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Abstract 24 

In continental subduction zones, the behaviour of the mantle wedge during exhumation of 25 

(ultra)high-pressure [(U)HP] rocks provides a key to distinguish among competing exhumation 26 

mechanisms. However, in spite of the relevant implications for understanding orogenic evolution, a 27 

high-resolution image of the mantle wedge beneath the Western Alps is still lacking. In order to fill 28 

this gap, we perform a detailed analysis of the velocity structure of the Alpine belt beneath the 29 

Dora-Maira (U)HP dome, based on local earthquake tomography independently validated by 30 

receiver function analysis. Our results point to a composite structure of the mantle wedge above the 31 

subducted European lithosphere. We found that the Dora-Maira (U)HP dome lays directly above 32 

partly serpentinized peridotites (Vp ~7.5 km/s; Vp/Vs = 1.70-1.72), documented from ~10 km 33 

depth down to the top of the eclogitized lower crust of the European plate. These serpentinized 34 

peridotites, possibly formed by fluid release from the subducting European slab to the Alpine 35 

mantle wedge, are juxtaposed against dry mantle peridotites of the Adriatic upper plate along an 36 

active fault rooted in the lithospheric mantle. We propose that serpentinized mantle-wedge 37 

peridotites were exhumed at shallow crustal levels during late Eocene transtensional tectonics, also 38 



triggering the rapid exhumation of (U)HP rocks, and were subsequently indented under the Alpine 39 

metamorphic wedge in the early Oligocene. Our findings suggest that mantle-wedge exhumation 40 

may represent a major feature of the deep structure of exhumed continental subduction zones. The 41 

deep orogenic levels here imaged by seismic tomography may be exposed today in older (U)HP 42 

belts, where mantle-wedge serpentinites are commonly associated with coesite-bearing continental 43 

metamorphic rocks. 44 

Keywords: continental subduction; ultra-high-pressure metamorphism; mantle wedge exhumation; 45 

peridotite serpentinization; local earthquake tomography; Western Alps 46 

Highlights: 47 

- High-resolution image of the seismic velocity structure of the Alpine mantle wedge 48 

- First geophysical evidence of mantle-wedge exhumation during continental subduction 49 

- Mantle wedge exhumation is favoured by upper plate divergent motion 50 

1. Introduction 51 

Exhumed (ultra)high-pressure [(U)HP] rocks bear compelling evidence of the interaction 52 

between subducting plates and the overlying mantle wedge (Carswell and Compagnoni, 2003; 53 

Hacker et al., 2006; Ferrando et al., 2009; Scambelluri et al., 2010; Deschamps et al., 2013; Gilotti, 54 

2013). However, the role played by the mantle wedge during (U)HP rock exhumation is still poorly 55 

understood. Some numerical models point to a negligible mantle involvement during exhumation 56 

(Yamato et al., 2008; Butler et al., 2013), whereas other models suggest that mantle rocks may be 57 

strongly involved, and may follow the exhumation path of buoyant (U)HP rocks towards the Earth’s 58 

surface (Schwartz et al., 2001; Petersen and Buck, 2015). The behaviour of the mantle wedge 59 

during (U)HP rock exhumation may thus provide a key to discriminate among competing 60 

exhumation models (e.g., Agard et al. 2009; Guillot et al., 2009a; Liou et al., 2009; Warren, 2013).  61 



In the Cenozoic metamorphic belt of the Western Alps, the geologic record of subduction and 62 

exhumation is exceptionally well preserved (e.g., Lardeaux et al., 2006; Malusà et al., 2011), but a 63 

high-resolution image of the mantle wedge is still lacking. A detailed analysis of the seismic 64 

velocity structure beneath the Dora-Maira (U)HP dome, where coesite attesting deep continental 65 

subduction was first described three decades ago (Chopin, 1984), may thus provide new insights on 66 

the ongoing debate concerning the mechanisms triggering the exhumation of (U)HP rocks (e.g., 67 

Jolivet et al., 2003; Schwartz et al., 2001; Agard et al., 2009; Little et al., 2011; Butler et al., 2013; 68 

Malusà et al., 2015; Ducea, 2016). Moreover, this kind of analysis may provide new interpretation 69 

keys to understand the field relationships between mantle-wedge rocks and continental (U)HP rocks 70 

in deeply unroofed pre-Cenozoic orogenic belts (e.g., van Roermund, 2009; Scambelluri et al., 71 

2010), where the geophysical record of subduction and exhumation is no longer preserved (e.g., 72 

Zhao et al. 2017).  73 

In this article, we exploit a comprehensive seismic dataset, also including anomalously deep 74 

earthquakes (Eva et al., 2015), to derive a local earthquake tomography model of the mantle wedge 75 

beneath the Dora-Maira (U)HP dome, which is then compared with the results provided by receiver 76 

function analysis along the CIFALPS transect (China-Italy-France Alps seismic survey; Zhao et al., 77 

2015). Our results indicate that part of the mantle wedge was metasomatized above the Alpine 78 

subduction zone, and subsequently exhumed at shallow depth beneath continental (U)HP rocks now 79 

exposed at the surface. This suggests that mantle-wedge exhumation may be a prominent feature of 80 

the deep structure of many (U)HP belts, which should be integrated in future theoretical models of 81 

continental subduction and (U)HP rock exhumation.   82 

2. Tectonic framework  83 

2.1 The orogenic wedge of the southern Western Alps 84 

The Western Alps are the result of oblique subduction of the Alpine Tethys under the Adriatic 85 

microplate since the Late Cretaceous, followed by continental collision between the Adriatic and 86 



European paleomargins during the Cenozoic (Coward and Dietrich, 1989; Dewey et al., 1989; 87 

Lardeaux et al., 2006; Handy et al. 2010; Malusà et al., 2016a). The resulting slab structure is still 88 

largely preserved (Zhao et al., 2016a), as well as the orogenic wedge formed atop the European slab 89 

(Lardeaux et al., 2006; Beltrando et al., 2010; Malusà et al., 2011). In the southern Western Alps, 90 

along the CIFALPS transect (X-X’ in Fig. 1), the Alpine orogenic wedge mainly consists of rocks 91 

derived from the Piedmont ocean-continent transition and from the adjoining European paleomargin 92 

(Lemoine et al., 1986; Dumont et al., 2012). The external zone, exposed to the west of the Frontal 93 

Pennine Fault (FPF in Fig. 1), includes the Pelvoux and Argentera basements and their deformed 94 

Meso-Cenozoic sedimentary cover sequences (Ford et al., 2006), which record a transition from 95 

thin-skinned to thick-skinned compressional tectonics during the Neogene (Schwartz et al., 2017). 96 

East of the Frontal Pennine Fault, in the Alpine metamorphic wedge, the Briançonnais nappe stack 97 

(Br in Fig. 1) mainly consists of Upper Paleozoic to Mesozoic metasediments and underlying pre-98 

Alpine basement rocks that underwent subduction starting from the Paleocene, and were later 99 

exhumed in the Eocene - early Oligocene (Malusà et al., 2002, 2005a; Ganne et al., 2007; Lanari et 100 

al., 2014). The Briançonnais nappe stack forms the core of the present-day Alpine fan-shaped 101 

structure (Michard et al., 2004) that was overprinted by a dense network of extensional faults during 102 

the Neogene (Sue et al., 2007; Malusà et al., 2009). The eastern part of the fan is formed by oceanic 103 

metasediments of the Schistes lustrés complex (SL in Fig. 1; Lemoine et al., 1986; Lagabrielle and 104 

Cannat, 1990), including boudinaged decametre-to-kilometre-sized ophiolitic bodies that were 105 

deformed and metamorphosed during Alpine subduction under blueschist to transitional blueschist–106 

eclogite facies conditions (Agard et al., 2002; Tricart and Schwartz, 2006; Schwartz et al., 2009) 107 

(Fig. 2A). A ductile normal fault (DF1 in Fig. 2A; Ballèvre et al., 1990) separates the Schistes 108 

lustrés complex from the Viso metaophiolites (Vi in Fig. 1; Lombardo et al., 1978; Angiboust et al., 109 

2012), representing major imbricated remnants of the Tethyan oceanic lithosphere that were 110 

deformed and metamorphosed under eclogite facies conditions during the Eocene (Duchêne et al., 111 

1997; Schwartz et al., 2000; Rubatto and Hermann, 2003). Another ductile normal fault (DF2 in 112 



Fig. 2A; Blake and Jayko, 1990) separates the Viso eclogites from the underlying stack of deeply 113 

subducted continental basement slices referred to as the Dora-Maira (U)HP dome (DM in Fig. 1; 114 

Henry et al., 1993; Michard et al., 1993), which also includes the coesite-bearing Brossasco-Isasca 115 

eclogitic unit (black star in Figs. 1 and 2A; Chopin et al., 1991; Compagnoni and Rolfo, 2003). 116 

Along the boundary with the Po Plain, the CIFALPS transect crosses the southern tip of the Lanzo 117 

massif (La in Fig. 1; Boudier, 1978; Piccardo et al., 2007), an eclogitized mantle slice separated 118 

from the Dora-Maira dome by a near-vertical active fault system rooted in the upper mantle (Rivoli-119 

Marene deep fault - RMF in Fig. 1) at the southward prolongation of the Insubric Fault (Eva et al. 120 

2015; Malusà et al., 2017). The Lanzo massif consists of slightly serpentinized spinel plagioclase 121 

peridotites surrounded by a 3–5 km thick envelope of foliated serpentinites (Müntener et al., 2004; 122 

Debret et al., 2013), and records a high-pressure metamorphic peak of early Eocene age (Rubatto et 123 

al., 2008). Beneath the Po Plain, the complex transition zone between the Adriatic upper plate and 124 

the Apennines, also involving rotated fragments of the Alpine orogenic wedge (Maffione et al., 125 

2008; Eva et al. 2015), is mainly covered by thick Cenozoic to Quaternary sedimentary successions. 126 

2.2 The Dora-Maira (U)HP dome 127 

The Dora-Maira (U)HP dome is exposed all along the internal side of the southern Western 128 

Alps (Chopin et al., 1991; Lardeaux et al., 2006) (Fig. 1). To the west of Torino, it is juxtaposed 129 

against the Lanzo massif along the Lis-Trana deformation zone (Perrone et al., 2010), possibly 130 

representing a shallow splay of the Rivoli-Marene deep fault (Eva et al., 2015). To the south, it is 131 

partly buried by the sedimentary successions of the Po Plain (Fig. 1), and is exposed as a half-dome 132 

including coesite-bearing eclogitic rocks (Brossasco-Isasca unit) sandwiched between quartz-133 

eclogite facies rocks, above, and blueschist facies rocks, below (Compagnoni et al. 1995; Avigad et 134 

al., 2003; Compagnoni and Rolfo, 2003) (Fig. 2A). The Brossasco-Isasca unit is a coherent 135 

continental crust sliver composed of granitic gneisses (Lenze and Stöckhert, 2007), whiteschists 136 

(Chen et al., 2017), mafic eclogites (Groppo et al., 2007) and impure marbles (Ferrando et al., 137 



2017). It was subducted to depths greater than ~100 km by the late Eocene (e.g., Chopin et al., 138 

1991; Rubatto and Hermann, 2001; Hermann, 2003), and was exhumed close to the Earth’s surface 139 

by the early Oligocene, at rates faster than subduction rates (Rubatto and Hermann, 2001; Malusà et 140 

al., 2015), as confirmed by low-temperature thermochronology data (Gebauer et al., 1997; Tricart et 141 

al., 2007; Beucher et al., 2012). The overlying quartz-eclogite Venasca p.p. and Dronero units, 142 

including gneisses and metasediments derived from a Permian-Triassic detrital sequence, and the 143 

underlying blueschist-facies Sanfront-Pinerolo unit, consisting of orthogneisses and metasediments 144 

intruded by Permian diorites (Avigad et al., 2003), were piled up together with the Brossasco-Isasca 145 

and Viso units during late Eocene exhumation (Schwartz et al., 2009; Malusà et al., 2011), to 146 

became part of the Eocene Eclogite belt now exposed along the upper-plate side of the Western 147 

Alps (Fig. 1), at the rear of a lower-pressure Paleogene wedge (LP in Fig. 2B,C).  148 

The structure and lithologic composition of the orogenic wedge beneath the Dora-Maira 149 

(U)HP dome is still largely unknown. The velocity structure provided by available seismic 150 

tomography models is well resolved only for the uppermost 15-20 km (Paul et al., 2001; Béthoux 151 

et al., 2007). Recent tectonic reconstructions postulated the occurrence of Briançonnais crust 152 

slivers down to depths greater than 30 km, and suggested that these slivers would be involved in 153 

an east-vergent backfold at the scale of the whole Eclogite belt (Schmid et al., 2017). However, 154 

the Dora-Maira dome shows no cartographic evidence of such large-scale backfolding, which is 155 

instead observed in the Monte Rosa dome (MR in Fig. 1) of the northern Western Alps, where 156 

late backfolding is possibly ascribed to progressive westward shifting of Adria indentation from 157 

the Central Alps to the northern Western Alps during the Neogene (Malusà et al., 2016b). As a 158 

matter of fact, alternative interpretations of the deep tectonic structure of the southern Western 159 

Alps are not adequately supported by geophysical data. This information gap has so far precluded 160 

a full understanding of the exhumation mechanisms that were active within the Alpine subduction 161 

zone during the late Eocene.  162 



2.3 Exhumation models and implications on the deep orogenic structure  163 

In general terms, exhumation models applied to (U)HP belts can be framed within two different 164 

groups, also implying alternative scenarios of mantle involvement: (i) synconvergent exhumation 165 

models, either requiring fast erosion or forced circulation in a low-viscosity wedge (e.g., Beaumont 166 

et al., 2001; Zeitler et al., 2001; Jamieson and Beaumont, 2013), and (ii) exhumation models that 167 

consider boundary divergence within the subduction zone, with a minor role played by erosion (e.g., 168 

Dewey, 1980; Brun and Faccenna, 2008). Both categories of models have been applied to the 169 

Western Alps (e.g., Malusà et al., 2011; Butler et al., 2013).  170 

Classic tectonic reconstructions of the Alpine belt suggest that synconvergent exhumation 171 

could be favoured by deep duplex formation via the accretion of continental material derived from 172 

the lower plate (Schmid et al., 2004; Agard et al., 2009), which may be followed by indentation of 173 

the upper-plate mantle beneath the accretionary wedge (Schmid and Kissling, 2000; Béthoux et al., 174 

2007). This scenario would imply that seismic velocities in the upper-plate mantle should be similar 175 

beneath the orogenic wedge and in the hinterland (Fig. 2B). In case of divergent motion between the 176 

upper plate and the descending slab, (U)HP rock exhumation might be instead associated to the 177 

emplacement of serpentinized mantle-wedge rocks at shallow depth beneath (U)HP continental 178 

rocks, provided that divergence is sufficiently high (Fig. 2C). Because of widespread mantle-wedge 179 

serpentinization during subduction (Lafay et al., 2013; Plümper et al., 2017), seismic velocities are 180 

predicted to be lower in mantle-wedge rocks beneath the (U)HP dome, and higher in adjoining dry 181 

mantle rocks of the upper plate (Fig. 2C). 182 

These alternative scenarios would be in agreement with alternative end-member tectonic 183 

reconstructions of the southern Western Alps, based on recent geophysical data from the CIFALPS 184 

experiment (Zhao et al., 2016b). One possible end-member reconstruction, consistent with 185 

geophysical data, invokes a thick complex of (U)HP continental slivers, in line with predictions of 186 

numerical models of syn-convergent exhumation, whereas a second end-member reconstruction 187 

invokes a larger volume of mantle rocks possibly exhumed at shallow depth during divergent 188 



motion within the subduction zone (Zhao et al., 2015; Malusà et al., 2017). A local earthquake 189 

tomography model, complementing previous studies based on receiver function analysis, would be 190 

extremely useful to discriminate between these end-member tectonic reconstructions, and may 191 

allow a decisive step forward in our understanding of mechanisms leading to exhumation of (U)HP 192 

rocks.  193 

3. Methods 194 

3.1. Building the database 195 

The local earthquake tomography presented in this work is largely based on the dataset collected 196 

during the CIFALPS experiment (Zhao et al., 2016b), which was integrated by data recorded in the 197 

same time interval by permanent seismic networks operating in Italy and France, and complemented 198 

with selected older events. The temporary network of the CIFALPS experiment (blue marks in 199 

Figure 1B) includes 46 broadband seismic stations deployed along a linear WSW-ESE transect 200 

from the European foreland to the western Po Plain, and 9 additional stations installed to the north 201 

and to the south of the main profile. Stations operated from July 2012 to September 2013, and were 202 

specifically deployed for a direct comparison between receiver function and local earthquake 203 

tomography. Stations located along the main profile were conceived for receiver function analysis 204 

(Zhao et al., 2015). Their spacing ranges from ~5 km in the Western Alps mountain range to ~10 205 

km in the European foreland and in the western Po Plain. Off profile stations were installed to 206 

improve the crossing of seismic rays for local earthquake tomography. 207 

The high number of recording stations along the main CIFALPS profile may increase the 208 

computational burden during local earthquake tomography (e.g. in ray tracing) without a direct 209 

improvement in the final resolution. However, it ensures a number of advantages. For example, any 210 

potential loss of data due to station malfunctioning is easily recovered by adjacent instruments, and 211 

doubtful data can be discarded without jeopardizing the quality of the dataset. In order to improve 212 

the ray coverage and ensure ray crossing from any azimuth in the study volume, we added to the 213 



dataset all published phase pickings recorded by permanent seismic stations operating in France and 214 

Italy during the CIFALPS experiment (red marks in Figure 1B). We additionally considered few 215 

events that occurred before the experiment to fill specific spatial gaps. This was the case of the 216 

intermediate depth earthquakes that were useful to sample anomalies at the bottom of the study 217 

volume. Because these earthquakes are relatively rare (Eva et al., 2015), only few events were 218 

recorded during the CIFALPS experiment. In summary, 270 events on a total of 1088 events 219 

utilized in this work were added as supplementary entries from datasets available at French and 220 

Italian seismic networks; about 80% of the remaining events were merged with existing phase 221 

pickings. The final P and S ray coverage is shown in Figure 3A.  222 

3.2. Seismic tomography setup and reconstruction test 223 

We adopted the local earthquake tomography code SIMULPS (Thurber, 1983) for tomographic 224 

analysis, in its version 14 that implements the ray tracer by Virieux (1991) to cope with models of 225 

regional size. We subdivided the study volume into layers containing nodes, and used an initial 226 

velocity model derived from previous seismic experiments over a larger area (Scafidi et al., 2009). 227 

Several tests were performed for a correct choice of the inversion parameters, and classical damping 228 

trade-off curves (Eberhart-Phillips, 1986) were computed to pick up the best values for P and S 229 

velocities.  230 

The resolution capability of the coupling between inversion setup and data was evaluated by 231 

checkerboard and reconstruction tests. These tests were useful to choose an adequate geometry of 232 

the starting model and evaluate the smearing due to the contrast between high and low velocity 233 

anomalies. The reconstruction test was specifically conceived to test the potential impact of the 234 

high-velocity Ivrea body, a long recognized tectonic feature associated to a positive gravimetric 235 

anomaly (red dotted line in Fig. 1) and interpreted as a slice of Adriatic mantle emplaced at shallow 236 

depth (Closs and Labrouste, 1963; Nicolas et al., 1990). We used a “stairwell” geometry to simulate 237 

a high-velocity east-dipping layer along the CIFALPS profile (Fig. 3B) and test the resolution 238 



capability of the coupling between seismic dataset and inversion setup. The same geometry after 239 

interpolation by the algorithm used in SIMULPS is shown in Figure 3C. A comparison with Figure 240 

3B shows that the interpolation process introduces a smoothing of the anomalies and a band of fake 241 

colors around them. Figure 3D shows the reconstruction of the imposed stairwell structure based on 242 

our seismic dataset. The inversion of synthetic data does not consider the resolution, and Figure 3D 243 

only displays the reconstructed model as if it was completely resolved except for areas that were not 244 

sampled (in white). As shown in the reconstruction test, the shape of the anomaly is well 245 

reproduced, but the velocity of the first and second steps is lowered from ~8.0 km/s (blueish) to 246 

about ~7.5 km/s (greenish), and weak vertical and horizontal periodic stripes of yellow color appear 247 

at ~50 km depth. These artifacts, and the undestimation of the magnitude of the high velocity 248 

anomalies in the uppermost 10 km of the crust, have been considered during the subsequent phases 249 

of tomography interpretation. The real data tomographic model is about 700×700 km wide, and was 250 

obtained after 6 iterations on a 12 layers model of 36×36 nodes each. In the central part of the 251 

model, spacing between nodes is equal to 15 km. 252 

4. Results 253 

Figure 4 shows the Vp and Vp/Vs cross-sections along the CIFALPS profile. The lighter areas 254 

are those where the diagonal elements of the resolution matrix are <0.1. This threshold was chosen 255 

as the divider between resolved and non-resolved areas based on a comprehensive comparisons 256 

between different resolution indicators (Paul et al., 2001). As expected, the maximum depth of the 257 

resolved area is limited by the depth of occurrence of most of the deepest events (Eva et al., 2015; 258 

Malusà et al., 2017). Beneath the Dora-Maira (U)HP dome, the tomography model is well resolved 259 

down to 50-60 km depth, whereas the two extremes of the CIFALPS cross section are poorly 260 

resolved. Letters “a” to “k” indicate the relevant velocity features highlighted by the tomography 261 

model. The main tectonic structures previously inferred from receiver function analysis (Zhao et al. 262 



2015) and surface geology (Lardeaux et al., 2006; Malusà et al., 2015) are also indicated for 263 

comparison (black lines in Fig. 4).  264 

The most prominent feature of the tomography model is represented by the high velocity body 265 

(Vp ~7.5 km/s; Vp/Vs = 1.70-1.72), labelled with “a”, which is located right below the Dora-Maira 266 

(U)HP dome, at depths as shallow as ~10 km. Such a high-velocity body was already imaged with 267 

similar velocities by previous works (Vp ~7.4-7.7 km/s; Paul et al., 2001; Béthoux et al., 2007), but 268 

was only resolved down to depths of 15-20 km. It is still observed to the south of the CIFALPS 269 

profile (Fig. 5D,E), but progressively vanishing towards the north (Fig. 5A,B). A series of N-S 270 

cross sections, ranging from the Western Alps to the Po Plain (Fig. 6), shows that this high-velocity 271 

anomaly is exclusively found beneath the Dora-Maira (U)HP dome (Fig. 6A), and disappears 272 

farther east.  273 

The mantle-wedge region labelled with “b” is located at depth of 20-45 km, in correspondence 274 

with a cluster of intermediate depth earthquakes that mark the Rivoli-Marene deep fault (RMF in 275 

Fig. 4A; Eva et al., 2015). This region shows higher Vp values (~8.0 km/s) compared to region “a”, 276 

and anomalously high Vp/Vs ratios (>1.74) that are supportive of low shear wave velocities. This 277 

cluster of intermediate depth earthquakes in region “b” is not only observed along the CIFALPS 278 

profile, but also in cross sections located more to the north or to the south (Fig. 5). The deepest 279 

mantle wedge region resolved by the tomographic model is labelled with “c”. This region, located 280 

at depth of ~40-50 km atop the European slab, shows lower Vp and Vp/Vs values compared to 281 

region “b” (Vp ~7.0-7.5 km/s; Vp/Vs < 1.70), but the Vp/Vs ratio is locally higher (Vp/Vs ~1.74). 282 

The well-resolved regions of the model also include some subducted European lower crust. This 283 

shows a progressive increase in Vp from the region labelled with “d” (Vp ~6.7 km/s) to the region 284 

labelled with “e” (Vp ~7.6 km/s), under a rather constant Vp/Vs ratio of 1.70-1.72. Such variations 285 

are detected in all of the analyzed WSW-ENE transects of Figure 5. No seismic event was recorded 286 

in regions “d” and “e” since 1990 (installation of permanent seismic networks) and during the 287 

CIFALPS experiment (Malusà et al., 2017).  288 



On the eastern side of the transect, the region labelled with “f” is located below the Adriatic 289 

Moho as determined by receiver function analysis combined with gravity modelling. It shows Vp 290 

values ~8.0 km/s and Vp/Vs = 1.70-1.72. This region is affected by intermediate depth earthquakes 291 

that are also observed to the north and to the south of the CIFALPS transect (Fig. 5). The vertical 292 

and horizontal periodic stripes of yellow color observed at 50 km depth in this region are artifacts, 293 

as confirmed by the reconstruction test of Fig. 3D. Above the Adriatic Moho, measured Vp values 294 

are much lower, generally <6.7 km/s, but in places they reach values as high as ~7.2 km/s. Very 295 

high Vp/Vs values (>1.8) are locally observed at ~30 km depth at the base of the Adriatic crust. 296 

This region, labelled with “g”, is also characterized by a cluster of seismic events that are only 297 

observed in the vicinity of the main CIFALPS transect.  298 

In the uppermost part of the Alpine orogenic wedge (regions “h” to “k”), Vp values are 299 

invariably <6.5 km/s, but major variations in Vp/Vs ratios are locally observed. For example, the 300 

region to the east of the Dora-Maira (U)HP dome (labelled with “h”) shows Vp/Vs values >1.72, 301 

whereas the region corresponding to the western flank of the Dora-Maira dome (labelled with “j”) 302 

shows much lower Vp/Vs ratios, even <1.66. Vp/Vs ratios <1.68 are also observed in the region 303 

labelled with “k”, located beneath the Frontal Pennine Fault. The double-vergence accretionary 304 

wedge located to the east of the Frontal Pennine Fault, and labelled with “i”, shows instead Vp/Vs 305 

values > 1.75, and includes most of the shallow earthquakes recorded in the Western Alps area. 306 

5. Comparison with receiver function analysis 307 

Results of local earthquake tomography are compared in Figure 7 with published CIFALPS 308 

results of receiver function analysis (Zhao et al., 2015). Unlike local earthquake tomography, the 309 

receiver function technique is based on the analysis of teleseismic earthquakes, and enhances P-to-S 310 

(Ps)-converted waves on velocity interfaces beneath an array. The polarity of the converted signal 311 

depends on the sign of the velocity change, and interfaces with velocity increase can be 312 

discriminated from interfaces with velocity decrease. Assumptions and arbitrary choices of the 313 



receiver function approach applied to the CIFALPS transect (e.g., magnitude threshold, epicentral 314 

distance, seismograms filtering, velocity model, choice of the direction of back azimuths) are 315 

described in full in Zhao et al. (2015). 316 

The image of Figure 7B is based on radial receiver functions from teleseismic events with 317 

magnitude ≥5.5, epicentral distance of 30-90°, and ENE back-azimuths (see Zhao et al., 2015). This 318 

image shows two major interfaces marked by positive-polarity Ps-conversions (red-to-yellow 319 

regions), which attest the downward velocity increase corresponding to the European and Adriatic 320 

Mohos (thick dashed lines). The eastward-dipping European Moho is recognized from ~40 km 321 

depth beneath the Frontal Pennine Fault to ~75 km depth beneath the Po Plain. The Adriatic Moho 322 

is recognized from 20-30 km depth, to the east, to 10-15 km depth, to the west. The red spots 323 

located at 40-55 km depth beneath the Adriatic Moho are multiples, as confirmed by synthetic tests 324 

(Zhao et al., 2015). A shallow positive-polarity converted phase is also observed beneath the Dora-325 

Maira massif, between regions “a” and “h”, whereas a spot of negative-polarity Ps-conversions 326 

marking a downward velocity decrease is located above region “c”, at 20-40 km depth (blue 327 

region). 328 

On the eastern side of the CIFALPS transect, the sharp velocity increase from Vp <6.5 km/s to 329 

Vp >8 km/s evidenced by local earthquake tomography faithfully matches the location of the 330 

downward velocity increase highlighted by receiver function analysis. Localized anomalies in 331 

Vp/Vs ratios, e.g., in region “g”, match with major breaks in the alignment of positive-polarity Ps-332 

conversions. Beneath the Dora-Maira (U)HP dome, the downward increase in Vp values from 333 

region “h” (Vp <6.5 km/s) to region “a” (Vp ~7.5 km/s) is consistent with the observed positive-334 

polarity Ps-conversions, whereas the downward velocity decrease from regions “a” and “b” (Vp 335 

~7.5 km/s and >8 km/s) to region “c” (Vp ~7.0-7.5 km/s) is consistent with the spot of negative-336 

polarity Ps-conversions located at 20-40 km depth in Figure 7B. The shape of the high-velocity 337 

region labelled with “a” is also mirrored by the distribution of seismic events recorded since 1990. 338 

Region “a” is virtually aseismic (Malusà et al., 2017), and earthquakes are chiefly located along its 339 



external boundaries or in the surrounding regions (Fig. 7B). On the western side of the CIFALPS 340 

transect, the alignment of positive-polarity Ps-conversions generated along the European Moho is 341 

partly included within the resolved area of the local earthquake tomography model, and fits with a 342 

downward velocity increase from ~6.7 km/s (region “d”) to ~7.6 km/s (region “e”). The velocity 343 

structure unravelled by the analysis of local earthquakes is thus independently confirmed by the 344 

analysis of teleseismic earthquakes (Zhao et al., 2015) and by the distribution of seismic events 345 

(Eva et al., 2015; Malusà et al., 2017). 346 

6. Geologic interpretation 347 

The geologic cross section of Figure 7C shows the main features of the orogenic wedge of the 348 

Western Alps, and of the mantle wedge between the European and the Adriatic plates, as inferred 349 

from the velocity structure derived from local earthquake tomography along the CIFALPS profile. 350 

Correlation between seismic velocity and lithology in former subduction zones is a challenging 351 

task. Subducted rocks are heterogenous, and display anisotropic fabrics and velocity variations as a 352 

function of direction (e.g., Rudnick and Fountain, 1995; Weiss et al., 1999). A full 3D coverage of 353 

seismic rays is thus required to get a reliable characterization of the velocity structure (see Fig. 3A). 354 

In the European plate, the Vp values ~6.7 km in region “d” are supportive of a relatively felsic 355 

composition of the European lower crust (e.g. Rudnick and Fountain 1995; Weiss et al., 1999; 356 

Goffé et al. 2003; Wang et al., 2005; Mechie et al. 2012). The homogeneous Vs values < 4 km/s 357 

reported by Lyu et al. (2017) suggest that the European lower crust may be rather homogeneous at 358 

the scale of seismic observations, and may consist of granulite having felsic to intermediate 359 

composition. Major occurrence of granulitic metapelites can be safely excluded, because it would 360 

result in much higher Vp (>6.7 km/s up to 7.2 km/s) and Vs values (~4 km/s; Rudnick and 361 

Fountain, 1995). 362 

The increase in Vp values evidenced at ~40 km depth by local earthquake tomography, from 363 

~6.7 km/s in region “d” to ~7.6 km/s in region “e”, may mirror a progressive eclogitization of lower 364 



crust rocks with consequent density increase by metamorphic phase changes (e.g., Hacker et al., 365 

2003; De Paoli et al., 2012). Mineral equilibria at the granulite-eclogite transition depend on rock 366 

composition. The eclogitization of a felsic granulite strongly increases the garnet content, and 367 

consequently the density from 2.90 to 3.30 kg/dm3, and the P velocity up to a maximum of 7.6 km/s 368 

(e.g., Christensen, 1989; Hacker et al., 2003, 2015; Hacker and Abers, 2004; Hetényi et al., 2007). 369 

These values are consistent with the Vp values observed in region "e”. The increase in P velocity 370 

from region “d” to region “e” is associated with a progressive increase in S velocity up to 4.2 km/s 371 

(Lyu et al., 2017), which may be either interpreted as an increase in mafic component, or as an 372 

effect of metamorphic reactions under increasing pressure-temperature conditions. However, Vp 373 

values in region “e” are far too low for a pure mafic eclogite (Bezacier et al., 2010; Reynard, 2013), 374 

thus suggesting no major compositional changes from west to east in the European lower crust, but 375 

only a progressive change in metamorphic assemblage during subduction. This interpretation also 376 

explains the progressive weakening of the positive-polarity converted phases observed along the 377 

European Moho, from red to yellow background colours in Fig. 7B, as previously described by 378 

Zhao et al. (2015).  379 

On the eastern side of the Western Alps, Vp values >8 km/s confirm the presence of Adriatic 380 

mantle at shallow depth beneath the western Po Plain (10-15 km), just in correspondence with the 381 

positive gravimetric anomaly classically referred to as the Ivrea body (Closs and Labrouste, 1963; 382 

Nicolas et al., 1990) and in line with results of previous tomographic models (e.g., Solarino et al., 383 

1997; Paul et al., 2001; Scafidi et al., 2006; 2009; Diehl et al., 2009; Wagner et al., 2012). East of 384 

the Ivrea body gravimetric anomaly, the Adriatic Moho is located at 30-35 km depth, which is a 385 

much more reliable estimate of the Moho depth beneath the Po Plain compared to previous 386 

estimates based on receiver function alone (Zhao et al., 2015). The locally high Vp/Vs ratios >1.8, 387 

associated to Vp of 7.0-7.5 km/s (region “g”), may be supportive of gabbro (Weiss et al., 1999) 388 

underplated at the base of the Adriatic lower crust. Noteworthy, Permian gabbros are indeed 389 

exposed north of the Po plain, where they are intruded into lower crust rocks belonging to the 390 



Adriatic (Southalpine) basement (Quick et al., 1994; Schaltegger and Brack, 2007). Above the 391 

Adriatic Moho, local spots with Vp ~7.2 km/s but low Vp/Vs ratios (Fig. 5) are supportive of a 392 

more heterogeneous composition of the Adriatic lower crust compared to the European lower crust, 393 

and may suggest a local occurrence of granulite facies metapelites (Vp 6.7-7.2 km/s, Vs ~4 km/s; 394 

Rudnick and Fountains, 1995) not only at the surface (e.g., Ewing et al., 2014), but also at depth. 395 

Differences in velocity structure among crustal sections now exposed on the opposite sides of the 396 

Alps probably reflect a different pre-Alpine evolution, rather than processes related to the Cenozoic 397 

evolution of the Adria-Europe plate boundary zone (Guillot et al., 2009b; Carosi et al., 2012; 398 

Bergomi et al., in review).  399 

In the uppermost part of the Alpine wedge, the structural variability of stacked rocks is largely 400 

mirrored by their variability in Vp/Vs ratios. The Vp/Vs values >1.75 observed in the double-401 

vergence accretionary wedge chiefly including Briançonnais and Schistes lustrés units (Lardeaux et 402 

al., 2006), may reflect low Vs values, possibly associated to the widespread network of mesoscale 403 

faults developed in these rocks since the Neogene (Tricart et al., 2004; Sue et al., 2007; Malusà et 404 

al., 2009). To the east, low Vp/Vs values even <1.66 observed on the western flank of the Dora-405 

Maira dome (region “j”) may instead reflect high Vs velocities, suggesting that the poorly fractured 406 

granitic gneisses exposed at the surface (Brossasco granite; Paquette et al., 1999; Lenze and 407 

Stöckhert, 2007) may be also present at depth. Fracturing may be also invoked to explain the low 408 

Vs values observed along the eastern boundary of the Dora-Maira dome, where (U)HP continental 409 

rocks are juxtaposed against the eclogitized mantle rocks of the Lanzo massif (Kienast and 410 

Pognante, 1988; Piccardo et al., 2007) along the Lis-Trana deformation zone (Perrone et al., 2010). 411 

To the west of the Frontal Pennine Fault, Vp/Vs values <1.68 suggest instead that the European 412 

upper crust in the External zones is poorly deformed, consistent with minor seismicity recorded in 413 

that area (Fig. 7B). 414 

But the most relevant results of the tomography model presented in this work is related to the 415 

velocity structure beneath the Dora-Maira (U)HP dome. This information is critical to discriminate 416 



between contrasting models of (U)HP rock exhumation (Malusà et al., 2011, 2015; Jamieson and 417 

Beaumont, 2013), and to discern between end-member tectonic reconstructions recently proposed in 418 

the light of available geophysical data (Malusà et al., 2017). The velocity structure of the mantle 419 

wedge region “a”, showing Vp velocity of ~7.5 km/s from depths as shallow as ~10 km down to 420 

~30 km, is largely inconsistent with the presence of imbricated continental crust units (e.g., Schmid 421 

et al., 2017) or dry mantle peridotite beneath the Dora-Maira (U)HP dome. Instead, it may suggest a 422 

complex evolution of mantle-wedge rocks in terms of P-T conditions and fluid-rock interaction. 423 

Such Vp values point in fact to widespread serpentinization of mantle rocks (~60% according to 424 

Reynard, 2013), that may locally exceed 90% both in the uppermost part of anomaly “a” and in the 425 

Lanzo massif, although velocity values in the uppermost crustal levels may be slightly 426 

underestimated, as unravelled by the reconstruction tests of Fig. 3D. The degree of serpentinization 427 

at 30-40 km depth is instead much lower (<30%), and consistent with the occurrence of 428 

intermediate-depth earthquakes (Fig. 7B). Vp/Vs ratios are in the range of 1.70-1.72 in region “a”, 429 

but sharply increase to values >1.74 in region “b”, where Vp values (~8.0 km/s) are consistent with 430 

dry mantle peridotite. The high Vp/Vs ratios in region “b” point to low shear wave velocities, which 431 

are in line with a potential impact of the Rivoli-Marene deep fault on the rock fabric. According to 432 

previous work, the deepest part of the mantle wedge beneath the thick blue spot of negative polarity 433 

conversions (region “c” in Fig. 7B) may either include serpentinites, or slivers of (U)HP rocks. On a 434 

geophysical ground, serpentinites can be easily distinguished from other lithologies possibly found 435 

in high-pressure mélange zones (e.g., Marschall and Schumacher, 2012) such as eclogitic 436 

metasediments and mafic eclogites (Reynard, 2013). Our results indicate that the velocity values 437 

observed in region “c” (Vp ~7.0-7.5 km/s; Vp/Vs <1.70) are neither consistent with eclogitic 438 

metasediments (Vp ~7.0 km/s; Vp/Vs ~1.75) nor with mafic eclogite (Vp > 8.0 Vp/Vs ~1,73), but 439 

are instead supportive of ultramafic rocks with a degree of serpentinization ranging between 50% 440 

and 75% (Weiss et al., 1999; Reynard, 2013). However, minor slivers of eclogitic metasediments 441 



could be present at ~40 km depth at the top of the European slab, in regions showing the highest 442 

Vp/Vs ratios (Fig. 7A).  443 

7. Implication for (U)HP rock exhumation 444 

In the southern Western Alps, the positive gravimetric anomaly ascribed to the Ivrea body is 445 

classically interpreted in terms of upper mantle indentation (e.g., Lardeaux et al., 2006; Béthoux et 446 

al., 2007), in line with previous tectonic interpretations proposed for the Central Alps and for the 447 

northern Western Alps (e.g., Schmid and Kissling, 2000). According to these interpretations, the 448 

uppermost part of the Adriatic mantle would act as an indenter beneath the Alpine accretionary 449 

wedge, and would transfer compression towards the European foreland. The main geologic 450 

implications of this model include major crustal shortening in the upper plate, and fast erosion 451 

focused above the indenter (Fig. 2B). These latter features are indeed observed in the Central Alps, 452 

where upper mantle indentation, accommodated by back-folding of (U)HP domes (Keller et al., 453 

2005) and by backthrusting of Adriatic units (Zanchetta et al., 2015), triggered the fast erosional 454 

exhumation of the amphibolite-facies rocks of the Lepontine dome (Anfinson et al., 2016; Malusà et 455 

al., 2016b). However, these features are not common to the southern Western Alps, where 456 

shortening in the accretionary wedge was minor during and after (U)HP rock exhumation (Malusà 457 

et al., 2009; Dumont et al., 2012), and erosion was much slower compared to the Lepontine dome, 458 

as attested by low-temperature thermochronometers (Malusà et al., 2005b; Vernon et al., 2008; Fox 459 

et al., 2015) and by preserved Oligocene corals unconformably lying on top of Eocene eclogites 460 

(Molare Fm; Quaranta et al. 2009). A tectonic scenario exclusively invoking upper-plate mantle 461 

indentation beneath the accretionary wedge would also imply that seismic velocities in the upper-462 

plate mantle should be quite similar beneath the orogenic wedge and in the hinterland (Fig. 2B). 463 

Major seismic velocity changes, e.g., by metamorphic phase changes triggered by fluids released by 464 

the downgoing slab, would remain undetected in local earthquake tomography models, because they 465 

would take place at much greater depths (Deschamps et al., 2013; Abers et al., 2017). 466 



Our study points to a complex velocity structure in the upper-plate mantle of the southern 467 

Western Alps. The region beneath the Dora-Maira (U)HP dome is dominated by serpentinized 468 

peridotites, documented from ~10 km depth down to the top of the European slab. To the east, these 469 

rocks are juxtaposed against dry mantle peridotites of the Adriatic upper plate along a steeply 470 

dipping fault rooted in the lithospheric mantle (RMF in Fig. 7C). In between, mantle rocks of the 471 

Lanzo massif underwent subduction during the Alpine orogeny, and were later exhumed and 472 

accreted against the Adriatic upper plate when the Dora-Maira (U)HP rocks were still buried at 473 

mantle depths (Rubatto and Hermann, 2001). This scenario is supportive of (U)HP rock and mantle-474 

wedge exhumation triggered by upper plate divergent motion (Fig. 2C). 475 

Serpentinized peridotites with Vp ~7.5 km/s that are found beneath the Dora-Maira dome may 476 

have favoured the exhumation of (U)HP rocks across the upper crust, in the depth range where 477 

eclogitized continental crust rocks may have become neutrally buoyant (Schwartz et al., 2001). 478 

According to Agard et al. (2009), exhumation of eclogitized ophiolites woud be favoured by 479 

accretion of continental material. Our results point instead to a decisive role played by buoyant 480 

serpentinites (e.g., Hermann et al., 2000; Schwartz et al., 2001) during continental (U)HP rock 481 

exhumation, within a broadly extensional tectonic framework that is common to many recent 482 

tectonic reconstructions of the Central Mediterranean area (e.g., Vignaroli et al., 2008; Malusà et 483 

al., 2015) (Fig. 8). 484 

No exhumed mantle-wedge serpentinites are recognized so far at outcrop in the southern 485 

Western Alps (Scambelluri et al., 1995; Piccardo et al., 2004; Hattori and Guillot, 2007; Deschamps 486 

et al., 2013). However strong fluid-rock interactions are recognized in subducted serpentinites and 487 

associated ophiolitic rocks (Scambelluri and Tonarini, 2012; Lafay et al., 2013; Plümper et al., 488 

2017), suggesting that fluid release may have occurred during oceanic and even during continental 489 

subduction (e.g., Castelli et al., 2007; Ferrando et al., 2009), possibly triggering the partial 490 

serpentinization of the Adriatic mantle wedge. Part of the Adriatic mantle wedge was then exhumed 491 

at shallow crustal levels during late Eocene transtension along the Western Alps subduction zone 492 



(Malusà et al., 2015) and coeval rapid exhumation of the Dora-Maira (U)HP rocks (Rubatto and 493 

Hermann, 2001) (step 1 in Fig. 8). The exhumed mantle wedge was finally indented beneath the 494 

Alpine belt during early Oligocene tectonic shortening (Dumont et al., 2012; Jourdan et al., 2012, 495 

2013) (step 2 in Fig. 8). Along the Adria-Europe plate boundary, the divergent component of 496 

Eocene transtension progressively decreased towards the north to become negligible in the Central 497 

Alps (Fig. 8A), where Adria was indented more deeply beneath the accretionary wedge compared to 498 

the Western Alps, and rocks now exposed in the Lepontine dome were exhumed at lower rates 499 

through the upper crust (Fig. 8B). We speculate that, north of the Dora-Maira dome, upper plate 500 

divergence was probably insufficient to allow an effective exhumation of the mantle wedge (Fig. 501 

8C). However, testing this hypothesis would require a high resolution tomographic image of the 502 

northern Western Alps, which may be precluded by the lack of deep earthquakes. 503 

Our results demonstrate that recent geologic cross-sections postulating a thick wedge of 504 

Briançonnais eclogites beneath the Dora-Maira dome (e.g., Schmid et al., 2017) are likely incorrect. 505 

The palinspastic reconstructions derived from such geologic cross-sections, and exclusively 506 

considering a Cenozoic evolution within a broadly compressional framework, should be 507 

reconsidered at the advantage of palinspastic reconstructions also including major episodes of 508 

divergence within the plate boundary zone (e.g., Vignaroli et al., 2008; Malusà et al., 2015). Mantle 509 

wedge exhumation is in fact more consistent with a late Eocene transtensional tectonic framework 510 

(Fig. 8C) followed by early Oligocene convergence (Fig. 8D), accommodated by orogen-511 

perpendicular shortening in the external Alps (Dumont et al., 2012) and by transpressional tectonics 512 

in the Alps-Apennines transition zone (Malusà and Balestrieri, 2012). 513 

The occurrence of mantle-wedge serpentinites exhumed at shallow depth within a continental 514 

subduction zone is not specific of the southern Western Alps. Mantle wedge serpentinites associated 515 

with (U)HP rock are described, for example, in the Indus Suture Zone in the Himalaya, in the 516 

Carribbean (Guillot et al., 2001; Deschamps et al., 2012), in the Western Gneiss Region in Norway 517 

(Scambelluri et al., 2010), and are inferred by geophysical evidence under the Dabie-Sulu (Liu et 518 



al., 2015). Our findings suggest that orogen-scale exhumation of the mantle wedge may represent a 519 

prominent, but still underestimated feature of the deep structure of many orogenic belts. As such, it 520 

should be integrated in more advanced theoretical models of subduction and exhumation. Moreover, 521 

widespread mantle-wedge exhumation may explain the common occurrence of boudinaged mantle-522 

wedge rocks within continental UHP rocks in the roots of old orogenic belts now unroofed by 523 

erosion. In pre-Cenozoic orogenic belts such as the Dabie-Sulu or the Western Gneiss Region, 524 

where the evidence of minor erosion during UHP exhumation, if any, is no longer preserved, the 525 

occurrence of mantle wedge rocks at shallow depth may represent the only evidence supporting 526 

(U)HP rock exhumation triggered by divergent motion between upper plate and accretionary 527 

wedge.  528 

8. Conclusions 529 

The new local earthquake tomography model of the southern Western Alps, independently 530 

validated by receiver function analysis, unravels a complex seismic velocity pattern consistent with 531 

a composite structure of the mantle wedge above the subducted European lithosphere. Seismic 532 

velocities indicate that the Dora-Maira (U)HP dome lays directly above serpentinized peridotites, 533 

documented from ~10 km depth down to the top of the eclogitized lower crust of the European 534 

plate. We propose that peridotite serpentinization was the result of fluids released to the Adriatic 535 

mantle wedge during Alpine subduction. During late Eocene transtension, when the subduction 536 

wedge was largely exhumed at the Earth’s surface, part of the mantle wedge was also exhumed at 537 

shallow crustal levels, to be finally indented under the Alpine metamorphic units in the early 538 

Oligocene. Our results suggest that mantle wedge exhumation may represent an important feature of 539 

the deep structure of exhumed continental subduction zones. Deep orogenic levels, as those imaged 540 

by local earthquake tomography in the southern Western Alps, may be exposed today in older 541 

continental subduction zones, where mantle wedge serpentinites are commonly associated to 542 

continental (U)HP metamorphic rocks.  543 
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Figure 1 925 

 926 
 927 

Figure 1: A) Tectonic sketch map showing the (U)HP domes of the Western Alps (dark blue), the 928 

gravimetric anomaly of the Ivrea body (0 mGal isoline in red), and the location of the CIFALPS 929 

transect (X-X’). Acronyms: Br, Briançonnais; DM, Dora-Maira; FPF, Frontal Pennine Fault; GP, 930 

Gran Paradiso; IF, Insubric Fault; IV, Ivrea-Verbano; La, Lanzo; MR, Monte Rosa; RMF, Rivoli-931 

Marene deep fault; Se, Sesia-Lanzo; SL, Schistes lustrés; Vi, Viso; Vo, Voltri; VVF, Villalvernia-932 

Varzi Fault. The black star marks the Brossasco-Isasca UHP locality. B) Seismic stations utilized in 933 

this work (blue = CIFALPS; red = other networks) and location of tomographic cross sections 934 

(black lines).  935 
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 938 

 939 
 940 

 941 

Figure 2: A) Geologic cross-section of the Dora-Maira (U)HP dome (see location in Fig. 1A; based 942 

on Avigad et al., 2003; Lardeaux et al., 2006). B, C) Alternative scenarios of mantle involvement in 943 

(U)HP orogenic belts. In (B), synconvergent exhumation of (U)HP rocks (e.g., Butler et al., 2013), 944 

possibly associated with deep duplex formation (Schmid et al., 2017), is followed by indentation of 945 

the upper-plate mantle beneath the accretionary wedge, with consequent fast erosion of the (U)HP 946 

dome and major tectonic shortening in the upper plate (e.g., Béthoux et al., 2007). Seismic 947 

velocities in the upper-plate mantle are similar beneath the orogenic belt and in the hinterland, as 948 

indicated by the uniform dark blue colour. In (C), divergence between upper plate and accretionary 949 

wedge triggers the exhumation of (U)HP rocks (Malusà et al., 2011) and the emplacement of 950 

serpentinized mantle-wedge rocks at shallow depth. Erosion on top of the (U)HP dome is minor at 951 

this stage, and shortening is negligible. Because of widespread serpentinization of the mantle wedge 952 

during subduction, seismic velocities will be lower in the mantle-wedge rocks beneath the (U)HP 953 

dome (as indicated by the pale green colour), and higher in the adjoining dry mantle rocks of the 954 

upper plate (dark blue). 955 

 956 
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 961 

 962 

Figure 3. A) Three-dimensional P and S ray coverage based on the seismic events considered in 963 

this study (X-X’ indicates the CIFALPS transect, see Fig. 1). B) Imposed stairwell geometry along 964 

the CIFALPS transect for testing the resolution capability of the coupling between seismic dataset 965 

and inversion setup. C) Same geometry after interpolation by the algorithm used in SIMULPS, 966 

which introduces a smoothing and a thin band of fake colors around the anomalies. D) 967 

Reconstruction test showing that the shape of the imposed stairwell structure is well reproduced 968 

using our dataset, but the high velocities in the uppermost 10 km are converted to lower values (as 969 

less as 0.5 km/s); the weak vertical and horizontal periodic stripes of yellow color at 50 km depth 970 

within the blue area are artifacts; white areas are not sampled. 971 
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 975 
 976 

Figure 4: Tomographic cross sections along the CIFALPS transect. A) Absolute Vp velocity. The 977 

velocity structure beneath the Dora-Maira (U)HP dome is well resolved down to 50-60 km depth 978 

(acronyms as in Fig. 1A); areas with resolution diagonal elements <0.1 are masked, white areas are 979 

not sampled; letters a to k indicate regions of the model discussed in the main text; black circles 980 

indicate earthquakes as located with the 3D model; black lines and text in italics indicate the main 981 

tectonic features previously inferred from receiver function analysis (Zhao et al., 2015; Malusà et 982 

al., 2017, see Fig. 7B). Note the prominent high velocity body (labelled with “a”) located right 983 

below the Dora-Maira (U)HP dome. The vertical and horizontal periodic stripes of yellow color at 984 

50 km depth are artifacts, as attested by the reconstruction test of Fig. 3D. B) Vp/Vs ratios. White 985 

dashed lines are isolines of equal Vp/Vs, grey areas are not sampled (other keys as in frame A). 986 
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 990 
 991 

Figure 5: Lateral variations in Vp velocity in the mantle wedge as shown in a series of WSW-ENE 992 

cross-sections lying to the north (A, B) and to the south (D, E) of the main CIFALPS transect (C). 993 

The high velocity body labelled with “a” progressively disappears moving to the north. Black 994 

circles are projected hypocentres located within ±5 km distance off the profiles. The thick dashed 995 

lines, reported in all sections for comparison, indicate the European and Adriatic Mohos inferred 996 

from receiver function analysis (cf. Fig. 7B). Other keys as in Fig. 4. 997 
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 1003 

Figure 6: Lateral variations in Vp velocity beneath the Dora-Maira (U)HP dome, as shown in a 1004 

series of N-S cross-sections from the mountain range to the Po Plain. Black circles are projected 1005 

hypocentres located within ±3 km distance off the profiles. The high-velocity body labelled with 1006 

“a” in Figs. 4 and 5 is exclusively found beneath the Dora-Maira dome (see cross section A) and 1007 

progressively disappears towards the east. Acronyms as in Fig. 1. 1008 
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 1015 

Figure 7: Synthesis of geophysical data (A, B) and inferred mantle wedge structure (C). Black lines 1016 

in A and B are tectonic features based on receiver function analysis (colors in B indicate positive- 1017 

and negative-polarity Ps-converted phases, Zhao et al., 2015); contours are isolines of equal Vp/Vs; 1018 

purple circles in B are earthquakes recorded since 1990 (Malusà et al., 2017). The amount of 1019 

serpentinization in C, in the mantle wedge underlying the Dora-Maira (U)HP dome, is inferred from 1020 

seismic velocities (Reynard, 2013). Note the consistency between structures unravelled by local (A) 1021 

and teleseismic (B) events. Acronyms as in Fig. 1, letters a to k as in Fig. 4.  1022 
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 1028 

Figure 8: Geodynamic framework of mantle wedge exhumation. A) Trench-normal component of 1029 

Adria-Europe relative motion in the Central (CA) and Western Alps (WA) segments of the Alpine 1030 

subduction zone (Malusà et al., 2015). B) Pressure-time exhumation paths (Dora-Maira: Chopin et 1031 

al., 1991; Rubatto and Hermann, 2001; Lepontine dome: Becker, 1993; Gebauer, 1996; Brouwer et 1032 

al., 2004; Nagel, 2008). C,D) Late Eocene transtension leading to (U)HP rock and mantle wedge 1033 

exhumation, and subsequent tectonic shortening in the early Oligocene; grey arrows indicate Adria 1034 

motion relative to Europe (modified after Malusà et al., 2015). 1035 


