacting triggered seismicity. Journal of Geophysical Research: Solid Earth, 

108(B10). https://doi.org/10.1029/2003JB002485 

Hovius, N., Stark, C. P., Tutton, M. A., & Abbott, L. D. (1998). Landslide-driven drainage network 

evolution in a pre-steady-state mountain belt: Finisterre Mountains, Papua New Guinea. 

Geology, 26(12), 1071–1074. https://doi.org/10.1130/0091-

7613(1998)026<1071:LDDNEI>2.3.CO;2 

Hovius, N., Stark, C. P., & Allen, P. A. (1997). Sediment flux from a mountain belt derived by 

landslide mapping. Geology, 25(3), 231. https://doi.org/10.1130/0091-

7613(1997)025<0231:SFFAMB>2.3.CO;2 

Hovius, N., Stark, C. P., Hao‐ Tsu, C., & Jiun‐ Chuan, L. (2000). Supply and Removal of Sediment 

in a Landslide Dominated Mountain Belt: Central Range, Taiwan. The Journal of Geology, 

108(1), 73–89. https://doi.org/10.1086/314387 

Hovius, N., Meunier, P., Lin, C. W., Chen, H., Chen, Y. G., Dadson, S., … Lines, M. (2011). 

Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth and 

Planetary Science Letters, 304(3–4), 347–355. https://doi.org/10.1016/j.epsl.2011.02.005 

Howarth, J. D., Fitzsimons, S. J., Norris, R. J., & Jacobsen, G. E. (2012). Lake sediments record 

cycles of sediment flux driven by large earthquakes on the Alpine fault, New Zealand. Geology, 

40(12), 1091–1094. https://doi.org/10.1130/G33486.1 

Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.-H., Loye, A., Metzger, R., & Pedrazzini, A. 

(2012). Use of LIDAR in landslide investigations: a review. Natural Hazards, 61(1), 5–28. 

https://doi.org/10.1007/s11069-010-9634-2 

Jin, Z., West, A. J., Zhang, F., An, Z., Hilton, R. G., Yu, J., … Li, G. (2016). Seismically enhanced 

solute fluxes in the Yangtze River headwaters following the A . D . 2008 Wenchuan earthquake, 

44(1), 1–4. https://doi.org/10.1130/G37246.1 

Keefer, D. K. (1984). Landslide causeb by earthquakes. GSA Bulletin. 

Keefer, D. K. (1994). The importance of earthquake-induced landslides to long-term slope erosion 

and slope-failure hazards in seismically active regions. Geomorphology, 10(1–4), 265–284. 

https://doi.org/10.1016/0169-555X(94)90021-3 

Keefer, D. K. (1999). Earthquake-induced landslides and their effects on alluvial fans. Journal of 

Sedimentary Research, 69(1), 84–104. https://doi.org/10.2110/jsr.69.84 

Korup, O. (2005a). Geomorphic hazard assessment of landslide dams in South Westland, New 

Zealand: Fundamental problems and approaches. Geomorphology, 66(1–4 SPEC. ISS.), 167–

188. https://doi.org/10.1016/j.geomorph.2004.09.013 

Korup, O. (2005b). Large landslides and their effect on sediment flux in South Westland, New 

Zealand. Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.1143 

Korup, O., McSaveney, M. J., & Davies, T. R. H. (2004). Sediment generation and delivery from 

large historic landslides in the Southern Alps, New Zealand. Geomorphology, 61(1–2), 189–207. 

https://doi.org/10.1016/j.geomorph.2004.01.001 

Korup, O., Densmore, A. L., & Schlunegger, F. (2010). The role of landslides in mountain range 

evolution. Geomorphology, 120(1–2), 77–90. https://doi.org/10.1016/j.geomorph.2009.09.017 

Lague, D. (2010). Reduction of long-term bedrock incision efficiency by short-term alluvial cover 

intermittency. Journal of Geophysical Research, 115(2), 1–23. 

https://doi.org/10.1029/2008JF001210 

Lague, D. (2014). The stream power river incision model: Evidence, theory and beyond. Earth 

Surface Processes and Landforms, 39(1), 38–61. https://doi.org/10.1002/esp.3462 

Lague, D., Hovius, N., & Davy, P. (2005). Discharge, discharge variability, and the bedrock channel 

profile. Journal of Geophysical Research, 110(F04006). https://doi.org/10.1029/2004JF000259 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

42 

 

Lamb, M. P., Dietrich, W. E., & Sklar, L. S. (2008). A model for fluvial bedrock incision by 

impacting suspended and bed load sediment. Journal of Geophysical Research: Earth Surface, 

113(3), 1–18. https://doi.org/10.1029/2007JF000915 

Larsen, I. J., Montgomery, D. R., & Korup, O. (2010). Landslide erosion controlled by hillslope 

material. Nature Geoscience, 3(4), 247–251. https://doi.org/10.1038/ngeo776 

Leonard, M. (2010). Earthquake fault scaling: Self-consistent relating of rupture length, width, 

average displacement, and moment release. Bulletin of the Seismological Society of America, 

100(5 A), 1971–1988. https://doi.org/10.1785/0120090189 

Li, G., West, A. J., Densmore, A. L., Jin, Z., Parker, R. N., & Hilton, R. G. (2014). Seismic mountain 

building: Landslides associated with the 2008 Wenchuan earthquake in the context of a 

generalized model for earthquake volume balance. Geochemistry, Geophysics, Geosystems, 

15(4), 833–844. https://doi.org/10.1002/2013GC005067 

Li, G., West, A. J., Densmore, A. L., Hammond, D. E., Jin, Z., Zhang, F., … Hilton, R. G. (2016). 

Connectivity of earthquake-triggered landslides with the fluvial network: Implications for 

landslide sediment transport after the 2008 Wenchuan earthquake. Journal of Geophysical 

Research: Earth Surface, 121(4), 703–724. https://doi.org/10.1002/2015JF003718 

Lisle, T. E., Cui, Y., Parker, G., Pizzuto, J. E., & Dodd, A. M. (2001). The Dominance of Dispersion 

in the Evoluation of Bed Material Waves in Gravel -Bed Rivers. Earth Surface Processes and 

Landforms, 26, 1409–1420. https://doi.org/10.1002/esp.300 

Lucas, A., Mangeney, A., & Ampuero, J. P. (2014). Frictional velocity-weakening in landslides on 

Earth and on other planetary bodies. Nature Communications, 5, 1–9. 

https://doi.org/10.1038/ncomms4417 

Malamud, B. D., Turcotte, D. L., Guzzetti, F., & Reichenbach, P. (2004a). Landslide inventories and 

their statistical properties. Earth Surface Processes and Landforms, 29(6), 687–711. 

https://doi.org/10.1002/esp.1064 

Malamud, B. D., Turcotte, D. L., Guzzetti, F., & Reichenbach, P. (2004b). Landslides, earthquakes, 

and erosion. Earth and Planetary Science Letters, 229(1–2), 45–59. 

https://doi.org/10.1016/j.epsl.2004.10.018 

Marc, O., Hovius, N., Meunier, P., Uchida, T., & Hayashi, S. (2015). Transient changes of landslide 

rates after earthquakes. Geology, 43(10), 883–886. https://doi.org/10.1130/G36961.1 

Marc, O., Hovius, N., & Meunier, P. (2016). The mass balance of earthquakes and earthquake 

sequences. Geophysical Research Letters, 43(8), 3708–3716. 

https://doi.org/10.1002/2016GL068333 

Marc, O., Hovius, N., Meunier, P., Gorum, T., & Uchida, T. (2016). A seismologically consistent 

expression for the total area and volume of earthquake-triggered landsliding. Journal of 

Geophysical Research: Earth Surface, 121(4), 640–663. https://doi.org/10.1002/2015JF003732 

Métivier, F., Lajeunesse, E., & Devauchelle, O. (2017). Laboratory rivers: Lacey’s law, threshold 

theory, and channel stability. Earth Surface Dynamics, 5(1), 187–198. 

https://doi.org/10.5194/esurf-5-187-2017 

Meunier, P., Hovius, N., & Haines, A. J. (2007). Regional patterns of earthquake-triggered landslides 

and their relation to ground motion. Geophysical Research Letters, 34(20), 1–5. 

https://doi.org/10.1029/2007GL031337 

Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of 

earthquake induced landslides. Earth and Planetary Science Letters, 275(3–4), 221–232. 

https://doi.org/10.1016/j.epsl.2008.07.020 

Meyer-Peter, E., & Müller, R. (1948). Formulas for Bed-Load Transport. Proceedings of the 2nd 

Meeting of the International Association of Hydraulic Research, 39–64. https://doi.org/1948-06-

07 

Meyer, W., Schuster, R. L., & Sabol, M. A. (1994). Potential for Seepage Erosion of Landslide Dam. 

Journal of Geotechnical Engineering, 120(7), 1211–1229. https://doi.org/10.1061/(ASCE)0733-

9410(1994)120:7(1211) 

Nibourel, L., Herman, F., Cox, S. C., Beyssac, O., & Lavé, J. (2015). Provenance analysis using 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

43 

 

Raman spectroscopy of carbonaceous material: A case study in the Southern Alps of New 

Zealand, 1–24. https://doi.org/10.1002/2015JF003541.Received 

Norris, R. J., Koons, P. O., & Cooper, A. F. (1990). The obliquely-convergent plate boundary in the 

South Island of New Zealand : implications for ancient collision zones. Journal of Structural 

Geology, 12(5), 715–725. 

Ouimet, W. (2011). The hills came tumbling down. Nature Geoscience, 4(7), 424–425. 

Parker, G. (1990). Surface-based bedload transport relation for gravel rivers. Journal of Hydraulic 

Research, 28(4), 417–436. https://doi.org/10.1080/00221689009499058 

Parker, R. N., Densmore, A. L., Rosser, N. J., de Michele, M., Li, Y., Huang, R., … Petley, D. N. 

(2011). Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic 

growth. Nature Geoscience, 4(7), 449–452. https://doi.org/10.1038/ngeo1154 

Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., & Guzzetti, F. (2018). A review of 

statistically-based landslide susceptibility models. Earth-Science Reviews, 180(November 2017), 

60–91. https://doi.org/10.1016/j.earscirev.2018.03.001 

Roback, K., Clark, M. K., West, A. J., Zekkos, D., Li, G., Gallen, S. F., … Godt, J. W. (2018). The 

size, distribution, and mobility of landslides caused by the 2015 M w 7.8 Gorkha earthquake, 

Nepal. Geomorphology, 301, 121–138. https://doi.org/10.1016/j.geomorph.2017.01.030 

Robinson, T. R., Rosser, N. J., Densmore, A. L., Williams, J. G., Kincey, M. E., Benjamin, J., & Bell, 

H. J. A. (2017). Rapid post-earthquake modelling of coseismic landslide intensity and 

distribution for emergency response decision support. Natural Hazards and Earth System 

Sciences, 17(9), 1521–1540. https://doi.org/10.5194/nhess-17-1521-2017 

Robinson, T. R., & Davies, T. R. H. (2013). Review Article: Potential geomorphic consequences of a 

future great (Mw Combining double low line 8.0+) Alpine Fault earthquake, South Island, New 

Zealand. Natural Hazards and Earth System Sciences, 13(9), 2279–2299. 

https://doi.org/10.5194/nhess-13-2279-2013 

Robinson, T. R., Davies, T. R. H., Wilson, T. M., & Orchiston, C. (2016). Coseismic landsliding 

estimates for an Alpine Fault earthquake and the consequences for erosion of the Southern Alps, 

New Zealand. Geomorphology, 263, 71–86. https://doi.org/10.1016/j.geomorph.2016.03.033 

Roering, J. J., Kirchner, J. W., Sklar, L. S., & Dietrich, W. E. (2001). Hillslope evolution by nonlinear 

creep and landsliding: An experimental study. Geology, 29(2), 143–146. 

https://doi.org/10.1130/0091-7613(2001)029<0143:HEBNCA>2.0.CO;2 

Scaioni, M., Longoni, L., Melillo, V., & Papini, M. (2014). Remote Sensing for Landslide 

Investigations: An Overview of Recent Achievements and Perspectives. Remote Sensing, 6(10), 

9600–9652. https://doi.org/10.3390/rs6109600 

Schwanghart, W., & Scherler, D. (2014). Short Communication: TopoToolbox 2 - MATLAB-based 

software for topographic analysis and modeling in Earth surface sciences. Earth Surface 

Dynamics, 2(1), 1–7. https://doi.org/10.5194/esurf-2-1-2014 

Shcherbakov, R., Turcotte, D. L., & Rundle, J. B. (2004). A generalized Omori’s law for earthquake 

aftershock decay. Geophysical Research Letters, 31(11), 1–5. 

https://doi.org/10.1029/2004GL019808 

Sklar, L. S., Fadde, J., Venditti, J. G., Nelson, P., Aleksandra Wydzga, M., Cui, Y., & Dietrich, W. E. 

(2009). Translation and dispersion of sediment pulses in flume experiments simulating gravel 

augmentation below dams. Water Resources Research, 45(8), 1–14. 

https://doi.org/10.1029/2008WR007346 

Steer, P., Lague, D., Gourdon, A., Croissant, T., & Crave, A. (2016). 3D granulometry: grain-scale 

shape and size distribution from point cloud dataset of river environments. In EGU General 

Assembly. 

Sutherland, D. G., Ball, M. H., Hilton, S. J., & Lisle, T. E. (2002). Evolution of a landslide-induced 

sediment wave in the Navarro River, California. Bulletin of the Geological Society of America, 

114(8), 1036–1048. https://doi.org/10.1130/0016-7606(2002)114<1036:EOALIS>2.0.CO;2 

Tait, A., & Zheng, X. (2007). Analysis of the Spatial Interpolation Error associated with Maps of 

Median Annual Climate Variables. National Institute of Water & Atmospheric Research, (May). 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

44 

 

Tanyaş, H., van Westen, C. J., Allstadt, K. E., Anna Nowicki Jessee, M., Görüm, T., Jibson, R. W., … 

Hovius, N. (2017). Presentation and Analysis of a Worldwide Database of Earthquake-Induced 

Landslide Inventories. Journal of Geophysical Research: Earth Surface, 122(10), 1991–2015. 

https://doi.org/10.1002/2017JF004236 

Tanyas, H., Rossi, M., Alvioli, M., van Westen, C. J., Marchesini, I., Westen, C. J. Van, & 

Marchesini, I. (2019). A global slope unit-based method for the near real-time prediction of 

earthquake-induced landslides. Geomorphology, 327, #pagerange#. 

https://doi.org/10.1016/j.geomorph.2018.10.022 

Tanyaş, H., Allstadt, K. E., & van Westen, C. J. (2018). An updated method for estimating landslide-

event magnitude. Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.4359 

Tippett, J. M., & Kamp, P. J. J. (1993). Fission track analysis of the Late Cenozoic vertical kinematics 

of continental pacific crust, South Island, New Zealand. Journal of Geophysical Research, 

98(B9), 16119. https://doi.org/10.1029/92JB02115 

Turcotte, D. L., Holliday, J. R., & Rundle, J. B. (2007). BASS, an alternative to ETAS. Geophysical 

Research Letters, 34(12), 1–5. https://doi.org/10.1029/2007GL029696 

Turowski, J. M., Lague, D., & Hovius, N. (2007). Cover effect in bedrock abrasion: A new derivation 

and its implications for the modeling of bedrock channel morphology. Journal of Geophysical 

Research: Earth Surface, 112(4), 1–16. https://doi.org/10.1029/2006JF000697 

Wang, J., Jin, Z., Hilton, R. G., Zhang, F., Densmore, A. L., Li, G., & Joshua West, A. (2015). 

Controls on fluvial evacuation of sediment from earthquake-triggered landslides. Geology, 

43(2), 115–118. https://doi.org/10.1130/G36157.1 

Wang, J., Jin, Z., Hilton, R. G., Zhang, F., Li, G., Densmore, A. L., … Joshua West, A. (2016). 

Earthquake-triggered increase in biospheric carbon export from a mountain belt. Geology, 44(6), 

471–474. https://doi.org/10.1130/G37533.1 

Wang, W., Godard, V., Liu-Zeng, J., Scherler, D., Xu, C., Zhang, J., … de Sigoyer, J. (2017). 

Perturbation of fluvial sediment fluxes following the 2008 Wenchuan earthquake. Earth Surface 

Processes and Landforms, 42(15), 2611–2622. https://doi.org/10.1002/esp.4210 

West, A. J., Hetzel, R., Li, G., Jin, Z., Zhang, F., Hilton, R. G., & Densmore, A. L. (2014). Dilution of 

10Be in detrital quartz by earthquake-induced landslides: Implications for determining 

denudation rates and potential to provide insights into landslide sediment dynamics. Earth and 

Planetary Science Letters, 396, 143–153. https://doi.org/10.1016/j.epsl.2014.03.058 

West, A. J., Lin, C. W., Lin, T. C., Hilton, R. G., Liu, S. H., Chang, C. T., … Hovius, N. (2011). 

Mobilization and transport of coarse woody debris to the oceans triggered by an extreme tropical 

storm. Limnology and Oceanography, 56(1), 77–85. https://doi.org/10.4319/lo.2011.56.1.0077 

Wilcock, P. R., & Crowe, J. C. (2003). Surface-based transport model for mixed-size sediment. 

Journal of Hydraulic Engineering, 129(2), 120–128. https://doi.org/10.1061/(ASCE)0733-

9429(2003)129:2(120) 

Yanites, B. J., Tucker, G. E., Mueller, K. J., & Chen, Y. G. (2010). How rivers react to large 

earthquakes: Evidence from central Taiwan. Geology, 38(7), 639–642. 

https://doi.org/10.1130/G30883.1 

Yanites, B. J., Tucker, G. E., Hsu, H. L., Chen, C. C., Chen, Y. G., & Mueller, K. J. (2011). The 

influence of sediment cover variability on long-term river incision rates: An example from the 

Peikang River, central Taiwan. Journal of Geophysical Research: Earth Surface, 116(3), 1–13. 

https://doi.org/10.1029/2010JF001933 

Yuan, R. M., Deng, Q. H., Cunningham, D., Xu, C., Xu, X. W., & Chang, C. P. (2013). Density 

distribution of landslides triggered by the 2008 Wenchuan earthquake and their relationships to 

peak ground acceleration. Bulletin of the Seismological Society of America, 103(4), 2344–2355. 

https://doi.org/10.1785/0120110233 

Zhang, S., Zhang, L., Lacasse, S., & Nadim, F. (2016). Evolution of Mass Movements near Epicentre 

of Wenchuan Earthquake, the First Eight Years. Scientific Reports, 6(1), 36154. 

https://doi.org/10.1038/srep36154 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

45 

 

 

 

 

 

 

Table 1 : Value of the parameters of equation 5. 

Texp 𝜹 𝝁 𝝋 𝜷 R
2
 

20% 2.1 0.03 1 0.1 0.90 

30% 4.6 0.035 1 0.1 0.88 

40% 7 0.033 1 0.1 0.90 

50% 10.8 0.033 0.95 0.1 0.97 

60% 13 0.035 0.9 0.1 0.93 

70% 18.1 0.030 0.97 0.1 0.94 

80% 26 0.031 0.85 0.1 0.92 

 

Table 2 | Parameters used in QUAKOS 

 

Parameter Notation Values Units 

Tectonic    

Fault length FL 400 km 

Fault width FW 19 km 

Fault dip FD 60 ° 

Fault rake FR 172 ° 

    

Earthquake rupture – Strike-slip    

Shear modulus μ 33 GPa 

Exponent β 0.66 / 

Constant C1 15 / 

Constant C10 FW / 

Constant C11 1 / 

Constant C2 3.6.10
-5

 / 

    

Landsliding    

Min. landslide area Als,min 50 m
2
 

Max. landslide area Als,max 2.10
6
 m

2
 

pdf(Als) roll-over position a 2000 m
2
 

pdf(Als) roll-back  s -200 m
2
 

pdf(Als) tail exponent ρ 1.4 / 

Volume-Area prefactor α 0.05 / 

Volume-Area exponent γ 1.5 / 

PGA-Pls coefficient αp 4 / 

PGA-Pls coefficient βp 0.5 / 

Connectivity parameter m 0.87 / 

Connectivity exponent ω 0.34 / 
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River transport capacity    

Critical drainage area Ac 0.5 km
2
 

Steepness index ksn 180 / 

Width index kwn 0.008 / 

Median grain size D50 0.3 m 

Mean annual runoff 𝑟̅ 7.5 m.yr
-1

 

Discharge variability k 1 / 

Manning coefficient n 0.035 s.m
-1/3

 

Transport capacity parameter K 1.5.10
-5

 / 

Shields number θc 0.035 / 
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