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Abstract. As a precursor of atmospheric aerosols, ammonia
(NH3) is one of the primary gaseous air pollutants. Given its
short atmospheric lifetime, ambient NH3 concentrations are
dominated by local sources. In a recent study, Van Damme
et al. (2018) have highlighted the importance of NH3 point
sources, especially those associated with feedlots and indus-
trial ammonia production. Their emissions were shown to
be largely underestimated in bottom-up emission inventories.
The discovery was made possible thanks to the use of over-
sampling techniques applied to 9 years of global daily IASI
NH3 satellite measurements. Oversampling allows one to in-
crease the spatial resolution of averaged satellite data beyond
what the satellites natively offer. Here we apply for the first
time superresolution techniques, which are commonplace in
many fields that rely on imaging, to measurements of an at-
mospheric sounder, whose images consist of just single pix-
els. We demonstrate the principle on synthetic data and on
IASI measurements of a surface parameter. Superresolution
is a priori less suitable to be applied on measurements of vari-
able atmospheric constituents, in particular those affected by
transport. However, by first applying the wind-rotation tech-
nique, which was introduced in the study of other primary
pollutants, superresolution becomes highly effective in map-
ping NHj3 at a very high spatial resolution. We show that
plume transport can be revealed in greater detail than what
was previously thought to be possible. Next, using this wind-
adjusted superresolution technique, we introduce a new type
of NH3 map that allows tracking down point sources more
easily than the regular oversampled average. On a subset of
known emitters, the source could be located within a median
distance of 1.5km. We subsequently present a new global

point-source catalog consisting of more than 500 localized
and categorized point sources. Compared to our previous cat-
alog, the number of identified sources more than doubled. In
addition, we refined the classification of industries into five
categories — fertilizer, coking, soda ash, geothermal and ex-
plosives industries — and introduced a new urban category
for isolated NH3 hotspots over cities. The latter mainly con-
sists of African megacities, as clear isolation of such urban
hotspots is almost never possible elsewhere due to the pres-
ence of a diffuse background with higher concentrations. The
techniques presented in this paper can most likely be ex-
ploited in the study of point sources of other short-lived at-
mospheric pollutants such as SO, and NO;.

1 Introduction

As one of the primary forms of reactive nitrogen, NHj3 is es-
sential in many of the Earth’s biogeochemical processes. It is
naturally present along with the nitrogen oxides in the global
nitrogen cycle (Canfield et al., 2010; Fowler et al., 2013).
However, the discovery of ammonia synthesis through the
Haber-Bosch process in the early 1900s has made this vi-
tal compound available in almost unlimited quantities, sup-
porting the explosive population growth in the last century
(Erisman et al., 2008). As a result, the nitrogen cycle is cur-
rently perturbed beyond the safe operating space for human-
ity, which has led to a host of environmental and societal
problems (Steffen et al., 2015). The most obvious direct im-
pact of excess NHj is that on air quality, as atmospheric NH3
is one of the main precursors of secondary particulate mat-
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ter, which has important adverse health impacts (Lelieveld
et al., 2015; Bauer et al., 2016). Emissions of the two other
important precursors (SO, and NO, ), thanks to effective leg-
islation, drastically decreased in the past 20 years in Europe
and North America and have started to level off in eastern
Asia (Aas et al., 2019; Georgoulias et al., 2019). In contrast,
no such decreases are observed or expected in the near fu-
ture for NH3 (e.g., Warner et al., 2017; Sutton et al., 2013).
Unlike the other precursors, NH3 emissions are not well reg-
ulated, and in fact, the focus on decreasing NO, and SO; has
already led to increased NH3 emissions (Chang et al., 2016)
and concentrations (Lachatre et al., 2018; Liu et al., 2018).
The lack of a global regulative framework stems in part
from the historical relative difficulty in measuring NH3 con-
centrations. Satellite-based measurements of NHs, which
were discovered about a decade ago, offer an attractive com-
plementary means of monitoring NH3. Satellite datasets have
now reached sufficient maturity to be directly exploitable,
even when the individual measurements come with large and
variable uncertainties. Using satellite observations we have
recently shown the importance of ammonia point sources on
regional scales (Van Damme et al., 2018). In total, over 240
of the world’s strongest point sources were identified, cate-
gorized and quantified. Somewhat expectedly, many of these
point sources (or clusters thereof) were found to be associ-
ated with “concentrated animal feeding operations” (CAFOs;
Zhu et al., 2015; Yuan et al., 2017). However, much more sur-
prisingly was the number of identified industrial emitters and
in particular those associated with ammonia and urea-based
fertilizer production. An evaluation of the EDGAR inven-
tory additionally showed that emission inventories vastly un-
derestimate the majority of all point-source emissions, even
when a conservative average NHj3 lifetime of 12 h is assumed
in the calculation of the satellite-derived fluxes. Industrial
processes could therefore be extremely important, especially
on a regional scale. Altogether, these findings were made
possible due to the availability of the large multiyear NH3
dataset (Whitburn et al., 2016; Van Damme et al., 2017) de-
rived from measurements of the IASI spaceborne instrument
(Clerbaux et al., 2009) and the oversampling technique that
was applied to sufficiently resolve localized emitters.
Oversampling techniques applied on measurements of
satellite sounders allow obtaining average distributions of at-
mospheric constituents at a higher spatial resolution than the
original measurements (Sun et al., 2018). They exploit the
fact that the footprint on the ground of satellite measure-
ments varies in location, size and shape each time the satel-
lite samples an area. When pixels partially overlap, some
information becomes available on their (subpixel) intersec-
tion. High-resolution mapping can, however, only be ob-
tained by combining typically many hundreds of measure-
ments. A crucial condition on which oversampling relies is
that the pixel center and ground instantaneous field of view
(GIFOV) of satellite measurements is known with a high ac-
curacy (typically < 1km, as opposed to the coarse spatial
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resolution of the extent of the satellite pixel, which is typ-
ically > 10km). Practical implementation of oversampling
is relatively straightforward once the footprint is known: a
fine subgrid is constructed in which the value of each cell of
the grid is obtained as the average value of all overlapping
GIFOVs. Optionally, the averaging can be weighted to take
into account measurement error, total pixel surface area and
spatial response function. We refer to Sun et al. (2018) and
Van Damme et al. (2018) for comprehensive reference mate-
rial on averaging and oversampling, detailed algorithmic de-
scriptions, and practical considerations for their implementa-
tion.

Oversampling has gradually become commonplace in the
field of atmospheric remote sensing, especially in the study
of short-lived pollutants such as NO, (Wenig et al., 2008;
Russell et al., 2010), SO, (Fioletov et al., 2011, 2013),
HCHO (Zhu et al., 2014) and NH3 (Van Damme et al.,
2014, 2018). The increased spatial resolution enables in
the first instance a much better identification of emission
(point) sources, quantification of their emissions (Streets
et al., 2013), and study of transport and plume chemistry
(de Foy et al., 2009). Oversampling applied to the study of
point sources becomes even more useful when wind fields are
taken into account. Beirle et al. (2011) showed that binned
averaging per wind direction allows simultaneous estimates
of both emission strengths and atmospheric residence times.
Valin et al. (2013) and Pommier et al. (2013) introduced the
wind-rotation technique whereby each observation is rotated
around the presumed point source according to the horizon-
tal wind direction, effectively yielding a distribution in which
the winds blow in the same direction. As we will also demon-
strate (see Sect. 3), this reduces the overall spread of the
transported pollutants and reduces contributions of nearby
sources. Combining plume rotation with oversampling has
proven to be a very successful technique for the study of
NO; and SO, point sources, leading to massively improved
inventories and emission estimates and better constraints on
the atmospheric lifetime of these pollutants (Fioletov et al.,
2015, 2016, 2017; Wang et al., 2015; de Foy et al., 2015; Lu
etal., 2015; Liu et al., 2016; McLinden et al., 2016).

However, as pointed out in Sun et al. (2018), while over-
sampling offers an increased resolution, it still yields a
smoothed representation of the true distributions. There ex-
ists a large field of research, collectively referred to as super-
resolution (Milanfar, 2010), that attempts to construct high-
resolution images from several possibly moving or distorted
low-resolution representations of the same reality. Oversam-
pling is in essence the simplest way of performing superres-
olution but in a way that does not fully exploit the spatial
information of the measurements. Superresolution has been
applied before in the field of remote sensing of land or land
cover (e.g., Boucher et al., 2008; Xu et al., 2017), but even
though it is theoretically possible, it has not been applied to
atmospheric-sounding measurements. In this case, the “im-
ages”, as taken by sounders, are of the lowest resolution; i.e.,
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they correspond to single, uniformly colored pixels. Perhaps
the main reason why superresolution has not been attempted
before on atmospheric sounders is that these rely on the fact
that the low-resolution samples should be derived from an
underlying distribution that does not change in time (de Foy
et al., 2009). When this is not the case, the smoothing in-
troduced by oversampling is actually desirable. With the ar-
rival of the wind-rotation technique, most of the variabil-
ity observed for point-source emitters can be corrected for,
and therefore superresolution becomes viable for short-lived
species as NH3.

In Sect. 2 we introduce superresolution and demonstrate
its effectiveness on measurements of the IASI sounder for a
parameter related to (constant) surface emissivity. Next we
illustrate the application of what we coin “wind-adjusted
supersampling” on an industrial point source of NH3. In
Sect. 3 we use ideas from McLinden et al. (2016) to pro-
vide a new type of NH3 map, one that is supersampled and
wind-corrected at the same time. This map enables the iden-
tification of many new point sources in addition to the ones
reported in Van Damme et al. (2018). We performed a de-
tailed global analysis of this new map, which led to the iden-
tification and categorization of more than 500 point sources
and which we present in Sect. 4.

2 Superresolved oversampling

The general superresolution problem does not have a unique
solution, as the available low-resolution measurements typ-
ically do not hold all the required information content (i.e.,
the problem is underdetermined). It is usually also overde-
termined because of measurement noise and, for our case es-
pecially, because of temporal variability. As a consequence,
there is no unique best algorithm, and a myriad of alternatives
exist. For this study, we chose the iterative back-projection
(IBP) algorithm (Irani and Peleg, 1993), as it takes a partic-
ular intuitive and simple form for single-pixel satellite ob-
servations and allows addressing the ill-determined nature
of the problem. It proceeds as follows. Suppose we have
a set of single-pixel measurements My of a spatially vari-
able quantity. For the first iteration, the solution of the al-
gorithm corresponds to the regular oversampling, which we
will write as SS| = 0S| = OS(Mjy) (SS; stands for the so-
lution of the supersampling obtained in iteration i, and OS
stands for the oversampling operator). From this oversam-
pled average, we then calculate simulated observations for
each of the original individual observations, corresponding to
what the instrument would see if the ground truth were SS;.
The entire set of these simulated measurements will be de-
noted by M| = M (SS1) (with M the operator that simulates
the measurements). If the oversampled average OS; = SS;
corresponds to the ground truth, then M would clearly coin-
cide with My. However, as oversampling typically smooths
out the observations, this is generally not the case. An im-
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proved estimate of the average (SS,) can be obtained by
adding OS(My — M) to the oversampled average, therefore
correcting (partially) the observed differences. This process
then is repeated to obtain increasingly better estimates. The
entire algorithm thus reads

SS; = 0S(Mo) = OS;

— My = M(SSy), 9]
SS, =SS1 +0S(My— M;) =SS; +0S; — 05,
— My = M(SS3), 2

SS;=SSik_1 +0S (Mo — My_1) =SS;—1 + 0S| — OS;
— M} = M(SSy). 3)

The solution converges to an average that is maximally con-
sistent with the observations, i.e., My ~ M for sufficiently
large k (as shown in Elad and Feuer, 1997, IBP converges to
the maximum likelihood estimate whereby Mo — My is min-
imized). Figure 1 illustrates the algorithm on synthetic data
with an idealized ground truth made up of nine point sources
(Fig. 1a), with a Gaussian spread between 0.5 and 40 pix-
els. The measurement footprint was assumed to be variable
between 7 and 13 pixels. The SS; (Fig. 1b), SS3 (Fig. 1c¢)
and SSso (Fig. 1d) averages illustrate the convergence and
strengths of the algorithm well, which reproduces most of
the point sources near perfectly and even partly resolves the
smallest feature (compare also with Sun et al., 2018, Fig. 8).
Some small ringing effects are noticeable though after 50 it-
erations (best visible on a screen), which are the result of the
undetermined nature of the problem (Dai et al., 2007).

An example applied to real data is shown in Fig. 2, which
shows part of the Sahara and Mediterranean Sea. The quan-
tity on which the oversampling is applied is the brightness
temperature difference (BTD) between the IASI channels at
1157 and 1168 cm™!. This BTD, located in the atmospheric
window, is sensitive to the sharp change in surface emissiv-
ity due to the presence of quartz (see Takashima and Masuda,
1987, who also illustrate that the relevant feature is not seen
in airborne dust). Being related to the surface, it can be as-
sumed to be reasonably constant for each overpass of IASI
(note that it is not entirely the case: sand dunes do undergo
changes over time, and surface emissivities can depend on
the viewing angle and can be affected by changes in moist
content). Comparison with visible imagery (Fig. 2a) shows,
as expected, that the largest BTD values (> 4 K) are associ-
ated with the most sandy areas. The other desert areas exhibit
widely varying values, and oceans are slightly negative. The
oversampled average (Fig. 2b) captures most large features
down to about 5km in size. Recalling that the footprint of
IASI is a 12 km diameter circle at nadir, and elongates to an
ellipse of up to 20kmx39km at off-nadir angles, this ex-
ample illustrates why oversampling is such a powerful tech-
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(a) Ground truth (b) Regular oversampling

(c) Supersampling (3 iterations)

(d) Supersampling (50 iterations)

L .

. 1
0.8
® N
0.4
0.2

. 0

Figure 1. Illustration of the supersampling technique on synthetic data. Panel (a) depicts an imaginary ground truth, made up of two-
dimensional Gaussian distributions, each with a different spread (0.5 to 40 pixels). The rectangles in (a) indicate the assumed footprint size
of the measurements, varying between 7 and 13 pixels. Panel (b) shows the results of the common oversampling approach applied to 100 000
measurements scattered randomly over the area. Panels (¢, d) provide the results of the supersampling technique after respectively 3 and 50

iterations.

(a) Visible imagery (b) Regular oversampling

(c) Supersampling (3 iterations)

(d) Supersampling (30 iterations)

Figure 2. Illustration of the IBP superresolution technique on IASI observations of a BTD sensitive to surface quartz. All cloud-free ob-
servations of IASI for the period 2007-2018 were used for the averages. Panel (a) shows the corresponding visible imagery from Google

Maps.

nique. However, the additional resolution brought by the su-
persampling is clear, even after three iterations. The small-
est features that can be distinguished are about 3—4 km (af-
ter three iterations; Fig. 2¢) and 2-3 km (after 30 iterations;
Fig. 2d) in diameter. That said, with increasing iterations, ar-
tifacts start to appear due to enhancements of noise and the
specific sampling of IASI (in particular, stripes parallel to the
orbit track become apparent). Such overfitting to the data and
a sensitivity to outliers is often seen in maximum likelihood
optimizations (Milanfar, 2010). It can therefore be advanta-
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geous to stop the algorithm after a few iterations (which can
also be required for computational reasons).

3 Wind-adjusted supersampling

In this section we illustrate the previously introduced super-
sampling on a wind-rotated NH3 average centered around
a point source. The ammonia plant at Horlivka (Gorlovka),
Ukraine, was chosen as a test case. This plant made the news
in 2013 because of the major NH3 leak that occurred on

www.atmos-meas-tech.net/12/5457/2019/
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Figure 3. Averaging techniques illustrated on the ammonia plant
at Horlivka on IASI NH3 data between 2007 and 2013. From top
to bottom: (a) gridded average; (b) oversampled average; (c¢) wind-
rotated oversampling, with the rotation center located at the maxi-
mum of (b); (d) wind-rotated supersampling, with the rotation cen-
ter located at the maximum of (b); and (e) wind-adjusted supersam-
pling around the assumed source (center of the plant). (f) Zoomed-in
view (factor of 20) over the ammonia plant (data: © Google Maps).
For each subpanel, the number in the bottom left corner is the total
average NH3 column amount over the entire area.
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6 August, killing five people and injuring many more. We
refer to the Wikipedia article for a detailed description of
the event and a list of related newspaper articles (Wikipedia,
2019). The accident itself was not detected by TASI, but
an abrupt drop in the average concentrations after the inci-
dent is seen in the satellite observations. In fact, after 2013
NH3 enhancements are no longer detected at or near the
plant. Figure 3 illustrates the processes of oversampling, su-
persampling and wind rotation on IASI data from 2007 to
2013. Each subpanel depicts the 120kmx60km area cen-
tered around the plant, from top to bottom.

a. Gridded average. In the regular gridded average, each
grid cell is assigned the arithmetic average of all obser-
vations whose center falls into the grid cell. This method
only gives a faithful representation for larger grid-cell
sizes, whereas smaller grid sizes provide a higher res-
olution at the cost of larger noise. Here a grid size of
0.15° x 0.15° was chosen. NH3 enhancements are seen
in a wide area around the plant, with a maximum west
of the plant of 1 x 10'® molec. cm—2.

b. Oversampled average. Oversampling the daily maps be-
fore averaging increases the resolution and reveals the
point-source nature of the emission, with a maximum
close to the plant (around 1.6 x 10'® molec. cm™2).

c. Wind-rotated oversampling. The wind-rotation tech-
nique (Valin et al., 2013; Fioletov et al., 2015) con-
sists of rotating the map of daily observations around
a presumed point source and along the direction of the
wind direction at that point. The rotation was applied
here to align the winds in the x direction. Daily hori-
zontal wind fields were taken from the ERAS reanaly-
sis (ERAS, 2019) and interpolated at an altitude equal
to half of the boundary layer height. The NH3 average
shown in this panel was obtained via oversampling ap-
plied to all the daily wind-rotated maps. It is important
to note that such a distribution can no longer be inter-
preted as a geographical map, since each pixel is an
average of measurements taken at different places. The
only map element that is preserved is the distance to
the point source. However, looking at the resulting dis-
tribution, the advantages brought by wind rotation are
obvious. Whereas in the normal oversampled average
the NH3 enhancements are scattered across, aligning the
winds significantly enhances both the source and trans-
port (with a maximum of 2 x 10'® molec. cm™2).

d. Wind-adjusted supersampling (i). The figure in this
panel was obtained from wind-rotated daily maps, as
in the previous panel, but this time the average was
calculated with three iterations of the IBP supersam-
pling algorithm. As explained above, supersampling of-
fers most benefits when the underlying distribution can
be assumed to be reasonably constant, which is in part
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achieved by aligning the winds. The resolution is fur-
ther increased, and as the plume is much less smoothed
out, maximum observed columns are also much higher
(3.3x 10'® molec. cm™2). Note that in general for NH3,
three iterations of the IBP algorithm seem to offer a
good compromise of increasing the resolution of the av-
erage without introducing artifacts related to overfitting.

e. Wind-adjusted supersampling (ii). In Fig. 3c and d, the
point-source location was taken from Van Damme et al.
(2018), where the locations were determined based on
the location of the maxima in the oversampled averages.
In this last panel, the rotation was applied around the
center of the presumed source (the chemical plant). The
performance of the wind rotation is further enhanced,
yielding a distribution fully consistent with that of a
single emitting point source whose emissions undergo
transport in a fixed direction. The part of the plume lo-
cated furthest from the source is a bit off axis, which is
probably caused by inhomogeneities in the wind fields
across the entire scene. This panel also illustrates the
sensitivity of the rotation method to small shifts in the
location of the center, a fact that we will exploit in the
next section.

One useful property of the different procedures is that they
all approximately conserve the quantity that is being aver-
aged; i.e., the averaged quantity in each grid is approximately
the same as the average quantity in the grid representing the
ground truth given that there is a sufficient number of mea-
surements across the entire grid. When the number of mea-
surements is low, this can break down dramatically, as can be
seen with the extreme example of a single high-value mea-
surement over an isolated point source. When a gridded aver-
age is made from this single measurement onto a coarse grid
(e.g., 5° x 5°), the entire grid cell containing the measure-
ment will be associated with this high value, thus overesti-
mating reality. A strict conservation is therefore not possible
in general, as not enough information is contained in the orig-
inal measurements to reconstruct the ground-truth perfectly
even on average. That being said, supersampling conserves
quantity with respect to the original measurements, when the
number of iterations is large enough. This is a consequence
of the fact that the back-projected measurements converge to
the actual measurements and therefore also their averages.
Finally note that wind rotation does not alter the grid aver-
age, as rotation simply redistributes the measurements to dif-
ferent locations on the grid. The average total NH3 columns
are indicated in each subpanel of Fig. 3. The average of the
ungridded measurements within the considered box equals
5.23 x 103 molec. cm~2. As can be seen, the largest change
in the average column is caused by the rotation procedure,
but this is simply an artifact caused by limiting the average to
a square box around a point source (instead of a circle). This
example illustrates that in practice, with differences smaller
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than 1 %, the different gridding procedures can be assumed
to conserve quantity.

4 An NHj; point-source map

Having demonstrated the effectiveness of both the wind-
rotation and supersampling approaches in revealing point
sources, we are now in a position to introduce a new type of
NHj3 map, specifically designed to track down point sources.
It is based on a similar map presented in McLinden et al.
(2016) for SO,, but some important differences were in-
troduced here to make it work for NH3. The main idea of
McLinden et al. (2016) is to treat each location on Earth
as a potential point source and to assign it a value propor-
tional to the downwind (the source) minus the upwind (the
background) column. In particular, for a given location, a
wind-rotated average is constructed first, similar to Fig. 3c.
Representative average columns are then obtained down-
wind and upwind from the potential source (e.g., in boxes
of 10kmx 10 km). Finally, the difference of the upwind and
downwind average is calculated, and this value is then used
to represent the point-source column at that specific location.
While the method works nicely for SO,, this method proved
to be only moderately successful when we applied it to the
IASI NH3 data. In particular, for those places where area
sources dominate or where point sources are clustered over
too large an area, local variation in the columns produces a
noisy map, with many fictitious point sources.

We found that instead of the differences, the downwind
average alone produced a more representative point-source
map. In addition, applying the method not on the oversam-
pled average but on the supersampled one allows increas-
ing the resolution. There are two key advantages offered by
a point-source map constructed in this way as opposed to
a regular oversampled average: brighter point sources and
smoother (lower) values over the background. The fact that
point sources appear brighter is a direct consequence of the
plume concentration achieved with wind-rotated supersam-
pling, as shown in the previous section. Smoothing of the
background is accomplished by the process of averaging
the area downwind. However, by applying the method not
on an oversampled average but on a supersampled one, this
smoothing is partially offset for point sources. The resulting
point-source map has a similar horizontal resolution to the
oversampled map, but with increased averaged columns at
the point sources and a smoother background distribution.

Examples over two selected regions in North America are
shown in Fig. 4b and d. In these examples, the downwind av-
erages were calculated in boxes extending from —5 to Skm
in the y direction and 0 to 20 km in the x direction. Figure 4a
and c correspond to the regular oversampled averages. In
Fig. 4a, which shows the oversampled average of the south-
ern part of the Saskatchewan province of Canada, no point
sources are apparent in the patchy NH3 distribution. The cor-

www.atmos-meas-tech.net/12/5457/2019/
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Figure 4. NH3 point sources over Canada (a, b) and the US (¢, d). Panels (a, ¢) show maps produced with a regular oversampled average,
and panels (b, d) depict the corresponding NH3 point-source maps. The black circles indicate the identified point sources.

responding point-source map, shown in Fig. 4, is smoother
over areas dominated by the diffuse sources, where column
variations are close to the measurement uncertainty. In addi-
tion, two bright spots are evident, which upon investigation
coincide with the location of an ammonia plant (Belle Plaine)
and a very large feedlot (> 2km in length) near the town
of Lanigan. Looking back at the oversampled average, even
with the advantage of hindsight, these sources can hardly be
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singled out. Figure 4c and d show the southwestern part of
Kansas, US. It is an area well known for its cattle (Harring-
ton and Lu, 2002). In Van Damme et al. (2018) several point
sources associated with feedlots were isolated in Kansas and
the rest of the High Plains region, but most of the area was
found to be too diffuse to allow identification of individual
point sources. The NH3 point-source map facilitates greatly
the attribution of these. This is due to the reduction in noise

Atmos. Meas. Tech., 12, 5457-5473, 2019



5464

and the fact that the main point sources contrast much more
with the background. An added benefit of this is that the lo-
cation of the maxima in the map is in general closer to the
actual emission source than is the case in the oversampled
map, making it easier to track down the suspected source
with visible imagery and therefore also to assign and iden-
tify the point source.

Displaced maxima that are seen in regular averages (wind-
adjusted or not) can also be the result of transport, as noted
by Van Damme et al. (2018), who found that especially for
coastal sites, the shift can be as much as 20km. The sus-
pected reason is vertical uplift during transport, which makes
NH; easier to detect and to measure (as can be seen in
Fig. 3c) downwind of the source. The way in which the point-
source map is set up corrects for the effects of transport, as
the columns are partially reallocated back to their source by
assigning the average downwind column to the point source.
We have quantified the ability to locate sources on a careful
selection of 36 industrial emitters. These were all chosen to
be relatively isolated, with no nearby other industries or other
sources, so that the actual emitting source is known with con-
fidence. In addition, only small- to medium-sized plants were
chosen (< 1 km across) so that the precise location of the
emission is known within a distance of about 500 m. For the
regular oversampled map, the sources were found within a
median distance of 3.9 km and a mean of 5.4 & 3.7 km. The
furthest distance was 15.2 km. For the point-source map, all
but five sites were located within 3km (with a median of
1.5km, a mean of 2.1 & 1.7 km and a maximum of 7.3 km),
which confirms its improved performance in geo-allocation
of the sources.

A final advantage of the point-source map is its perfor-
mance in areas mildly affected by fires (e.g., in southeastern
Asia, Mexico and parts of South America). Certain hotspots
due to fires, with a plume center of around 25 km, can look
just like actual point sources. In the point-source map, these
often appear less bright and are blurred out over a wider area,
with lower columns compared to the oversampled average.
On the other hand, as before, actual point sources appear
brighter and can emerge from the patchy NHj3 distribution
that is characteristic for areas affected by fires. For that rea-
son, comparing the oversampled and the point-source map
was found to be very useful for singling out point sources,
especially in those areas with larger background values. Ex-
ample point sources are the ammonia plant in Campana (Ar-
gentina) and Bastos (Brazil), an important center of egg pro-
duction. These were previously difficult to detect but are now
easily identified.

5 Updated point-source catalog
Using the methodology presented in the previous section,

NH3 point-source maps of the world (land only) were con-
structed at a resolution of 0.01° x 0.01° (corresponding to
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a horizontal resolution of the order of 1-2km). A few such
maps were constructed by varying the size of the averaging
box and the applied wind speeds (either in the middle of the
boundary layer or at 100 m). While oversampling and back
projection are computationally not that demanding, we re-
call that the construction is based on the treating each grid
cell of the 0.01° x 0.01° map as a potential point source and
therefore relies on the construction of wind-adjusted super-
sampled maps like Fig. 3e for each grid cell. Therefore, pro-
ducing a world map at that resolution entails the generation
of over 100000000 maps similar to Fig. 3e, each at a reso-
lution of 1km and each using more than 250 000 IASI mea-
surements. A single point-source map therefore takes more
than a month of computation. We decided to use all the avail-
able 2007-2017 NH;3 data both from [ASI/Metop A (2007-
2017) and IASI/Metop B (2013-2017), which helps in re-
ducing the noise even though it creates averages which are
biased towards the last 5 years. The maps were then ana-
lyzed to provide an update of the point-source catalog pre-
sented in Van Damme et al. (2018). We refer to it for a de-
tailed description of the methodology for the identification
and categorization of the point sources, as we used the same
method here. In brief, first, the global map is analyzed re-
gion per region in search of NH3 hotspots that are no larger
than 50 km across and that exhibit localized and concentrated
enhancements compatible with a point source or dense clus-
ter of point sources. Areas dominated by fires are excluded
from the analysis. Analysis of areas with many sources or
large ambient background concentrations, such as the Indo-
Gangetic Plain, is severely hampered and reveals only the
very large point sources. Isolated point sources in remote ar-
eas, on the other hand, can easily be picked up. The pres-
ence of a point source in the catalog should therefore not be
seen as a quantitative indicator of its emission strength. Note
that in this study we did not attempt to quantify the emission
strengths of each. The categorization of the suspected point
sources is performed using Google Earth imagery and third-
party information (mainly inventories of fertilizer plants and
online resources). The original categories were as follows:
“agriculture”, “fertilizer industry”, “other industry”, “natu-
ral” and “non-determined”. Here we expanded the number
of categories considerably and in particular introduced an ur-
ban category and subdivided “other industry” into five new
categories, as detailed below.

The new point-source catalog is listed in Table A1 and il-
lustrated on a world map in Fig. 5. Agricultural point sources
were found to be invariably associated with CAFOs. Their
number more than doubled, from 83 to 216, largely due to
the increased attribution in areas of densely located point
sources. For many of the previously tagged “source regions”,
it was possible to resolve large individual emitters. This was
the case in the US (particularly in the geographical region
that corresponds to the High Plains Aquifer), Mexico and
along the coast of Peru. Also notable are several newly ex-
posed large feedlots in Canada and in eastern Australia. For
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Figure 5. Global distribution of NH3 point sources and their categorization. The total numbers per category are as follows: agriculture (215),
coking industry (9), explosives industry (1), fertilizer industry (217), geothermal industry (3), non-determined industry (21), nickel indus-
try (4), soda ash industry (11), natural (1), non-determined (15) and urban (13).

the first time, agricultural point sources were also identified
in China and Russia.

Industrial point sources, as before, are mainly associated
with ammonia or urea-based fertilizer production (216, com-
ing from 132) in Europe, northern Africa and Asia. Industrial
hotspots were categorized as fertilizer industry as soon as ev-
idence was found of fertilizer production, even when there
are clearly other industries present that may contribute. Sep-
arate categories were introduced for the previously identified
soda ash, geothermal, nickel-mining and coking industries,
as additional examples were found for each. One ammonia
plant in the US, associated with the manufacturing of explo-
sives, was also assigned a separate category. Emissions over
unidentified industries were labeled as a non-determined in-
dustry.

An important new category is the urban one. Previously,
localized emissions near Mexico City, Bamako (Mali) and
Niamey (Niger) were noted. While these hotspots represent
diffuse sources, they have been included in the catalog, as
the extent of the emissions in the relevant cities is suffi-
ciently local and sufficiently in excess of background values.
Thanks to the improved source representation, clear enhance-
ments were found in Kabul (Afghanistan) and 12 African ur-
ban agglomerations: Ouagadougou (Burkina Faso), Bamako
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(Mali), Kano (Nigeria), Niamey (Niger), Maiduguri (Nige-
ria), Khartoum—Omdurman (Republic of the Sudan), Luanda
(Angola), Kinshasa (Congo), Nairobi (Kenya), Addis Ababa
(Ethiopia), Bamako (Mali) and Kampala (Uganda). Espe-
cially in Asia, atmospheric NH3 is found in excess over most
megacities and with much larger columns than found in these
African megacities. However, because of the much larger
background columns, and much denser clusters of cities,
these could not be singled out as was the case in Africa. Apart
from industry, known urban sources of NH3 include emis-
sions from vehicles, human waste (waste treatment and sew-
ers), biological waste (garbage containers) and domestic fires
(including waste incineration) (Adon et al., 2016; Sun et al.,
2017; Reche et al., 2015). At least the hotspot at Bamako
is consistent with in situ measurements (Adon et al., 2016),
which report very high concentrations year-round, between
28 and 73 ppb on a monthly averaged basis. Local conditions
surely are key in explaining why some cities in Africa exhibit
much larger concentrations than others. Johannesburg (South
Africa) for instance blends in completely in the background,
with ambient values barely larger than in the rest of South
Africa. While this is outside the scope of the paper, there is
no doubt that the IASI NH3 data could be further exploited
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to better understand the driving factors of urban emission on
a global scale.

Other than at Lake Natron (Clarisse et al., 2019), no other
natural NH3 hotspots have been identified. For a number of
presumed point sources, no likely source could be attributed;
however given their location (central US, Middle East and
eastern Asia), these are most likely anthropogenic.

6 Conclusions

Oversampling is a technique now commonplace in the field
of atmospheric sounding for achieving hyperresolved spatial
averages beyond what the satellites natively offer. There is a
class of algorithms referred to as superresolution that goes
beyond oversampling, but these have until now only been
applied to measurements of satellite imagers for surface pa-
rameters. Here, we have shown that it is a viable method that
can also be applied to the single-pixel images taken by atmo-
spheric sounders for short-lived gases. We demonstrated this
with measurements of a quartz emissivity feature over the
Sahara, for which a spatial resolution down to 2-3 km could
be achieved.

Superresolution is a priori less suitable for measurements
of atmospheric gases because of variations in their distribu-
tion related to variations in transport. However, by aligning
the winds around point-source emitters, much of this vari-
ability can be removed. In Sect. 3, we have shown the advan-
tage of applying IBP superresolution on such wind-corrected
data. The resulting averaged plumes originating from point
sources not only reveal more detail, but maximum concen-
trations and gradients are also larger and presumably more
realistic. Studies of atmospheric lifetime (e.g., Fioletov et al.,
2015), which rely on the precise shape of the dispersion,
could potentially benefit from this increase in accuracy.

Wind-adjusted superresolution images around point
sources form the basis of the NH3 point-source map, which is
an NHj3 average that simultaneously corrects for wind trans-
port, accentuates point sources and smooths area sources.
It was inspired by the SO, “difference” map presented in
McLinden et al. (2016), but as we do not look at differences,
the NH3; map still looks like an NHj3 total column distri-
bution. However, other than for the identification of point
sources, such a map is not easily exploitable, as it is a dis-
torted representation of the reality that favors point sources.
In-depth analysis allowed us to perform a major update of
the global catalog of point sources presented in Van Damme
et al. (2018), with more than 500 point sources identified
and categorized. As a whole, this study further highlights the
importance of point sources on local scales. The world map
shows distinct patterns, with agricultural point sources com-
pletely dominant in America, in contrast to Europe and Asia,
where industrial point sources are prevalent. In Africa, NH3
hotspots are mainly found near urban agglomerations.
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While the point-source catalog was established with a
great deal of care, given its size, mistakes will inevitably be
present both in the localization of the point sources (due to,
for example, noise in the data or NH3 in transport) and in the
categorization. Improvements can probably best be achieved
with feedback from the international community, with com-
plementary knowledge on regional sources. For this reason,
and to keep track of emerging emission sources, we have set
up a website with an interactive global map, visualizing the
distribution, type and time evolution of the different point
sources (http://www.ulb.ac.be/cpm/NH3-IASLhtml, last ac-
cess: 11 October 2019). With the help of the community,
we hope it can become a useful resource for information on
global NH3 point sources.

Data availability. The IASI NHj3 product is available from the
Aeris data infrastructure (http://iasi.aeris-data.fr, last access: 11 Oc-
tober 2019). It is also planned to be operationally distributed by EU-
METCast under the auspices of the Eumetsat Atmospheric Monitor-
ing Satellite Application Facility (AC-SAF; http://ac-saf.eumetsat.
int, last access: 11 October 2019).
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Table A1. Updated point-source catalog. The categories are abbreviated as A for agriculture, CI for the coking industry, EI for the explosives
industry, FI for the fertilizer industry, GI for the geothermal industry, NDI for a non-determined industry, NI for the nickel industry, SI for
the soda ash industry, N for natural, ND for non-determined and U for urban.

Country Lat Long Name Type ‘ Country Lat Long Name Type
Australia —35.92 146.37 Redlands A Australia —34.66 146.49  Merungle Hill A
Australia —34.46 147.77  Springdale A Australia —29.52 151.72  Emmaville A
Australia —28.74 151.04 Beebo A Australia —27.46 151.13  Grassdale A
Australia —27.15 151.54 Moola A Australia —26.90 149.84  Moraby A
Australia —26.82 150.40  Greenswamp A Belarus 52.28 23.52  Malyja Zvody A
Belgium 51.06 3.25 Wingene A Bolivia —17.34 —66.28  Cochabamba A
Brazil —21.93 —50.77  Bastos A Brazil —19.79 —44.69  Carioca A
Brazil —4.98 —42.76  Teresina A Canada 49.03 —122.28  Abbotsford A
Canada 49.86 —112.87 Picture Butte A Canada 50.59 —111.96 Brooks A
Canada 5090 —113.37 Strangmuir A Canada 51.85 —104.85 Lanigan A
Canada 5256 —110.88 Hughenden — Czar A Canada 53.65 —111.97 Norma A
Chile —34.26 —71.60  Las Chacras A Chile —33.95 —71.64 LaManga A
China 41.42 114.81  Erdao Canal, Zhangbei (HE) A China 41.84 115.83  Xingtai Yong, Guyuan (HE) A
China 23.26 112.67  Lianhuazhen (HI) A Dominican Republic 19.43 —70.54  Moca — Tamboril A
India 11.29 78.14  Namakkal A India 16.75 81.65 Tanuku A
India 17.39 78.61 Hyderabad A Indonesia —8.04 112.07  Blitar City A
Italy 41.08 14.04  Cancello ed Arnone A Jordan 32.13 36.27 Dhlail sub-district A
Kazakhstan 43.47 76.78  North of Almaty A Malaysia 5.21 100.48  Sungai Jawi A
Morocco 33.87 —6.88  Temara A Mexico 18.45 —97.31  Tehuacédn A
Mexico 18.84 —97.80  Tochtepec A Mexico 20.25 —102.47 Vista Hermosa de Negrete A
Mexico 20.68 —99.93  Ezequiel Montes A Mexico 20.75 —102.88  Acatic A
Mexico 21.08 —100.49 San Antonio — La Canela A Mexico 21.21 —102.41 SanJuan de Los Lagos A
Mexico 21.89 —98.73  Tampadn A Mexico 22.03 —102.30 Aguascalientes A
Mexico 22.10 —98.62 Loma Alta A Mexico 22.18 —100.90 San Luis Potosi A
Mexico 2482  —107.61  Culiacancito A Mexico 25.69 —103.48 Torreon A
Mexico 27.15 —104.94  Jiménez A Mexico 27.39 —109.89 Obregén A
Mexico 2820 —105.43 Delicias A Mexico 3246 —116.80 LaPresa A
Mexico 3251 —115.22 Puebla A Mexico 32.61 —115.63  Santa Isabel A
Peru —16.54 —71.89  Vitor District A Peru —16.42 —72.28 Majes A
Peru —13.46 —76.09  Alto Lardn District A Peru —12.97 —76.43  Quilmana District A
Peru —12.28 —76.83  Punta Hermosa A Peru —11.94 —77.07  Carabayllo District A
Peru —11.53 —77.23  Huaral District A Peru —11.30 —77.42  Irrigacién Santa Rosa A
Peru —11.05 —77.56  Tiroles A Peru —8.15 —78.97  Trujillo A
Peru —7.99 —79.20  Chiquitoy A Peru —7.25 —79.48  Guadalupe A
Poland 52.97 19.89  Biezuii A Russia 50.78 35.87 Rakitnoye A
Russia 51.12 41.51  Novokhopyorsk A Russia 54.67 61.35  Klyuchi A
Saudi Arabia 24.10 4892 Haradh A Saudi Arabia 24.19 4745 Al Qitar A
Saudi Arabia 24.22 47.93 At Tawdihiyah A Saudi Arabia 25.50 49.61 Al Hofuf A
South Africa —26.62 28.28 Ratanda A South Korea 37.12 127.44  Anseong — Icheon A
Spain 37.56 —1.66  Lorca — Puerto Lumbreras A Spain 37.73 —1.24  Canovas A
Spain 38.40 —4.87  El Viso — Pozoblanco A Spain 39.65 —4.27  Menasalbas A
Spain 41.12 —4.21  Mozoncillo A Spain 41.95 221  Vic - Manlleu A
Spain 40.87 —0.03  La Portellada A Spain 41.93 —1.21 Tauste A
Taiwan 22.69 120.52  Pingtung A Thailand 13.30 101.26  Nong Irun A
Thailand 13.46 99.70  Thung Luang — Chom Bueng A Turkey 37.26 3329  Alagati A
Turkey 37.57 34.02  Eregli A Turkey 37.78 32.53 Konya A
Turkey 37.90 29.99  Bagmakgi A Turkey 38.73 30.57  Afyonkarahisar A
United Arab Emirates 24.41 55.74  Masaken A United Arab Emirates 25.21 55.53  Dubai A
USA 34.36 —86.07  Hopewell (AL) A USA 32.68 —114.08 Wellton (AZ) A
USA 32.88 —112.02 Stanfield (AZ) A USA 3294 —112.87 GilaBend (AZ) A
USA 3333 —111.70 Higley (AZ) A USA 3337 —112.70 Palo Verde (AZ) A
USA 3339 —112.23  Avondale (AZ) A USA 33.17 —115.59 Calipatria (CA) A
USA 3379 —117.09  San Jacinto (CA) A USA 3396 —117.60 Chino (CA) A
USA 3523 —119.09 Bakersfield (CA) A USA 36.08 —119.43 Tulare (CA) A
USA 36.29 —120.28 Coalinga — Huron (CA) A USA 37.09 —120.44 Chowchilla (CA) A
USA 3741 —120.93 Hilmar (CA) A USA 38.24 —122.73  Petaluma (CA) A
USA 38.05 —102.36 Granada (CO) A USA 38.07 —103.76 Rocky Ford (CO) A
USA 38.11 —102.72 Lamar (CO) A USA 38.23 —103.72 Ordway (CO) A
USA 39.27 —102.27 Burlington (CO) A USA 40.13  —102.57  Eckley — Yuma (CO) A
USA 40.21 —103.78  Fort Morgan (CO) A USA 4022 —103.96 Wiggins (CO) A
USA 4036 —104.53  Greeley (CO) A USA 40.55 —103.30  Atwood (CO) A
USA 40.78 —102.94 1liff — Crook (CO) A USA 32.34 —83.94  Montezuma (GA) A
USA 34.27 —83.03  Royston (GA) A USA 43.13 —96.29  Sioux County (IA) A
USA 4226 —113.36 Malta (ID) A USA 4233 —114.05 Oakley (ID) A
USA 4275 —114.65 Jerome — Wendell (ID) A USA 43.05 —116.07 Grand View (ID) A
USA 4343 —116.48 Melba (ID) A USA 43.66 —112.11 Roberts (ID) A
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Table A1l. Continued.
Country Lat Long Name Type ‘ Country Lat Long Name Type
USA 4383 —116.90 Parma (ID) A USA 38.49 —86.88  Jasper (IN) A
USA 41.04 —87.26  Fair Oaks (IN) A USA 37.03 —100.87 Liberal (KS) A
USA 37.24  —100.91 Seward County (KS) A USA 3744 —101.32 Ulysses (KS) A
USA 37.60 —100.94 Haskell County (KS) A USA 37.85 —100.87  Garden City (KS) A
USA 3791 —100.40 Cimarron (KS) A USA 38.12 —99.07 Larned (KS) A
USA 3830 —100.89  Scott County (KS) A USA 38.39 —98.80  Great Bend (KS) A
USA 38.58 —101.36  Wichita County (KS) A USA 38.60 —100.47  Shields (KS) A
USA 39.07 —100.84  Oakley (KS) A USA 39.41 —100.52  Hoxie (KS) A
USA 39.76 —97.76  Scandia (KS) A USA 39.85 —98.32  Burr Oak (KS) A
USA 40.48 —93.39  Lucerne (MO) A USA 40.15 —98.50  Cowles (NE) A
USA 4022 —100.54 McCook (NE) A USA 40.57 —99.52  Westmark (NE) A
USA 40.62 —98.90 Newark (NE) A USA 40.67 —101.63  Chase County (NE) A
USA 40.76 —99.72  Lexington (NE) A USA 40.79 —97.11  Seward County (NE) A
USA 40.87 —100.74  Wellfleet (NE) A USA 40.98 —100.19  Gothenburg (NE) A
USA 41.35 —99.63  Broken Bow (NE) A USA 41.54 —102.96 Bridgeport (NE) A
USA 4178 —103.43  Minatare (NE) A USA 41.99 —96.93  Wisner (NE) A
USA 42.00 —103.71 Mitchell (NE) A USA 42.01 —98.15  Elgin (NE) A
USA 42.43 —96.86  Allen (NE) A USA 32.10 —106.63 Vado (NM) A
USA 32,57 —107.27 Hatch (NM) A USA 3292 —103.23 Lovington (NM) A
USA 3328 —104.44 Dexter - Roswell (NM) A USA 3451 —106.78  Veguita (NM) A
USA 39.08 —119.26 Lyon County (NV) A USA 39.41 —118.77 Fallon (NV) A
USA 40.36 —84.73  Coldwater (OH) A USA 36.56 —102.20 Griggs (OK) A
USA 36.64 —101.36  Guymon (OK) A USA 36.70 —101.08 Adams (OK) A
USA 36.76  —101.30  Optima (OK) A USA 36.88 —101.60 Hough (OK) A
USA 45772 —119.83 Boardman (OR) A USA 29.65 —97.37  Gonzales (TX) A
USA 32.07 —98.39  Dublin (TX) A USA 33.14 —95.35  Hopkins County (TX) A
USA 3401 —102.37 Amherst (TX) A USA 34.09 —102.00 Hale Center (TX) A
USA 34.19 —101.45 Lockney (TX) A USA 3442 —103.08 Farwell (TX) A
USA 3450 —102.41 Castro (TX) A USA 34.63 —101.86 Happy — Tulia (TX) A
USA 3475 —102.46 Hereford (TX) A USA 35.02 —102.36  Deaf Smith (TX) A
USA 35.07 —102.04 Bushland (TX) A USA 35.55 —100.75 Pampa (TX) A
USA 35.85 —102.45 Hartely (TX) A USA 36.01 —102.60 Dalhart (TX) A
USA 36.03 —102.08 Cactus (TX) A USA 36.05 —102.28 Dalhart (east) (TX) A
USA 36.16 —101.60 Morse (TX) A USA 36.28 —100.68  Ochiltree (TX) A
USA 3630 —102.03  Stratford (TX) A USA 38.19 —113.26  Milford (UT) A
USA 39.38 —112.60 Delta (UT) A USA 4195 —111.97 Trenton (UT) A
USA 38.45 —79.00  Bridgewater (VA) A USA 4635 —119.00 Eltopia (WA) A
USA 46.37 —120.07 Yakima Valley — Sunnyside (WA) A USA 46.52 —118.94 Mesa (WA) A
USA 47.01 —119.09 Warden (WA) A USA 42.04 —104.14  Torrington (WY) A
Venezuela 10.05 —68.09  Tocuyito — Barrerita A Venezuela 10.41 —71.79  La Concepcién A
Vietnam 10.46 106.42  Tan An A Vietnam 11.02 106.94  Bién Hoa A
Vietnam 20.76 105.95 Khodi Chau A China 45.77 13091 Qitaihe (HL) CI
China 38.72 110.17  Jingdezhen (SN) CI China 39.11 110.74  Xinminzhen, Fugu (SN) CI
China 39.18 110.31  Sunjiachazhen, Shenmu (SN) CI China 39.27 111.07  Shishanzecun, Fugu (SN) CI
China 35.90 111.44  Xiangfen (SX) CI China 37.08 111.79  Xiaoyi (SX) CI
Russia 53.72 91.01  Chernogorsk CI Russia 54.30 86.15  Bachatsky CI
USA 41.08 —104.90 Cheyenne (WY) EI Algeria 35.83 —0.32  Arzew FI
Algeria 36.90 7.72  Annaba FI Argentinia —34.19 —59.03  Campana FI
Bangladesh 22.27 91.83  Chittagong FI Bangladesh 24.01 90.97  Ashuganj FI
Bangladesh 24.68 89.85  Tarakandi FI Belarus 53.67 2391 Grodno FI
Brazil —25.53 —49.40  Curitiba FI Brazil —10.79 —37.18 Laranjeiras FI
Bulgaria 42.02 25.66  Dimitrovgrad FI Bulgaria 43.21 27.63  Devnya FI
Canada 42.76 —82.41  Courtright FI Canada 49.82 —99.92  Brandon FI
Canada 50.07 —110.68 Medicine Hat FI Canada 50.44 —105.22 Belle Plaine FI
Canada 5373 —113.17 Fort Saskatchewan FI China 30.05 116.83  Xiangyuzhen (AH) FI
China 30.50 117.02  Anqing (AH) FI China 30.88 117.74  Tongling (AH) FI
China 32.43 118.44  Lai’an (AH) FI China 32.63 116.97  Huainan (AH) FI
China 32.93 115.84  Fuyang (AH) FI China 33.06 115.30  Linquan (AH) FI
China 24.54 117.64  Longwen (FJ) FI China 36.06 103.59  Xigu — Lanzhou (GS) FI
China 38.38 102.07  Jinchang (GS) FI China 24.34 109.35  Liuzhou (GX) FI
China 25.18 104.84  Xingyi — Qianxinan (GZ) FI China 26.61 107.48  Fuquan (GZ) FI
China 27.17 106.74  Xiaozhaibazhen (GZ) FI China 27.29 105.34  Yachizhen (GZ) FI
China 3297 114.05  Zhumadian (HA) FI China 34.79 11442 Kaifeng (HA) FI
China 35.25 113.74  Xinxiang (HA) FI China 35.55 114.59  Huaxian (HA) FI
China 30.34 111.64  Zhijiang (HB) FI China 30.43 115.25  Xishui (HB) FI
China 30.45 111.49  Xiaoting (HB) FI China 30.50 112.88  Qianjiang (HB) FI
China 30.78 111.82  Dangyang (HB) FI China 30.94 113.66  Yingcheng — Yunmeng (HB) FI
China 31.22 112.29  Shigiaoyizhen (HB) FI China 37.87 116.55 Dongguang (HE) FI
China 38.13 114.74  Shijiazhuang — Gaocheng (HE) FI China 46.46 125.20  Xinghuacun (Longfen) (HL) FI
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Table A1l. Continued.
Country Lat Long Name Type | Country Lat Long Name Type
China 46.75 129.54  Haolianghe (HL) FI China 47.17  123.63  Hulan Ergi (HL) FI
China 27.59 111.45 Heqing (HN) FI China 27.71 112.54  Xianxiang (HN) FI
China 29.40 113.11  Yueyang (HN) FI China 3576 11496 Puyang (HN) FI
China 44.01 126.56  Jilin (JL) FI China 45.31 124.47  Changshan (JL) FI
China 31.32 121.01  Kunshan (JS) FI China 3143  119.83  Yixing (JS) FI
China 31.98 120.51  Zhangjiagang, Suzhou Shi (JS) FI China 3222 118.77  Dachang — Nanjing (JS) FI
China 34.36 118.31  Xinyi JS) FI China 34.60 119.13 Lianyungang (JS) FI
China 34.75 116.63  Fengxian (JS) FI China 40.76 ~ 120.83  Huludao (Liaoning) FI
China 41.20 121.98  Shuangtaizi, Panjin (LS) FI China 38.07 108.98 Nalin River (NM) FI
China 39.08 109.47  Tuke Sumu (NM) FI China 39.43 106.70  Wuda — Hainan — Huinong (NM) FI
China 40.04 111.28 Lamawanzhen (NM) FI China 40.69 108.70  Wulashan (NM) FI
China 40.70 111.50  Hohhot (NM) FI China 43.45 12225 Mulituzhen (NM) FI
China 47.94 122.83  Zalantun (NM) FI China 49.36  119.67  Hulunnuir (NM) FI
China 38.46 106.07  Yinchuan (NX) FI China 38.89  106.42  Shizuishan (NX) FI
China 36.48 101.49  Huangzhong (QH) FI China 36.75 95.25  Chaerhan Salt Lake (QH) FI
China 28.75 105.38  Naxi (SC) FI China 30.00 103.83  Dongpo (SC) FI
China 30.84 105.35  Shehong (SC) FI China 3090 10425 Deyang — Guanghan — Xindu (SC) FI
China 3491 118.48  Linyi (SD) FI China 35.00 117.24  Mushizhen, Tengzhou (SD) FI
China 3551 118.51  Yinan (SD) FI China 35.87 11643 Dongping (SD) FI
China 36.30 117.52  Yanglizhen (SD) FI China 36.35 116.15 Liaocheng (SD) FI
China 36.90 117.43  Shuizhaizhen (SD) FI China 36.95 118.77  Shouguang (SD) FI
China 37.09 119.03  Houzhen (Shouguang) (SD) FI China 37.16 116.38  Pingyuan (SD) FI
China 37.46 116.22  Decheng (SD) FI China 3428  108.53  Xingping (SN) FI
China 34.41 109.77  Guapozhen (SN) FI China 35.10 110.72  Xian de Linyi (SX) FI
China 35.45 112.60  Beiliuzhen (SX) FI China 35.66 112.84  Zezhou — Gaoping (SX) FIL
China 36.35 113.31  Lucheng (SX) FI China 36.37  112.87  Tunliu (SX) FI
China 36.60 111.70  Huozhou (SX) FI China 37.27 113.62  Pingsongxiang (SX) FI
China 37.55 112.18  Jiaocheng (SX) FI China 3833  112.11 Jingle (SX) FI
China 41.72 83.03 Kuga (X)) FI China 43.99 87.64 Midong — Fukang (XJ) FI
China 44.40 84.95  Kuytun (XJ) FI China 44.88 89.21  Wucaiwan (XJ) FI
China 23.73 103.21  Kaiyuan (YN) FI China 24.97 103.13  Yiliang (YN) FI
China 25.76 103.86  Huashan (YN) FI China 30.23 120.64  Xiaoshan, Hangzhou (ZJ) FI
China 38.26 11440  Lingshou (HE) FI China 19.08  108.67 Dongfang (HI) FI
Colombia 10.30 —75.49 Cartagena — Mamonal FI Croatia 45.48 16.82  Kutina FI
Egypt 29.66 3232 Ain Sokhna FI Egypt 31.07 31.40  Talkha FI
Egypt 31.26 30.09 Abu Qir FI United Arab Emirates 24.18 52.73  Ruwais FI
Georgia 41.54 45.08 Rustavi FI Germany 51.86 12.64  Piesteritz FI
India 8.72 78.14  Tuticorin FI India 12.92 74.84  Mangalore FI
India 13.13 80.25  Manali — Chennai FI India 15.34 73.85  Zuarinagar FI
India 16.96 82.00 Bikkavolu — Balabhadhrapuram FI India 18.71 72.86  Thal FI
India 19.03 72.88  Trombay — Mumbai FI India 20.32 86.64  Paradip — Batighara FI
India 21.17 7271  Hazira — Surat FI India 21.59 73.00  Ankleshwar FI
India 22.39 73.10  Vadodara FI India 24.51 77.14  Vijaipur FI
India 25.19 76.17  Gadepan FI India 25.56 82.05 Phulpur FI
India 26.46 80.21  Kanpur FI India 27.23 95.33  Namrup FI
India 27.84 79.91  Shahjahanpur FI India 28.24 79.21  Aonla FI
Indonesia —7.16 112.64  Gresik FI Indonesia —6.39  107.43  Derwolong — Cikampek FI
Indonesia —-2.97 104.79  Palembang FI Indonesia 0.18 117.48 Bontang City FI
Indonesia 523 97.05 Lhokseumawe FI Iran 27.56 52.55 Asaluyeh FI
Iran 29.86 5272 Marvdasht FI Iran 30.40 49.11  Bandar-e Emam Khomeyni FI
Iran 37.54 57.49  Bojnurd FI Iraq 30.18 47.84  Khor Al Zubair FI
Kazakhstan 43.66 51.21  Aktau FI Lithuania 55.08 2434  Jonava FI
Libya 30.42 19.61  Marsa el Brega FI Mexico 17.99 —94.54  Cosoleacaque FI
Mexico 20.52 —101.14  Salamanca — Villagrdn FI Morocco 33.10 —8.61  Jorf Lasfar FI
Myanmar 16.90 9476  Kangyidaunt FI Myanmar 17.15 95.98  Hmawbi FI
Nigeria 4.73 7.11  Port Harcourt FI North Korea 39.63 125.64  Anju FI
Oman 22.64 59.41  Sur Industrial Estate FI Pakistan 24.81 67.24  Bin Qasim FI
Pakistan 28.07 69.69  Daharki FI Pakistan 28.27 70.07  Sadiqabad FI
Poland 50.30 18.23  Kedzierzyn-Kozle FI Poland 51.47 21.96  Putawy FI
Poland 53.58 14.55  Police FI Qatar 2491 51.58 Mesaieed FI
Romania 43.70 24.89  Turnu Magurele FI Romania 44.53 27.37  Slobozia — Dragalina FI
Romania 46.52 24.49  Targu Mures FI Romania 46.52 26.94 Baciu FI
Romania 46.84 26.51  Savinesti — RoZnov — Slobozia FI Russia 44.67 4191  Nevinnomyssk FI
Russia 50.14 39.68  Rossosh FI Russia 51.93 47.89  Balakovo FI
Russia 53.40 55.87  Salavat FI Russia 53.54 49.61 Togliatti FI
Russia 54.08 38.18  Novomoskovsk FI Russia 54.96 33.33  Dorogobuzh FI
Russia 55.36 85.96  Kemerovo FI Russia 57.88 56.17 Perm FI
Russia 58.53 49.95  Kirovo-Chepetsk FI Russia 58.61 31.24  Novgorod FI
Russia 59.15 37.80  Cherepovets FI Russia 59.40 56.73  Berezniki FI
Saudi Arabia 27.08 49.57 Al Jubail FI Saudi Arabia 29.32 35.00 Hagl FI
Serbia 44.87 20.60  Pancevo FI Slovakia 48.16 17.96 Sala FI
South Africa  —26.85 27.82  Sasolburg FI South Africa —26.57 29.16  Secunda FI
Spain 37.19 —6.91  Huelva FI Spain 38.67 —4.06  Puertollano FI
Syria 34.67 36.68 Homs FI Trinidad and Tobago 1040 —61.48 Point Lisas FI
Tunisia 33.91 10.10  Gabes FI Tunisia 34.76 10.79  Sfax FI
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Table A1. Continued.
Country Lat Long Name Type | Country Lat Long Name Type
Turkmenistan 37.37 60.47 Tejen FI Turkmenistan 37.50 61.84 Mary FI
Ukraine 46.62 31.00  Odessa — Yuzhne FI Ukraine 48.31 38.11 Horlivka FI
Ukraine 48.50 34.66 Kamianske FI Ukraine 48.94 38.47  Severodonetsk FI
Ukraine 49.37 32.05 Cherkasy FI Ukraine 50.70 26.20 Rivne FI
USA 34.82 —87.95  Cherokee (AL) FI USA 42.41 —90.57  Massey (I0) FI
USA 36.37 —97.79  Aetna (KS) FI USA 30.09 —90.96  Donaldsonville (LA) FI
USA 4735 —101.83 Beulah (ND) FI USA 33.44 —81.94  Beech Island (SC) FI
Uzbekistan 40.10 65.30 Navoi FI Uzbekistan 40.46 71.83  Fergana FI
Uzbekistan 41.44 69.51  Chirchik FI Venezuela 10.07 —64.86  ElJosé FI
Venezuela 10.50 —68.20 Morén FI Venezuela 10.74 —71.57 Maracaibo FI
Vietnam 10.62 107.02  Phi My FI Vietnam 20.24 106.07  Ninh Binh FI
Italy 42.87 11.62 Mt Amiata GI Italy 4322 1091 Larderello GI
USA 38.77 —122.80 The Geysers (CA) GI Tanzania —2.49 36.06 Lake Natron N
China 31.83 117.43  Feidong (AH) ND | China 32.11 117.38  Jianbei (AH) ND
China 32.39 117.61  Gaotangxiang (AH) ND | China 29.91 115.34  Fuchizhen (HB) ND
China 31.73 120.22  Yugizhen (JS) ND | China 37.53 105.71  Zhongning (NX) ND
China 35.47 115.53  Juancheng (SD) ND China 33.00 106.97 Hanzhong (SN) ND
China 34.88 111.17  Pinglu (SX) ND | China 24.16 102.77  Tonghai (YN) ND
Spain 41.63 —4.71  Valladolid ND | Syria 33.51 36.40 East of Damascus ND
Taiwan 23.93 120.35  Fangyuan ND | USA 37.19 —86.73  Morgantown (WV) ND
Vietnam 10.74 106.59  Ho Chi Minh ND | China 36.00 103.28  Yongjing (GS) NDI
China 26.55 104.88  Zhongshan (GZ) NDI | China 33.42 113.62  Wuyang (HA) NDI
China 46.19 129.36  Dalianhezhen (HL) NDI | China 46.57 124.83  Cheng’ercun, Ranghulu (HL) NDI
China 39.40 121.73  Xiaochentun, Wafangdian (LN) NDI | China 41.83 123.93  Fushun (LN) NDI
China 39.87 106.81  Huanghecun (NM) NDI | China 40.64 109.69  Baotou (NM) NDI
China 42.31 119.24  Yuanbaoshanzhen (NM) NDI | China 37.88 106.15  Wuzhong (NX) NDI
China 38.23 106.54  Ningdongzhen (NX) NDI | China 35.64 110.95 Hejin — Jishan — Xinjiang (SX)  NDI
China 36.31 111.74  Hongtong (SX) NDI | Egypt 29.94 32.47 Al Adabiya NDI
India 23.77 86.40  Jharia NDI | Iran 35.40 53.16 Nezami NDI
Mauritania 18.05 —15.98  Nouakchott NDI | Mexico 2689 —101.42 Monclova NDI
Russia 51.44 4590  Saratov NDI | South Africa  —26.05 29.36  Springbok NDI
Australia —19.20 146.61  Yabulu NI Brazil —14.35 —48.45  Niquelandia NI
Cuba 20.64 —74.89 Moa NI Cuba 20.67 —75.57  Nicaro NI
China 39.22 118.13  Douyangu (HE) SI China 37.32 97.33  Delingha (QH) SI
China 29.46 103.84  Wutonggiao (SC) SI Mexico 2578 —100.56 Garcia SI
Poland 52.75 18.17  Janikowo SI Poland 52.75 18.15  Inowroctaw SI
Romania 44.99 2428  Stupdrei SI Russia 53.66 55.99  Sterlitamak SI
Turkey 36.79 34.67 Mersin SI Ukraine 45.97 33.85 Krasnoperekopsk SI
USA 35.67 —117.35 Searles Valley (CA) SI Afghanistan 34.51 69.17  Kabul 8]
Angola —8.82 13.32  Luanda U Burkina Faso 12.35 —1.58  Ouagadougou U
Congo —4.39 15.32  Kinshasa U Ethiopia 9.02 38.71  Addis Ababa U
Kenya —1.27 36.87  Nairobi 18] Mali 12.59 —7.99 Bamako 18]
Mexico 19.45 —99.07  Mexico City U Niger 13.55 2.12  Niamey U
Nigeria 11.88 13.17 Maiduguri U Nigeria 12.03 8.50 Kano U
Republic of the Sudan 15.65 32.55 Omdurman—Khartoum 18 Uganda 0.30 32.55 Kampala 8]
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