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a b s t r a c t

With the arrival of a number of wide-field snapshot image-plane radio transient surveys, there will be
a huge influx of images in the coming years making it impossible to manually analyse the datasets.
Automated pipelines to process the information stored in the images are being developed, such
as the LOFAR Transients Pipeline, outputting light curves and various transient parameters. These
pipelines have a number of tuneable parameters that require training to meet the survey requirements.
This paper utilises both observed and simulated datasets to demonstrate different machine learning
strategies that can be used to train these parameters. We use a simple anomaly detection algorithm
and a penalised logistic regression algorithm. The datasets used are from LOFAR observations and we
process the data using the LOFAR Transients Pipeline; however the strategies developed are applicable
to any light curve datasets at different frequencies and can be adapted to different automated pipelines.
These machine learning strategies are publicly available as Python tools that can be downloaded and
adapted to different datasets (https://github.com/AntoniaR/TraP_ML_tools).

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Transient and variable astronomy is entering an exciting era
with vast numbers of images, covering large fields of view, re-
quiring real-time automated processing. In radio astronomy in
particular, new instruments including LOFAR (the Low Frequency

∗ Corresponding author at: Anton Pannekoek Institute, University of
Amsterdam, Postbus 94249, 1090 GE Amsterdam, The Netherlands.

E-mail address: b.a.rowlinson@uva.nl (A. Rowlinson).

Array; van Haarlem et al., 2013), AARTFAAC (Amsterdam-ASTRON
Radio Transients Facility And Analysis Centre; Prasad and Wijn-
holds, 2012), MWA (Murchison Wide-field Array; Tingay et al.,
2013), LWA1 (Long Wavelength Array Station 1; Ellingson et al.,
2013), ASKAP (Australian Square Kilometre Array Pathfinder;
Johnston et al., 2007; Murphy et al., 2013) and MeerKAT (Booth
et al., 2009) are exploring unfamiliar frequency and transient
duration regimes, opening up the possibility of discovering new
types of variable sources. Significant effort is being applied to
developing high quality tools that are capable of rapidly and
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reliably processing images to obtain light curves of all the sources
in the fields imaged and to automatically analyse the light curves
to find transient or variable sources.1 The LOFAR Transients
Pipeline (TraP; Swinbank et al., 2015) is one such tool that
is capable of processing images to find transient and variable
sources from a wide range of radio telescopes. To date, TraP has
been used by LOFAR, AARTFAAC, the Boolardy Engineering Test
Array (BETA, the ASKAP test array; Hotan et al., 2014; Hobbs
et al., 2016), the Arcminute Microkelvin Imager (AMI; Zwart et al.,
2008; Staley et al., 2013), the MWA (Rowlinson et al., 2016) and
the Jansky Very Large Array Low-band Ionosphere and Transient
Experiment (VLITE; Polisensky et al., 2016).

Once light curves are obtained and analysed by automated
pipelines, there are two key challenges: distinguishing transient
and variable sources from stable sources and classification of
these sources into known source types. A number of existing
transient surveys, at a range of wavelengths, have made good
progress in determining key diagnostic parameters for identifying
transient sources. One of the most powerful diagnostics is the
weighted reduced χ2, referred to as η in this paper, of a fit to
the light curve by a constant flux density model, which can easily
be converted to a probability that the data are drawn from the
fitted model (currently used to search for transients at many
wavelengths, including X-ray, optical, microwave and radio; e.g.
Bannister et al., 2011; Bower et al., 2011; Palanque-Delabrouille
et al., 2011; Thyagarajan et al., 2011; Hoffman et al., 2012; Shin
et al., 2012; Chen et al., 2013; Croft et al., 2013; Mooley et al.,
2013; Williams et al., 2013; Bell et al., 2014; Franzen et al., 2014;
Bell et al., 2015). Many surveys utilise a probability threshold
to separate the stable sources from the variable sources. For
instance, transient sources have a probability of less than 1% of
being a stable source using the η from the fit to a stable source,
enabling thresholds to be determined by using a False Detection
Rate (FDR, the number of false identifications that are expected
to be made).

Several other parameters are also used by transient surveys to
characterise the variable sources after identification or with an
arbitrary threshold to aid in discriminating between variable and
stable sources. These parameters can be source specific, such as
the pulsar modulation index (e.g. Esamdin et al., 2004), or target
a specific type of variability behaviour, such as periodicity in the
light curve. One of the most common additional parameters is
the fractional variability (also known as fractional modulation;
e.g. Bannister et al., 2011; Bower et al., 2011; Chen et al., 2013;
Croft et al., 2013; Mooley et al., 2013; Bell et al., 2014; Franzen
et al., 2014; Bell et al., 2015), which compares the observed
scatter in flux densities to the average flux density of the source.
However, variable sources are rarely identified using the informa-
tion available in these additional parameters; typically they are
only used to characterise known sources. In some cases, multiple
thresholds are used to discriminate between stable and variable
sources but these thresholds are typically chosen arbitrarily based
on knowledge of specific datasets. Therefore, there is additional
information available to aid in identifying variable sources but
currently not used to its full potential.

Over recent years, machine learning strategies have been in-
creasingly applied to astronomical datasets. Machine learning is
a form of artificial intelligence in which computer algorithms
learn from data, in either a supervised or unsupervised manner,
producing models that can then be applied to new data. For
instance, one of the common machine learning applications is
for classification. The separation of variable sources (ideally into

1 For clarity purposes, we define ‘‘transient sources’’ as those which are new
sources detected after the first image in a given dataset and ‘‘variable sources’’
as those which have variability in their extracted light curves.

different types) and stable sources using properties of their light
curves is a classification problem and, hence, there are a number
of machine learning techniques that could be applied to the
datasets. Machine learning algorithms exploit various features
about each source that can then be utilised in the algorithm; in
the context of variable sources these parameters could include η

and the fractional variability. The algorithm ‘‘learns’’ how to sep-
arate the different groups of sources using a training dataset and
the algorithm can then be applied within automated pipelines to
enable rapid classification of new data points.

There are two key types of algorithms in machine learning
that can be used: supervised learning and unsupervised learning.
There are particular types of unsupervised learning algorithms
that would be a good strategy to find unusual sources in the
data, in which the algorithm automatically finds new variable
sources within a discovery space and classifies sources with sim-
ilar properties for later identification by astronomers. However,
unsupervised techniques, including some powerful unsupervised
deep learning algorithms, often require large amounts of data
to train in scenarios such as that outlined in this paper. Here,
the populations of transient and variable sources are very rare
compared to the stable source population and hence a large
dataset is needed to ensure a sufficiently large population of the
target sources. The required dataset size required for training
unsupervised strategies is very difficult to quantify as it depends
upon the number of discrete classification groups (the number
of which is unknown), having sufficient data in each expected
classification group and the distinctness of each group given the
training parameters available. When starting a new transient
survey searching for rare sources, these sufficiently large training
datasets are not available. Here, as outlined later, we create a
labelled dataset with simulated sources making this problem
well suited for supervised machine learning strategies. In future
surveys, when these issues have been addressed, algorithms such
as unsupervised deep learning are likely to prove useful. This
is because there will be a large amount of parameters for each
unique source and a powerful unsupervised algorithm may iden-
tify previously undiscovered transient or variable behaviour of
the sources.

Alternatively, supervised machine learning strategies can be
trained to find and classify different types of sources. These
strategies use training datasets that contain pre-classified sources,
which can either be from manual identification of sources in
real data or from simulated datasets. For instance, supervised
machine learning strategies can be used to reliably discriminate
between new sources and imaging artefacts (e.g. Bloom et al.,
2012; Brink et al., 2013). Additionally, a supervised machine
learning algorithm, known as a Random Forest (Breiman, 2001),
has been trained to identify different types of optical sources
using data from the Palomar Transients Factory (PTF; Bloom
et al., 2012). A Random Forest technique has also been applied to
2XMM and 3XMM data (the second and third releases of the X-ray
serendipitous source catalogue from the XMM-Newton satellite;
Jansen et al., 2001; Watson et al., 2009; Rosen et al., 2016) to
enable optimal identification of specific types of sources (Lo et al.,
2014a,b; Farrell et al., 2015) and to the classification of fast radio
bursts (e.g. Wagstaff et al., 2016). The Random Forest algorithm
is also being investigated as a classification tool within the VAST
(Variable and Slow Transient) survey which will be conducted
using ASKAP (Murphy et al., 2013). However, supervised learning
techniques are really good at identifying objects that fit into
known classes, but not good at identifying objects that belong
to new classes. Unfortunately, when exploring a completely new
parameter space, this information is often unknown or specula-
tive. In this work, we instead focus on the simpler classification of
sources into the categories of transient, variable or stable, which
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can be completed without knowing the behaviour of specific
transient sources. Alternatively, some studies are now looking at
unsupervised machine learning techniques such as unsupervised
deep learning algorithms (e.g. Connor and van Leeuwen, 2018).

In this paper, we use the TraP to analyse variability of sources
within large datasets from LOFAR, both observational and simu-
lated. The transient surveys conducted by LOFAR are searching a
relatively unexplored parameter space in radio astronomy: wide
fields of view (enabling detection of the rarest variable sources)
at low frequencies and on a range of time scales. Hence, this new
parameter space may contain previously unidentified categories
of variable sources, so we do not have the labelled datasets re-
quired to train machine learning strategies such as Random Forest
algorithms to find these new sources. Instead, we utilise various
variability parameters, output by TraP, combined with machine
learning techniques, to determine thresholds and algorithms that
can optimally separate variable sources from stable sources. We
create a simple labelled dataset that can be used to train and test
the algorithms used. In Section 2, we describe the LOFAR datasets
used in developing these new techniques. Section 3 presents
analyses of the variability parameters output from TraP for the
datasets. The implementation of machine learning strategies is
explained in Section 4, including a simple anomaly detection
algorithm, as proposed by Denning (1987), that outputs thresh-
olds suitable for use in TraP and a penalised logistic regression
algorithm (e.g. Darroch and Ratcliff, 1972) that uses multiple
parameters to categorise datasets. Finally, in Section 5, we discuss
future improvements to these strategies.

2. Training datasets

2.1. LOFAR observations

In order to design and test new methods of identifying tran-
sient and variable sources, we require a large dataset containing
many different sources. The LOFAR Transients Key Science Project
has conducted a large survey, the Radio Sky Monitor (RSM),
the first large field-of-view and systematic transient survey con-
ducted by LOFAR (Fender et al., 2008). The RSM dataset is a zenith
monitoring survey, with the observations used in this paper oc-
curring on time scales ranging from monthly to approximately
1 year from February 2013 to January 2014. One snapshot of
the RSM comprises images from 6 overlapping pointing direc-
tions and, over the full 24 h observation, surveys the zenith
strip above LOFAR which is centred on a latitude of 53

◦

. In this
analysis we exclude fields near the bright ‘‘A-Team’’ sources (the
brightest sources in the Northern Hemisphere, such as Cygnus A
and Cassiopeia A) and fields covering the Galactic plane as these
fields can be prone to imaging artefacts.2 Each pointing direction
is observed twice in consecutive 11 min snapshot observations,
which we combine into a single 22 min image, and the full obser-
vation is repeated 7 times. The first 6 observations are separated
by ∼1 month with the final observation being ∼6–12 months
afterwards. In the dataset used for this analysis, each field is
observed in 4 frequency bands (124, 149, 156 and 185 MHz) with
a bandwidth of ∼2 MHz. The images were made using projected
baseline lengths up to 3 kλ (corresponding to 6 km at 150 MHz)
and the primary beam full width half maximum is 3.8 degrees
at 150 MHz. The full dataset utilised in this analysis consists of
5120 images, with the analysis area from a single full observation
covering ∼970 square degrees in each of 4 frequency bands, with
an average rms (root mean square) noise of 23+5

−3 mJy beam−1.
The data are calibrated and imaged using the strategy outlined

2 Note, with careful manual manipulation it is possible to use these
observations (e.g. Broderick et al., 2016).

in Broderick et al. (2016), Carbone et al. (2016) and Stewart et al.
(2016). The typical resolution is 60 arcsec × 30 arcsec and the
images are not confusion noise limited.

2.2. LOFAR simulations

To date, we have only identified a small number of transient
and variable sources observed at low radio frequencies (e.g. Stew-
art et al., 2016; Broderick et al., 2016; Murphy et al., 2017).
Therefore, to test the methods presented in this paper, we needed
to create simulated datasets containing variable sources. We have
produced a large number of simulated LOFAR datasets containing
a range of variable sources using the following method:

1. To create the simulations, we have chosen a single 11 min
HBA target observation constituting 10 sub-bands cen-
tred on 156 MHz, where 1 sub-band has a bandwidth
of 195 kHz. The observed data were deleted from the
individual sub-band measurement sets leaving the LOFAR
structure and required metadata. Random, unique Gaussian
noise is inserted into each individual baseline in the mea-
surement set, differentiating between different antenna
types and station configurations, with a mean value equal
to the system equivalent flux density (SEFD) calculated
according to the method described in Nijboer et al. (2013).

2. We created a range of simulated transient and variable
sources, with each source having 10 time steps. The sources
range in peak flux density (the maximum flux density the
variable source reaches) from 0.2 to 50 Jy, with 10 different
values in this range separated equally in log space. Each
source has a quiescent source of flux density 0 Jy up to the
peak flux density value (in the same bins as the maximum
flux density), giving a total of 55 different combinations
for each source type. Eight different variability types are
simulated and illustrated in Fig. 1: single flare, turn on, turn
off, slow rise, slow fall, fast rise exponential decay (FRED),
Gaussian and periodic. These variability types are chosen
to represent a range of behaviour that we might expect to
observe. We note that the snapshots, used in this paper and
often for other datasets, are irregularly spaced. Thus, the
simulations could be associated with a range of different
transient phenomena in the time domain and would not
necessarily show the same light curve shape when plotted
against the time.

3. For each simulated dataset, containing 1 variable source,
we created a random sky model containing 50 point
sources. The sources have random positions within the
image and a random flux density within the range 0–100
Jy sampled from a power-law distribution of flux densities
with a slope of −1.

4. Each sky model was inserted, using the LOFAR calibration
tools (Loose, 2008), into the 10 sub-bands (measurement
sets) containing Gaussian noise and we conducted a cali-
bration step to prepare the data for imaging. The 10 sub-
bands were combined into a single measurement set which
is centred on 156 MHz and identical to band 3 from the
RSM dataset.

5. Finally, we imaged the resulting dataset using AWImager
(Tasse et al., 2013) and cleaned each image until the ob-
served rms in the image was ∼20 mJy (comparable to the
rms in the LOFAR observations described in Section 2.1).
The image metadata was edited to create the 10 consecu-
tive snapshot time series for inputting into the TraP.

The simulations comprise 440 simulated fields with 10 snap-
shot observations per field and one simulated transient per field,
giving a total dataset of 4400 images.
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Fig. 1. Examples of the different transient light curves simulated. The solid line
represents the underlying transient light curve and the data points are from an
example dataset. The dashed lines show the quiescent flux density and the peak
flux density (1.6 and 6.3 Jy respectively) used in this example.

2.3. Hybrid training dataset

The simulations produce the variable sources required for
testing the methods in the paper; however the simulations do
not reproduce a number of factors that can introduce additional
variability within the observed dataset. These factors can in-
clude instrumental variability, radio frequency interference, cor-
related noise in the images, ionospheric effects, imaging artefacts
and systematic calibration errors (e.g. elevation dependencies).
Therefore, in observed data, even the stable sources exhibit low
level variability, leading to shifts and skews in the population
distributions of the variability parameters, and the simulations
are significantly underestimating this contribution. The variable
sources will also have this additional low level variability, but
their total variability statistics are dominated by the simulated
variability.

When training methods to automatically distinguish between
the stable and variable sources in new observed datasets, it is
important that the stable sources are representative of the final
stable source population and the simulations alone cannot do
this. Therefore, for training the machine learning algorithms de-
scribed in Section 4, we produce a hybrid training dataset where
the stable sources are represented by all the sources observed in
the LOFAR observations described in Section 2.1 and the variable
sources are drawn from the simulations described in Section 2.2.
This hybrid dataset contains both known variable sources and
a population of sources which are representative of the final
observed population. We note that the simulated variable sources
are not affected by the external factors outlined in the previous
paragraph, such as instrumental and ionospheric noise, and this
will lead to a reduction in value for their variability parameters.
However, as these variability parameters are dominated by the
artificial variability inserted for the simulated variable sources,
this reduction affect is minimal.

However, this dataset has a significant caveat as we are as-
suming that the observed population of sources are not variable
on the time scales used in the survey. If there is a real population
of sources exhibiting low variability, this can bias the results as
the classifiers are being trained to treat this population as stable.
This caveat is negligible if only a small number of sources are in-
trinsically variable, as the machine learning methods used model
the populations and are not significantly affected by outliers to

Fig. 2. The rms noise is automatically measured in each image in the dataset
and compared to the theoretical noise expected in the image. Here we plot a
histogram of these ratios and they follow a Gaussian distribution in logarithmic
space. A Gaussian distribution is fitted to the data (red line) and all images
which deviate more than 2σ from the observed distribution (shown by the
dashed black lines) are excluded from the dataset. Large deviations from this
distribution typically signify calibration errors or high rms noise datasets.

the distributions. As a consequence, with the hybrid dataset,
we cannot train the algorithms to identify a population of real
sources with low level variability but it will be able to identify
the outliers to the distribution. In Section 5.1, we discuss future
methods to mitigate this caveat.

3. Automated processing using TraP

We use the LOFAR TraP to conduct the following tests: image
level quality control, source extraction, source association and
transient search (as described in Swinbank et al., 2015).

3.1. TraP settings

The TraP quality control settings are applied to the observed
RSM dataset (all simulated images are of good quality by design).
In Fig. 2, we plot a histogram of the ratio between the observed
rms noise and the theoretical rms noise for all of the images in
the dataset. This histogram is fitted with a Gaussian distribution
and we reject all images with an rms noise that deviates by more
than 2σ from the mean, i.e. > 32.1× or < 17.1× the expected
theoretical thermal noise, as these images typically have high RFI
or calibration errors giving flux density scale errors. We note that
we do not achieve the theoretical noise in these images as we
do not conduct self calibration or calculate direction dependent
effects. Additionally, we reject images where the restoring beam
ellipticity ( Bmaj

Bmin
, where Bmaj is the size of the major beam axis

and Bmin is the size of the minor beam axis) is in excess of
1.42; these images are likely to be of low quality as we expect
the restoring beam shape to be close to circular because we are
conducting a zenith survey. These settings were chosen using an
automated quality control diagnostics script that removes images
with parameters > 2σ from the typical distribution of those
parameters within the full dataset.3 After these quality control
settings are applied, we have a dataset comprising 81% of the
images from the original dataset (4017 images).

3 The automated quality control script is available here: https://github.com/
transientskp/scripts/tree/master/TraP_QC_diagnostics.

https://github.com/transientskp/scripts/tree/master/TraP_QC_diagnostics
https://github.com/transientskp/scripts/tree/master/TraP_QC_diagnostics
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For source extraction, we use an 8σ detection threshold, a 3σ
analysis threshold and constrain the Gaussian shape fit param-
eters for all of the sources to be identical to the shape of the
restoring beam (assuming all candidate variable sources are point
sources).4 We extract all sources within a radius of 1.3 degrees
from the image centre (roughly equivalent to the primary beam
FWHM at the highest observing frequency, giving a search area
of ∼5.4 square degrees per image). Otherwise, we use standard
settings for source finding within TraP as described in Swin-
bank et al. (2015) which utilises the PySE source finder (Carbone
et al., 2018). These source extraction parameters resulted in 5224
unique sources in the RSM dataset and 440 variable and transient
sources in the simulated datasets.

TraP calculates two different parameters for each light curve
to quantify the variability of sources. These parameters are the
weighted reduced χ2 (η, typical to many transient surveys as
described in Section 1) and the variability index (V ; equivalent
to the fractional variability used by other surveys); these pa-
rameters are consistent with methods used in Bannister et al.
(2011), Bower et al. (2011), Palanque-Delabrouille et al. (2011),
Thyagarajan et al. (2011), Hoffman et al. (2012), Shin et al. (2012),
Chen et al. (2013), Croft et al. (2013), Mooley et al. (2013),
Williams et al. (2013), Bell et al. (2014) and Franzen et al. (2014).
Additionally, all new sources which were not detected in previous
images (when they are expected to be detected by comparison to
the detection thresholds in the previous images), are inserted into
a transient list. These settings are explained in depth in Swinbank
et al. (2015).

In this Section, we focus on the transient parameters ην and
Vν , defined as:

ην =
N

N − 1

(
wν Iν2 −

wν Iν
2

wν

)
(1)

Vν =
1

Iν

√
N

N − 1
(Iν2 − Iν

2
), (2)

where N is the number of data points, Iν,i is the flux density of
a data point at frequency ν, wν Iν2 is the average of the weights
multiplied by the squared fluxes of all data points for a source,
wν Iν is the average of the weights multiplied by the fluxes for
a source, Iν is the average flux density, I2ν is the average squared
flux density of a source, wν =

1
N

∑N
i=0 wν,i ≡

1
N

∑N
i=0

1
σ2
ν,i
, and σν,i

is the error on the ith flux density measurement at frequency ν.
In Eq. (1), we define the reduced weighted χ2 using the aggregate
quantities as used by TraP for each time step (the full derivation
of this from the standard reduced weighted χ2 Equation is given
in Section 6.4.4 of Swinbank et al., 2015). TraP calculates and
stores each of these parameters at every frequency and time-step
for every source in the dataset. In this analysis, we use the value
of these parameters after the full dataset has been processed but
the methods presented here can also be applied after each time-
step. We note that η is roughly proportional to the signal to noise
ratio (SNR) squared (where ωI2 =

I2

σ2 = SNR2) so sources with
greater SNR will have a larger value for η than lower SNR sources.

The two datasets were processed by TraP using these settings
and we extract the following parameters for all sources from the
database: maximum flux density that the source attains, the ratio
between the maximum flux density and the average flux density,
ην and Vν . We note that, in the RSM dataset, sources may be

4 We note that assuming all sources are point sources will cause the flux
of extended sources to be underestimated (Carbone et al., 2018). However, this
is not an issue for this study as extended sources are not expected to vary
on significant time scales and the fitting strategy will ensure that they will be
output as stable sources.

Fig. 3. The transient parameters for all the sources observed in the RSM dataset.
Top row: ην values. Bottom row: Vν values. Left column: The maximum flux
density of the source. Right column: The maximum ratio between the observed
flux density and average flux density for each source. All the sources are colour
coded by the observing frequency in MHz.

detected multiple times in a single time step at a single frequency
due to overlapping pointing directions. These multiple detections
will be included in Eqs. (1) and (2), so can affect the value of these
variability parameters. To mitigate this effect, we impose a small
source extraction radius to minimise the number of sources in
the overlapping regions but maximise the usable image area. We
estimate that this affects ∼8% of sources in the RSM dataset and
these sources may have multiple catalogue entries for each time
step.

3.2. Results — RSM dataset

In Fig. 3 we introduce a diagnostic plot which illustrates the
different parameters for all the observed sources, colour-coded
by the different observing frequencies in the RSM dataset. These
observing frequencies show similar behaviour, although there is a
slightly increased scatter for sources observed at 124 MHz likely
caused by a decrease in sensitivity at this frequency relative to
the other observing frequencies. From this figure we can draw
the following conclusions:

• Sources with a high ην are typically those with a high maxi-
mum flux density (as expected from Eq. (1)) but with a low
ratio between the maximum flux density and the average
flux density of the source (and hence a low Vν but with
a large scatter on these values). These are sources where
the statistical errors on the flux density measurements are
very low relative to the level of the flux density, giving
high values of ην as it is weighted by the statistical errors.
However, there are systematic errors in the flux density
values (typically up to 10% in the RSM dataset), which are
not currently being accounted for within TraP, and they
exceed the statistical errors for these sources leading to a
larger value of ην .

• Sources with a high Vν tend to have very high ratios, be-
tween their maximum flux density and average flux, but
very low flux densities (with large uncertainties, and hence
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Fig. 4. The transient parameters for all the sources observed in the RSM dataset.
The ην and Vν values for all the sources are colour coded by the observing
frequency in MHz. The histograms, with Bayesian block binning (Vanderplas
et al., 2012; Scargle et al., 2013), for both ην and Vν are well fitted in log space
by Gaussian distributions.

a low ην). These sources are typically close to the detection
threshold of the images so they are highly sensitive to
changes in the structure and amplitude of the image noise
which can raise the value of Vν .

These findings are consistent with those determined using com-
parable parameters from other surveys (e.g. Croft et al., 2013;
Mooley et al., 2013).

By plotting histograms of ην and Vν , as shown in our second
diagnostic plot Fig. 4, it is clear they both follow an approximately
Gaussian distribution in logarithmic space. As the majority of
sources in the field are not expected to be significantly vari-
able, it is therefore reasonable to assume that ην and Vν for
all stable sources will follow a Gaussian distribution as fitted
to the observed data. Any sources whose variability parameters
are anomalously large in comparison to these distributions are
expected to be variable sources. Therefore, we can identify vari-
able sources using thresholds for ην and Vν given by a multiple
of σ (where σ is the standard deviation of the fitted Gaussian
distributions). However, it is not obvious what the optimum
thresholds should be to reliably identify variable sources.

3.3. Results — simulated datasets

In the previous section, we assumed that the majority of the
sources detected in the RSM dataset are not variable sources and
demonstrated that their transient parameters follow an approxi-
mately Gaussian distribution. Variable sources are expected to be
those where the transient parameters are anomalous compared
to those of the rest of the dataset. However, it is important to test
this expectation by identifying the typical parameters for variable
sources. The simulated datasets described in Section 2.2 are de-
signed to explore the transient parameter space to quantify which
variables are detectable by TraP. After running the simulated
datasets through TraP, we are able to separate the simulated
variable sources from the stable sources. In this analysis, we
have also removed the sources which are not detected in the

first image of the simulation as these trigger the ‘‘new source’’
detection strategy within TraP (described further in Section 3.1).
These are the simulated sources where the quiescent flux density
is below the detection threshold. This includes all types of sources
simulated apart from the ‘‘turn-off’’ and ‘‘slow fall’’ sources (see
Fig. 1).

The simulated stable sources follow a Gaussian distribution, as
seen previously for the RSM dataset; however the stable sources
have significantly lower values of ην and Vν than the values ob-
served in the RSM dataset. This is because the observed data have
additional scatter in the flux densities due to observational effects
such as the ionospheric conditions, calibration uncertainties and
radio frequency interference which are not accounted for in the
simulations. Therefore, we use the hybrid dataset described in
Section 2.3, where the RSM data are labelled as stable sources
(n.b. this may introduce a bias, as described in Section 2.3).

Figs. 5 and 6 show the variability properties of the simulated
datasets with a clear separation between the variable and stable
sources (colour-coded by the type of variable source with the
stable sources being taken from the RSM dataset are shown in
grey). The ‘‘single flare’’ variable sources frequently have higher
values for Vν ; this is unsurprising as their average flux densities
will be significantly lower than the average flux density of the
other variable source types. Therefore, the ratio between the
maximum flux density and the average flux density can also
be much higher than the other sources (as shown in Fig. 6)
leading to the higher values of Vν . This argument is somewhat
true for the ‘‘FRED’’ (fast rise exponential decay) light curves, as
the average flux density is also lower. All the simulated variable
sources have variability parameters that typically lie in the same
regions of Figs. 5 and 6 and these are indeed anomalous to the
observed Gaussian distributions of ην and Vν for sources from the
RSM dataset. As the simulated variable sources share the same
parameter space, it is reasonable to assume that ‘‘real’’ variable
sources will also be clearly anomalous to the stable sources (if of
sufficient SNR). There are a small number of simulated variable
sources that are difficult to distinguish from the stable sources in
Fig. 5 and, from Fig. 6, it is clear that these sources have a ratio
between their maximum flux density and average flux density of
less than 2 and overlap with the stable sources.

Typically in transient surveys, variable sources are identified
using a probability calculated using only ην and a threshold is
determined using a FDR. However, it is clear from Fig. 5 that using
a threshold based on the ην values will either lead to a large
number of false detections or fail to identify a large number of
transients; however we note that using a threshold on only ην

does produce better results than using a threshold on just the
Vν values. In order to unambiguously identify a large number of
transients, we could instead use a combination of thresholds on
both the ην and Vν values to take full advantage of the separation
of variable sources and stable sources.

3.4. Identification of transient sources

Sources which appear during the observation are inserted
into the database with zeros for their variability parameters, and
hence it may take a number of observations to determine that
they are variable sources. This is particularly problematic for
sources which are at a roughly constant flux density following
their first detection (e.g. the sources which ‘‘turn on’’ in the
simulated datasets). To aid in rapid identification of these sources,
TraP instead determines if each new source should be detected
in the previous best image (defined as being the image with
the lowest rms value previously observed) using the detection
threshold plus a small margin.

The rms within the images is expected to vary significantly;
for example the rms is higher in the outer parts of the image



A. Rowlinson, A.J. Stewart, J.W. Broderick et al. / Astronomy and Computing 27 (2019) 111–129 117

Fig. 5. This figure, in the same format as Fig. 4, shows the transient parameters for all the sources observed in the hybrid dataset (colour scheme in the legend).
The grey data are the RSM dataset presented in Fig. 4 and are assumed to be stable sources. The histograms do not include the simulated transient sources.

Fig. 6. As in Fig. 3, the transient parameters are plotted for all the sources
observed in the simulated datasets (colour scheme in legend and as in Fig. 5).

where the primary beam is less sensitive and it can be higher
in regions containing the side-lobes of bright sources. When the
PySE source finder runs, it outputs the gridded rms map used for
source extraction. TraP then records the maximum and minimum
rms from within the source extraction region utilised.

New sources that should be detected in the worst part of the
previously best image if they were constant sources are identi-
fied as transients and those which would only be detected if in
the best part of the image are labelled as candidate transients.
For further explanation of this, refer to Swinbank et al. (2015)
Section 5.1.1 and Equations 38 & 39. To enable fine-tuning to
prevent false detections, the margin that is added to the detection

threshold is a user defined input although it is not clear what
value should be utilised for this margin. This margin is referred
to as the new source sigma margin and is input as an initial
parameter to the TraP. In Section 4.3 we address strategies that
can be used to find the optimal margin for detecting transient
sources.

4. Finding variable sources via machine learning algorithms

In the previous section, we showed that TraP is able to identify
transient and variable sources using a number of thresholds that
can be fine tuned to meet the astronomer’s requirements. How-
ever, in all of the cases, it is not obvious which values will give
optimal results. In this section we introduce machine learning
strategies that can be used to train these parameters. As discussed
in the introduction, unsupervised machine learning strategies
typically require datasets containing sufficient sources in each
category (and these categories are unknown). As sufficiently large
datasets (containing sufficient numbers of the rare transient and
variable sources) are still being produced, we choose to focus
on two supervised algorithms in this analysis with data simply
labelled as ‘transient’, ‘variable’ or ‘stable’.

There are a wide range of supervised machine learning tech-
niques that could be applied to the data. In this paper, we have
chosen to focus on two supervised machine learning techniques:
simple anomaly detection (described in Sections 4.1.1 and 4.1.3)
and penalised logistic regression (described in Section 4.1.2). We
have chosen two relatively simple algorithms in this work as TraP
users currently focus on a small number of variability parameters
for each source. This work aims to produce a good grounding
for future development, when larger and more complex datasets
become available.

In this Section, we describe the different algorithms used
(Section 4.1), the testing strategies applied to confirm that the
algorithms are obtaining their optimal solution (Section 4.2)
and a discussion of identified transient and variable sources
(Section 4.3).
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4.1. Algorithms used

4.1.1. Anomaly detection
We have shown that the transient parameters, ην and Vν , of

stable sources follow an approximately Gaussian distribution in
logarithmic space while variable sources are clearly anomalous to
these distributions. Therefore, the variable and stable sources can
be distinguished by using a σ threshold cut, with all anomalous
sources above the threshold being labelled transient. Although we
can define a threshold on ην using a FDR (as typically used by
transient surveys), it is clear that using this method with LOFAR
data will lead to either many false detections or miss a large
region of parameter space where variable sources may occur.
We have suggested that this parameter space can be described
using sigma threshold cuts on both the ην and Vν values, but it
is not obvious what the optimal thresholds should be. TraP was
initially designed assuming that the two simple threshold cuts
on the variability parameters would adequately identify transient
and variable sources, meaning that two thresholds are the easi-
est strategy for all TraP users to implement without significant
modelling of their data. Therefore, in this section, we describe
a preliminary method, a sigma threshold, that can be applied
quickly and easily to all current datasets and TraP versions.

This problem lends itself to a simple machine learning clas-
sification algorithm such as anomaly detection (first proposed
by Denning, 1987) that divides a dataset into two categories:
a large sample of ‘‘normal’’ sources and a group of ‘‘unusual’’
sources. This method requires that the ‘‘normal’’ sources can
be approximated as following a Gaussian distribution, with the
unusual sources being anomalous to the distribution, and we
have demonstrated that our data meet this requirement. This
machine learning algorithm can either be unsupervised, where
an arbitrary sigma threshold is applied (as utilised by Rowlinson
et al., 2016; Stewart et al., 2016, with 2σ and 3σ thresholds
respectively for both parameters) or supervised (trained to give
the optimal answers). Ideally, we want to choose the optimal
combined thresholds for ην and Vν so a supervised anomaly
detection algorithm, trained using standard machine learning
techniques, is appropriate.

Using the hybrid dataset described in Section 2.3 as our train-
ing datasets, we can determine the optimummultiples of σ which
maximise the number of real transients detected and minimise
the number of spurious detections. As described in Section 3.3,
a number of the simulated variable sources will be detected by
the ‘‘new source’’ strategy in TraP and do not always follow the
same behaviour as the rest of the variable sources, and therefore
we remove the ‘‘new sources’’ from the simulated dataset when
training the thresholds. To determine the optimal thresholds,
we allow ην and Vν to have thresholds defined using different
multiples of sigma. We use a range of multiples of σ (0–3.5 σ ,
in 500 isotropically distributed bins to fill out the parameter
space) for different thresholds on ην and Vν , giving 2.5 × 105

different combinations of σην and σVν . For each combination of
thresholds, we count the number of True Positives (TP, simulated
transients correctly identified), False Positives (FP, RSM sources
falsely identified as transient; note that this relies on the assump-
tion that no sources in the RSM dataset are real transients), False
Negatives (FN, simulated transient sources not identified as tran-
sient) and True Negatives (TN, RSM sources correctly identified
as not transient). Using these values, we calculate the precision
(the probability that the transients identified are real transients,
also known as reliability) and recall (the probability that all the
transients in the dataset have been identified, commonly also
referred to as completeness) using

Precision =
TP

TP + FP
≡ 1 − FDR, (3)

Fig. 7. The precision and recall (as defined in Eqs. (3) and (4)) as a function of
the σ threshold used. The dashed lines show the trained thresholds (as described
in the text), attaining a precision of 95% and recall of 93%.

Recall =
TP

TP + FN
. (4)

For reference, we calculate the precision and recall obtained
for the hybrid dataset using thresholds from Rowlinson et al.
(2016) and Stewart et al. (2016). Rowlinson et al. (2016), with
thresholds of 2σ on both ην and Vν , attains a precision of 54%
and a recall of 80%. While Stewart et al. (2016), with thresholds
of 3σ on both ην and Vν , attains a precision of 95% and a recall
of 26%.

In Fig. 7, we show the precision and recall for the simulated
variables as a function of the two σ thresholds used to identify
anomalous sources. The contour colour scale shows the proba-
bilities with the darkest colours giving the highest probabilities
that the sources are reliably identified as variable (precision) or
that all the variable sources are recovered (recall). The contours
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are obtained by conducting a cubic interpolation across a grid
between the data points (using the interpolate function in the
Python module SciPy; Jones et al., 2001) and these contours
can be used to find the optimal σ thresholds. By inputting re-
quired values for the precision (consistent with a FDR) and recall,
the contours can be used to determine the σ thresholds that
should be used. The training algorithm finds the σ thresholds that
can attain the required precision and recall using the following
method:

1. select all combinations in the grid of trialled thresholds
that exceed the required precision.

2. calculate the 2D linear separation of the input require-
ments and the combinations remaining from the first step.

3. identify the combination of sigma thresholds that gives the
closest match to the input precision and recall.

4. if an exact match cannot be obtained, the algorithm finds
the best match to the input precision and the highest recall
value this corresponds to.

To demonstrate this technique we choose to apply a precision
and a recall of 95% to the combined observed and simulated
dataset. The algorithm determines that the thresholds should be
as follows: ση,threshold = 2.93 and σV ,threshold = 1.40. Note that
these parameters are dependent upon the range of SNRs used for
the simulated sources. Therefore, to attain the best thresholds for
a dataset, it is important to retrain using simulated sources clos-
est to those expected in the dataset (for an unknown population,
use a range of values as used in this analysis). These σ thresholds,
illustrated with the dashed lines in Fig. 7, give a precision of
95% and recall of 93% for the training data, almost meeting the
inserted requirements for precision. The method does not quite
reach the required recall of 95% as it is not possible to attain both
a high precision and recall with this dataset; however the method
chooses the closest match to the input requirements, prioritising
by precision when required.

In Figs. 8 and 9, we show the identifications resulting from
classification using a precision of 95% and a recall of 95%. As
noted previously, it was not possible to precisely attain these
values for this dataset and the algorithm has determined a ‘best
match’ with a precision of 95% and a recall of 93%. A number of
transient sources are not identified (FN, false negatives) and, by
cross-matching with Fig. 6, these are typically the sources that
have a maximum flux density ratio ≲2 (i.e. the sources which do
not have a large amplitude variability). The majority of transient
sources with peak flux densities ≳1 Jy are detected and below
this limit they are indistinguishable from the stable sources so
we are unlikely to identify these sources. We note that this is
a significantly better performance than the arbitrary thresholds
chosen by Rowlinson et al. (2016) and Stewart et al. (2016).

4.1.2. Logistic regression
In Section 4.1.1, we showed how to determine detection

thresholds using a sigma threshold determined from the roughly
Gaussian distribution of ην and Vν for stable sources. This
anomaly detection strategy, a very simple machine learning strat-
egy, can be tuned to minimise the number of false detections; but
it could be improved by using a single diagonal line that is a func-
tion of ην and Vν , instead of the horizontal and vertical thresholds.
Furthermore, this anomaly detection strategy does not utilise all
the available parameters for each source. For instance, in Fig. 6,
the transient sources are clearly separated from the stable sources
when also considering the maximum flux density and maximum
flux density ratio of the sources. Although it is possible to extend
this anomaly detection strategy to include more parameters, a
simple threshold strategy would not be appropriate for all of
the available parameters (e.g. the maximum flux). Additionally,

Fig. 8. The results of classifying the simulated and RSM datasets, using the
threshold as given in Fig. 7, plotted by their transient parameters. The colour
scheme, as given in the legend, shows the True Positives (correctly identified
transients), False Positives (stable sources incorrectly identified as transient),
and False Negatives (transients not found). The True Negatives (stable sources
correctly identified) are shown as the shaded region. The dashed lines show the
ην and Vν thresholds attained using the σ thresholds illustrated in Fig. 7.

Fig. 9. As in Fig. 3, the transient parameters are plotted for all the sources
observed in the simulated datasets (colour scheme in legend and as in Fig. 8).
The dashed lines show the ην and Vν thresholds attained using the σ thresholds
illustrated in Fig. 7.

the training would become increasingly complex resulting in a
further significant slow-down in training time. In this section,
we utilise a logistic regression algorithm (a supervised machine
learning strategy; e.g. Darroch and Ratcliff, 1972) to classify
datasets, initially trained using categorised data and then applied
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to new data points to determine which category they belong in.5
In the simplest case, with two features and two categories, this
strategy separates the two datasets using a straight line. Here, we
use the same labelled dataset as in Section 4.1 and four features;
ην , Vν , maximum flux density (Fmax) and maximum flux density
ratio: R =

(
Max Flux

Average Flux

)
. These features are given in the matrix

equation6

X =

[
1 log10(ην) log10(Vν) log10(Fmax) R
...

...
...

...
...

]
, (5)

where each source is identified as ‘stable’ (0) or ‘variable’ (1) by
a corresponding element in the matrix

y =

[
1(or 0)

...

]
. (6)

The logistic regression method deployed then separates the ‘sta-
ble’ and ‘transient’ sources using a linear algorithm in
4-dimensional space, θ •X, where the model parameters (one for
each of the features in Eq. (5)) are

θ =

⎡⎢⎢⎢⎣
θ0
θ1
θ2
θ3
θ4

⎤⎥⎥⎥⎦ (7)

(with 1 parameter, this would simplify to a straight line defined
by θ0 + θ1ην). The model predicts the classification of a source by
calculating

Σ = (1 + e−θ•X)−1, (8)

which outputs ∼1 if the source is predicted to be ‘variable’ or
∼0 if the source is predicted to be ‘stable’. The model parameters
then require training, which is conducted by minimising the dif-
ference between the labels (given in Eq. (6)) and the predictions
from Eq. (8), using

J =
1
N

(−y • log10(Σ) − (1 − y) • log10(1 − Σ))

+
λ

2N

4∑
i=0

θ2
i , (9)

where N is the number of sources processed, λ is the regu-
larisation term which can be used to bias the solution against
over-fitting the data with multiple features and • represents the
matrix dot product. We find the best classification by minimis-
ing Eq. (9) using the optimise function in the Python module
SciPy (Jones et al., 2001).

Therefore, we train the algorithm on the full dataset to obtain
the optimum parameters and then classify all the available data
to determine the precision and recall of the algorithm (as defined
in Eqs. (3) and (4), n.b. see Section 4.2.2 for the testing of this
algorithm). We find the precision is 98% with a recall of 91% for
the full dataset, providing an excellent identification of transient
sources. In Figs. 10 and 11, we show the classification results
using this logistic regression algorithm. We note that a number of
sources give false negative results, these are typically sources that
are not significantly variable in comparison to the stable sources.

After the initially time consuming training step, classification
takes < 15 s for ∼6700 sources making it suitable for real-time
analysis. It is technically very simple to introduce new features

5 We apply training obtained in this method from the Stanford Machine
Learning course available on Coursera (https://www.coursera.org/course/ml).
6 Where matrices are denoted using bold font symbols.

Fig. 10. The transient parameters, ην and Vν , for each of the data points
classified using the trained logistic regression algorithm (colour scheme as in
Fig. 8).

Fig. 11. All the features used to train the algorithm with the data points
classified using the trained logistic regression algorithm (colour scheme as in
Fig. 8, otherwise as Fig. 3).

in the logistic regression algorithm and further work is required
to identify new features from the light curves, and potentially
multi-wavelength catalogue data where available, which can sig-
nificantly improve the classification. Additionally, to confirm the
performance of the method and obtain better constraints on the
precision and recall, this algorithm needs testing on much larger
datasets which are drawn from different samples other than the
RSM.

4.1.3. Training transient source identification
As stated in Section 3.4, the transient sources are identified in

comparison to the detection threshold in the previous best image

https://www.coursera.org/course/ml
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plus a margin. In this section, we demonstrate how the optimal
margin can be identified using the simulated transients and the
candidate transients identified within the RSM dataset. As before,
we assume that there are no real transient sources within the
RSM dataset.

For each newly identified source, TraP determines the signal
to noise that the source would have in the best and worst parts
of the previously best image of the field (σrms,best and σrms,worst
respectively). These values are then compared to the detection
threshold utilised, 8σ in this analysis, plus a margin and two
outcomes are determined:

• σrms,worst > (detection threshold + margin): the source is
a transient

• σrms,best > (detection threshold + margin): the source is a
transient candidate

In Fig. 12, we show the distributions of the σrms,best and σrms,worst
for the new sources in the RSM dataset and the simulated tran-
sient sources.

To determine the optimal margin to be added to the detection
threshold, we trial multiple margins in the range 0–50σ . For each
margin, we calculate the precision and recall using Eqs. (3) and
(4) assuming that the new sources from the RSM dataset are not
transient. The optimal margin is then defined as that which gives
the required precision and recall. In this scenario, we chose the
optimal margin to be that which maximises the ‘‘F-Score’’ given
by

F-Score =
2 × precision × recall
precision + recall

. (10)

In Fig. 13 we plot the precision, recall and F-score for the best
and worst rms regions. When using the worst rms from the best
image, we find that the optimal margin is 2σ . In this scenario, the
precision is good at 81% with a recall of 79%. Alternatively, when
using the best rms from the best image we find that a margin
of 34σ gives a higher precision of 89% and lower recall of 67%.
Therefore, it is up to the astronomer to determine which scenario
meets their requirements.

4.2. Testing of algorithms

Each of the machine learning algorithms, are tested using
the methods described in this section. Some of the tests are
specific to each of the methods (Sections 4.2.1–4.2.2), but we
also include comparative tests where possible to compare the
different strategies in Sections 4.2.3–4.2.4.

When testing the algorithms we subdivide the dataset into
smaller samples. A randomised 60% of the available dataset was
used to train the algorithm, 30% was used for cross validation
to ensure a good solution and the remaining 10% was used as
a test dataset which was used to manually confirm that the
classification was working successfully. To compare the results
obtained, we use the training error (the error in classifying the
training dataset, blue in Figs. 14–16) and the validation error (the
error in classifying the validation dataset, green in the Figures),
where the error is defined as:

error =

∑
|input category − predicted category|

total number of sources

≡
FP + FN

FP + FN + TP + TN
(11)

and can also be referred to as the fraction of incorrect classifica-
tions.

Fig. 12. Histograms showing the number of sources with an expected detection
significance σ from the best (top) and worst (bottom) rms regions from the best
previously analysed image. The dashed black line shows the detection threshold
of 8 σ used to extract sources. In blue are the newly detected sources from the
RSM and overlaid in red are the simulated transient sources. (For interpretation
of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

4.2.1. Anomaly detection specific tests
The anomaly detection strategy has been adapted from an un-

supervised technique to a supervised one by measuring the preci-
sion and recall for multiple combinations of the sigma thresholds
with the observed data. The resulting dataset is then used to find
the closest value to the input requirements. To confirm that the
anomaly detection strategy identifies the thresholds correctly, we
trial a range of input precision and recall values (in the range 0.7–
0.95). The output precision values are equal to the requirements
input confirming this strategy is working effectively. The recall
values are slightly more variable, but lie within a few percent of
the input requirements.

4.2.2. Logistic regression specific tests
In the logistic regression algorithm, there is a tune-able pa-

rameter λ which can help prevent over-fitting the data with
a model that has too many free parameters for the observed
dataset. We tested our choice of λ = 0.1 in the machine learning
algorithm by retraining the dataset using a range of λ values
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Fig. 13. This figure shows how the precision (red), recall (blue) and F-Score
(black) for the transient source classification change as the margin added to the
detection threshold is increased. The solid lines are the results for the worst
rms region in the previous best image and the dashed lines are for the best rms
region. We chose the best parameter to maximise the F-Score giving an optimal
balance between precision and recall. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 14. The effect of varying the λ regularisation parameter used on the training
(blue) and validation (green) errors: high λ values suppress some of the model
parameters, θ , which can prevent overfitting of the data. As we have sufficient
data and tend to a solution we can set a low value for λ. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

(10−5–105). We show the training and validation error for the
different λ values in Fig. 14. For large values of λ, the training
and validation errors are relatively high, but for λ < 10 we find
that the errors do not change significantly and they fall to below
10−3 suggesting the classification is very accurate. Therefore, our
choice of λ = 0.1 is appropriate for this dataset and we note that
a range of λ values could be used to successfully train this dataset.
Additionally, we trialled λ = 0 and it produced a near identical
solution to λ = 0.1. Therefore, for this specific dataset, the λ term

is not strictly required. However, as this method is expected to
be extended to larger datasets containing more features, the λ

parameter will remain necessary.

4.2.3. Learning curves
To confirm that the algorithms are correctly tending towards

a good solution, we plot the learning curve. To produce the
learning curve the algorithms are systematically trained on a
dataset starting with 1 data point, then increasing the dataset by
1 data point and retraining until all the data points are used. Each
solution is validated by classifying the cross validation dataset
and calculating the validation error. The optimum solution is
obtained when the training and cross validation curves have
tended to a similar value.

We directly apply this testing method to the logistic regression
and the transient source identification strategy as outlined in
Section 4.1.3. However, the anomaly detection strategy is ex-
tremely slow, typically taking hours to produce the gridded sigma
values required (including significant parallelisation within the
code). This duration could be reduced by decreasing the number
of trials in the sigma grids, but this reduction in resolution has
a significantly detrimental affect on the classification capability
of the algorithm and would not produce representative results.
Therefore, to produce a full learning curve for this strategy would
take a disproportionate amount of time. To make this a more
achievable option and representative of the final result, we in-
stead trial 50 combinations logarithmically distributed in the
range 1–1 × 104 data points.

The anomaly detection learning curve, in Fig. 15(a), shows
that the algorithm is tending towards an optimal solution after
approximately 1000 data points, but there is still variation in the
errors. This pattern is also observed in Fig. 15(c) for the tran-
sient identification strategy. The learning curve for the logistic
regression strategy, in Fig. 15(b), clearly shows that an optimum
solution is reached when there are >200 data points. However,
this also shows that the solution obtained by the logistic regres-
sion algorithm used will not be further improved by adding an
order of magnitude more data points to the training set. We
have partially corrected for this by using a low value for λ (0.1,
obtained in Section 4.2.2), but this is likely caused by the slight
overlap between transients and stable sources in the parameter
space given by the four features considered. Ideally we need to
identify more features that can be used for transient search to
improve the classification.

4.2.4. Validation curves
Additionally, we want to ensure that the solutions obtained

are not caused by randomly choosing an unusual sample of the
dataset to train and test the algorithm. To check this, we re-
peated the randomised sampling of the dataset (into the training,
validation and testing datasets) 1000 times and retrained the
different machine learning algorithms for each combination. As
with the learning curve in Section 4.2.3, the anomaly detection
strategy is too slow for this test to be completed in a practical
time scale. Therefore, we randomly sample 50 of the 1000 unique
datasets as a representative sample (Note, in production mode
for comparable datasets, these tests do not require repetition
or a small subsample can be used to confirm these results). In
Fig. 16, we show the training and validation errors obtained for
each of the 1000 different training sets for each of the machine
learning algorithms. As the errors do not significantly vary for
all of the different datasets and each of the training algorithms,
we can conclude that the algorithm results are not dependent
on the random dataset chosen to train them. We also note that
the errors are significantly lower for the logistic regression strat-
egy, showing it is outperforming the anomaly detection strategy
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Fig. 15. These panels show the learning curve, the training (blue) and validation
(green) errors as a function of the number of data points in the training dataset.
An optimum solution is reached when the values have tended towards similar
values. (a) a simplified version for the anomaly detection strategy, (b) the
logistic regression algorithm using λ = 0.1, (c) the transients algorithm. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 16. The effect of changing the training data set on the training (blue)
and validation (green) errors: we repeat the training on 1000 different random
samples of 50% of the full dataset. As the errors do not vary significantly, we
can conclude that the solution is not dependent on a specific training set. (a) a
simplified version for the anomaly detection strategy, (b) the logistic regression
algorithm, (c) the transients algorithm. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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for identifying variable sources. The errors are much higher for
the transient detection strategy, this is unsurprising due to the
significant overlap between simulated transients and the newly
detected sources in the observed dataset (see Fig. 12).

4.3. Transients and variables identified

4.3.1. Anomaly detection variable candidates
Using the trained anomaly detection strategy, requiring a pre-

cision and recall of 95%, we identified 14 false positive sources
in the RSM dataset. These false positives are variable source
candidates warranting further investigation. Nine of these sources
originated from a single pointing in the first run of the RSM
(where each pointing of the RSM consists of 6 beams) and three
candidates are from a single target field in the dataset. These
twelve variable candidates were clearly caused by errors in the
position or flux density scale originating from a poor calibration
which had been missed by the automated image quality con-
trol settings as their image properties, such as the rms noise,
were consistent with good images. Variability searches are good
at identifying calibration issues such as these and new quality
control tests are in development to automatically identify these
images.

Two of the blindly detected variable source candidates were
identified as real variable sources as other sources in the field
had stable flux densities. These two sources are associated with
pulsars PSR B0329+54 (η(185 MHz) = 252 and V(185 MHz) = 0.225)
and PSR B1508+55 (η(124 MHz) = 35.4 and V(124 MHz) = 0.276),
which are both known to scintillate at low frequencies (Kaspi
and Stinebring, 1992; Gupta et al., 1993; Stinebring et al., 1996,
2000; Shishov et al., 2003; Esamdin et al., 2004). In Fig. 17, we
show the light curves of these pulsars together with a nearby
stable source. We note there are missing measurements for some
snapshots as a few of the images were rejected by the automated
quality control scripts. The time scale, of order several months,
and magnitude of the variability of these pulsars are consis-
tent with the refractive interstellar scintillation models predicted
by Esamdin et al. (2004). We use the lightcurves from our 4
observing frequencies to calculate the pulsar modulation index,
the characteristic change in the flux density of a pulsar caused
by refractive scintillation in the interstellar medium, using the
method outlined in Esamdin et al. (2004). The refractive inter-
stellar scintillation is characterised using the structure function
of the flux density variability defined by

D(τ ) =
1

⟨F⟩2

n∑
j=1

(Ij − Ij+τ )
Wτ

, (12)

where τ is the duration between observations, Ij is the flux den-
sity in observation j, Ij+τ is the flux density in observation j+τ ,Wτ

is the number of days with a given lag time and ⟨F⟩ is the average
flux density (Esamdin et al., 2004). This structure function reaches
a saturation value, where the variability is intrinsic to the source,
on the characteristic variability time scale. In the RSM dataset,
we have insufficient snapshots on long time scales to constrain
the saturation value and, hence, we can only provide approximate
lower limits on the modulation indices and variability time scales.
In Table 1 we provide the LOFAR constraints and in Fig. 18 we
plot these values with the results and predictions of Esamdin
et al. (2004). Frequent monitoring will constrain these parameters
further.

4.3.2. Logistic regression results
As with the anomaly detection strategy described in

Section 4.3.1, a number of the sources in the RSM dataset are
identified as false positive results which are candidate variables

Table 1
The modulation index and modulation time scale for the two scintillating pulsars
we identified.
Pulsar Frequency Modulation Time scale

(MHz) (days)

B0329+54 124 >0.111 >339
149 >0.045 >154
156 >0.173 >154
185 >0.130 >339

B1508+55 124 >0.110 >339
149 >0.146 >153
156 >0.080 >153
185 >0.082 >311

Fig. 17. The light curves of two scintillating pulsars, PSR B0329+54 (top) and
PSR B1508+55 (bottom), identified using the anomaly detection strategy with a
stable source in their respective fields shown for reference (dashed lines). The
lines are colour coded by the observed frequency in MHz. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

in the dataset. Of the 7 sources identified, 6 are due to the cali-
bration errors described in Section 4.1.1 and the final candidate
was the previously identified variable source PSR B0329+54. PSR
1508+55 was not identified using the logistic regression method,
because logistic regression makes a more optimal separation
between the stable and variable sources. We assumed that all
the RSM sources are stable sources, although there are calibration
uncertainties causing the variability parameters of some stable
sources to be increased. As a result the logistic regression strategy
will be biased towards higher variability parameters. The four
variability parameters of PSR 1508+55 used in this analysis are
comparable to those of sources suffering from calibration uncer-
tainties and hence is only just inside the stable source region
using the optimal classification attained by the logistic regression
algorithm. With improved calibration across the dataset, this bias
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Fig. 18. The modulation index (left) and the modulation time scale (right) of the two scintillating pulsars, PSR B0329+54 (top) and PSR B1508+55 (bottom). The
red triangles are the LOFAR RSM lower limits and the blue data points are the detections (circles) and lower limits (triangles) taken from Esamdin et al. (2004) and
references therein.

would be reduced and PSR B1508+55 is then likely to be correctly
classified by this algorithm.

4.3.3. Transient candidates
By choosing the strategy which maximises the F-Score and

the recall (as described in Section 4.1.3), we look for candidate
transient sources which should be detectable in the best (or
worst) rms region of the best previously studied image. Using
these thresholds for the best and worst rms regions (34σ and
2σ respectively), we identify 5 false positive results from the
RSM dataset which are candidate transient sources. 4 of these
candidates are caused by poor calibration in one of the initial
pointing directions. The final candidate transient is caused by a
spatially extended source that had been resolved into different
components by PySE. No transient sources were identified as part
of this analysis. As discussed in Section 2.3, the hybrid dataset
may be biased against low level variability and therefore further
work is required to confirm that there are no transients.

5. Future areas for development

This paper has presented a number of strategies to automat-
ically search for transient and variable sources using outputs
from automated pipelines such as TraP. These strategies have
been successfully applied to observed and simulated datasets.
However, there are a number of different areas which warrant
further investigation with significantly larger datasets and more
complex simulations.

5.1. Improved training datasets

As described in Section 2.3, the hybrid dataset has provided
a reasonably representative training dataset to develop machine
learning algorithms, which have aided in the identification of
transient and variable sources in the observed RSM dataset. How-
ever, there are a number of caveats with this hybrid dataset with
the most significant issue being the bias against low level intrinsic
variability in the observed dataset. There are two options that
could be investigated for future work:

• Improve simulation strategy to better account for the ex-
pected, but difficult to model, sources of uncertainty, then
produce fully simulated stable and variable sources that are
representative of the observed dataset.

• Manually classify a large observed dataset including a sig-
nificant number of known variable and transient sources.

5.2. Time variability of variability parameters

The variability parameters are all calculated using aggregate
properties of the light curves; as new data points are added these
parameters can change significantly. Hence a source which would
be identified as variable after 10 images, may no longer appear
variable after 100 images. For this reason, the TraP records the
variability parameters after each time step in individual light
curves. In Fig. 19 we show the evolution of the variability param-
eters as a function of the light curve for the 8 different simulated
source types presented in this paper. From this figure, it is clear
that some sources have steadily increasing variability parameters;
however a number of the source types have steadily decreasing
parameters. Therefore, the variability can be missed if variable
sources are only identified after processing a large number of
images.

Additionally, the variability parameters of the stable sources
are also likely to stabilise to smaller values after large numbers
of observations. Surveys with uneven sampling of fields are then
unlikely to have stable sources which can be simply modelled
as a single Gaussian distribution. For instance light curves from
sources in the 3XMM dataset (Watson et al., 2009) may have
anything from a few to thousands of data points. The variability
parameters were calculated, using Eqs. (1) and (2), for the light
curves of all sources in the 3XMM dataset and are shown in
Fig. 20. They are clearly poorly fitted by a single Gaussian and is
likely to be multiple Gaussian distributions superimposed on top
of each other. This is most likely caused by the sources having
different numbers of data points in their light curves and can be
solved by comparing the light curves with the same number of
data points.
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Fig. 19. The evolution of the variability parameters with time for each of the
simulated variable sources with the same colour scheme as given in Fig. 6.
We show the flux density light curve (top), with the variability parameters ην

(middle) and Vν (bottom) evolution.

Fig. 20. The variability parameters for all the sources observed in the 3XMM
dataset.

Both of these issues should be solved by simply applying
the strategies presented in this paper at each time step or with
increasing number of data points in the light curve. In the future,
there will be significantly larger observed datasets and corre-
sponding simulated datasets containing more snapshots. These
larger datasets can be used to confirm that the variability parame-
ters are dependent upon the number of data points in the source

light curve. Additionally, using these larger datasets, the strate-
gies outlined in this paper can be adapted into more complex
algorithms that search for variability after each new data point
is inserted into a light curve.

5.3. Combining multi-frequency and polarisation information

In this paper, we have focused on the variability parameters
for the simulated simple light curves. A number of surveys have
multi-frequency and polarimetric data which can provide ex-
tremely valuable additional information. For instance transients
and variable sources detected at multiple frequencies are more
likely to be real, while spectra, polarisation and variability delays
between frequencies can give clues about the progenitors and
emission mechanisms.

The logistic regression strategy presented in Section 4.2 has
been developed to be easily adaptable to incorporate multiple
new parameters. However, this strategy requires large training
datasets containing both stable and simulated sources. Although
the stable sources are easily obtained from existing surveys, there
are still only a few transient and variable sources identified at low
radio frequencies. Therefore we are still reliant on simulations
and it is difficult to predict the multi-frequency and polarisation
behaviour of the, as yet unknown, population of variable sources.
Once significantly larger datasets have been obtained and there
are more identified transient and variable sources, we will be able
to develop these strategies.

5.4. Supervised machine learning strategies

As the number of training parameters and the datasets in-
crease, via the developments such as those suggested in Sections
5.1–5.3, other supervised machine learning algorithms may per-
form better than the algorithms presented here and will require
further investigation. These improvements may be in both the
training speed and the classification accuracies. Other super-
vised algorithms that will become interesting future alternatives
include:

• Random Forests: A supervised machine learning algorithm
that builds ensembles of decision trees for classification or
regression (e.g. Breiman, 2001). These algorithms are at their
best for studies where the categories well are known, with
training sets containing sufficient sources in each category,
and have been applied to a wide range of astronomical
datasets (e.g. Lo et al., 2014a,b; Farrell et al., 2015). At low
frequencies, we do not have a well constrained population of
sources to be able to produce the training set. This algorithm
has the potential to be extremely useful in the future when
the training dataset is of sufficient quality.

• Support Vector Machines: These work by identifying opti-
mal boundaries known as hyper-planes between data points
in multiple dimensions, similar to the linear divisions used
by the logistic regression algorithm in this analysis. The data
are first transformed into different dimensional space where
they can be simply separated in a similar way to logistic
regression (e.g. Cortes and Vapnik, 1995). These support vec-
tor machine algorithms are typically optimised for datasets
with many training parameters. As this paper focuses on a
relatively small dataset with few training parameters which
can be linearly separated without transformation, we de-
cided it was not necessary to use this strategy. As datasets
become larger and more complex, support vector machines
may become more appropriate.
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5.5. Unsupervised machine learning strategies

We have relied upon simulated sources to model the tran-
sient and variable source populations and utilised supervised ma-
chine learning strategies that are trained using the input datasets.
When introducing the anomaly detection strategy, we noted this
is typically an unsupervised machine learning strategy that can
simply be applied to the dataset but relies upon choosing an
appropriate σ threshold. However, there are a number of other
unsupervised machine learning strategies that are good at iden-
tifying clusters of sources from unlabelled datasets, such as k-
means clustering algorithms (Lloyd, 1982). These offer extremely
promising strategies that will be able to identify unusual sources
without assumptions about the properties of the source popula-
tions. Additionally, the unsupervised strategies do not require the
large labelled training sets that can be challenging to obtain and
are likely to contain biases against particular types of variability
(see Sections 2.3 and 5.1). These strategies perform best with
datasets with sufficient sources of each type. For our purposes,
this equates to larger datasets, which will become available from
various transient surveys running over the coming years, and
warrant further investigation.

6. Conclusions

Reliable automated transient and variable source detection
is essential with the expected influx of data from large tran-
sient surveys. Tools such as TraP are essential for processing
these datasets but require the astronomer to choose appropriate
thresholds. This paper has presented methods for choosing these
thresholds using machine learning strategies applied to observed
and simulated datasets.

Using an anomaly detection strategy, adapted to be a su-
pervised machine learning strategy in 2 dimensions, we have
developed a method for astronomers to choose thresholds to
meet specified criteria on the precision and recall of the classi-
fication of variable sources. This enables flexibility in the choice
of thresholds; for instance the precision can be increased when
requiring extremely reliable triggers to carefully control choice
of follow-up targets. Alternatively, the recall can be set to higher
values when the user wants to maximise the number of candidate
variable sources. With reasonable input values for precision and
recall, we blindly detected two known scintillating pulsars in the
LOFAR RSM dataset. However, although the anomaly detection
strategy performs better than the arbitrary thresholds chosen in
previous studies, we note that this strategy is slow to train and
provides sub-optimal classifications in comparison to the other
methods presented in this paper.

The second strategy presented uses a logistic regression strat-
egy that divides datasets into two populations in a multiple
parameter space. We have used 4 parameters (ην , Vν , maximum
flux density and the ratio between the maximum flux density and
average flux) but the algorithm can be easily adapted to include
many more parameters. This method achieves a precision of 98%
and recall of 91% with the dataset presented in this paper. Further
analysis with larger datasets and a wider range of variable sources
will be highly beneficial in further testing and extending this
strategy.

Although transient sources will often have high values for
their variability parameters, this is not always the case as their
light curves may have insufficient data points to confirm vari-
ability or, after they have appeared, the sources may have a
reasonably stable flux. TraP has been specifically designed to deal
with these sources by checking if they would be detected in the
previous best images. To enable fine tuning, a margin can be
applied to the detection threshold and we have demonstrated
strategies to determine the optimal margin for the dataset.

These strategies have been developed using the TraP and
LOFAR observations. We note that the performance of the ma-
chine learning algorithms needs to be tested with significantly
larger and varied datasets as they become available over the
coming years. Moreover, these methods have been designed to be
adaptable to other pipelines and wavelengths. In future work, we
plan to extend these strategies and apply them to a wide range
of transient and variable sources.
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